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Abstract: Metallic nanostructures have received great 
attention due to their ability to generate surface plasmon 
resonances, which are collective oscillations of conduction 
electrons of a material excited by an electromagnetic wave. 
Plasmonic metal nanostructures are able to localize and 
manipulate the light at the nanoscale and, therefore, are 
attractive building blocks for various emerging applica-
tions. In particular, hollow nanostructures are promising 
plasmonic materials as cavities are known to have better 
plasmonic properties than their solid counterparts thanks 
to the plasmon hybridization mechanism. The hybridiza-
tion of the plasmons results in the enhancement of the 
plasmon fields along with more homogeneous distribution 
as well as the reduction of localized surface plasmon reso-
nance (LSPR) quenching due to absorption. In this review, 

we summarize the efforts on the synthesis of hollow metal 
nanostructures with an emphasis on the galvanic replace-
ment reaction. In the second part of this review, we discuss 
the advancements on the characterization of plasmonic 
properties of hollow nanostructures, covering the single 
nanoparticle experiments, nanoscale characterization 
via electron energy-loss spectroscopy and modeling and 
simulation studies. Examples of the applications, i.e. sens-
ing, surface enhanced Raman spectroscopy, photother-
mal ablation therapy of cancer, drug delivery or catalysis 
among others, where hollow nanostructures perform bet-
ter than their solid counterparts, are also evaluated.

Keywords: hollow nanostructures; surface plasmon reso-
nances (SPRs); plasmon hybridization; electron energy-
loss spectroscopy (EELS); applications.

1  Introduction
Research on the metallic nanostructures has been quite 
intensive over the years thanks to their ability to gener-
ate surface plasmon resonances (SPRs), which are col-
lective oscillations of conduction electrons of the metals 
at the interface with a dielectric media. Plasmon reso-
nances provide the capability of the localization and 
manipulation of light at nanoscale [1], which makes 
plasmonic nanostructures attractive building blocks 
for various novel applications spanning over the fields 
of biology, physics, chemistry, engineering, and medi-
cine. For instance, they are widely used in sensing, 
surface enhanced Raman spectroscopy (SERS), plasmon-
enhanced solar cells, photodetectors, drug delivery and 
cancer therapy as well as nanolasers, invisibility cloaks, 
and quantum computing [2–8].

In general, silver can be regarded as the most impor-
tant material in the field of plasmonics with the ability to 
generate plasmon resonances between 300 and 1200 nm 
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with much higher quality factors than the other noble 
metals such as Au and Cu [9]. It is due to the fact that 
interband transitions, where conduction band electrons 
are excited to higher energy levels, take place at much 
higher frequencies than the plasmon resonances of Ag. 
For the case of Au and Cu nanostructures, the onset of 
interband transitions partially overlaps with the plasmon 
resonances, causing a decrease in the plasmon intensity 
[10–12]. However, the stability and biocompatibility of Ag 
nanostructures limit their use in many bio-related appli-
cations. It would be appealing if a material could combine 
features of both Au and Ag, i.e. a material as stable as Au 
that can generate plasmon fields as intense as Ag. Hollow 
AuAg nanostructures come into prominence as a poten-
tial solution for such combination of features as cavities 
are known to have better plasmonic properties than their 
solid counterparts thanks to a mechanism called plasmon 
hybridization [13]. Mahmoud et al. [14] revealed by discrete 
dipole approximation (DDA) simulations that Au nano-
frames can generate plasmonic fields whose intensities 
are comparable to those of Ag nanocubes. Thanks to the 
enhanced plasmonic fields, hollow metal nanostructures 
have been used in many applications such as sensing, 
SERS, photo thermal ablation (PTA) of cancer, drug deliv-
ery, and catalysis over the years with performances better 
than their solid counter parts, which is reviewed in detail 
in Section 4.

Hollow nanostructures with controlled hollow inte-
rior and shell thickness represent a class of important 
nanostructured materials due to their above-mentioned 
outstanding properties and widespread potential applica-
tions [15]. The possibility to develop novel hollow nano-
structures toward many desired applications relies on the 
optimization of their performance, which is adjusted by 
the fine tuning of their properties and is ultimately deter-
mined by the control of their morphological and struc-
tural parameters. These challenging requirements can 
be achieved chemically, by the development of new and 
robust synthetic processes leading to the reproducible, 
scalable, and cost-effective production of hollow nano-
structures with a high uniformity and well-controlled 
morphology, structure, and surface chemistry. In Section 
2, we present a comprehensive summary on the synthesis 
of hollow nanostructures via templating approaches [16] 
and galvanic replacement reactions (GRRs) [17–19] with an 
emphasis on the latter technique.

As we present the plasmon hydridization mechanism 
and plasmon fields generated due to the hybridization as 
the main reason of the enhanced plasmonic properties 
of hollow nanostructures, we believe it should be pre-
sented here in more detail. The plasmon hybridization 

mechanism, developed by Prodan et  al. [13], is a model 
used to explain the plasmon resonances of nanostructures 
with complex nanostructures as they are generated due to 
the interaction or “hybridization” of plasmon excitations 
of simpler geometries. This principle has opened the way 
to rational designs of complex nanostructures with desired 
plasmonic properties by a simple approach [20]. The most 
common and simplistic case of plasmon hybridization is a 
dimer of two closely located nanostructures [21], and the 
term is widely used to explain the interaction between two 
solid nanostructures or the interaction between the nano-
structure and the environment, i.e. the substrate [22–35]. 
In this review, we will focus on the plasmon hybridization 
in hollow nanostructures [13, 20, 36–40].

The hybridization model for a nanoshell is sche-
matically shown in Figure 1A [13], where the energy-level 
diagram describing the mechanism of excitation of the 
hybridized plasmon resonances in metal nanoshells by 
the interaction between the sphere surface (ωsp) and inner 
cavity (ωc) surface plasmons is presented. As shown in 
the hybridization model in Figure 1A, two fundamental 
dipolar modes of a void/shell nanoparticle system can 
be considered as they emerged by the hybridization of 
dipolar modes of a metallic sphere and a dielectric void in 
a metallic substrate. Hybridization results in the splitting 
and shifting of these plasmon resonances, as a result, an 
anti-symmetrically coupled anti-bonding mode (ω+) and 
symmetrically coupled bonding mode (ω−) are generated 
in the metallic shell. Validity of this model is proven by 
quantum mechanical calculations and finite-difference 
time-domain (FDTD) simulations [36, 40, 41]. The plasmon 
hybridization model can explain the interactions between 
the plasmon resonances of more complex systems such as 
double-shell metallic nanoparticles [13]. More recently, it 
has been implemented to explain quantum plasmonics in 
a complex system, so-called “nanomatryushka” [42].

It is well known that the localized surface plasmon 
resonance (LSPR) properties of the metallic nanostruc-
tures are highly affected by parameters like size, shape, 
and composition of the nanostructures and the environ-
ment [43, 44]. Accordingly, many different nanostruc-
tures have been investigated so far [45]. In order to design 
nanostructures with desired plasmonic features, one must 
fully apprehend and locate the distribution of plasmon 
resonances with the highest possible spatial accuracy. 
Techniques such as UV-Vis-NIR spectroscopy, dark field 
microscopy, and near-field scanning optical microscopy 
are commonly used to characterize the plasmonic proper-
ties of metallic nanostructures; however, their spatial reso-
lution limitations restrain the complete characterization of 
local optical features within the individual nanostructures. 
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To overcome this challenge, electron energy-loss spectros-
copy (EELS) in a scanning transmission electron micro-
scope (STEM) equipped with a monochromator is a very 
promising characterization tool with its high spatial (sub-
nanometer scale) and high energy (below 0.2 eV) resolu-
tions [46, 47]. Along with the experimental techniques 
such as EELS, simulation studies by techniques such as 
DDA and boundary element method (BEM) are known to 
provide comprehensive information about the ultralocal 
plasmonic properties of the nanostructures [48–53]. In 
this review, we focus on the characterization of the ultralo-
cal plasmonic properties of hollow nanostructures at the 
sub-nanoparticle (nano-) scale, where we cover the efforts 
starting from the early single nanoparticle experiments, 
recent EELS, and simulation studies.

In this review, we summarize the efforts on the synthe-
sis of hollow metal nanostructures with an emphasis on the 
GRR. We discuss the advancements on the characterization 
of local plasmonic properties of hollow nanostructures and 
examples of the applications, i.e. sensing, SERS, PTA of 
cancer, drug delivery or catalysis, where hollow nanostruc-
tures perform better than their solid counterparts.

2   Synthesis of hollow 
nanostructures

The most popular approach for the synthesis of hollow 
nanoparticles involves coating of the desired materials 

onto sacrificial templates [16]. These templating strate-
gies, based on the coating of pre-fabricated (hard or soft) 
templates with a layer of a shell material, are conceptu-
ally the simplest one. By the use of hard templates, hollow 
nanocrystals (NCs) are obtained after a selective removal 
process, which typically involves processes of dissolu-
tion, chemical etching, thermal decomposition, or calci-
nation. Oppositely, in the soft-templating approaches no 
template removal procedure is required. In both of these 
approaches, the void size and the shape of the hollow 
structure are determined by the nature of the template 
while the morphology and composition of the shell (mate-
rial, thickness and porosity) is mainly defined in the 
coating and removal processes. As a result, a wide variety 
of hollow NCs with different sizes, shapes, composition, 
and structures have been produced, using hard templates, 
such as polymers (polystyrene [54, 55], formaldehyde resin 
[56, 57], and poly(methyl)methacrylate [58], silica [59, 60] 
and carbon particles [61]), or soft ones, such as emulsion 
block copolymer micelles [62], and even gas bubbles [63]. 
For a comprehensive and up-to-date review on templating 
approaches see Ref. [16].

Inspite of its simplicity and high versatility this con-
ventional templating strategy presents some important 
limitations, associated with the difficulty of their fab-
rication in large quantities. This problem together with 
the complexity of the surface coating processes needed 
for the shell formation, which usually involves tedious 
surface functionalization procedures, and the use of toxic 
etchants or solvents in the removal processes, restricts its 
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Figure 1: Plasmon hybridization mechanism. (A) Schematic energy-level diagram illustrating the plasmon hybridization mechanism in metal 
nanoshells as a result of the interaction between the sphere (ωsp) and cavity (ωc) plasmons. Anti-symmetrically coupled, anti-bonding, mode 
(ω+) and symmetrically coupled, bonding, mode (ω−) are shown (reproduced with permission from Ref. [13], copyright 2003 American Associa-
tion for the Advancement of Science). (B) Extent of the hybridization for thick (upper) and thin (lower) metallic shells revealing that the hybridi-
zation is much more significant for the thin metallic shell (adapted with permission from Ref. [39], copyright 2011 Cambridge University Press).



196      A. Genç et al.: Hollow metal nanostructures for enhanced plasmonics

synthetic reproducibility and ultimately their applicabil-
ity. In this regard, the direct synthesis of hollow nano-
structures without the need of additional templates are 
significantly advantageous due to its reduced production 
cost, simplified synthetic procedure, high reproducibility, 
great control over particle morphology and uniformity, 
and an easy scale up.

The chemical transformations of pre-formed solid 
nanostructures, principally via galvanic replacement and 
nanoscale Kirkendall effect, represent extremely power-
ful and versatile strategies to generate complex hollow 
nanostructures with tunable and well-controlled proper-
ties that are often not attainable by other methods. The 

GRR is one of the most efficient strategies to combine 
different metals in a single nanostructure. This strategy 
provides a remarkably simple route to produce complex 
metallic nanostructures with controllable hollow interiors 
by means of the reaction of solid metal nanostructures, 
used as sacrificial templates (usually Ag [19, 64–68], but 
also Cu [69–71], Co [70, 72–77], Pd [78, 79], Mg [80] or alloys 
Pd-Cu [81]) and a precursor containing a relatively more 
noble metal ion (Au, Pd, or Pt), in a process by which the 
composition of the template is modified while retaining 
its initial morphology. Figure 2A shows the schematic 
illustration of the morphological and structural changes 
involved in the GRR between a Ag nanocube and HAuCl4 
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Figure 2: The mechanism of void formation during GRR reaction and its effects on optical properties. (A) Schematic illustration of the 
morphological and structural changes involved in the GRR between a silver nanocube and HAuCl4. The cross-sectional views correspond 
to the plane along the dashed lines. The major steps of the reaction include the following: formation of a pinhole at one of the side faces; 
continuation of the GRR resulting in a partially hollow structure; enlargement of pores at the side faces; reduction of the ridge thickness; 
and finally fragmentation of the nanoframes (adapted with permission from Ref. [82], through the Creative Commons Attribution Noncom-
mercial License). (B) UV-Vis spectra of Ag nanocubes (in black), core-shell Ag@A unanocubes (in blue), pinholed AuAg nanoboxes (in green) 
and single-walled AuAg nanoboxes (in red) along with their representative TEM images, revealing the shift of plasmon resonances with the 
formation of hollow nanostructures. (C) and (D) are the Mie scattering calculations revealing the effect of void size on the optical properties 
50 nm Ag and Au nanospheres, respectively.
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[82]. Recently, Goris et  al. [83] showed the morphologi-
cal transformations and elemental compositions of the 
nanostructures during the GRR of Ag by using 3D STEM-
EDX tomography. Figure 2B shows the modification of 
plasmon resonances with increasing Au amount, thus, 
increasing the void size, where bulk UV-Vis spectra of 
solutions containing Ag nanocubes (in black), core-shell 
AgAu nanocubes (in blue), pinholed AuAg nanoboxes (in 
green), and single-walled AuAg nanoboxes (in red) are 
presented along with their representative transmission 
electron microscope (TEM) micrographs. As seen in this 
figure, the plasmon resonances shift to lower energies, 
i.e. higher wavelengths, as the void size increases, which 
is in accordance with the above-presented hybridization 
mechanism. Figure 2B already reveals the tunability of 
plasmon resonances by the changes in the void size. As 
a systematic approach of such modifications, we provide 
a series of Mie scattering calculations [84] on the 50 nm 
spherical Ag (Figure 2C) and Au (Figure 2D) nanoparticles 
with different void sizes and show the potential of tuning 
the plasmon resonances within a wide energy range from 
ultraviolet to near infrared regions.

Ag is the commonly used sacrificial template for the 
GRR due to a relatively low electrochemical potential and 
its well-established colloidal chemistry [70, 85]. In the 
GRR reaction with Ag, which rely on the different reduc-
tion potentials of two elemental metals, the atoms of the 
template NC oxidize and dissolve, while the ions of the 
more noble metal precursor are simultaneously reduced 
onto it. This reduction is initially confined to the vicinity 
of the template surface, leading to the nucleation, growth 
(and alloy) of the noble metal precursor, which forms a 
thin shell that oxidizes and dissolves the NC template, 
driving the formation of a pinhole that expands toward 
its center causing its dissolution. The first demonstration 
of GRR in the synthesis of hollow metal NCs was reported 
by Xia and co-workers in 2002 [86]. In this pioneering 
work, GRRs between Au3+ salt and pre-synthesized Ag 
NCs used as sacrificial templates led to the formation of 
hollow Au NCs with well-defined void spaces and crys-
talline walls. Although GRR is the most versatile method 
of preparing hollow metal NCs with controllable pore 
structures and compositions, the strategy has been also 
extended to the production of hollow semiconductor [87] 
and oxide NCs [88].

Since Xia’s pioneering work, a wide variety of Au 
hollow NCs with controlled composition, morphology, and 
internal structure have been produced, with the only con-
straint of the favorable difference in the reduction poten-
tials of the two metals involved in the reaction [17, 89]. 
The elemental composition of the final hollow NCs can be 

simply adjusted by selecting the nature of the sacrificial 
template, and the concentration, type, number, and order 
of addition of metal precursors involved in the reaction. 
Thus, in addition to AuAg hollow nanostructures, PtAg, 
PdAg [90], PdPt alloy nanocages [91, 92], and trimetallic 
PdAuAg hollow nanostructures with control of the spatial 
distributions of different metals [93] can also be prepared 
via the GRR by simply altering the order of addition for the 
salt precursors, which resulted in an improved tailoring of 
their optical and catalytic properties. Other hollow com-
positions such as PtAg bimetallic nanostructures [65] and 
PtAg@Pt core-shell single-crystal hollow NCs [67] have 
also been obtained via GRR between Ag templates and a 
Pt salt.

Beyond the final composition, the morphology of 
the hollow nanostructrures can easily be controlled by 
the choice of the template. As the deposition of precur-
sor atoms takes place on the surface of the NC, the final 
hollow NC retains the shape and dimensions of the origi-
nal template [86, 94], which allows the control of the mor-
phology of the hollow structure [95]. Thus, Xia group has 
widely studied how Ag nanocubes synthesized by using a 
polyol process and then oxidized by an aqueous HAuCl4 
solution generate uniform Au nanoboxes or nanocages 
[64, 96–99]. Similarly, Ag nanowires have been widely 
exploited as templates for the preparation of hollow nano-
tubes via the GRR [86, 97, 100–104]. Other structures com-
monly obtained through the GRR between HAuCl4 and the 
corresponding Ag template include nanorings [105, 106], 
nanoframes [107–109], and nanorattles [110–114]. A set of 
hollow AuAg nanostructures are shown in Figure 3.

Besides, the internal structure of the hollow nano-
structures, in particular the porosity and thickness of the 
shell, can be easily tuned by controlling the de-alloying 
process in the later stages of the GRR. This control allows 
inducing morphological reconstructions, leading, for 
instance, to the formation of pinholes in the porous walls 
[97]. By coupling GRR with other chemical/physical pro-
cesses complex hollow nanostructures, such as multi-
walled NCs [102, 110], can be obtained. A recent review 
discusses advances on the use of GRR for generating 
complex hollow nanostructures with tunable and well-
controlled properties [17].

Alternatively to GRR, hollow NCs with controlled 
voids interiors and shell thickness can be also obtained by 
the Kirkendall effect, which results from the difference of 
the solid-state diffusion rates of the reactants in an alloy-
ing or oxidation reaction. Although the first documented 
study by Ernest Kirkendall dates back 70 years ago [115], 
the (nanoscale) Kirkendall effect has recently become 
a powerful approach to the preparation of nanoscale 
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hollow structures. In this chemical transformation, metal 
NCs of controlled size, composition, and morphology 
are exposed to oxygen, phosphorus, sulfur, or selenium 
precursors under elevated temperatures resulting in a 
diffusion couple. As a result of the much faster outward 
diffusion of the metal cations than the inward diffusion of 
the anions, a flux of vacancies is created. When the vacan-
cies supersaturate, they coalesce into a void which results 
in the production of hollow NCs with binary compositions. 
Since the first report in 2004 [116] on the synthesis of CoS 
and CoO hollow nanocrystals by sulfidation and oxida-
tion of Co nanocrystals, several different kinds of hollow 
nanocrystals have been prepared by a similar approach 
that involves the nanoscale Kirkendall effect [117–121]. A 
recent review on the synthesis and characterization of 
hollow NCs through the nanoscale Kirkendall effect can 
be found in Ref. [117].

Although its use is limited for the production of noble 
metal hollow NCs, the simultaneous or sequential action 
of GRR and the Kirkendall effect has been found an inter-
esting synthetic route for the production of polymetal-
lic hollow nanocrystals with various morphologies and 

compositions. Thus, by using Ag NCs as templates, and Au, 
Pd, or Pt as oxidizing agents, Gonzalez et al. [19] showed 
the possibility to produce polymetallic multi-walled 
hollow NCs and other complex morphologies as shown in 
Figure 4. The method, based on the attacking and pitting of 
preformed NCs from the “inside out”, is scalable and per-
formed at room temperature, and results in very complex 
geometric interconnected multicavity hollow NCs.

3  Ultralocal plasmonic properties
Dark field microscopy is a commonly used technique for 
studying the plasmonic properties at a single nanopar-
ticle level (providing that the nanoparticles are well dis-
persed on the substrate), however, it should be combined 
with a scanning electron microscope (SEM) or TEM to 
know the morphology of the studied nanoparticle and to 
ensure that the signal collected is generated from a single 
nanoparticle rather than agglomerates [122, 123]. Hu et al. 
conducted the first studies on the optical properties of 
individual hollow nanoparticles consisting of AuAg nano-
boxes and nanocages by using Rayleigh scattering spec-
troscopy in a dark field microscope which was correlated 
with a SEM [124, 125]. Figure 5 shows the Rayleigh scatter-
ing spectra and SEM images of several AuAg nanocages as 
studied by Hu et al. [125] where {100} facets of the nanoc-
ages in Figure 5A,B and {111} facets of the nanocages in 
Figure 5C,D are in contact with the substrate. One can see 
the slight changes in the resonance energy and presence 

Figure 4: TEM images and schematic representation of the different 
morphologies produced by the simultaneous or sequential action 
of galvanic replacement reaction and the Kirkendall effect (adapted 
with permission from Ref. [19], copyright 2011 The American Asso-
ciation for the Advancement of Science).

Figure 3: Electron microscopy images of various hollow nanostruc-
tures. (A) SEM image of AuAg nanoboxes. (B) TEM image of AuAg 
nanotubes (adapted with permission from Ref. [97], copyright 2004 
American Chemical Society). (C) TEM image of an Au ring (reproduced 
with permission from Ref. [106], copyright 2014 Royal Society of 
Chemistry). (D) TEM image of AuAg octahedral nanoframes (repro-
duced with permission from Ref. [108], copyright 2012 American 
Chemical Society). (E) TEM image of nanorattles (reproduced with per-
mission from Ref. [110], copyright 2004 American Chemical Society).
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of some additional shoulder peaks depending on the mor-
phology of the AuAg nanocages [125]. Yang et al. [126] also 
studied the optical properties of individual hollow AuAg 
nanospheres and their dimers by using correlated optical 
single particle spectroscopy with TEM and revealed the 
nanostructures angle-dependent plasmon coupling.

As referred by the name of the technique, single nano-
particle spectroscopy studies can only provide information 
at the single nanoparticle level; however, it is also crucial 
to understand the distribution of different plasmon modes 
within the nanoparticles in order to fully elucidate its plas-
monic properties. Cathodoluminescence spectroscopy in 
SEM or TEM and electron-energy loss spectroscopy in STEM 
are known to provide high spatial resolutions to study the 
local plasmonic properties of individual nanostructures 
[46]. In this review, we will focus on the latter technique.

A red shift in the plasmon resonances compared to 
the solid nanostructures is observed by UV-Vis spectros-
copy while producing hollow nanostructures and this 
shift is related to the plasmon hybridization mechanism 
[17, 19, 89, 127, 128]. The first experimental demonstration 

of such hybridization/coupling at the nanoscale was 
performed by Kociak et  al. [129] on anisotropic hollow 
nanoparticles of WS2 by using EELS and later on the same 
group studied the plasmon coupling in some other nano-
tubes [130, 131]. It is worth noting that EELS has also been 
used recently for imaging plasmon hybridization in solid 
nanoparticle aggregates [132]. Experimental studies of the 
plasmonic properties of hollow metal nanostructures at 
the nanoscale by EELS proving the coupling of inner and 
outer modes, i.e. hybridization are conducted only during 
recent years [73, 133]. These results are discussed in more 
detail in the following paragraphs.

Utilization of EELS for characterization of plasmonic 
properties is well documented in the literature. In fact, 
EELS for plasmonics goes back to the first experimental 
studies leading to the discovery of plasmon resonance 
phenomena where most of the studies observed the 
energy losses of fast electrons passing through metal films  
[134–139]. The era of the application of EELS for plasmon-
ics has changed since 2007, when Nelayah et  al. [140] 
and Bosman et al. [141] reported, almost simultaneously, 
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first examples of spatial mapping the SPRs of individual 
nanoparticles at the nanometer scale by mono-chromated 
EELS in a STEM using the spectrum imaging (SI) technique 
developed by Jeanguillaume and Colliex in 1989 [142].

Ever since the above-mentioned precedent studies, 
EELS has been used to map plasmon resonances of dif-
ferent solid nanostructures including spherical nano-
particles, nanorods/nanowires, nanocubes, nanodisks, 
nanoprisms, nanostars, nanosquares, and nanodeca-
hedra [31, 50, 143–162]. Along with its capability to give 
information with high spatial and energy resolutions, 
EELS has the ability to reveal full modal spectrum includ-
ing dark plasmon modes, which are invisible to optical 
spectroscopy techniques, in coupled nanostructures [31, 
145, 148, 152, 155, 163, 164]. Again all these studies were 
conducted on solid nanostructures and for more infor-
mation on similar studies, the reader is referred to two 
recent comprehensive reviews by Kociak and Stephan 
[47] and Colliex et al. [165] on the application of EELS for 
plasmonics.

Although, EELS has been used intensively for the 
imaging of plasmon resonances in solid nanostructures, 
there are only a few studies dealing with the application 
of EELS for the plasmonic properties of hollow metal 
nanostructures [73, 133]. Prieto et  al. [73] investigated 
the evolution of plasmon resonances in spherical hollow 
gold nanoparticles and gold nanorings by using EELS 
and related DDA simulations and have reported that as 
the aspect ratio between the wall thickness and diameter 
of the nanorings increases, plasmon resonances shift to 
lower energies in accordance with the plasmon hybridiza-
tion mechanism and the scheme shown in Figure 1B [39].

Recently, we have reported the plasmonic proper-
ties of various cuboid hollow AuAg nanostructures syn-
thesized via galvanic replacement [19] at the nanoscale 
by using EELS and BEM simulations and have provided 
experimental evidence of plasmon hybridization in such 
nanostructures. By reporting the ultralocal distribution 
of plasmon resonances, we have provided experimental 
insights about their enhanced plasmonic properties [133]. 
Figure 6 shows the structural and optical evolution of 
various cuboid nanostructures from solid Ag nanocubes 
to AuAg nanoframes, where it is clearly seen that plasmon 
resonances shift to lower energies with increasing void 
size. Generally, such an energy shift is the result of two 
main effects in such nanoparticles synthesized via GRR: 
(i) compositional effects due to AuAg alloying and (ii) 
morphological effects due to void formation. In order to 
better understand the extent of plasmon hybridization, i.e. 
voids, and to be able to distinguish them, if possible, from 
the compositional effects, we have simulated 50  nm Ag 

nanoboxes with various wall thicknesses (see Figure 6D). 
Our simulations revealed that the morphological changes 
are the dominant factor for the shift of plasmon resonance 
energies. As it is clearly seen in Figure 6D, plasmon reso-
nances shift to lower energies with increasing void size 
even though there is no alloying, as suggested by the 
plasmon hybridization mechanism. The amount of the 
shift is higher for the thinner walls, where plasmon reso-
nances barely shift for the 5 nm void but they shift about 
0.8 eV as the void size increases from 40 to 45 nm due to 
strong hybridization [133].

Figure 7A shows the spectra and abundance maps 
of three plasmonic components of a single-walled AuAg 
nanobox (STEM image with red borders) which is 50 nm in 
size and has about 7 nm thick walls, confirming the pos-
tulation that the hollow nanostructures would generate 
homogeneously distributed plasmon resonances [127, 128]. 
These maps revealing the homogeneous spatial distribu-
tion of plasmon resonances in such a hollow nanostruc-
ture may be the explanation of their enhanced plasmonic 
properties for different applications such as sensing, as 
all the surface of the nanobox acts like a continuous “hot-
spot” with intense plasmon excitations [133]. Spectra and 
abundance maps of three plasmonic components of an 
AuAg nanoframe (STEM image with green borders) which 
is 48 nm in size and has about 7 nm thick walls are shown 
in Figure 7B. These abundance maps, which are the first 
experimental representation for such metal nanostruc-
tures, showing the distribution of the plasmon resonances 
at the nanoscale clearly reveal the interaction of inner and 
outer plasmon fields in such hollow nanostructures. The 
experimental results are successfully correlated with BEM 
simulations (see Figure 7C for the nanoframe) both in 2D 
and in 3D with an assumption about the nanobox’s/nano-
frame’s structural homogeneity [133].

In addition to the above-presented experimental 
results, several simulation studies by using DDA and 
FDTD have been conducted in order to understand the 
distribution of the plasmon resonances in individual 
or coupled hollow metal nanostructures [14, 127, 128, 
166–171]. These simulation studies were usually used to 
explain the enhanced performance of the hollow nano-
structures in applications like sensing and catalysis by 
revealing the distribution of plasmon resonances inside 
and around the nanostructures and calculating the gen-
erated electromagnetic fields [14, 127, 128]. For instance, 
Mahmoud and El-Sayed [127] experimentally studied 
the sensitivity of Au nanoframes with different lengths 
and wall thicknesses and concluded that the sensitivity 
factors increase as the aspect ratio, the ratio between the 
length and wall thickness, increases. Then, they have 
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used DDA simulations to correlate their experimental 
findings and found out that for nanoframes with similar 
aspect ratios, the magnitude of the red shift per unit 
change in wall thickness depends on the size of the nano-
frame rather than being a constant value due to different 
intracavity surface coupling behavior [127].

As mentioned earlier, Ag nanostructures are known 
to have better plasmonic performance than those of Au 
[9, 14], as the plasmonic properties of Au nanostructures 
suffer a lot from the interband transitions as their onset 
partially overlaps with the LSPRs, causing a decrease in 
the intensity [10–12]. Mahmoud et  al. [14] applied DDA 
simulations to calculate the plasmonic field intensity gen-
erated by individual Ag nanocubes and Au nanoframes 
or their dimers (as shown in Figure 8), revealing that Au 
nanoframes can generate plasmonic fields that are com-
parable to those of Ag nanocubes.

4   Applications of hollow 
 nanostructures and advantages 
vs. solid counterparts

Hollow metal nanostructures have been used in many appli-
cations such as sensing, SERS, PTA of cancer, drug delivery, 
photoacoustic imaging, and catalysis over the years with 
performances better than their solid counter parts [14, 89, 127, 
128, 133, 172–196]. Figure 9 shows the application of hollow 
metal nanostructures in various fields such as sensing 
(Figure 9A), catalysis (Figure 9B), SERS (Figure 9C), PTA of 
cancer (Figure 9D), drug delivery (Figure 9E), and photoa-
coustic imaging (Figure 9F). As seen in this figure, some of the 
applications are shown by experimental results (Figure 9A,  
C, and F) and some others are shown by representative 
sketches of the relevant mechanism (Figure 9B, D, and E).

Figure 6: Structural and LSPR evolution of the AuAg nanostructures. (A) Structural sketches and corresponding solution colors from solid 
Ag nanocubes to single-walled AuAg nanobox and AuAg nanoframe. (B) HAADF STEM images of the nanostructures where SI EELS have been 
acquired (scale bars  =  50 nm). (C) Zero-loss peak subtracted EEL spectra averaged over the areas of interests, i.e. EELS maps, showing the 
evolution of localized SPRs with structural changes. (D) BEM-simulated EEL spectra revealing the effect of void size for Ag nanostructures: 
50 nm Ag nanocube (in black), 5 nm void (in blue), 15 nm void (in green), 30 nm void (in orange), 40 nm void (in magenta), 45 nm void (in 
purple), and 48 nm void (in red) (reproduced with permission from Ref. [133], copyright 2016 American Chemical Society).
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Label-free optical sensing with plasmonic nanopar-
ticles is based on the detection of adsorbate-induced 
refractive index changes near or on the nanoparticles, 
which change the dielectric constant of the surround-
ing medium and can be measured by using UV-visible 
extinction spectroscopy [2, 3, 197]. Adsorbate-induced 
shifts in LSPR can be expressed as Δλmax, which simply 
equals to [198]:

max max max after before .∆λ λ λ= < > − < >

The sensitivity of plasmonic nanoparticles can be 
quantified by using the term sensitivity factor (SF), which 

is defined as the nanometers of shift in the LSPR peak of 
the nanoparticle per the refractive index unit (nm/RIU) 
of the surrounding medium [2]. Thus, a higher SF depicts 
the generalization of larger shifts in the LSPR peak of the 
nanoparticle with smaller changes in the refractive index 
of the surrounding analytes.

As already stated, hollow nanostructures are known 
to be more effective in label-free sensing compared to 
their solid counterparts [14, 133, 190, 199]. Sun and Xia 
[199] compared the sensitivity of solid Au nanospheres 
and Au nanoshells and reported almost a seven-fold 
increase in the SF while using the Au nanoshells. By 
calculating the amount of 1-HDT molecules covering the 
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Au nanoshells, they have estimated a detection limit 
of about 27 nm by using conventional absorption spec-
trometers [199]. Mahmoud et al. [14] tabulated a five-fold 
increased SF when comparing Au nanocubes and hollow 
Au nanocages. Recently, we have reported a ~4-fold 
increase in the sensitivities of single-walled nanoboxes 
compared to solid Au nanoparticles against conjugation 
events with bovine serum albumin (BSA) protein and 
its antibodies thanks to the enhancement of the local-
ized electromagnetic field around the hollow nanoboxes 
that allows easy and direct detection of binding events 
on their vicinity [133]. Satija et al. [190] prepared hollow 
gold nanospheres based fiber-optic sensors having a 1.5-
fold enhancement in sensitivity compared to solid Au 
nanoparticle-based sensors. They have been also used 
as immunosensors and reported a maximum of four-fold 
better detection limit compared to other Au-based bio-
sensors [190].

Surface enhanced Raman spectroscopy, a technique 
where the localization and amplification of incident 
light fields by SPRs lead to an enhanced Raman scatter-
ing, is arguably one of the most common applications 
of plasmonic nanostructures since its discovery about 
40  years ago [200–202]. Thanks to the developments 
in the spectroscopic information techniques, nanofab-
rication routines and novel detection schemes, SERS 
has been established as a powerful tool in sensing and 
detecting at molecular level [3, 203]. Since the pioneer-
ing works of Nie and Emory [204] and Kneipp et al. [205] 
reporting the single molecule detection via SERS, it has 
been extensively exploited for the detection of different 

molecules and disease markers at the molecular level 
[206–212].

Hollow Au or AuAg nanostructures provide enhanced 
SERS activity compared to that of solid Ag nanoparticles 
[178, 179, 187, 188, 191, 213, 214]. Schwartzberg et al. [188] 
compared the SERS activity of 30 nm hollow Au nanopar-
ticles with those of solid Ag nanoparticles and reported 
a 10-fold increase in the SERS signal consistency and by 
using these hollow gold nanostructures as pH sensors, 
they have shown about two-fold increase in resolution 
and 10-fold increase in precision over the Ag nanoparticle-
based SERS probes. Guo et  al. [191] applied hollow gold 
chip based SERS probes for detection of melamine in milk 
in order to monitor the adulteration of milk by melamine. 
Hollow gold chip generates much more (about four-fold) 
intense Raman signal compared to the solid chip revealing 
its effectiveness even at the low (nm level) concentrations 
where there is no SERS signal for the case of solid nano-
particles [191]. Yi et al. [179] studied the synthesis of AuAg 
bimetallic hollow nanospheres and their application in 
SERS and reported that the hollow nanospheres generate 
intense Raman signals than those of solid Au seed nano-
particles, SiO2@Au core@shell nanoshells, SiO2@AuAg 
bimetallic nanoshells during the detection of 1.0  ×  10−8 m 
R6G. Olson et al. [187] synthesized hollow AuAg double-
shell nanospheres for SERS and observed that bimetal-
lic hollow AuAg nanospheres produced about four-fold 
intense SERS signal over hollow Au nanospheres, sug-
gesting the effect of Ag. However, Ag shell did not yield 
the same enhancement for the solid Au nanospheres 
revealing that the enhancement in the SERS signal was a 

Figure 8: DDA calculated plasmonic field distributions of solid Ag nanocubes and gold nanoframes. (A) individual Ag nanocube, (B) dimer 
of Ag nanocubes, (C) single Au nanoframe, and (D) dimer of Au nanoframes (reproduced from Ref. [14], copyright 2014 American Chemical 
Society).
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combination of compositional effects by Ag addition and 
generation of intense plasmon fields in hollow nanostruc-
tures due to plasmon hybridization [187].

Plasmonic nanoparticles have the ability to absorb light 
and convert it to heat by a mechanism called photothermal 
effect [175]. When the plasmonic nanostructures, i.e. Au 
nanocages, excited by a near-infrared region (NIR) illumi-
nation, they generate plasmon resonances which decay into 

hot electrons with energies between vacuum level and Fermi 
level. The heat generation due to the surface hot electrons is 
then released to the media causing an increase in the tem-
perature [215, 216]. Thanks to the photothermal effect, plas-
monic nanoparticles have been used intensively in different 
nanomedicine applications such as imaging, drug delivery, 
cancer diagnosis, and photo-ablation therapy [89, 172, 173, 
175–178, 182, 183, 185, 186, 192, 193, 195, 217–225].
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As mentioned earlier, plasmonic nanostructures used 
in nanomedicine applications are Au-based due to their 
bioinertness and easiness of modification of their surfaces 
with different materials such as antibodies and peptides 
for different applications [89]. Most of these Au-based 
nanostructures are nanorods and hollow nanostructures 
as their plasmon resonances can be finely tuned in the 
NIR, where the blood and soft tissue are relatively trans-
parent [222]. Moreover, the hollow nanostructures can 
be used as suitcases for drug delivery applications [175, 
217, 220, 222]. You et al. [222] reported bifunctional use of 
~40  nm hollow Au nanospheres (HAuNS) for photother-
mal ablation of cancer cells and drug release upon NIR 
light irradiation, revealing their excellent drug delivery 
properties. They have reported that HAuNS can be loaded 
about four times more DOX compared to the solid AuNPs, 
which can also be easily released upon NIR laser irradia-
tion, along with the much higher photothermal heat gen-
eration capabilities compared to their solid counterparts 
[222]. Owing to their strong and tunable absorption in the 
NIR and high stability, hollow Au nanocages are used as 
optical imaging contrast agents [182, 185], enabling effi-
cient optical detection of disease markers [193, 223].

One of the most important exploitation of plasmonic 
heat generation by photothermal effect is their applica-
tion for the PTA of cancer [176]. As mentioned earlier, 
the blood and soft tissue are relatively transparent in the 
NIR and nanostructures to be used in PTA should have 
strong, narrow, and tunable NIR absorption along with 
other features such as small size and spherical or near-
spherical shapes [176]. Small size and near-spherical 
shapes are crucial for the efficient intracellular uptake, as 
cell penetration of nanostructures such as Au nanorods, 
although they have strong NIR absorption, are known 
to be less effective compared to spherical nanoparticles 
[226]. Hollow Au nanostructures simultaneously fulfill 
all the relevant requisites for an efficient PTA. Melancon 
et al. [224] were the first to use hollow Au nanostructures 
(~30  nm in size) in PTA, where they have reported effi-
cient destruction of A431 tumor cells treated with anti-
epidermal growth factor receptor (EGFR)-HAuNs with 
near-infrared laser irradiation. As a control experiment, 
they have studied the cell viability of cells treated with 
anti-EGFR-HAuNS alone (no laser), laser alone, or laser-
irradiated IgG-HAuNS and did not observe any indication 
of destruction of tumor cells [224]. Similarly, Lu et al. [225] 
showed the application of targeted ~40 nm HAuNS as effi-
cient in vivo PTA of melanoma. Au et al. [186] conducted a 
quantitative study for the application of ~65 nm Au nanoc-
ages in PTA of breast cancer cells by NIR laser irradiation 
and reported about 35% cellular damage within 5  min 

under optimized condition such as the laser power and 
cell harvest duration. As evident from all these studies, 
HAuNS holds a great promise in the therapy of different 
kinds of cancers as a less harmful alternative to standard 
chemotherapy [227].

Another field of application where hollow nano-
structures perform better than their solid counterparts 
is catalysis [14, 93, 111, 184, 194, 228–232]. It should be 
noted here that the Pt- or Pd-based nanostructures have 
better catalytic activity or the addition of these ele-
ments to the AuAg nanostructures increase their cata-
lytic activity, yet they have poor plasmonic properties 
[14, 93, 111, 194, 224, 226]. In the following, we focus on 
the application of plasmonic, Au-based hollow cata-
lysts. Zeng et  al. [231] compared the catalytic activity 
of different Au-based nanostructures including nanoc-
ages, nanoboxes, and solid nanoparticles and reported 
that Au-based nanocages are catalytically more active 
than both the nanoboxes and nanoparticles. Such high 
activitiy of Au nanocages can be related to the fact that 
these nanostructures have ultrathin walls, high content 
of Au and provide accessibility of both inner and outer 
surfaces through the pores in the walls [231]. Khalavka 
et al. [111] reported an improved plasmon sensitivity and 
catalytic activity of rod-shaped nanorattles compared to 
Au nanorods, where plasmon resonances of the nanorat-
tles show greater sensitivity to changes in the dielectric 
environment, and they show higher catalytic activity. 
Wu et  al. [232] studied the catalytic activity of differ-
ent AgAu bimetallic hollow nanoshells and solid nano-
particles and reported that the hollow nanostructures 
exhibit higher catalytic activity than the solid nanopar-
ticles even though solid nanoparticles have higher Au 
content, indicating the dominant effect of the morphol-
ogy for the catalysis. El-Sayed and co-workers [184, 194, 
224, 226] reported that enhanced catalytic activity of the 
hollow nanostructures can be attributed to the so-called 
nanocage effect, where the catalytic reaction takes place 
inside the nanocage. Figure 9B shows the schematic rep-
resentation of a photocatalytic reaction that takes place 
inside the nanocage [184]. Certain conditions should be 
provided in order to obtain optimum reaction rates in 
such nanocages: (i) Ag should have high surface area 
on the inner wall of the nanocage to generate sufficient 
hydroxyl radicals after its oxidation to Ag2O; (ii) the pore 
sizes should be large enough to allow the diffusion of the 
reactants in and out of the nanocage but in the mean-
time should be small enough to keep the high steady 
state concentrations of the radicals; (iii) the pores inside 
the cage should be in the size regime which provides 
optimum collision rate between the  reactants [184].
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5  Summary and outlook
In the present review we have shown how metallic nano-
structures have a great ability to generate SPRs. In particular, 
hollow nanostructures have been presented as promising 
plasmonic materials with enhanced properties vs. their 
solid counterparts, thanks to the plasmon hybridization 
mechanism. The hybridization of the plasmons results in 
the enhancement of the plasmon fields along with more 
homogeneous distribution as well as the reduction of LSPR 
quenching due to absorption. We have shown how GRR 
is one of the most effective methods to obtain the synthe-
sis of hollow metal nanostructures. We have reviewed the 
advancements on the characterization of plasmonic proper-
ties in hollow nanostructures, covering the single nanopar-
ticle experiments, nanoscale characterization via EELS and 
modeling and simulation studies. Finally, we have shown 
several examples of the applications, i.e. sensing, SERS, 
PTA of cancer, drug delivery, or catalysis where hollow 
nanostructures perform better than their solid counterparts.

Although there has been remarkable progress on the 
synthesis, characterization, and applicability of plasmonic 
hollow nanostructures during the recent years, there still 
remain several challenges to be solved in order to exploit 
such nanoparticles in industrial applications. The advan-
tage of hollow plasmonic nanostructures mainly comes 
from the presence of two surfaces (internal and external) 
and hybridization among them, along with the presence 
of cavities and pores at the walls. Thanks to the progress 
in the synthetic routes, we can now master the issues like 
wall thickness and void size, yet perfect control on the size 
and distribution of the surface pores, which are as impor-
tant as the void size while determining the final plasmonic 
properties, is a crucial challenge to overcome in the future. 
Again, we have the means to precisely tune the plasmonic 
properties of hollow nanostructures over a wide range. 
Such ability comes as an output of having full control over 
the synthesis of template materials, GRR conditions, and 
surface functionalities of both the template and hollow 
nanostructures. So far, these rather complex routines are 
conducted at the laboratory scale with impressive con-
trols over each step. It should be pointed out that achieved 
precise controls for the synthesis of gram scale nanostruc-
tures are mainly thanks to the usage of high purity reagents. 
The next step forward would be to optimize these condi-
tions in the mass scales along with using cheaper reagents 
in order to meet with the requirements for industrial appli-
cations. Moreover, we postulate that as our understanding 
on the local plasmonic properties of hollow nanostructures 
gets deeper, it paves the way to the design and synthesis 
of  application specific hollow nanostructures with highly 

enhanced properties. Therefore, we need more systematic 
studies on the nanoscale plasmonic properties of hollow 
nanostructures, which then can be used as feedbacks for 
the synthesis as well as the applications.
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