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ABSTRACT: We report the fine-tuning of the localized surface plasmon resonances (LSPRs) from ultraviolet to near-infrared
by nanoengineering the metal nanoparticle morphologies from solid Ag nanocubes to hollow AuAg nanoboxes and AuAg
nanoframes. Spatially resolved mapping of plasmon resonances by electron energy loss spectroscopy (EELS) revealed a
homogeneous distribution of highly intense plasmon resonances around the hollow nanostructures and the interaction, that is,
hybridization, of inner and outer plasmon fields for the nanoframe. Experimental findings are accurately correlated with the
boundary element method (BEM) simulations demonstrating that the homogeneous distribution of the plasmon resonances is
the key factor for their improved plasmonic properties. As a proof of concept for these enhanced plasmonic properties, we show
the effective label free sensing of bovine serum albumin (BSA) of single-walled AuAg nanoboxes in comparison with solid Au
nanoparticles, demonstrating their excellent performance for future biomedical applications.

KEYWORDS: hollow metal nanoparticles, electron energy loss spectroscopy, AuAg, localized surface plasmon resonances,
label-free sensing

Metallic nanostructures have received a great deal of

interest due to their ability to generate localized surface

plasmon resonances (LSPRs), which are collective oscillations
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of conduction electrons of a material excited by an electro-
magnetic wave.1 With the capability of the localization of light
at nanoscale, far beyond the diffraction limit of electromagnetic
waves in dielectric media,2,3 plasmonic nanostructures are
attractive building blocks for nano-optics and novel applications
such as sensor devices,4 surface enhanced Raman spectroscopy
(SERS),5 photovoltaics,6 superlenses,7 nanolasers,8 invisibility
cloaks,9 and quantum computing.10 It is well-known that the
LSPR properties of the metallic nanostructures are affected by
their size, shape, composition, and environment,11,12 and many
different nanostructures have been investigated so far.13

Ag nanostructures are known to have better plasmonic
performance than those of Au;14,15 however, they are not
biocompatible and can easily degrade in most of the biorelated
applications. One possible solution in order to avoid Ag is using
some other material with higher corrosion resistance (e.g., Au).
On the other hand, plasmonic properties of Au nanostructures
suffer a lot from the interband transitions as their onset partially
overlaps with the LSPRs, causing a decrease in the intensity.16

Hollow nanostructures come into prominence in order to
overcome this issue as cavities are known to have better
plasmonic properties than their solid counterparts thanks to the
plasmon hybridization mechanism.17 The hybridization of the
plasmons results in the enhanced plasmon fields along with
more homogeneous distribution as well as the red-shift of

plasmon resonances and reduction of LSPR quenching due to
absorption.14,15,18,19 At this point, nanoengineering plays a
crucial role in order to strengthen the plasmonic response of Au
nanocrystals, where hollow morphologies provide biocompat-
ible nanostructures with high plasmonic properties. In order to
design these nanostructures with the desired plasmonic features
and being able to manipulate LSPRs at the nanoscale, it is
essential to understand and locate the plasmon resonances at
the nanoscale with the highest possible spatial accuracy. The
commonly used techniques such as UV−vis-NIR spectroscopy,
dark field microscopy, and near-field scanning optical
microscopy (NSOM) exhibit lack of spatial resolution for a
complete characterization of local optical features in individual
nanostructures. At this point, EELS in a scanning transmission
electron microscope (STEM) equipped with a monochromator
becomes an ideal alternative with its high spatial (subnan-
ometer scale) and high energy (below 0.2 eV) resolutions.20,21

Thanks to EELS, it has been recently possible to map LSPRs of
different solid metal nanostructures, such as nanoparticles,22,23

nanorods/nanowires,24−26 nanoprisms,27 nanostars,28 nano-
disks,29 nanodecahedra,30 and nanocubes31−33 with high spatial
resolutions. In addition to direct imaging of bright and dark
plasmon modes in coupled nanostructures,29,34−36 EELS has
also been used to study three-dimensional plasmonic proper-
ties32 and quantum plasmonic effects (coupling effects)

Figure 1. Structural and LSPR evolution of the AuAg nanostructures. (A) Structural sketches and corresponding solution colors of Ag nanocube,
Ag@Au core−shell nanocube, pinholed AuAg nanobox, single-walled AuAg nanobox, and AuAg nanoframe (B). HAADF STEM micrographs of the
nanostructures where SI EELS have been acquired, from Ag nanocube to AuAg nanoframe (scale bars = 50 nm). (C) Zero-loss peak (ZLP)
subtracted EEL spectra averaged over the areas of interests, that is, EELS maps, showing the evolution of localized surface plasmon resonances with
structural changes. (D) BEM simulated EEL spectra revealing the effect of void size for Ag nanostructures: 50 nm Ag nanocube (in black), 5 nm void
(in blue), 15 nm void (in green), 30 nm void (in orange), 40 nm void (in magenta), 45 nm void (in purple), and 48 nm void (in red).
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between nanoparticles.23,37,38 Despite this huge effort, there is a
clear lack of experimental studies dealing with the plasmonic
properties of hollow metal nanostructures. To our knowledge,
there is only one previous EELS study on polycrystalline
nanoshells,39 but none on high quality, single crystalline hollow
nanostructures such as commonly used nanoboxes and
nanocages. Nevertheless, there are several theoretical studies
dealing with the LSPR properties of individual and coupled
AuAg hollow nanostructures by discrete dipole approximation
(DDA) simulations,14,18,19,40 anticipating their enhanced
properties; however, a detailed experimental characterization/
study at the nanoscale level along with a direct demonstration
of their applicability is still missing in such advanced systems.41

Label-free optical sensing with plasmonic nanoparticles is
based on the detection of adsorbate induced refractive index
changes near or on the nanoparticles, which change the
dielectric constant of the surrounding medium and can be
measured by using UV−visible extinction spectroscopy.4,5,42

Despite the recent advances, there is still need for increased
sensitivity to unleash the power of plasmonic sensing, before
practical applications in the biological and medical testing
devices can be released.
Here, we present a comprehensive EELS study on the

evolution of LSPRs from solid Ag nanocubes to hollow AuAg
nanoboxes/nanoframes.43 We have been able to finely tune
plasmonic resonances generated due to these different
structural features. We experimentally investigate the LSPRs
of monocrystalline (i) Ag nanocubes, (ii) Ag@Au core−shell
nanocubes, (iii) pinholed AuAg nanoboxes, (iv) single-walled
AuAg nanoboxes, and (v) AuAg nanoframes, which are ∼50 nm
in size, with sub-eV and nanometer resolutions by means of
EELS spectrum imaging (SI).44 We have used a spectral
unmixing (SU) based routine via vertex component analysis
(VCA)45−47 in order to process the EELS data sets, which is

implemented in HyperSpy multidimensional data analysis
toolbox.48 We demonstrate, by direct measurements, the
presence and distribution of different LSPR modes arising
due to the interaction of inner and outer plasmon modes of the
same hollow metal nanostructure and correlate our exper-
imental findings with BEM simulations.49 We postulate that the
experimentally obtained plasmon distributions are in agreement
with the plasmon hybridization model,17 which represents the
first experimental demonstrations at the nanoscale by EELS
mapping in such hollow metal nanostructures. Finally, the
enhanced plasmonic properties of hollow metal nanostructures
are shown experimentally by measuring the sensitivity of single-
walled AuAg nanoboxes against conjugation events with bovine
serum albumin (BSA) protein and its antibodies.

■ RESULTS AND DISCUSSION

Figure 1A and B show representative sketches and high angle
annular dark field (HAADF) STEM micrographs of the
experimentally studied Ag nanocube and different AuAg
nanostructures, respectively. The AuAg nanostructures are
obtained by galvanic replacement reaction of Ag by Au3+, where
the deposition of Au onto an Ag cube occurs as the Ag cube is
emptied. Therefore, as the void size increases, the Au/Ag ratio
in the nanostructure also increases. In parallel, due to the high
miscibility of Au and Ag, they alloy to some degree
spontaneously.43 See details on the AuAg nanostructures
syntheses in Methods. Exploitation of plasmonic properties of
hollow AuAg nanoboxes and nanocages has been the subject of
intensive interest over the years as they have been used in many
different application thanks to their enhanced plasmonic
properties.50,51 In parallel, efforts have been made to under-
stand the optical properties of individual AuAg nanoboxes/
nanocages via single nanoparticle spectroscopy studies on

Figure 2. Plasmonic properties of the pinholed AuAg nanobox. (A) HAADF STEM micrograph of a 51 nm pinholed AuAg nanobox with a
rectangular inner hole of 12 nm × 17 nm. (B) Selected area EEL spectra of the upper left and lower right corners, upper edge, center hole and bulk
of the pinholed nanobox (areas are indicated in HAADF STEM micrograph with corresponding colors, which are 5 pixels by 5 pixels). (C) Spectra
and abundance maps of five components obtained by VCA processing.
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various nanoboxes/nanocages.52,53 Here, we take these efforts
to one step further by studying the spatially resolved plasmonic
properties of individual hollow AuAg nanostructures at the
nanoscale. Zero-loss peak (ZLP) subtracted low-loss EEL
spectra, which are averaged over the EELS maps, of the
nanostructures are presented in Figure 1C, revealing the
modulation of the averaged LSPRs induced by the morpho-
logical changes. As a general trend, LSPR peaks are shifted to
lower energies with increasing void size. Bulk UV−vis spectra
from each synthesis along with the low magnification
micrographs are presented in Figure S1, confirming the shift
of plasmon energies with increasing void size. Such an energy
shift is the result of two main effects: (i) compositional effects
due to AuAg alloying and (ii) morphological effects due to void
formation. In order to better understand the effect of voids and
to be able to distinguish them, if possible, from the
compositional effects, we have simulated 50 nm Ag nanoboxes
with various wall thicknesses (see Figure 1D), which suggests
that the morphological changes are the dominant factor for the
shift of plasmon resonance energies. As it can be seen in this
figure, plasmon resonances shift to lower energies with
increasing void size in accordance with the plasmon hybrid-
ization mechanism. The extent of the shift is higher for the
thinner walls, that is, plasmon resonances barely shift for the 5
nm void but they shift about 0.8 eV as the void size increases
from 40 to 45 nm due to strong hybridization. It is also worth
noting that their intensities, that is, loss probabilities, increase
along with the increasing void size.
In the following, we describe the plasmonic properties of

selected individual nanostructures. Detailed local EEL spectra
of the Ag nanocube and Ag@Au core−shell nanocube and
different components obtained by VCA processing from these
nanostructures along with the relevant discussions about the
shape and composition effects are presented in the Supporting
Information.
Figure 2A shows the HAADF STEM micrograph of a 51 nm

pinholed AuAg nanobox with a rectangular inner hole of 12 nm

× 17 nm. In Figure 2B, selected area EEL spectra obtained
from different locations of the pinholed AuAg nanobox are
shown, revealing the presence of wide peaks, which may
contain several LSPR modes. The variances of these local EEL
spectra (see, for instance, the spectra obtained from the upper
left corner (in black) and lower right corner (in green)) suggest
that the galvanic replacement reaction at this stage is taking
place inhomogeneously. VCA processing revealed the distribu-
tion of five different components located at different energies,
where, in some cases, more than one peak is observed for
individual components caused by the inefficiency of the spectral
unmixing routine which is thought to be due to the
morphological and compositional complexity of the nanostruc-
ture. The components #1, #2, and #3 can be associated with the
LSPR modes related with the corner and/or edge excitations.
The components #4 and #5 are resonances that can be related
to the LSPR mode of Ag and bulk mode of Ag, respectively.
Above stated compositional variances are exhibited clearly with
the abundance maps of these five different components (Figure
2C). Figure S8 shows the two additional components related to
the background and interband transition contributions obtained
during the processing of the pinholed AuAg nanoboxes.
Figure 3 shows the selected area EEL spectra obtained from

different locations of the single-walled AuAg nanobox, which is
50 nm in size and has about 7 nm thick walls, suggesting that
the plasmon peaks spanning between ∼2 and ∼2.5 eV have
rather similar energies as one another, confirming the
postulation that the hollow nanostructures would generate
homogeneously distributed plasmon resonances.18,19 VCA
processing shown in Figure 3C revealed the presence of three
different components located at ∼2, ∼ 2.2, and ∼2.5 eV, where
especially the abundance maps of the components #1 and #2
show their more or less homogeneous distribution with high
intensities all around the nanobox. Plasmon distribution maps
obtained by spectral filtering also suggest the homogeneous
distribution of the plasmon resonances (see Figure S9). These
maps revealing the spatial distribution of plasmon resonances in

Figure 3. Plasmonic properties of the single-walled AuAg nanobox. (A) HAADF STEM micrograph of a 50 nm single-walled AuAg nanobox with 7
nm thick walls. (B) Selected area EEL spectra of the upper left and lower right corners, upper edge and center of the nanobox (areas are indicated in
HAADF STEM micrograph, which are 5 pixels by 5 pixels). (C) Spectra and abundance maps of three components obtained by VCA processing.
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such a hollow nanostructure may be the explanation of their
enhanced plasmonic properties for different applications such
as sensing14,15 (vide infra), as all the surface of the nanobox acts
like a continuous “hot-spot” with intense plasmon excitations.
In order to have a better understanding of the plasmonic

properties of the AuAg nanobox, we have used BEM
simulations. At least 10 different point analyses over the
single-walled AuAg nanobox via STEM-energy dispersive X-ray
spectroscopy (EDS) suggested that the AuAg nanoboxes are
composed of ∼60% Au and ∼40% Ag with compositional
variances of ±7%. We have assumed that the simulated
nanobox, which is 50 nm in size with 7 nm thick walls, is
composed of homogeneously distributed 60% Au and 40% Ag.
A second assumption was that the nanobox has no pores along
the walls, as it is hardly possible to distinguish any pores along
faces from a 2D projection. We have simulated a AuAg

nanobox with sharp corners and have obtained qualitatively
good agreement with the experimental plasmon resonance
energies (see Figure S10). The LSPR mode located at 2.16 eV
is perfectly distributed all around the nanobox confirming the
above-discussed plasmonic behavior of hollow nanostructures
and presented experimental results. However, when we have a
look at the LSPR mode located at 1.94 eV, we see that it is
highly confined along the corners, which is not the case for the
experimentally obtained abundance maps. In the light of these
results, we have conducted BEM simulations on a AuAg
nanobox with slightly rounded corners, as shown in Figure 4.
As seen in the simulated local EEL spectra (Figure 4B)
obtained from different locations of the structural AuAg
nanobox model (Figure 4A), main plasmon resonances are
located between 2.1 and 2.3 eV, which are slightly higher than
the experimental values shown in Figure 3B. Such a small

Figure 4. BEM simulations of the single-walled AuAg nanobox. (A) Structural model used during simulations. (B) Simulated local EEL spectra
obtained from the corner, edge, and center of the nanobox. (C) Simulated plasmon maps of four different LSPR modes located at 2.16, 2.28, 2.50,
and 2.74 eV.

Figure 5. Plasmonic properties of the AuAg nanoframe. (A) HAADF STEM micrograph of a 48 nm AuAg nanoframe with 7 nm thick walls. (B)
Selected area EEL spectra of the upper left corner, upper and lower edges, and center void of the nanoframe (areas are indicated in HAADF STEM
micrograph, which are 5 pixel by 5 pixel). (C) Spectra and abundance maps of three components obtained by VCA processing.
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difference can easily be related to the fact that an
experimentally investigated nanobox has pores (see, for
instance, the lower right corner in Figure 3A) which results
in a shift to lower energies in accordance with the plasmon
hybridization model17 (as clearly demonstrated in Figure 1D).
The plasmon distribution maps shown in Figure 4C are well
distributed around the nanobox and in good agreement with
the experimentally observed ones. A homogeneous distribution
of the plasmon resonances results in decreasing the number of
plasmonic components as the difference between a corner
mode and an edge mode is no longer applicable. The number
of components for different nanostructures is in good
agreement with this assumption, where the presence of seven
components for the Ag nanocube (Figure S2) decreases to five
for the pinholed AuAg nanobox (Figure 2), which further
decreases to three for the single-walled AuAg nanobox (Figure
3) and AuAg nanoframe (Figure 5).
As the amount of Au further increased during the galvanic

replacement reaction (see Methods for details), it is possible to
obtain more complex nanostructures such as the nanoframe
shown in Figure 5. The local EEL spectra obtained from
different locations of the nanoframe are presented in Figure 5B,
revealing that the main plasmon resonances are located
between ∼1.7 and ∼2 eV, which is lower than those observed
for the AuAg nanobox. Such a shift is related to the increased
Au content causing the creation of more voids in the AuAg
nanoframes,53−55 resulting in a shift to lower energies in
accordance with the plasmon hybridization mechanism. For
instance, Hu et al.53 reported about 0.1 eV red shift between
the plasmon resonance energy of a AuAg nanobox and a AuAg
nanocage via single nanoparticle spectroscopy, which was due
to the presence of voids at the corners of the nanocage and
therefore, a stronger hybridization. Moreover, the fact that the
local EEL spectra obtained from the upper and lower edges are
different from one another suggests that the voids along those
faces, if there are any, are not identical. Figure 5C shows the
spectra and abundance maps of the 3 components obtained by
VCA processing. The component #1, which is located at ∼1.5
eV, is mainly generated from the upper and lower parts of the
nanoframe and the component located at ∼2.1 eV is present at
the nanoframe walls along with a highly intense interaction
between the inner and outer part of the left edge. The

component #2 is located at ∼1.8 eV and rather homogeneously
distributed both inside and outside the nanoframe. It is worth
noting that a local EEL spectrum obtained from the lower edge
with higher energies than those of the other parts and the
abundance map of the component #2 with no excitation at the
lower edge are concordant with each other, suggesting that this
face should have smaller voids, than the other faces. These
abundance maps showing the distribution of the plasmon
resonances at the nanoscale clearly reveal the interaction of
inner and outer plasmon fields in such hollow nanostructures.
Figure S11 shows the plasmon distribution maps obtained by
spectral filtering, which also reveal similar features with the
abundance maps obtained by VCA, that is, confinement of high
intensities at certain sides of the nanoframe for a given energy
range, homogeneous distribution of main plasmon resonances,
and interaction of the inner and outer plasmon resonances.
An ideal nanoframe would look like the one shown in Figure

S12 with completely hollow faces, which generates plasmon
resonances at low energies around ∼1 eV (Figure S12B,C).
However, the experimentally investigated nanoframe is
significantly different than this ideal model. We have simulated
a AuAg nanoframe, which is 48 nm in size with 7 nm thick walls
and composed of homogeneous distribution of 70% Au and
30% Ag, with 25 nm spherical pores along all faces (Figure 6A).
Simulated local EEL spectra reveal that the main plasmon
resonances are around 1.6 eV with some shoulder peaks at
higher energies. Distributions of three LSPR modes located at
1.56, 1.68, and 1.94 eV are presented in Figure 6C along with
their 3D distribution obtained by an edge beam excitation. As
seen in these simulated plasmon maps, plasmon fields are rather
homogeneously distributed around the nanoframe, especially
the mode located at 1.68 eV. Simulated plasmon maps of three
other modes located at higher energies of 2.24, 2.41, and 2.75
eV, which could not be observed experimentally, are shown in
Figure S13. Experimentally obtained and simulated plasmon
resonance energies for the main three LSPR modes are
qualitatively in good agreement with each other with error
margins smaller than 0.2 eV. The differences between the
distributions of the plasmon fields are related to the fact that
experimentally investigated nanoframes do not have ideal
symmetrical pores as in the simulated nanoframe.

Figure 6. BEM simulations of the AuAg nanoframe. (A) Structural model used during simulations. (B) Simulated local EEL spectra obtained from
the corner, edge, and center of the nanoframe. (C) Simulated plasmon maps of three different LSPR modes located at 1.56, 1.68, and 1.94 eV along
with their corresponding induced electric field intensity distribution with an edge beam excitation in 3D (lower row).
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Up to this point, we have demonstrated the enhanced
homogeneous distribution of the plasmon response in and
around our nanoengineered hollow nanocuboids. In the
following we will use these nanostructures in label-free sensing
as a proof of concept for the enhanced plasmonic properties.
In this study, we detect the binding of antibodies to a protein

corona56 formed on single-walled AuAg nanoboxes or on 50
nm spherical Au nanoparticles (Au NPs) as a benchmark57 for
comparison. It is well-known that when the nanoparticles are
dispersed in physiological media, they are immediately coated
by proteins, forming a protein corona that may harden with
time,58 becoming a hard protein shell that provides the
biological identity59 of the nanoparticle, where native bovine
serum albumin (BSA)56 is one of the major compounds. Figure
7A shows the schematic representation of the primary (with
BSA) and secondary (with anti-BSA) protein conjugation
processes with spherical solid nanoparticles and hollow
nanoboxes, where the coverage of nanostructures with BSA
and further attachment of antibodies are illustrated. The UV−
visible spectra from the unconjugated Au NPs (Figure 7B) and
single-walled AuAg nanoboxes (Figure 7C) along with their
response to the BSA conjugation are shown in Figure 7. As can
be seen in these UV−vis spectra, after incubation with BSA
(shown in red), the position of the LSPR peak of spherical Au
NPs does not change much (about 4 nm), whereas the shift in
the LSPR peak of the AuAg nanoboxes is clearly visible (about
12 nm). Similar differences between the Au-BSA nanoparticles
and single-walled AuAg-BSA nanoboxes are also observed
during the second conjugation event when incubated with
antibodies against BSA (shown in blue). Overall, it is clearly
seen in Figure 7D that about 4× stronger shifts in the case of
hollow AuAg nanoboxes are observed, especially in the second
binding event, thanks to the enhancement of the localized
electromagnetic field around the hollow nanoboxes that allows
easy and direct detection of binding events in their vicinity.
After experimentally obtaining an enhanced sensitivity with the
hollow nanoboxes, we present the comparison of the
sensitivities of different Au nanostructures on the basis of
BEM simulations (Figure S14) and conclude that the voids
along the faces are crucial for the enhanced plasmonic
properties.

■ CONCLUSIONS

In summary, we have shown the localized surface plasmon
resonance properties of several complex metal nanostructures:
Ag nanocube, Ag@Au core−shell nanocube, pinholed AuAg
nanobox, single-walled AuAg nanobox and AuAg nanoframe
characterized by EELS technique in a monochromated STEM
microscope with sub-eV energy resolutions at the nanoscale.
We have used BEM simulations in order to better elucidate our
experimental results. With the predetermined morphological
and compositional assumptions, we have obtained good
agreements between the experimentally collected EEL spectra
and BEM simulated EEL spectra of the single-walled AuAg
nanoboxes and AuAg nanoframes.
Hollow nanostructures have better plasmonic properties than

their solid counterparts thanks to the interaction of the inner
and outer plasmon fields, in compliance with the mechanism of
plasmon hybridization. With the experimentally obtained
plasmon maps of the present study, we intended to reveal
first examples of spatially resolved interacting plasmon
resonances in hollow AuAg nanoboxes and nanoframes at the
nanoscale. Both experimental and computational studies have
shown the homogeneous distribution of the plasmon
resonances in these hollow nanostructures, which is suggested
to be the key feature for the increased functionality. As a proof-
of-concept application for the enhanced plasmonic properties
in the hollow nanostructures, we have conducted a sensing
experiment where we have compared the response of
commenly used spherical Au NPs and single-walled AuAg
nanoboxes to sequential conjugation events with bovine serum
albumin (BSA) and its antibodies (anti-BSA, Ab). In this way,
we were able to observe that hollow nanoboxes show 4-fold
increased sensitivity than spherical solid counterparts.

■ METHODS

Synthesis of AuAg Nanostructures. The hollow AuAg
nanostructures used throughout the present work were
synthesized via sequential galvanic replacement reaction and
Kirkendall growth at room temperature, which is reported in ref
43. For the synthesis of AuAg nanostructures, Ag nanocubes
were used as templates, which were synthesized by a modified

Figure 7. Biosensing with hollow nanostructures. (A) Schematic representation of the primary and secondary protein conjugation processes with
spherical Au nanoparticles (left) and single-walled AuAg nanoboxes (right). UV−vis spectra of the unconjugated (black line) spherical Au
nanoparticles (B) and single-walled AuAg nanoboxes (C) along with the spectra after conjugation with BSA (red line) and after the further addition
of the Ab (blue line). Insets on B and C are plotted in D, which is the redshift comparison between spherical Au nanoparticles and single-walled
AuAg nanoboxes after the first NP−protein interaction and secondary protein−Ab interaction.
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polyol method.60,61 The straightforward morphological evolu-
tion from solid nanocubes to single-walled nanoboxes/nano-
frames is due to the increasing extend of galvanic exchange
between Ag and Au. To be more precise, in a typical synthesis
of single-walled AuAg nanoboxes 0.25 mL of Ag nanocubes
(∼1012 NPs/mL) were dispersed in 1 mL of milli-Q water, 1
mL of polyvinylpyrrolidone (PVP, 1 mM by repeating unit),
and 0.01 a mL of absorbic acid (AA, 0.1 mM) were added.
Then, 0.3 mL of HAuCl4 (1 mM), was added through a syringe
pump at a rate of 25 μL/min under stirring. Cetyltrimethy-
lammonium bromide (CTAB, 1.0 mL 20 mM) was used as
surfactant agent during the galvanic replacement reaction for
the synthesis of Ag@Au core−shell nanocubes, AuAg pinholed
nanoboxes and AuAg nanoframes. After the addition of the
HAuCl4 solution the reaction was stirred for about 30 min at
room temperature until the UV−vis spectra of the solution
became stable. The sample was centrifuged at 8000 g for 10
min and the supernatant was discarded. The pellet was
resuspended in 1 mL of milli-Q water for further character-
ization. As mentioned, this routine applies for the synthesis of
intermediate nanostructures between the nanocubes and
nanoboxes such as Ag@Au core−shell nanocubes and pinholed
AuAg nanoboxes. The only difference there is the amount of
HAuCl4 addition, which was 0.05 mL for the Ag@Au core−
shell nanocubes, 0.1 mL for the pinholed AuAg nanoboxes and
0.5 mL for AuAg nanoframes. In order to check the
composition of the synthesized single-walled AuAg nanobox
and AuAg nanoframe, we have conducted STEM-EDS analyses
from at least 10 different points over the nanostructures using a
FEI Tecnai (scanning) transmission electron microscope and
presented the average Ag and Au values.
Solutions containing Ag nanocubes or AuAg nanostructures

were ultrasonicated for about 20 min and deposited on 15 nm
thick Si3N4 membrane grids for STEM-EELS investigations.
We have applied a hydrogen plasma cleaning by using a Plasma
Etch plasma cleaner, at room temperature with a H2 flow of
1000 mT and applied power of 100 W, prior to EELS analyses
in order to eliminate the presence of organic residues from the
synthesis procedure.
EELS Acquisition and Data Processing. EELS analyses

were performed using a probe-corrected FEI Titan 60−300
STEM equipment, operated at 80 kV and equipped with a high-
brightness X-FEG gun, a Wien filter monochromator and a
Gatan Tridiem 866 ERS energy filter with a collection angle of
32 mrad and a dispersion of 0.01 eV per channel. Typical
energy resolutions (full-width at half-maximum of the ZLP) of
the measurements were better than 180 meV. EEL spectra were
acquired using the spectrum imaging (SI) method44,62 in which
a subnanometer electron probe was rastered over the area of
interest with a constant displacement of 1−2 nm. After
collecting the data, each EEL spectra were aligned along the
Zero-Loss Peak (ZLP). In order to make surface plasmon peaks
more visible for the presented local EEL spectra, a background
subtraction (mainly for the ZLP and its tail) using the power
law (PL) method in Gatan Digital Micrograph software was
applied.63

We have used a spectral unmixing (SU) based routine of
vertex component analysis (VCA)45−47 for spectral processing
of the EELS data, which is developed by Nascimento and
Bioucas-Dias.45 We have implemented the VCA code of ref 45
in HyperSpy48 multidimentional data analysis toolbox. Further
details on the VCA routine and its application to EELS data can
be found in the literature.45−47 During the spectral unmixing of

each nanostructure, we have chosen the energy range on the
basis of the local EEL spectra of the nanostructures considering
the presence of plasmon peaks. It should be pointed out that
we have used the EELS data sets without subtracting the ZLP
during VCA processing. We have applied maximum number of
components that generates meaningful data (i.e., not noise) and
present them for each nanostructure. Note that background
components are not presented except for the pinholed AuAg
nanobox. For comparison purposes, we have processed the
EELS data sets by using spectral filtering with Gaussian fitting
and independent component analyses (ICA) by blind source
separation (BSS) routines in HyperSpy (not shown here).64

Spectral filtering technique with energy windows, resembling
the “EFTEM” technique, is also used to process EELS SI data
sets. By using Gatan Digital Micrograph software, we have
obtained the distribution of plasmon intensities, that is,
plasmon loss probabilities, by applying an energy window of
0.2 eV over the ZLP extracted EELS data of the single-walled
AuAg nanobox and AuAg nanoframes. Obtained plasmon maps
are normalized according to the maximum and minimum
intensities among all the maps for each nanostructure.

Simulation. EELS simulations have been performed by
using the boundary element method (BEM) which is
developed by Garcia de Abajo and Howie.65,66 In particular,
we have used a Matlab toolbox developed by Hohenester49

called MNPBEM, which calculates the plasmonic properties of
metallic nanoparticles based on the BEM approach. The optical
constants of the bulk metals have been taken from Johnson and
Christy67 and modified according to ref 68 for AuAg alloys. We
have also taken into account the size effects on the dielectric
properties assuming an increase of the damping constant in the
Drude model with reduction of the particle size due to the
electron confinement effects.69 Throughout this paper, we have
exploited the BEM simulations in order to elaborate the shape,
composition and environmental (substrate) effects on the
plasmonic properties of hollow AuAg nanostructures.

Label-Free Sensing. A 0.9 mL aliquot of nanoparticles
(1012 NPs/mL), spherical Au NPs or single-walled AuAg
nanoboxes, dispersed in phosphate buffer 10 mM, were mixed
with 0.1 mL of BSA (1 mM) in phosphate buffer and placed in
an incubator at 37 °C for 48 h. After incubation of the
nanoparticles, the UV−vis spectra were acquired. Finally, 0.02
mL of a 2 mg/mL solution of anti-BSA was added to the
incubated nanoparticles and the UV−vis spectra were acquired.
Each step was repeated three times for both spherical Au NPs
and single-walled AuAg nanoboxes, and the shifts in the LSPR
peaks are presented with an error margin. The reason that we
used single-walled AuAg nanoboxes instead of nanoframes is
that they can be synthesized with high abundances (∼90%)
compared to nanoframes (∼50%).43
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(65) García de Abajo, F. J.; Howie, A. Relativistic Electron Energy
Loss and Electron-Induced Photon Emission in Inhomogeneous
Dielectrics. Phys. Rev. Lett. 1998, 80, 5180−5183.
(66) García de Abajo, F. J.; Howie, A. Retarded field calculation of
electron energy loss in inhomogeneous dielectrics. Phys. Rev. B:
Condens. Matter Mater. Phys. 2002, 65, 1−17.
(67) Johnson, P. B.; Christy, R. W. Optical Constants of the Noble
Metals. Phys. Rev. B 1972, 6, 4370−4379.
(68) Peña-Rodriguez, O.; Caro, M.; Rivera, A.; Olivares, J.; Perlado, J.
M.; Caro, A. Optical properties of Au-Ag alloys: An ellipsometric
study. Opt. Mater. Express 2014, 4, 403−410.
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