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1. Introduction

Exponential distribution has been broadly applied in the context 
of reliability. One reason for the popularity of the exponential distri-
bution in reliability modeling is that it is the limiting lifetime distri-
bution of a series system of substantially similar components [18]. 
The exponential distribution is also important for its “memoryless” 
property. 

The probability density function (pdf) and the cumulative distri-
bution function (cdf) of the exponential distribution are given by:

 f x e xx( ) = >−λ λ , 0  (1)

 F x e xx( ) = − >−1 0λ ,  (2)

respectively, where λ is the shape parameter, which is also known as 
the rate parameter (failure, death, arrival or transition). The reliability 
function and the hazard function of the exponential distribution are 
given by:

 R x F x e xx( ) = − ( ) = >−1 0λ ,  (3)

 h x
f x
R x

x( ) = ( )
( )

= >λ,� 0  x > 0 (4)

However, the exponential distribution does not provide a signifi-
cant fitting for some real life applications, where the failure rates are 
not constant. In recent years, many authors have proposed different 

types of generalization of the exponential distribution to overcome 
this problem, see [1, 4, 5, 8 and 11]. Some of these proposed life-time 
distributions have decreasing failure rate, which are common tools 
in biology and engineering, while the others have increasing failure 
rate which have been used in risk analysis. In this paper, we propose 
a new generalization of exponential distribution, which includes both 
increasing and decreasing failure rate. This property yields a great 
flexibility to fit the life time data obtained by any field of subject. 

In literature, there are various types of extensions of the expo-
nential distribution. [8-9] proposed an extension of the exponential 
distribution, which is called the generalized exponential (GE) distri-
bution. Following the idea of the GE distribution, lots of extension 
procedures for exponential distribution has been introduced, [3], [7], 
[14] and [15].

Recently, [2] proposed a new technique to generate continuous 
probability distributions. The methodology proceeds as follows; Let 

 be arandom variable whose pdf is f(x) and cdf is F(x) and let T 
be continuous random variable with pdf h(x) defined on the interval 
[a, b]. The cdf of new family of distribution can be obtained by:

 ( )
( )

( )
W F x

a
G x h y dy

  
= ∫  (5)

where ( )W F x    is differentiable and monotonically non-decreasing 

on the interval [ ],a b . It should be also noted that ( )W F x a  →   as 
x →−∞  and ( )W F x b  →  as x →∞ . The corresponding pdf of 
X  can be written as:
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 ( ) ( ) ( ){ }.dg x W F x h W F x
dx

 =         
 (6)

The random variable T  is called “transformed” into a new cdf

( )G x  through the function ( )W F x   known as “transformer”. So, 

( )G x is called “Transformed-Transformer” or " "T X− distribution.

We propose a new ( )W F x    
described in (5) with additional 

parameter θ. We define ( )W F x    as follows:

 W F x e
e

F x
( )  =

−

−

− ( )

−

θ

θ
1

1
 (7)

where θ ∈ . It can be seen that ( ) 0W F x  →   as x →−∞  and 

( ) 1W F x  →   as x →−∞ . Therefore, in order to use such a func-
tion defined in (6), it must be used a random variable, whose pdf is 
defined on the interval [ ]0,1 . We use uniform distribution whose pdf 

is ( ) 1,0 1h y y= < < .

Definition: Let ( )X a X b< <  be a random variable, whose pdf 

is ( )f x  and cdf ( )F x . Let Y  be a uniform random variable defined 

on the interval [ ]0,1 .Then:

 G x dy e
e

e
e F x

F x

( ) = =
−

−

− ( )
−

−

− − ( )

−∫
0

1
1 1

1

θ

θ θ

θ
 (8)

is a cdf of new family of " "T X− distribution. The corresponding pd-
fof this new family can be defined as:

 g x
f x e

e
a x b

F x

( ) = ( )
−

< <
− ( )

−
θ θ

θ1
, .  (9)

In this paper, we propose a new life time distribution by using the 
pdf and the cdf of the exponential distribution.

2. Uniform-Exponential Distribution

Consider the exponential distribution with parameter λ and let 

( )f x  and ( )F x be the pdf and the cdf of exponential distribution, 
corresponding to the definition,

 g x e e
e

x
x e x

( ) =
−( )

>
− − −( )

−

−

θλ λ θ

θ

λ1

1
0,  (10)

is defined as uniform-exponential (UE) distribution. The cdf of X  
can be written as:

 G x e
e

x
e x

( ) = −

−
>

− −( )
−

−θ

θ

λ1
1

1
0,� .  (11)

Figure 1 shows the pdfs of the UE distributions for different θ 
values. It can be seen that if θ tends to 0, the pdf becomes the original 
distribution. Additionally, if θ>0, then the pdf becomes more posi-
tively skewed and by the same way if θ<0, then the pdf becomes more 
negatively skewed. From now on, we call θ as the skewness param-
eter, since it determines the shape (skewness) of the distribution. It 
should be also noted that, the location parameter μ may be added to 
the distribution.

The moment generating function (mgf) of the UE distribution can 
be found as:

 M t e e e
e

dxX
tx

x e x

( ) =
−( )

∞ − − −( )
−∫

−

0

1

1
θλ λ θ

θ

λ

 (12)

To solve (12) firstly, take u e x= − −λ , then the integral becomes

 
θ

θ
θ

λ
1 1

0
1

−( )
−( )−

−

− +( ) −
∫

e
e u udu

t
 (13)

By transforming 1 u w+ = , (13) returns:

 
θ

θ
θ

λ
1

1
0

1

−( )
−( )−

− −
∫

e
e w dww

t
 (14)

Using the below expansion:

 e
t

i
t

i

i i
−

=

∞
=

−( )
∑

0

1
!

 (15)

we get:

 
θ θ

θ
λ

1

1
1

0 0

1

−( )
−( )

−( )−
=

∞ −∑ ∫
e i

w w dw
i

i i
i

t

!
 (16)

The integral in (16) is a typical beta function. Therefore, the mgf of 
UE distribution can be obtained as:

Fig. 1. The pdfs of UE distribution
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 M t
e i

B i t
X

i

i i
( ) =

−( )
−( )

+ − +





−

=

∞

∑
θ θ

λθ1

1
1 1

0 !
,  (17)

The expected value of UE distribution can be obtained by differentiat-
ing the mgf and taking 0t = .

θ
λ

θ
λ

θ
λ

θ
λ

θ
λ

θ λ
θ

θ1
1 0 75 0 31 0 09 0 02

2 3 4

−( )
− + − + + ( )












=

−e
o. . . . ,

ΨΨ θ

λ θ
( )

−( )−1 e

(18)

The Ψ(θ) values are given in Table 1. It can be noticed that 

lim
θ λ→

( ) →
0

1E X  which is the expected value of the exponential dis-

tribution. 

The quantile function ( )Q p  and the median ( )0.5Q  of the UE 
distribution are defined as

 Q p
p e

( ) = − +
+ −( )





















−
1 1

1 1

λ θ

θ

ln
ln

 (19)

 Q
e

0 5 1 1
1 0 5 1

. ln
ln .

( ) = − +
+ −( )





















−

λ θ

θ

 (20)

respectively.

3. Reliability Analysis for UE distribution

In this section, the UE distribution is applied to the well-known 
reliability procedures.

3.1. Reliability Function

The reliability function means, the probability over duration, 
based on the time. The reliability function is also known as the sur-
vival function. The term reliability indicates the systems or devices in 
the engineering problems whereas survival is a term used for humans 
or animals in actuarial analysis. The reliability function is monotoni-
cally decreasing and right continuous. 

The reliability function for UE distribution is defined by:

 R t F t e e
e

e t

( ) = − ( ) = −

−

− − −( )
−

−

1
1

1θ θ

θ

λ

.  (21)

Figure 2 shows the reliability functions of UE distribution for 
some representative θ values. It should be also noted that 

lim
θ

λ

→

−( ) →
0

R t e t , which is the reliability function of standard expo-

nential distribution.

3.2. Hazard Function

The hazard rate means instantaneous rate of occurrence of the 
event and is also known as the failure rate. The hazard function of UE 

distribution can be determined as follows

 h t e e

e e

t e

e

t

t( ) =
−

− − −( )
− −( ) −

−

−

θλ λ θ

θ θ

λ

λ

1

1
.  (22)

Taking lim
θ

λ
→

( ) →
0

h t  into account, we can obtain the failure rate 

of exponential distribution. Figure 3 shows the hazard functions of 
UE distribution for some θ values. It is clear from the figure, when the 
parameter θ is greater than 0, then the failure rate function has a de-
creasing form. On the other hand, if the parameter θ is less than 0, then 
the failure rate function becomes increasing.

3.3.  Mean Time to Failure

Mean time to failure (MTTF) is a measure of the length of the 
time a system is failed. It is usually used for nonrepairable systems. 
MTTF of UE is defined

 MTTF tf t dt
e

= ( ) =
( )
−( )

∞

−∫
0 1

θ θ

λ θ

¨
.  (23)

It should be remembered that the Ψ(θ) values are given in Table 1 
for some representative θ values. 

3.4. Censoring

Censoring is a condition in which some data cannot be observed 
precisely due to various reasons. There are many censoring schemes 
in literature. The most frequently encountered censoring is Type II. In 
the context of Type II censored data, the smallest r  observations can-

Table 1. The  Ψ(θ)values

θ 0 0.1 0.2 0.3 0.4 0.5 0.6

Ψ(θ) 1.000 0.9280 0.8617 0.8006 0.7443 0.6924 0.6445

θ 0.7 0.8 0.9 1.0 1.5 2.0 2.5

Ψ(θ) 0.6003 0.5594 0.5216 0.4867 0.3448 0.2344 0.1140

Fig. 2. The reliability functions of the UE distribution
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not be observed. Therefore, we have n r− observations, where n  is 

the number of observations. Let 1 2, , , nX X X… be lifetimes of the 

sample. By ordering the sample we get ( ) ( ) ( )1 2, , , nX X X… . In type II 

censoring, we only have ( ) ( ) ( )1 2, , , rX X X… . ML estimation method is 

based on maximizing the likelihood function. The likelihood function 
of Type II censored data is:

 
L n

n r
f x F x

i

r
i i

n r
=

−( ) ( ) − ( ) 
=

−
∏

!
! 1

1

 

=
−( ) −( )

−

−=

− − −( )
−

− −( )
−∏

− −

n
n r

e e
e

e
ei

r x e e
i

xi xr
!

! 1

1 1

1
1θλ λ θ

θ

θ

θ

λ λ

11

















−n r

.

   (24)

The log-likelihood function can be obtained by taking natural 
logarithm of (24) as:

 

ln ln ln lnL r r r e x e
i

r
i

i

r
xi= ( ) + ( ) − −( ) − − −( )−

= =

−∑ ∑θ λ λ θθ λ1 1
1 1  (25)

  
+ −( ) −












− −( ) −( )− − −( ) −

−

n r e e n r e
e xr

ln ln .θ θ θ
λ1

1
 

By differentiating the log-likelihood function with respect to the 
unknown parameters, we obtain the following likelihood equations

 

∂
∂

= − − ( ) + −( )
= =

−
− −( ) −

∑ ∑

−

ln L r x x e
n r e e x

i

r
i

i

r
i

x
e x

i

xr
i

λ λ
θ

θλ
θ λ

λ

1 1

1
rr

e
e e

xr
− − −( )−

−
θ θ λ1

 (26)

∂
∂

= −
−

+
−( )

−
− −( ) +

−( )
−

−

−

−
=

−

−

∑
ln L r re

e
n r e
e

e

n r e

i

r
xi

θ θ

θ

θ

θ

θ
λ

θ

1 1
1

1

1−−( ) − −

− − −( )

−

−

−( ) −











−

e x

e

xr
i

xr

e e

e e

λ

λ

λ θ

θ θ

1

1
.

Because of the intractable functions in the likelihood equations, it 
is not possible to find the closed form expressions for the ML estima-
tors. Therefore, we have to resort to iterative methods to solve them 
numerically.

3.5. Stress-Strength Probability

The stress-strength probability ( )R P Y X= < is a measure of the 
system reliability with strength X  and stress Y . In a stress-strength 
model the system fails, when the applied stress to the system is greater 
than its strength. Several distributions have been applied to the stress-
strength reliability models, see [6, 10, 13, 16 and 17].

Let X be the strength of a system distributed UE with the param-
eters λ θ1 1,( )  and Y  be the stress, whose distribution is UE with the 

parameter λ θ2 2,( ) . Therefore, stress-strength probability can be de-

rived as:

   
P Y X P Y X f x dx F x f x dxX Y X<( ) = ∫ <( ) ( ) = ∫ ( ) ( )

        =

−










− −

∞

− −( )

−

− − −( )
∫

−
−

0

1

1 1
1

2 2

2

1 1 11

1 1

e

e
e e

e

e

x e

x
x

θ

θ

λ θ

λ
λ

θ λ
−−θ1

dx  (27)

                     

=











− −

∞

− −( ) − − −( )

− −∫

− −

0

1
1 1

12 2
1 1 1

2 1 1

e e e

e e

e x ex xθ λ θ

θ θ

λ λ

θ λ

11 2

1
1( )

−
−−dx

e θ .

By taking u e x= − −λ1 , we get:

 
θ θ θ

θ θ
θ θ

θ

λ
λ1

1

02 1

2 1
2

2
1 1

21 1
1

1

e

e e
e e du

e
u u

− −

− −
−

−( ) −
−

( )
− −( )

−
−

∫ .  (28)

Then taking t u=θ1 , the integral becomes:

 e

e e
e e dt

e

t
t

− −

− −
−

−










−
−

( )
− −( )

−
−

∫
θ θ

θ θ
θ

θ
θ

θ
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2 1
1

2

1

2
1

21 1
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1

0
..  (29)

Using the property,
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∞
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we get:

 
e

e e i
t
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=

∞( )
− −( )

−( ) 





















∑
θ θ

θ θ

λ
λθ

θ

2 1

2 1

2

1

1 1

1

0

2

1!



















−

−−

−
−∫

θ

λ
λ

θ
1

2

1
2

0 1
1
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t  (31)

and by the help of below expansion:

 e
t

k
t

k

k k
−

=

∞
=

−( )
∑

0

1
!  (32)

Fig. 3. The hazard functions of the UE distribution.
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we finally find the reliability as:

e

e e i
t
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=
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1
12e θ .

(33)

If we take λ λ1 2=  we can find stress strength reliability as:

P Y X P Y X f x dx F x f x dxX Y X<( ) = ∫ <( ) ( ) = ∫ ( ) ( )
 (34)

=
− −( ) +

−
( )

+














−

−− −

− −

−
θ

θ θ θ θθ θ

θ θ

θ
1

1 2 1 22 1

2 1

21 1
1 1

1e e

e

e
.

Let 
11 2, , , nX X X…  and 

21 2, , , nY Y Y…  be two independent random 
samples from the UE distribution with parameters λ θ1 1,( )   and 

λ θ2 2,( )  respectively. Assuming θ1  and θ2  are known. To obtain the 

ML estimatorsfor R, we have to find the ML estimators for λ1  and 

λ2  . The ML estimators for λ1  and λ2  can be obtained by using the 

following formulas numerically.

 

λ
θ λ1

1

1 1 1
1 1 1

=
+= =

−∑ ∑
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If θ1  and θ2  are not known, we can also find the ML estimators 

of these parameter by:

 

n e e
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θ θ

θ
λ

θ

θ

solving (36) iteratively. [17] proved that the ML estimators for this 
reliability are more efficient than the UMVUE and Bayes estimators 
with respect to MSE values. For this reason, we only obtain ML esti-
mators for stress-strength reliability. One can also find the UMVUE 
and Bayes estimators. Table 2 shows the reliabilities and ML estima-
tors of these reliabilities calculated from some representative distribu-

tion parameters. The MLEs are considered according to the 1n  and 

2n  respectively. Table 2 shows stress-strength probabilities and their 
ML estimations for some representative parameters.

It should be also noted that lim
,θ θ

λ
λ λ1 2 0

2

1 2→
=

+
R . This is also the 

stress-strength probability of the exponential distribution. Addition-
ally, if the other parameters remain stable the following remarks can 
be obtained

If • θ1  increases the probability decreases,

If • θ2  increases the reliability also increases,

If • λ1  increases the probability decreases,

If • λ2  increases the reliability also increases.

4. Numerical Example

In this section, we consider the data given by [12]. The data is 
about the number of million revolutions before failure for each 23 
ball bearings in the life test. [8] proposed the GE distribution and 
subsequently compared this with Weibull and gamma distributions. 
The data are as follows: 17.88; 28.92; 33; 41.52; 42.12; 45.60; 48.40; 
51.84; 51.96; 54.12; 55.56; 67.80; 68.64; 68.64; 68.88; 84.12; 93.12; 

Table 2. The stress-strength probabilities of UE distribution

R MLE(R)

0.5 0.5000 0.5008
0.5 1.0 0.5 0.5 0.6593 0.6544

2.0 0.7901 0.7923
0.5 0.5438 0.5465

0.5 1.0 0.5 1.0 0.6928 0.6956
2.0 0.8132 0.8139
0.5 0.6139 0.6175

0.5 1.0 0.5 2.0 0.7530 0.7549
2.0 0.8539 0.8599
0.5 0.3407 0.3388

1.0 1.0 0.5 0.5 0.5000 0.5034
2.0 0.6593 0.6601
0.5 0.3814 0.3786

1.0 1.0 0.5 1.0 0.5408 0.5501
2.0 0.6928 0.7004
0.5 0.4609 0.4692

1.0 1.0 0.5 2.0 0.6169 0.6234
2.0 0.7530 0.7601
0.5 0.2099 0.1982

2.0 1.0 0.5 0.5 0.3407 0.3387
2.0 0.5000 0.5091
0.5 0.2432 0.2387

2.0 1.0 0.5 1.0 0.3814 0.3785
2.0 0.5408 0.5472
0.5 0.3114 0.3006

2.0 1.0 0.5 2.0 0.4609 0.4646
2.0 0.6169 0.6204
0.5 0.4592 0.4633

0.5 1.0 1.0 0.5 0.6186 0.6231
2.0 0.7568 0.7612
0.5 0.3831 0.3756

0.5 1.0 2.0 1.0 0.5391 0.5454
2.0 0.6886 0.6934
0.5 0.3072 0.2994

1.0 1.0 1.0 2.0 0.4592 0.4643
2.0 0.6186 0.6232
0.5 0.2470 0.2388

1.0 1.0 2.0 0.5 0.3831 0.3736
2.0 0.5391 0.5423
0.5 0.1868 0.1776

2.0 1.0 1.0 1.0 0.3072 0.2991
2.0 0.4592 0.4665
0.5 0.1461 0.1387

2.0 1.0 2.0 2.0 0.2470 0.2395
2.0 0.3831 0.3799

ˆ

ˆ
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98.64; 105.12; 105.84; 127.92; 128.04; 173.40. We propose the UE 
distribution for this data set. We obtain the ML estimators of the pa-
rameters and calculate the log-likelihood values and AIC statistics. 
The results are:

λ θ µ= = − = = −0 0147 1 5410 25 998 112 428. . . ln .Lˆ ˆˆ  and 230.857AIC =

while the ML estimators, log-likelihood values and AIC statistics for 
Weibull, gamma and generalized exponential distributions with three 
parameters are obtained as:

α λ µ= = = = −1 5979 0 0156 14 8479 112 976. . �� . ln .Lˆˆ ˆ  and 231.952AIC =

α λ µ= = = = −2 7316 0 0441 10 2583 112 850. . . ln .Lˆ ˆˆ  and 231.700AIC =

and

α λ µ= = = = −4 1658 0 0314 14 8479 112 766. . . ln .Lˆ ˆˆ  and 231.532.AIC =

The UE distribution has the largest log-likelihood value and the 
smallest AIC statistics. This indicates that UE distribution provides 
a much better fit and more reliable inferences than other proposed 
distributions.

5. Conclusion
In this paper, we propose a new lifetime distribution with both 

increasing and decreasing failure rates. We define the reliability func-
tion, hazard function and MTTF for this new distribution. Further-
more, Type II censoring procedure is also considered for this distribu-
tion.  We obtain stress-strength probability and ML estimators of this 
reliability for the proposed distribution. A real data example shows the 
proposed distribution gets better fit and more reliable solutions from 
other alternatives.
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