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Abstract

We establish generalized pre-Grüss inequality for local fractional integrals. Then, we obtain some
inequalities involving generalized expectation, p−moment, variance and cumulative distribution function
of random variable whose probability density function is bounded. Finally, some applications for
generalized Ostrowski-Grüss inequality in numerical integration are given.
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1. INTRODUCTION

In 1935, G. Grüss [10] proved the following inequality which establishes a
connection between the integral of the product of two functions and the product of
the integrals of these two functions:

∣∣∣∣∣∣ 1
b−a

b∫
a

f (x)g(x)dx− 1
b−a

b∫
a

f (x)dx
1

b−a

b∫
a

g(x)dx

∣∣∣∣∣∣≤ 1
4
(M−m)(N−n), (1.1)

provided that f and g are two integrable function on [a,b] satisfying the condition

m≤ f (x)≤M and n≤ g(x)≤ N for all x ∈ [a,b]. (1.2)

The constant 1
4 is best possible.

In 1938, Ostrowski established the following interesting integral inequality for
differentiable mappings with bounded derivatives [14]:

THEOREM 1.1 (Ostrowski inequality). Let f : [a,b] → R be a differentiable

mapping on (a,b) whose derivative f ′ : (a,b) → R is bounded on (a,b) , i.e.
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‖ f ′‖
∞

:= sup
t∈(a,b)

| f ′(t)|< ∞. Then, we have the inequality

∣∣∣∣∣∣ f (x)− 1
b−a

b∫
a

f (t)dt

∣∣∣∣∣∣≤
[

1
4
+

(
x− a+b

2

)2

(b−a)2

]
(b−a)

∥∥ f ′
∥∥

∞
, (1.3)

for all x ∈ [a,b]. The constant 1
4 is the best possible.

Inequality (1.3) has wide applications in numerical analysis and in the theory of
some special means. Hence inequality (1.3) has attracted considerable attention and
interest from mathematicians and researchers. We refer to our recent paper [7].

From [11], if f : [a,b]→ R is differentiable on (a,b) with the first derivative f ′

integrable on [a,b], then Montgomery identity holds:

f (x) =
1

b−a

b∫
a

f (t)dt +
b∫

a

P(x, t) f ′(t)dt, (1.4)

where P(x, t) is the Peano kernel defined by

P(x, t) =

{
t−a
b−a , a≤ t ≤ x
t−b
b−a , x < t ≤ b.

In [8], Dragomir and Wang proved the following result which is Ostrowski type
inequality using the inequality (1.1) and Montgomery identity (1.4).

THEOREM 1.2. Let f : I⊆R→R be a differentiable mapping in I0 and let a,b∈
I0 with a < b. If f ∈ L1 [a,b] and

γ ≤ f ′(x)≤ Γ ∀x ∈ [a,b] ,

then we have the following inequality∣∣∣∣∣∣ f (x)− 1
b−a

b∫
a

f (t)dt− f (b)− f (a)
b−a

(
x− a+b

2

)∣∣∣∣∣∣≤ 1
4
(b−a)(Γ− γ)

for all x ∈ [a,b].

In a recent paper [12], Matić et al. established the following inequality, which
has been called the pre-Grüss inequality in [3].
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THEOREM 1.3. Let f ,g : [a,b]→R be two integrable functions and γ1 ≤ g(x)≤
Γ1, for all x ∈ [a,b], where γ1,Γ1 ∈ R are constants. Then we have∣∣∣∣∣∣ 1

b−a

b∫
a

f (x)g(x)dx− 1
b−a

b∫
a

f (x)dx
1

b−a

b∫
a

g(x)dx

∣∣∣∣∣∣
≤ 1

2
(Γ1− γ1)

 1
b−a

b∫
a

f 2(x)dx−

 1
b−a

b∫
a

f (x)dx

2


1
2

.

In the last years, many papers were devoted to the generalization of Grüss type
inequalities and also were derived some statistical applications related to this
inequalities, we can mention the works [2], [3], [5], [8], [12], [15], [16].

2. PRELIMINARIES

Recall the set Rα of real line numbers and use the Gao-Yang-Kang’s idea to
describe the definition of the local fractional derivative and local fractional integral,
see [20; 21] and so on.

Recently, the theory of Yang’s fractional sets [20] was introduced as follows.

For 0 < α ≤ 1, we have the following α-type set of element sets:

Zα : The α-type set of integer is defined as the set {0α ,±1α ,±2α , ...,±nα , ...} .
Qα : The α-type set of the rational numbers is defined as the set {mα =

(
p
q

)α

:
p,q ∈ Z, q 6= 0}.

Jα : The α-type set of the irrational numbers is defined as the set {mα 6=
(

p
q

)α

:
p,q ∈ Z, q 6= 0}.

Rα : The α-type set of the real line numbers is defined as the set Rα = Qα ∪ Jα .

If aα ,bα and cα belongs the set Rα of real line numbers, then

(1) aα +bα and aα bα belongs the set Rα ;

(2) aα +bα = bα +aα = (a+b)α = (b+a)α ;

(3) aα +(bα + cα) = (a+b)α + cα ;

(4) aα bα = bα aα = (ab)α = (ba)α ;

(5) aα (bα cα) = (aα bα)cα ;

(6) aα (bα + cα) = aα bα +aα cα ;

(7) aα +0α = 0α +aα = aα and aα 1α = 1α aα = aα .

The definition of the local fractional derivative and local fractional integral can
be given as follows.
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DEFINITION 1. [20] A non-differentiable function f : R → Rα , x → f (x) is

called to be local fractional continuous at x0, if for any ε > 0, there exists δ > 0,
such that

| f (x)− f (x0)|< ε
α

holds for |x− x0|< δ , where ε,δ ∈R. If f (x) is local continuous on the interval (a,b) ,

we denote f (x) ∈Cα(a,b).

DEFINITION 2. [20] The local fractional derivative of f (x) of order α at x = x0

is defined by

f (α)(x0) =
dα f (x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

∆α ( f (x)− f (x0))

(x− x0)
α ,

where ∆α ( f (x)− f (x0))=̃Γ(α +1)( f (x)− f (x0)) .

If there exists f (k+1)α(x) =

k+1 times︷ ︸︸ ︷
Dα

x ...D
α
x f (x) for any x ∈ I ⊆ R, then we denoted

f ∈ D(k+1)α(I), where k = 0,1,2, ...

LEMMA 1. [20] Suppose that f (x) ∈ Cα [a,b] and f (x) ∈ Dα(a,b), then for

0 < α ≤ 1 we have an α−differential form

dα f (x) = f (α)(x)dxα .

DEFINITION 3. [20] Let f (x) ∈ Cα [a,b] . Then the local fractional integral is

defined by,

aIα
b f (x) =

1
Γ(α +1)

b∫
a

f (t)(dt)α =
1

Γ(α +1)
lim

∆t→0

N−1

∑
j=0

f (t j)(∆t j)
α ,

with ∆t j = t j+1− t j and ∆t = max{∆t1,∆t2, ...,∆tN−1} , where
[
t j, t j+1

]
, j = 0, ...,

N−1 and a = t0 < t1 < ... < tN−1 < tN = b is partition of interval [a,b] .

LEMMA 2. [20]

(1) (Local fractional integration is anti-differentiation) Suppose that

f (x) = g(α)(x) ∈Cα [a,b] , then we have

aIα
b f (x) = g(b)−g(a).

(2) (Local fractional integration by parts) Suppose that f (x),g(x) ∈ Dα [a,b] and
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f (α)(x), g(α)(x) ∈Cα [a,b] , then we have

aIα
b f (x)g(α)(x) = f (x)g(x)|ba−a Iα

b f (α)(x)g(x).

LEMMA 3. [20] We have

i)
dα xkα

dxα
=

Γ(1+ kα)

Γ(1+(k−1)α)
x(k−1)α ;

ii)
1

Γ(α +1)

b∫
a

xkα(dx)α =
Γ(1+ kα)

Γ(1+(k+1)α)

(
b(k+1)α −a(k+1)α

)
, k ∈ R.

In [1], Akkurt et al. proved the following theorem. In this article, we give some
results related to this inequality and some applications for generalized
Ostrowski-Grüss inequality in numerical integration.

THEOREM 2.1 (Generalized Ostrowski-Grüss inequality). Let I ⊆ R be an

interval, f : I0 ⊆ R→ Rα (I0 is the interior of I) such that f ∈ Dα(I0) for a,b ∈ I0

with a < b. If f (α) ∈ Iα
x [a,b] and

δ ≤ f (α)(x)≤ ∆

where δ ,∆ ∈ Rα , then we have∣∣∣∣ f (x)− Γ(1+α)

(b−a)α aIα
b f (t)−2α Γ2 (1+α)

Γ(1+2α)

f (b)− f (a)
(b−a)α

(
x− a+b

2

)α
∣∣∣∣
(2.1)

≤ (b−a)α

4α Γ(1+α)
(∆−δ )

for all x ∈ [a,b] .

In [19], the following result called generalized Grüss inequality was derived by
Sarikaya et al.

THEOREM 2.2 (Generalized Grüss inequality). Let f ,g ∈ Iα
x [a,b] . Then, ϕ ≤

f (x)≤Φ and γ ≤ g(x)≤ Γ, for all x ∈ [a,b],ϕ,Φ,γ and Γ ∈ Rα , we have

|Tα( f ,g)| ≤ (b−a)2α

4α Γ2 (1+α)
(Φ−ϕ)(Γ− γ) (2.2)

where

Tα( f ,g) =
(b−a)α

Γ(1+α)
aIα

b f (x)g(x)− [ aIα
b f (x)] [ aIα

b g(x)] . (2.3)

The concept of local fractional calculus (also called fractal calculus) is
introduced by Yang in [20]. The local fractional calculus is utilized to handle various
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nondifferentiable problems that appear in complex systems of the real-world
phenomena. Especially, the nondifferentiability occurring in science and engineering
was modeled by the local fractional ordinary or partial differential equations. Thus,
these topics are important and interesting for researchers working in such fields as
mathematical physics and applied sciences. Authors give some integral inequalities
involving generalized moments in [1]. Chen established Hölder’s inequality and
some integral inequalities on fractal space in [4]. Erden and Sarikaya proved some
Pompeiu type inequalities involving local fractional integrals and gave its
applications. In [13], generalized convex functions are introduced by Mo et al.. In
[17]-[19], authors deduced some generalized integral inequalities which are
Ostrowski and Grüss type by using local fractional integrals. Yang mentioned some
topics related to local fractional calculus and its applications in [21]-[24].

In this study, we establish generalized Pre-Grüss inequality for local fractional
integrals. Then, some application of this inequality for generalized continuous random
variables are given. Finally, we obtain some estimates of composite quadrature rules
by using generalized Ostrowski-Grüss inequality.

3. GENERALIZED PRE-GRÜSS INEQUALITY FOR LOCAL FRACTIONAL
INTEGRALS

We establish generalized pre-Grüss inequality by using local fractional integrals.

THEOREM 3.1 (Generalized Pre-Grüss inequality). Let f ,g ∈ Iα
x [a,b] and ϕ ≤

f (x)≤Φ, for all x ∈ [a,b], where ϕ ,Φ ∈ Rα . Then we have

|Tα( f ,g)| ≤ (b−a)α

2α Γ(1+α)
(Φ−ϕ) [Tα(g,g)]

1
2 (3.1)

where Tα( f ,g) is defined as (2.3).

PROOF. By using the local fractional integrals for mappings f ,g ∈ Iα
x [a,b], we

have the generalized Korkine’s identity

1
Γ2 (1+α)

b∫
a

b∫
a

[ f (x)− f (y)] [g(x)−g(y)] (dy)α (dx)α (3.2)

=
2α (b−a)α

Γ(1+α)
aIα

b f (x)g(x)−2α [ aIα
b f (x)] [ aIα

b g(x)]

= 2α Tα( f ,g).



JAMSI, 12 (2016), No. 2 55 

 

Appling generalized Hölder’s integral inequality for p = q = 2, we obtain(
1

(b−a)2α
Tα( f ,g)

)2

(3.3)

=

 1

2α (b−a)2α
Γ2 (1+α)

b∫
a

b∫
a

[ f (x)− f (y)] [g(x)−g(y)] (dy)α (dx)α

2

≤

 1

2α (b−a)2α
Γ2 (1+α)

b∫
a

b∫
a

[ f (x)− f (y)]2 (dy)α (dx)α


×

 1

2α (b−a)2α
Γ2 (1+α)

b∫
a

b∫
a

[g(x)−g(y)]2 (dy)α (dx)α


=

(
1

(b−a)2α
Tα( f , f )

)(
1

(b−a)2α
Tα(g,g)

)
.

We observe that

1

(b−a)2α
Tα( f , f ) =

 Φ

Γ(1+α)
− 1

(b−a)α
Γ(1+α)

b∫
a

f (x)(dx)α


 1

Γ(1+α)(b−a)α

b∫
a

f (x)(dx)α − ϕ

Γ(1+α)


− 1
(b−a)α

Γ2 (1+α)

b∫
a

[Φ− f (x)] [ f (x)−ϕ] (dx)α .

Using the fact that [Φ− f (x)] [ f (x)−ϕ] ≥ 0 and also the elementary inequality for

α−type set of the real line numbers

4α pq≤ (p+q)2 , p,q ∈ Rα ,

we obtain

1

(b−a)2α
Tα( f , f )≤ 1

4α Γ2 (1+α)
(Φ−ϕ)2. (3.4)

If we substitute the inequality (3.4) in (3.3), then we obtain the inequality (3.1). The

proof is thus completed.
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4. SOME INEQUALITIES FOR RANDOM VARIABLES

Let X be a random variable having the probability distribution function
f : [a,b] → Rα . Assume that there exists the lower and upper bound for f , i.e.,
α−type real numbers ϕ ,Φ such that f (t) ∈Cα [a,b] and 0≤ ϕ ≤ f (t)≤Φ≤ 1 for all
t ∈ [a,b] . Define the generalized expectation, p−moment, variance of the random
variable X as follows:

Eα(X) =
1

Γ(α +1)

b∫
a

tα f (t)(dt)α ,

Eα
p (X) =

1
Γ(α +1)

b∫
a

t pα f (t)(dt)α , where p≥ 0,

Varα(X) = σ
2
µ(X) =

1
Γ(α +1)

b∫
a

(t−µ)2α f (t)(dt)α

= Eα
2 (X)− [Eα(X)]2 , where µ = Eα(X) and µ ∈ [a,b]⊂ Rα

respectively.

THEOREM 4.1. Let X , f and Eα(X) be as defined in above. Then we have the

inequality ∣∣∣∣ Eα(X)

Γ(1+α)
− Γ(1+α)

Γ(1+2α)
(a+b)α

∣∣∣∣ (4.1)

≤ (b−a)α

2α Γ(1+α)
(Φ−ϕ)

[
Γ(1+2α)

Γ(1+α)Γ(1+3α)

(
a2 +ab+b2)α

− Γ2 (1+α)

Γ2 (1+2α)
(a+b)2α

] 1
2

for all x ∈ [a,b] .

PROOF. Choosing g(t) = tα in (3.1), it follows that

(b−a)α

Γ(1+α)
aIα

b tα f (t)− [ aIα
b f (t)] [ aIα

b tα ] (4.2)

≤ (b−a)α

2α Γ(1+α)
(Φ−ϕ)

[
(b−a)α

Γ(1+α)
aIα

b t2α − [ aIα
b tα ]2

] 1
2

.
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Because f is a pdf and above definition, we have

aIα
b f (t) = 1 (4.3)

and

Eα(X) = aIα
b tα f (t). (4.4)

Also, using the Lemma 3, we get

aIα
b tα =

Γ(1+α)

Γ(1+2α)

(
b2−a2)α

(4.5)

and [
(b−a)α

Γ(1+α)
aIα

b t2α − [ aIα
b tα ]2

] 1
2

(4.6)

= (b−a)α

[
Γ(1+2α)

Γ(1+α)Γ(1+3α)

(
a2 +ab+b2)α

− Γ2 (1+α)

Γ2 (1+2α)
(a+b)2α

] 1
2

.

Substituting the equalities (4.3), (4.4), (4.5) and (4.6) in (4.2), we easily deduce

desired inequality (4.1) which completes the proof.

Let us recall generalized p−Logarithmic mean:

Lp(a,b)=

[
Γ(1+ pα)

Γ(1+(p+1)α)

[
b(p+1)α −a(p+1)α

(b−a)α

]] 1
p

, p∈Z\{−1,0} , a,b∈R, a 6= b.

PROPOSITION 1. Let X , f and Eα
p (X) be as defined in above. Then we have the

inequality ∣∣∣∣ Eα
p (X)

Γ(1+α)
−Lp

p(a,b)
∣∣∣∣

≤ (b−a)α

2α Γ(1+α)
(Φ−ϕ)

[
1

Γ(1+α)
L2p

2p(a,b)−L2p
p (a,b)

] 1
2
.

The proof is obvious by the inequality (3.1) in which we choose g(t) = t pα , p ∈
Z\{−1,0} and use the definition of generalized p−Logarithmic mean.
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THEOREM 4.2. Let X , f and Varα(X) be as defined in above. Then we have the

inequality ∣∣∣∣ Varα(X)

Γ(1+α)
−A
∣∣∣∣ (4.7)

≤ (b−a)α

2α Γ(1+α)
(Φ−ϕ)

[
B

Γ(1+α)
−A2

] 1
2
.

where

A =
Γ(1+2α)

Γ(1+3α)

[
(b−a)2α

4α
+3α

(
µ− a+b

2

)2α
]

and

B =
Γ(1+4α)

Γ(1+5α)

[
(b−a)4α

16α
+5α

(
µ− a+b

2

)4α

+10α (b−a)2α

4α

(
µ− a+b

2

)2α
]
.

PROOF. Choosing g(t) = (t−µ)2α in (3.1), it follows that∣∣∣∣ (b−a)α

Γ(1+α)
aIα

b (t−µ)2α f (x)− [ aIα
b f (x)]

[
aIα

b (t−µ)2α
]∣∣∣∣ (4.8)

≤ (b−a)α

2α Γ(1+α)
(Φ−ϕ)

[
(b−a)α

Γ(1+α)
aIα

b (t−µ)4α −
[

aIα
b (t−µ)2α

]2
] 1

2

.

Because f is a pdf and above definition, we have

aIα
b f (t) = 1 (4.9)

and

Varα(X) = aIα
b (t−µ)2α f (x). (4.10)

Also, using the Lemma 3, we get

aIα
b (t−µ)2α =

Γ(1+2α)

Γ(1+3α)
(b−a)α

[
(b−a)2α

4α
+3α

(
µ− a+b

2

)2α
]

(4.11)
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and

aIα
b (t−µ)4α =

Γ(1+4α)

Γ(1+5α)
(b−a)α

[
(b−µ)4− (b−µ)3 (µ−a) (4.12)

+(b−µ)2 (µ−a)2− (b−µ)(µ−a)3 +(µ−a)4
]α

=
Γ(1+4α)

Γ(1+5α)
(b−a)α

[
(b−a)4α

16α
+5α

(
µ− a+b

2

)4α

+10α (b−a)2α

4α

(
µ− a+b

2

)2α
]
.

If we substitute the equalities (4.9), (4.10), (4.11) and (4.12) in (4.8), then we obtain

required inequality (4.1) which completes the proof.

5. AN APPLICATION FOR CUMULATIVE DISTRIBUTION FUNCTION

The following theorem contains an inequality which connects the generalized
expectation Eα(X), the Cumulative Distribution Function

Pr
α
(X ≤ x) = Fα(X) :=

1
Γ(1+α)

x∫
a

f (t)(dt)α

and the probability distribution function f : [a,b]→ Rα has the bounds ϕ and Φ,

where ϕ , Φ ∈ Rα .

THEOREM 5.1. Let X , f , Eα(X), Fα(·) and ϕ , Φ be as defined in above. Then

we have the inequality∣∣∣∣Eα(X)+(b−a)α Fα(X)−bα

Γ(1+α)
−C
∣∣∣∣ (5.1)

≤ (b−a)α

2α Γ(1+α)
(Φ−ϕ)

×

[
Γ(1+2α)

Γ(1+α)Γ(1+3α)

[
(b−a)2α

4α
+3α

(
x− a+b

2

)2α
]
−C2

] 1
2

for all x ∈ [a,b] , where

C = 2α Γ(1+α)

Γ(1+2α)

(
x− a+b

2

)α

.
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PROOF. Define the mapping

Pα(x, t) :=

{
(t−a)α , a≤ t ≤ x

(t−b)α , x < t ≤ b.

Using the Lemma 1, because f is a pdf, we write

1
Γ(1+α)

b∫
a

P(x, t) f (t)(dt)α (5.2)

= Eα(X)+(b−a)α Fα(X)−bα .

If we take the inequality (3.1) for g(t) = Pα(x, t), we get∣∣∣∣ (b−a)α

Γ(1+α)
aIα

b Pα(x, t) f (t)− [ aIα
b f (t)] [ aIα

b Pα(x, t)]
∣∣∣∣ (5.3)

≤ (b−a)α

2α Γ(1+α)
(Φ−ϕ)

[
(b−a)α

Γ(1+α)
aIα

b P2
α(x, t)− [ aIα

b Pα(x, t)]
2
] 1

2

.

Because f is a pdf, we have

aIα
b f (t) = 1. (5.4)

Now, using the Lemma 3, we obtain

aIα
b Pα(x, t) = 2α Γ(1+α)

Γ(1+2α)

(
x− a+b

2

)α

(b−a)α (5.5)

and

aIα
b P2

α(x, t) =
Γ(1+2α)

Γ(1+3α)
(b−a)α

[
(b−a)2α

4α
+3α

(
x− a+b

2

)2α
]
. (5.6)

If we substitute the equalities (5.2), (5.4), (5.5) and (5.6) in (5.3), then we obtain

required inequality (5.1) which completes the proof.

REMARK 1. If we take x = a+b
2 in (5.1), then we have the inequality∣∣∣∣Eα(X)+(b−a)α Pr

α

(
X ≤ a+b

2

)
−bα

∣∣∣∣
≤
[

Γ(1+2α)

Γ(1+α)Γ(1+3α)

] 1
2 (b−a)2α

4α
(Φ−ϕ).

REMARK 2. Under the same assumptions of Theorem 5.1 with x = a, x = b,

adding the results and using the triangle inequality for the modulus, we get the
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inequality ∣∣∣∣Eα(X)−
(

a+b
2

)α
∣∣∣∣

≤

[
Γ(1+2α)

Γ(1+α)Γ(1+3α)
−
(

Γ(1+α)

Γ(1+2α)

)2
] 1

2
(b−a)2α

2α
(Φ−ϕ).

6. APPLICATIONS TO NUMERICAL QUADRATURE RULES

We give some results related to the inequality (2.1).

COROLLARY 1. Under the same assumptions of Theorem 2.1 with x = a, x =

b, adding the results and using the triangle inequality for the modulus, we get the

inequality ∣∣∣∣ f (a)+ f (b)
2α

− Γ(1+α)

(b−a)α aIα
b f (t)

∣∣∣∣≤ (b−a)α

4α Γ(1+α)
(∆−δ ) . (6.1)

REMARK 3. If we choose x = a+b
2 in Theorem 2.1, we obtain∣∣∣∣ f (a+b

2

)
− Γ(1+α)

(b−a)α aIα
b f (t)

∣∣∣∣≤ (b−a)α

4α Γ(1+α)
(∆−δ ) .

We now consider applications of the generalized Ostrowski-Grüss inequality, to
obtain estimates of composite quadrature rules which, it turns out have a markedly
smaller error than that which may be obtained by the classical results.

Let In : a = x0 < x1 < ... < xn−1 < xn = b be a division of the interval [a,b] ,
ξi ∈ [xi,xi+1] (i = 0, ...,n−1) . Define the quadrature

S( f , In,ξ ) : =
1

Γ(1+α)

n−1

∑
i=0

f (ξi)hα
i (6.2)

−2α Γ(1+α)

Γ(1+2α)

n−1

∑
i=0

(
ξi−

xi + xi+1

2

)α

[ f (xi+1)− f (xi)]

where hi = xi+1− xi, i = 0, ..., n−1.

THEOREM 6.1. Let f : [a,b]⊆R→Rα be a mapping such that f ∈Cα [a,b] and

f ∈ Dα(a,b). If

δ ≤ f (α)(x)≤ ∆



62 

 
S. Erden, M. Z. Sarikaya and N. Çelik

where δ ,∆ ∈ Rα , then we have the representation

1
Γ(1+α)

b∫
a

f (t)(dt)α = S( f , In,ξ )+R( f , In,ξ )

where S( f , In,ξ ) is as defined in (6.2) and the remainder satisfies the estimation:

|R( f , In,ξ )| ≤
∆−δ

4α Γ2 (1+α)

n−1

∑
i=0

h2α
i . (6.3)

PROOF. Applying Theorem 2.1 on the interval [xi,xi+1] for the intermediate

points ξi, we obtain∣∣∣∣ hα
i

Γ(1+α)
f (ξi)−xi Iα

xi+1
f (t)−2α Γ(1+α)

Γ(1+2α)

(
ξi−

xi + xi+1

2

)α

[ f (xi+1)− f (xi)]

∣∣∣∣
≤

h2α
i

4α Γ2 (1+α)
(∆−δ )

for all i = 0, ...,n−1. Summing over i from 0 to n−1 and using the triangle inequality

we obtain the estimation (6.3).

Now, define the mid-point and trapezoidal quadrature rule, respectively, as the
followings:

AM( f , In) :=
1

Γ(1+α)

n−1

∑
i=0

f
(

xi + xi+1

2

)
hα

i ,

AT ( f , In) :=
1

Γ(1+α)

n−1

∑
i=0

f (xi)+ f (xi+1)

2α
hα

i

where hi = (xi+1− xi), i = 0, ..., n−1.

It is clear that inequality (6.3) is much better than the classical averages of the
remainders of the generalized Midpoint and Trapezoidal quadratures.

REMARK 4. If we choose ξi =
xi+xi+1

2 in Theorem 6.1, then we recapture the

midpoint quadrature formula

1
Γ(1+α)

b∫
a

f (t)(dt)α = AM( f , In)+RM( f , In)
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where the remainder RM( f , In) satisfies the estimation

|RM( f , In)| ≤
∆−δ

4α Γ2 (1+α)

n−1

∑
i=0

h2α
i .

Also, if we consider the inequality (6.1), then we recapture the trapezoidal quadrature

formula

1
Γ(1+α)

b∫
a

f (t)(dt)α = AT ( f , In)+RT ( f , In)

where the remainder RT ( f , In) satisfies the estimation

|RT ( f , In)| ≤
∆−δ

4α Γ2 (1+α)

n−1

∑
i=0

h2α
i .
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email:sarikayamz@gmail.com

Nuri Çelik
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