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ARİF BAL
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NEW INTEGRAL INEQUALITIES INVOLVING BETA

FUNCTION VIA Pϕ-PREINVEX CONVEXITY

SEDA KILINÇ, SÜMEYYE ERMEYDAN, AND HÜSEYIN YILDIRIM

Abstract. In this note, we establish some inequalities, involving the Euler

Beta function, of the integral
b∫
a

(x− a)p (b− x)q f (x) dx for functions when a

power of the absolute value is Pϕ− preinvex.

Received: 26–August–2016 Accepted: 29–August–2016

1. Introduction

[27] , Wenjun Lio introduced new inequalities for P−convexity. We establish new
Hermite-Hadamard inequalities for quasi-preinvex and Pϕ−preinvex functions.

Let I be an interval in R. Then f : I → R is said to be preinvex convex if

(1.1) f
(
x+ (1− t) eiϕη (y, x)

)
≤ tf (x) + (1− t) f (y)

holds for all x, y ∈ I and t ∈ [0, 1] .
The notion of quasi-preinvex functions generalizes the notion Pϕ−preinvex func-

tions. More precisely, a function f : [a, b] → R is said to be quasi-preinvex on
[a, b] if,

(1.2) f
(
x+ (1− t) eiϕη (y, x)

)
≤ max {f (x) , f (y)}

holds for any x, y ∈ [a, b] and t ∈ [0, 1] . Clearly, any preinvex function is a quasi-
preinvex function. Furthermore, there exist quasi-preinvex functions which are not
preinvex.

The generalized quadrature formula of Gauss-Jacobi type has the form

b∫
a

(x− a)
p

(b− x)
q
f (x) dx =

m∑
k=0

Bm,kf (γk) + <m [f ]

for certain Bm,k,γk and rest term <m [f ] (see [22]).
Let Rn be Euclidian space and K is said to a nonempty closed in Rn. Let

f : K → R, ϕ : K → R and η : K ×K → R be a continuous functions.

Definition 1.1. ([13]) Let u ∈ K. The set K is said to be ϕ−invex at u with
respect to η and ϕ if

(1.3) u+ teiϕη(v, u) ∈ K
for all u, v ∈ K and t ∈ [0, 1].

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference

2010 Mathematics Subject Classification. 26A33, 26D15, 41A55.
Key words and phrases. Fractional Hermite-Hadamard ineauqualities, ϕ-preinvex functions,
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Remark 1.1. Some special cases of Definition 2 are as follows.

(1) If ϕ = 0, then K is called an invex set.
(2) If η(v, u) = v − u, then K is called a ϕ−convex set.
(3) If ϕ = 0 and η(v, u) = v − u, then K is called a convex set.

Definition 1.2. (see [13]) The set Kϕη in Rn is said to be ϕ−invex at u with
respect to ϕ (.) , if there exists a bifunction η (., .) : Kϕη ×Kϕη → R, such that

(1.4) u+ teiϕη (v, u) ∈ Kϕη, ∀u, v ∈ Kϕη, t ∈ [0, 1] .

Where Rn Euclidian space. The ϕ−invex set Kϕη is also called ϕη−connected set.
Note that the convex set with ϕ = 0 and η (v, u) = v − u is a ϕ−invex set, but the
converse is not true.

Definition 1.3. Let f : I ⊆ R → R be a nonnegative function. A function f on
the set Kϕη is said to be Pϕ−preinvex function according to ϕ and bifunction η.
Let ∀u, v ∈ I, η (v, u) > 0 and t ∈ (0, 1) , then

(1.5) f
(
u+ teiϕη (v, u)

)
≤ f (u) + f (v) .

2. Main Results

In this section, we will give lemma which we use later in this work.

Lemma 2.1. Let f : [a, b] ⊂ [0,∞) → R be continuous on [a, b]. Where is f ∈
L
([
a, a+ eiϕη (b, a)

])
, p, q > 0 and a < b. Then the following equality holds,

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

=
[
eiϕη (b, a)

]p+q+1
1∫
0

(1− t)p tqf
(
a+ (1− t) eiϕη (b, a)

)
dt.

Proof. By using Definition 3, if left-hand side of equality use x = a+(1− t) eiϕη (b, a),
we have

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

=
1∫
0

(
(1− t) eiϕη (b, a)

)p (
teiϕη (b, a)

)q
f
(
a+ (1− t) eiϕη (b, a)

)
eiϕη (b, a) dt

=
[
eiϕη (b, a)

]p+q+1
1∫
0

(1− t)p tqf
(
a+ (1− t) eiϕη (b, a)

)
dt,

the proof is done. �

Remark 2.1. If we consider η (b, a) = b − a and ϕ = 0 in Lemma 1, we obtain
Lemma 1 in [27],

b∫
a

(x− a)
p

(b− x)
q
f (x) dx

= [b− a]
p+q+1

1∫
0

(1− t)p tqf (at+ (1− t) b) dt.
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Theorem 2.1. Let f : [a, b]→ R be continuous on [a, b] .
Where is f ∈ L

([
a, a+ eiϕη (b, a)

])
and 0 ≤ a < b < ∞. If f is quasi-preinvex on

[a, b] ,then for some fixed p, q > 0, we have

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
(
eiϕη (b, a)

)p+q+1
β (p+ 1, q + 1) max {f (a) , f (b)} ,

here β (x, y) is the Euler Beta function.

Proof. By using inequality in (1.2), if left-hand side of equality use x = a +
(1− t) eiϕη (b, a), we have

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

=
1∫
0

(
(1− t) eiϕη (b, a)

)p (
teiϕη (b, a)

)q
f
(
a+ (1− t) eiϕη (b, a)

)
eiϕη (b, a) dt

=
[
eiϕη (b, a)

]p+q+1
1∫
0

(1− t)p tqf
(
a+ (1− t) eiϕη (b, a)

)
dt

≤
(
eiϕη (b, a)

)p+q+1
β (p+ 1, q + 1) max {f (a) , f (b)} ,

the proof is done. �

Remark 2.2. If we consider η (b, a) = b − a and ϕ = 0 in Theorem 1, we obtain
Theorem 1 in [27]

b∫
a

(x− a)
p

(b− x)
q
f (x) dx

≤ (b− a)
p+q+1

β (p+ 1, q + 1) max {f (a) , f (b)} .

Theorem 2.2. Let f : [a, b]→ R be continuous on [a, b] .
Where is f ∈ L

([
a, a+ eiϕη (b, a)

])
, p, q > 0 and 0 ≤ a < b < ∞. If |f | is

Pϕ-preinvex on [a, b] , then following inequality, we have

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
(
eiϕη (b, a)

)p+q+1
β (p+ 1, q + 1) (|f (a)|+ |f (b)|) ,

Proof. By using Definition 3, if left-hand side of equality use x = a+(1− t) eiϕη (b, a),
we have

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
[
eiϕη (b, a)

]p+q+1
1∫
0

|(1− t)p tq|
∣∣f (a+ (1− t) eiϕη (b, a)

)∣∣ dt
≤
[
eiϕη (b, a)

]p+q+1
1∫
0

[(1− t)p tq] (|f (a)|+ |f (b)|) dt

≤
(
eiϕη (b, a)

)p+q+1
β (p+ 1, q + 1) (|f (a)|+ |f (b)|) ,

the proof is done. �
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Remark 2.3. If we consider η (b, a) = b − a and ϕ = 0 in Theorem 2, we obtain
Theorem 4 in [27],

b∫
a

(x− a)
p

(b− x)
q
f (x) dx

≤ (b− a)
p+q+1

β (p+ 1, q + 1) (|f (a)|+ |f (b)|) .

Theorem 2.3. Let f : [a, b]→ R be continuous on [a, b] .

Where is f ∈ L
([
a, a+ eiϕη (b, a)

])
, p, q > 0 and 0 ≤ a < b < ∞. If |f |

k
k−1 is

quasi-preinvex on [a, b] and k > 1, then following inequality, we have

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
(
eiϕη (b, a)

)p+q+1
[β (kp+ 1, kq + 1)]

1
k

(
max

{
|f (a)|

k
k−1 , |f (b)|

k
k−1

}) k−1
k

.

Proof. By using lemma 1, quasi-preinvex of |f |
k

k−1 and Hölder’s inequality, we
obtain

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
[
eiϕη (b, a)

]p+q+1
1∫
0

|(1− t)p tq|
∣∣f (a+ (1− t) eiϕη (b, a)

)∣∣ dt
≤
[
eiϕη (b, a)

]p+q+1
(

1∫
0

|(1− t)p tq|k dt
) 1

k
(

1∫
0

∣∣f (a+ (1− t) eiϕη (b, a)
)∣∣ k

k−1 dt

) k−1
k

≤
[
eiϕη (b, a)

]p+q+1
(

1∫
0

(1− t)kp tkqdt
) 1

k
(

1∫
0

max

(
|f (a)|

k
k−1

, |f (b)|
k

k−1

)
dt

) k−1
k

≤
(
eiϕη (b, a)

)p+q+1
β

1
k (kp+ 1, kq + 1)

[
max

(
|f (a)|

k
k−1

, |f (b)|
k

k−1

)] k−1
k

,

the proof is done. �

Remark 2.4. If we consider η (b, a) = b − a and ϕ = 0 in Theorem 3, we obtain
Theorem 2 in [27],

b∫
a

(x− a)
p

(b− x)
q
f (x) dx

≤ (b− a)
p+q+1

[β (kp+ 1, kq + 1)]
1
k

(
max

{
|f (a)|

k
k−1 , |f (b)|

k
k−1

}) k−1
k

.

Theorem 2.4. Let f : [a, b]→ R be continuous on [a, b] .

Where is f ∈ L
([
a, a+ eiϕη (b, a)

])
, p, q > 0 and 0 ≤ a < b < ∞. If |f |

k
k−1

is Pϕ-preinvex on [a, b] and k > 1, then following inequality, we have

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
(
eiϕη (b, a)

)p+q+1
[β (kp+ 1, kq + 1)]

1
k

(
|f (a)|

k
k−1 + |f (b)|

k
k−1

) k−1
k

.
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Proof. By using lemma 1, Pϕ-preinvex of |f |
k

k−1 and Hölder’s inequality, we obtain

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
[
eiϕη (b, a)

]p+q+1
1∫
0

|(1− t)p tq|
∣∣f (a+ (1− t) eiϕη (b, a)

)∣∣ dt
≤
[
eiϕη (b, a)

]p+q+1
(

1∫
0

|(1− t)p tq|k dt
) 1

k
(

1∫
0

∣∣f (a+ (1− t) eiϕη (b, a)
)∣∣ k

k−1 dt

) k−1
k

≤
[
eiϕη (b, a)

]p+q+1
(

1∫
0

(1− t)kp tkqdt
) 1

k
(

1∫
0

(
|f (a)|

k
k−1

+ |f (b)|
k

k−1

)
dt

) k−1
k

≤
(
eiϕη (b, a)

)p+q+1
β

1
k (kp+ 1, kq + 1)

[
|f (a)|

k
k−1

+ |f (b)|
k

k−1

] k−1
k

,

The proof is done. �

Remark 2.5. If we consider η (b, a) = b − a and ϕ = 0 in Theorem 4, we obtain
Theorem 5 in [27],

b∫
a

(x− a)
p

(b− x)
q
f (x) dx

≤ (b− a)
p+q+1

[β (kp+ 1, kq + 1)]
1
k

(
|f (a)|

k
k−1 + |f (b)|

k
k−1

) k−1
k

.

Theorem 2.5. Let f : [a, b]→ R be continuous on [a, b] .

Where is f ∈ L
([
a, a+ eiϕη (b, a)

])
, p, q > 0 and 0 ≤ a < b < ∞. If |f |l is

quasi-preinvex on [a, b] and l ≥ 1, then following inequality, we have

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
(
eiϕη (b, a)

)p+q+1
[β (p+ 1, q + 1)]

(
max

{
|f (a)|l , |f (b)|l

}) 1
l

.

Proof. By using lemma 1, quasi-preinvex of |f |l and Power Mean inequality, we
obtain

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
[
eiϕη (b, a)

]p+q+1
1∫
0

|(1− t)p tq|
∣∣f (a+ (1− t) eiϕη (b, a)

)∣∣ dt
≤
[
eiϕη (b, a)

]p+q+1
(

1∫
0

|(1− t)p tq| dt
)1− 1

l
(

1∫
0

|(1− t)p tq|
∣∣f (a+ (1− t) eiϕη (b, a)

)∣∣l dt) 1
l

≤
[
eiϕη (b, a)

]p+q+1
(β (p+ 1, q + 1))

1− 1
l

(
1∫
0

|(1− t)p tq|max
(
|f (a)|

l

, |f (b)|l
)
dt

) 1
l

≤
(
eiϕη (b, a)

)p+q+1
β (p+ 1, q + 1)

[
max

(
|f (a)|

l

, |f (b)|
l
)] 1

l

,

the proof is done. �
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Remark 2.6. If we consider η (b, a) = b − a and ϕ = 0 in Theorem 5, we obtain
Theorem 3 in [27],

b∫
a

(x− a)
p

(b− x)
q
f (x) dx

≤ (b− a)
p+q+1

[β (p+ 1, q + 1)]
(

max
{
|f (a)|l , |f (b)|l

}) 1
l

.

Theorem 2.6. Let f : [a, b]→ R be continuous on [a, b] .

Where is f ∈ L
([
a, a+ eiϕη (b, a)

])
, p, q > 0 and 0 ≤ a < b < ∞. If |f |l is

quasi-preinvex on [a, b] and l ≥ 1, then following inequality, we have

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
(
eiϕη (b, a)

)p+q+1
[β (p+ 1, q + 1)]

(
|f (a)|l + |f (b)|l

) 1
l

.

Proof. By using lemma 1, Pϕ-preinvex of |f |l and Power Mean inequality, we obtain

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f (x) dx

≤
[
eiϕη (b, a)

]p+q+1
1∫
0

|(1− t)p tq|
∣∣f (a+ (1− t) eiϕη (b, a)

)∣∣ dt
≤
[
eiϕη (b, a)

]p+q+1
(

1∫
0

|(1− t)p tq| dt
)1− 1

l
(

1∫
0

|(1− t)p tq|
∣∣f (a+ (1− t) eiϕη (b, a)

)∣∣l dt) 1
l

≤
[
eiϕη (b, a)

]p+q+1
(β (p+ 1, q + 1))

1− 1
l

(
1∫
0

|(1− t)p tq|
(
|f (a)|

l

+ |f (b)|l
)
dt

) 1
l

≤
(
eiϕη (b, a)

)p+q+1
β (p+ 1, q + 1)

[
|f (a)|

l

+ |f (b)|
l
] 1

l

,

the proof is done.
In this section some new integral inequalities for functions of several variables

on preinvex subsets of Rn will be given. First we recall the notion of Pϕ-preinvex
convexity for functions on a preinvex subset U of Rn. �

Remark 2.7. If we consider η (b, a) = b − a and ϕ = 0 in Theorem 6, we obtain
Theorem 6 in [27],

b∫
a

(x− a)
p

(b− x)
q
f (x) dx

≤ (b− a)
p+q+1

[β (p+ 1, q + 1)]
(
|f (a)|l + |f (b)|l

) 1
l

.

Definition 2.1. The functions f : U → R is said to be Pϕ-preinvex convexity on
U if it is nonnegative and, for all x, y ∈ U and λ ∈ [0, 1] , satisfies the inequality

f
(
x+ (1− λ) eiϕη (y, x)

)
≤ f (x) + f (y) .

The following proposition will be used throughout this section.

Proposition 2.1. Let U ⊆ R be a preinvex subset of R and f : U → R be a
function. Then f is Pϕ-preinvex on U if and only if, for every x, y ∈ U, the function
ϕ : [0, 1]→ R, defined by

ϕ (t) := f
(
x+ teiϕη (y, x)

)
,
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is Pϕ-convex on I with I = [0, 1] .

Theorem 2.7. Let U ⊆ R be a preinvex subset of R. Assume that f : U → R+ is
a Pϕ-preinvex function on U . Then, for every x, y ∈ U and every [a, b] ∈ [0, 1] with
a < b, the following inequality holds:

a+eiϕη(b,a)∫
a

(t− a)
p (
a+ eiϕη (b, a)− t

)q
f
(
x+ teiϕη (y, x)

)
dt

≤
(
eiϕη (b, a)

)p+q+1
β (p+ 1, q + 1)

[
f
(
x+ aeiϕη (y, x)

)
+ f

(
x+ beiϕη (y, x)

)]
.

Proof. Let x, y ∈ U and every [a, b] ∈ [0, 1] with a < b. Since f : U → R+ is a
Pϕ-preinvex function, by Proposition 1 the function ϕ : [0, 1]→ R+ defined by

ϕ (t) := f
(
x+ teiϕη (y, x)

)
,

is Pϕ-preinvex on I with I = [0, 1] . Appling Theorem 4 to the function ϕ implies
that

a+eiϕη(b,a)∫
a

(t− a)
p (
a+ eiϕη (b, a)− t

)q
ϕ (t) dt

≤
(
eiϕη (b, a)

)p+q+1
β (p+ 1, q + 1) [|ϕ (a)|+ |ϕ (b)|]

≤
(
eiϕη (b, a)

)p+q+1
β (p+ 1, q + 1)

[
f
(
x+ aeiϕη (y, x)

)
+ f

(
x+ beiϕη (y, x)

)]
,

the proof is done. �

Remark 2.8. If we consider η (b, a) = b − a and ϕ = 0 in Theorem 7, we obtain
Theorem 7 in [27],

b∫
a

(t− a)
p

(b− t)q f ((1− t)x+ ty) dt

(b− a)
p+q+1

β (p+ 1, q + 1) [f ((1− a)x+ ay) + f ((1− b)x+ by)] .

Theorem 2.8. Let U ⊆ R be a preinvex subset of R and let k > 1. Assume that

f
k

k−1 : U → R+ is a Pϕ-preinvex function on U . Then, for every x, y ∈ U and
every [a, b] ∈ [0, 1] with a < b, the following inequality holds:

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f
(
x+ teiϕη (y, x)

)
dx

≤
(
eiϕη (b, a)

)p+q+1
[β (kp+ 1, kq + 1)]

1
k

(
f

k
k−1

(
x+ aeiϕη (y, x)

)
+ f

k
k−1

(
x+ beiϕη (y, x)

)) k−1
k

.

Remark 2.9. If we consider η (b, a) = b − a and ϕ = 0 in Theorem 8, we obtain
Theorem 8 in [27],

b∫
a

(t− a)
p

(b− t)q f ((1− t)x+ ty) dt

≤ (b− a)
p+q+1

[β (kp+ 1, kq + 1)]
1
k

(
f

k
k−1

((1− a)x+ ay) + f
k

k−1
((1− b)x+ by)

) k−1
k

.

Theorem 2.9. Let U ⊆ R be a preinvex subset of R and let k > 1. Assume that
f l : U → R+ is a Pϕ-preinvex function on U . Then, for every x, y ∈ U and every
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[a, b] ∈ [0, 1] with a < b, the following inequality holds:

a+eiϕη(b,a)∫
a

(x− a)
p (
a+ eiϕη (b, a)− x

)q
f
(
x+ teiϕη (y, x)

)
dx

≤
(
eiϕη (b, a)

)p+q+1
β (p+ 1, q + 1)

(
f

l (
x+ aeiϕη (y, x)

)
+ f

l (
x+ beiϕη (y, x)

)) 1
l

.

Remark 2.10. If we consider η (b, a) = b − a and ϕ = 0 in Theorem 9, we obtain
Theorem 9 in [27],

b∫
a

(t− a)
p

(b− t)q f ((1− t)x+ ty) dt

≤ (b− a)
p+q+1

β (p+ 1, q + 1)
(
f l ((1− a)x+ ay) + f l ((1− b)x+ by)

) 1
l .
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[6] S. S. Dragomir, J. E. Pećarić, and L. Persson, ”Some inequalities of Hadamard type” Soochow
J. Math., vol. 21, no. 3, pp. 335-341, 1995.

[7] S. S. Dragomir and C. Pearce, ”Quasi-convex functions and Hadamar’s inequality” Bull.

Aust. Math. Soc., vol.57 no. 3, pp. 377-385, 1998.
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functions,” Math. Inequal. Appl. vol. 15, no. 4, pp. 931-940, 2012.
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Sütçü İmam, 46000, Kahramanmaraş, Turkey
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Abstract. In this paper, we consider the norm inequalities for sublinear op-
erators with rough kernel generated by fractional integrals and their commuta-

tors on generalized Morrey spaces and on generalized vanishing Morrey spaces

including their weak versions under generic size conditions which are satisfied
by most of the operators in harmonic analysis, respectively. In all the cases the

conditions for the boundedness of sublinear operators with rough kernel and

their commutators are given in terms of Zygmund-type integral inequalities on
(ϕ1, ϕ2), where there is no assumption on monotonicity of ϕ1, ϕ2 in r. As an

example to the conditions of these theorems are satisfied, we can consider the
Marcinkiewicz operator.
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1. Introduction

The classical Morrey spaces Mp,λ have been introduced by Morrey in [32] to
study the local behavior of solutions of second order elliptic partial differential
equations(PDEs). In recent years there has been an explosion of interest in the
study of the boundedness of operators on Morrey-type spaces. It has been obtained
that many properties of solutions to PDEs are concerned with the boundedness of
some operators on Morrey-type spaces. In fact, better inclusion between Morrey
and Hölder spaces allows to obtain higher regularity of the solutions to different
elliptic and parabolic boundary problems (see [14, 36, 41, 43] for details).

Let B = B(x0, rB) denote the ball with the center x0 and radius rB . For a given
measurable set E, we also denote the Lebesgue measure of E by |E|. For any given
Ω0 ⊆ Rn and 0 < p <∞, denote by Lp (Ω0) the spaces of all functions f satisfying

‖f‖Lp(Ω0) =

∫
Ω0

|f (x)|p dx

 1
p

<∞.

We recall the definition of classical Morrey spaces Mp,λ as

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference

2010 Mathematics Subject Classification. 42B20, 42B25, 42B35.
Key words and phrases. Sublinear operator; fractional integral operator; rough kernel; gener-

alized vanishing Morrey space; commutator; BMO.
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Mp,λ (Rn) =

{
f : ‖f‖Mp,λ(Rn) = sup

x∈Rn,r>0
r−

λ
p ‖f‖Lp(B(x,r)) <∞

}
,

where f ∈ Llocp (Rn), 0 ≤ λ ≤ n and 1 ≤ p <∞.
Note that Mp,0 = Lp(Rn) and Mp,n = L∞(Rn). If λ < 0 or λ > n, then

Mp,λ = Θ, where Θ is the set of all functions equivalent to 0 on Rn.
We also denote by WMp,λ ≡WMp,λ(Rn) the weak Morrey space of all functions

f ∈WLlocp (Rn) for which

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn, r>0
r−

λ
p ‖f‖WLp(B(x,r)) <∞,

where WLp(B(x, r)) denotes the weak Lp-space of measurable functions f for which

‖f‖WLp(B(x,r)) ≡ ‖fχB(x,r)
‖WLp(Rn)

= sup
t>0

t |{y ∈ B(x, r) : |f(y)| > t}|1/p

= sup
0<t≤|B(x,r)|

t1/p
(
fχ

B(x,r)

)∗
(t) <∞,

where g∗ denotes the non-increasing rearrangement of a function g.
Throughout the paper we assume that x ∈ Rn and r > 0 and also let B(x, r)

denotes the open ball centered at x of radius r, BC(x, r) denotes its complement
and |B(x, r)| is the Lebesgue measure of the ball B(x, r) and |B(x, r)| = vnr

n,
where vn = |B(0, 1)|. It is known that Mp,λ(Rn) is an extension (a generalization)
of Lp(Rn) in the sense that Mp,0 = Lp(Rn).

Morrey has stated that many properties of solutions to PDEs can be attributed
to the boundedness of some operators on Morrey spaces. For the boundedness of
the Hardy–Littlewood maximal operator, the fractional integral operator and the
Calderón–Zygmund singular integral operator on these spaces, we refer the readers
to [1, 6, 38]. For the properties and applications of classical Morrey spaces, see
[7, 8, 14, 36, 41, 43] and references therein. The generalized Morrey spaces Mp,ϕ

are obtained by replacing rλ with a function ϕ (r) in the definition of the Morrey
space. During the last decades various classical operators, such as maximal, singular
and potential operators have been widely investigated in classical and generalized
Morrey spaces.

The study of the operators of harmonic analysis in vanishing Morrey space, in
fact has been almost not touched. A version of the classical Morrey space Mp,λ(Rn)
where it is possible to approximate by ”nice” functions is the so called vanishing
Morrey space VMp,λ(Rn) has been introduced by Vitanza in [50] and has been
applied there to obtain a regularity result for elliptic PDEs. This is a subspace of
functions in Mp,λ(Rn), which satisfies the condition

lim
r→0

sup
x∈Rn
0<t<r

t−
λ
p ‖f‖Lp(B(x,t)) = 0.

Later in [51] Vitanza has proved an existence theorem for a Dirichlet problem, un-
der weaker assumptions than in [30] and a W 3,2 regularity result assuming that the
partial derivatives of the coefficients of the highest and lower order terms belong
to vanishing Morrey spaces depending on the dimension. Also Ragusa has proved
a sufficient condition for commutators of fractional integral operators to belong to
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vanishing Morrey spaces VMp,λ(Rn) (see [39, 40]). For the properties and applica-
tions of vanishing Morrey spaces, see also [3]. It is known that, there is no research
regarding boundedness of the sublinear operators with rough kernel on vanishing
Morrey spaces.

Maximal functions and singular integrals play a key role in harmonic analysis
since maximal functions could control crucial quantitative information concerning
the given functions, despite their larger size, while singular integrals, Hilbert trans-
form as it’s prototype, recently intimately connected with PDEs, operator theory
and other fields.

Let f ∈ Lloc (Rn). The Hardy-Littlewood(H–L) maximal operator M is defined
by

Mf(x) = sup
t>0
|B(x, t)|−1

∫
B(x,t)

|f(y)|dy.

Let T be a standard Calderón-Zygmund(C–Z) singular integral operator, briefly
a C–Z operator, i.e., a linear operator bounded from L2(Rn) to L2(Rn) taking
all infinitely continuously differentiable functions f with compact support to the
functions f ∈ Lloc1 (Rn) represented by

Tf(x) = p.v.

∫
Rn

k(x− y)f(y) dy x /∈ suppf.

Such operators have been introduced in [11]. Here k is a C–Z kernel [16]. Chiarenza
and Frasca [6] have obtained the boundedness of H–L maximal operator M and C–
Z operator T on Mp,λ (Rn). It is also well known that H–L maximal operator M

and C–Z operator T play an important role in harmonic analysis (see [15, 29, 46,
47, 48]). Also, the theory of the C–Z operator is one of the important achievements
of classical analysis in the last century, which has many important applications in
Fourier analysis, complex analysis, operator theory and so on.

Let f ∈ Lloc (Rn). The fractional maximal operator Mα and the fractional
integral operator (also known as the Riesz potential) Tα are defined by

Mαf(x) = sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|f(y)|dy 0 ≤ α < n

Tαf (x) =

∫
Rn

f (y)

|x− y|n−α
dy 0 < α < n.

It is well known that Mα and Tα play an important role in harmonic analysis
(see [47, 48]).

An early impetus to the study of fractional integrals originated from the problem
of fractional derivation, see e.g. [35]. Besides its contributions to harmonic analysis,
fractional integrals also play an essential role in many other fields. The H-L Sobolev
inequality about fractional integral is still an indispensable tool to establish time-
space estimates for the heat semigroup of nonlinear evolution equations, for some
of this work, see e.g. [24]. In recent times, the applications to Chaos and Fractal
have become another motivation to study fractional integrals, see e.g. [26]. It is
well known that Tα is bounded from Lp to Lq, where 1

p−
1
q = α

n and 1 < p < n
α .
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Spanne (published by Peetre [38]) and Adams [1] have studied boundedness of
the fractional integral operator Tα on Mp,λ (Rn). Their results, can be summarized
as follows.

Theorem 1.1. (Spanne, but published by Peetre [38]) Let 0 < α < n, 1 < p < n
α ,

0 < λ < n− αp. Moreover, let 1
p −

1
q = α

n and λ
p = µ

q . Then for p > 1 the operator

Tα is bounded from Mp,λ to Mq,λ and for p = 1 the operator Tα is bounded from
M1,λ to WMq,λ.

Theorem 1.2. (Adams [1]) Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp and

1
p −

1
q = α

n−λ . Then for p > 1 the operator Tα is bounded from Mp,λ to Mq,λ and

for p = 1 the operator Tα is bounded from M1,λ to WMq,λ.

Recall that, for 0 < α < n,

Mαf (x) ≤ ν
α
n−1
n Tα (|f |) (x)

holds (see [25], Remark 2.1). Hence Theorems 1.1 and 1.2 also imply boundedness
of the fractional maximal operator Mα, where υn is the volume of the unit ball on
Rn.

Suppose that Sn−1 is the unit sphere in Rn (n ≥ 2) equipped with the normalized
Lebesgue measure dσ. Let Ω ∈ Ls(Sn−1) with 1 < s ≤ ∞ be homogeneous of degree
zero. We define s′ = s

s−1 for any s > 1. Suppose that TΩ,α, α ∈ (0, n) represents a

linear or a sublinear operator, which satisfies that for any f ∈ L1(Rn) with compact
support and x /∈ suppf

(1.1) |TΩ,αf(x)| ≤ c0
∫
Rn

|Ω(x− y)|
|x− y|n−α

|f(y)| dy,

where c0 is independent of f and x.
For a locally integrable function b on Rn, suppose that the commutator operator

TΩ,b,α, α ∈ (0, n) represents a linear or a sublinear operator, which satisfies that
for any f ∈ L1(Rn) with compact support and x /∈ suppf

(1.2) |TΩ,b,αf(x)| ≤ c0
∫
Rn

|b(x)− b(y)| |Ω(x− y)|
|x− y|n−α

|f(y)| dy,

where c0 is independent of f and x.
We point out that the condition (1.1) in the case of Ω ≡ 1, α = 0 has been

introduced by Soria and Weiss in [44]. The conditions (1.1) and (1.2) are satisfied by
many interesting operators in harmonic analysis, such as fractional Marcinkiewicz
operator, fractional maximal operator, fractional integral operator (Riesz potential)
and so on (see [27], [44] for details).

In 1971, Muckenhoupt and Wheeden [34] defined the fractional integral operator
with rough kernel TΩ,α by

TΩ,αf(x) =

∫
Rn

Ω(x− y)

|x− y|n−α
f(y)dy 0 < α < n

and a related fractional maximal operator with rough kernel MΩ,α is given by
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MΩ,αf(x) = sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|Ω (x− y)| |f(y)|dy 0 ≤ α < n,

where Ω ∈ Ls(Sn−1) with 1 < s ≤ ∞ is homogeneous of degree zero on Rn and
TΩ,α satisfies the condition (1.1).

If α = 0, then MΩ,0 ≡ MΩ H-L maximal operator with rough kernel. It is

obvious that when Ω ≡ 1, M1,α ≡ Mα and T 1,α ≡ Tα are the fractional maximal
operator and the fractional integral operator, respectively.

In recent years, the mapping properties of TΩ,α on some kinds of function spaces
have been studied in many papers (see [5], [12], [13], [34] for details). In particular,
the boundedness of TΩ,α in Lebesgue spaces has been obtained.

Lemma 1.1. [5, 12, 33] Let 0 < α < n, 1 < p < n
α and 1

q = 1
p−

α
n . If Ω ∈ Ls(Sn−1),

s > n
n−α , then we have

∥∥TΩ,αf
∥∥
Lq
≤ C ‖f‖Lp .

Corollary 1.1. Under the assumptions of Lemma 1.1, the operator MΩ,α is bounded
from Lp(Rn) to Lq(Rn). Moreover, we have

‖MΩ,αf‖Lq ≤ C ‖f‖Lp .

Proof. Set

T̃|Ω|,α (|f |) (x) =

∫
Rn

|Ω(x− y)|
|x− y|n−α

|f(y)| dy 0 < α < n,

where Ω ∈ Ls(Sn−1) (s > 1) is homogeneous of degree zero on Rn. It is easy to see

that, for T̃|Ω|,α, Lemma 1.1 is also hold. On the other hand, for any t > 0, we have

T̃|Ω|,α (|f |) (x) ≥
∫

B(x,t)

|Ω(x− y)|
|x− y|n−α

|f(y)| dy

≥ 1

tn−α

∫
B(x,t)

|Ω(x− y)| |f(y)| dy.

Taking the supremum for t > 0 on the inequality above, we get

MΩ,αf (x) ≤ C−1
n,αT̃|Ω|,α (|f |) (x) Cn,α = |B (0, 1)|

n−α
n .

�

In 1976, Coifman, Rocherberg and Weiss [9] introduced the commutator ge-
nerated by TΩ and a local integrable function b:

(1.3) [b, TΩ]f(x) ≡ b(x)TΩf(x)−TΩ(bf)(x) = p.v.

∫
Rn

[b(x)−b(y)]
Ω(x− y)

|x− y|n
f(y)dy.

Sometimes, the commutator defined by (1.3) is also called the commutator in
Coifman-Rocherberg-Weiss’s sense, which has its root in the complex analysis and
harmonic analysis (see [9]).
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Let b be a locally integrable function on Rn, then for 0 < α < n and f is a
suitable function, we define the commutators generated by fractional integral and
maximal operators with rough kernel and b as follows, respectively:

[b, TΩ,α]f(x) ≡ b(x)TΩ,αf(x)− TΩ,α(bf)(x) =

∫
Rn

[b(x)− b(y)]
Ω(x− y)

|x− y|n−α
f(y)dy,

MΩ,b,α (f) (x) = sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|b (x)− b (y)| |Ω (x− y)| |f(y)|dy

satisfy condition (1.2). The proof of boundedness of [b, TΩ,α] in Lebesgue spaces
can be found in [12] (by taking w = 1 there).

Theorem 1.3. [12] Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of
degree zero and has mean value zero on Sn−1. Let 0 < α < n, 1 ≤ p < n

α , and
1
q = 1

p −
α
n and b ∈ BMO(Rn). If s′ < p or q < s, then the operator [b, TΩ,α] is

bounded from Lp(Rn) to Lq (Rn).

Remark 1.1. Using the method in the proof of Corollary 1.1 we have that

(1.4) MΩ,b,αf (x) ≤ C−1
n,α[b, T |Ω|,α] (|f |) (x) Cn,α = |B (0, 1)|

n−α
n .

By (1.4) we see that under the conditions of Theorem 1.3, the consequences of
(Lp, Lq)-boundedness still hold for MΩ,b,α.

Remark 1.2. [41, 42] When Ω satisfies the specified size conditions, the kernel of the
operator TΩ,α has no regularity, so the operator TΩ,α is called a rough fractional
integral operator. In recent years, a variety of operators related to the fractional
integrals, but lacking the smoothness required in the classical theory, have been
studied. These include the operator [b, TΩ,α]. For more results, we refer the reader
to [2, 4, 12, 13, 18, 19, 20, 28].

Finally, we present a relationship between essential supremum and essential in-
fimum.

Lemma 1.2. (see [52] page 143) Let f be a real-valued nonnegative function and
measurable on E. Then

(1.5)

(
essinf
x∈E

f (x)

)−1

= esssup
x∈E

1

f (x)
.

Throughout the paper we use the letter C for a positive constant, independent of
appropriate parameters and not necessarily the same at each occurrence. By A . B
we mean that A ≤ CB with some positive constant C independent of appropriate
quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2. generalized vanishing Morrey spaces

After studying Morrey spaces in detail, researchers have passed to generalized
Morrey spaces. Mizuhara [31] has given generalized Morrey spaces Mp,ϕ consid-
ering ϕ = ϕ (r) instead of rλ in the above definition of the Morrey space. Later,
Guliyev [17] has defined the generalized Morrey spaces Mp,ϕ with normalized norm
as follows:



16 FERIT GURBUZ

Definition 2.1. [17] (generalized Morrey space) Let ϕ(x, r) be a positive mea-
surable function on Rn × (0,∞) and 1 ≤ p <∞. We denote by Mp,ϕ ≡ Mp,ϕ(Rn)
the generalized Morrey space, the space of all functions f ∈ Llocp (Rn) with finite
quasinorm

‖f‖Mp,ϕ
= sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖Lp(B(x,r)).

Also by WMp,ϕ ≡WMp,ϕ(Rn) we denote the weak generalized Morrey space of all
functions f ∈WLlocp (Rn) for which

‖f‖WMp,ϕ
= sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖WLp(B(x,r)) <∞.

According to this definition, we recover the Morrey space Mp,λ and weak Morrey

space WMp,λ under the choice ϕ(x, r) = r
λ−n
p :

Mp,λ = Mp,ϕ |
ϕ(x,r)=r

λ−n
p
, WMp,λ = WMp,ϕ |

ϕ(x,r)=r
λ−n
p

.

For brevity, in the sequel we use the notations

Mp,ϕ (f ;x, r) :=
|B(x, r)|−

1
p ‖f‖Lp(B(x,r))

ϕ(x, r)

and

MW
p,ϕ (f ;x, r) :=

|B(x, r)|−
1
p ‖f‖WLp(B(x,r))

ϕ(x, r)
.

In this paper, extending the definition of vanishing Morrey spaces [50], we in-
troduce the generalized vanishing Morrey spaces VMp,ϕ(Rn), including their weak
versions and studies the boundedness of the sublinear operators with rough kernel
generated by fractional integrals and their commutators in these spaces. Indeed,
we find it convenient to define generalized vanishing Morrey spaces in the form as
follows.

Definition 2.2. (generalized vanishing Morrey space) The generalized van-
ishing Morrey space VMp,ϕ(Rn) is defined as the spaces of functions f ∈Mp,ϕ(Rn)
such that

(2.1) lim
r→0

sup
x∈Rn

Mp,ϕ (f ;x, r) = 0.

Definition 2.3. (weak generalized vanishing Morrey space) The weak gen-
eralized vanishing Morrey space WVMp,ϕ(Rn) is defined as the spaces of functions
f ∈WMp,ϕ(Rn) such that

(2.2) lim
r→0

sup
x∈Rn

MW
p,ϕ (f ;x, r) = 0.

Everywhere in the sequel we assume that

(2.3) lim
r→0

1

inf
x∈Rn

ϕ(x, r)
= 0,

and

(2.4) sup
0<r<∞

1

inf
x∈Rn

ϕ(x, r)
<∞,
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which make the spaces VMp,ϕ(Rn) and WVMp,ϕ(Rn) non-trivial, because bounded
functions with compact support belong to this space. The spaces VMp,ϕ(Rn) and
WVMp,ϕ(Rn) are Banach spaces with respect to the norm

(2.5) ‖f‖VMp,ϕ
≡ ‖f‖Mp,ϕ

= sup
x∈Rn,r>0

Mp,ϕ (f ;x, r) ,

(2.6) ‖f‖WVMp,ϕ = ‖f‖WMp,ϕ = sup
x∈Rn,r>0

MW
p,ϕ (f ;x, r) ,

respectively.

3. Sublinear operators with rough kernel TΩ,α on the spaces Mp,ϕ

and VMp,ϕ

In this section, we will first prove the boundedness of the operator TΩ,α satisfying
(1.1) on the generalized Morrey spaces Mp,ϕ(Rn) by using Lemma 1.2 and the
following Lemma 3.1. Then, we will also give the boundedness of TΩ,α satisfying
(1.1) on generalized vanishing Morrey spaces VMp,ϕ(Rn).

We first prove the following lemma (our main lemma).

Lemma 3.1. (Our main lemma) Suppose that Ω ∈ Ls(S
n−1), 1 < s ≤ ∞, is

homogeneous of degree zero. Let 0 < α < n, 1 ≤ p < n
α , 1

q = 1
p −

α
n . Let TΩ,α be

a sublinear operator satisfying condition (1.1), bounded from Lp(Rn) to Lq(Rn) for
p > 1, and bounded from L1(Rn) to WLq(Rn) for p = 1.

If p > 1 and s′ ≤ p, then the inequality

(3.1) ‖TΩ,αf‖Lq(B(x0,r))
. r

n
q

∞∫
2r

t−
n
q−1 ‖f‖Lp(B(x0,t))

dt

holds for any ball B (x0, r) and for all f ∈ Llocp (Rn).
If p > 1 and q < s, then the inequality

‖TΩ,αf‖Lq(B(x0,r))
. r

n
q−

n
s

∞∫
2r

t
n
s−

n
q−1 ‖f‖Lp(B(x0,t))

dt

holds for any ball B (x0, r) and for all f ∈ Llocp (Rn).
Moreover, for p = 1 < q < s the inequality

(3.2) ‖TΩ,αf‖WLq(B(x0,r))
. r

n
q

∞∫
2r

t−
n
q−1 ‖f‖L1(B(x0,t))

dt

holds for any ball B (x0, r) and for all f ∈ Lloc1 (Rn).

Proof. Let 0 < α < n, 1 ≤ s′ < p < n
α and 1

q = 1
p −

α
n . Set B = B (x0, r) for the

ball centered at x0 and of radius r and 2B = B (x0, 2r). We represent f as
(3.3)
f = f1 + f2, f1 (y) = f (y)χ2B (y) , f2 (y) = f (y)χ(2B)C (y) , r > 0

and have

‖TΩ,αf‖Lq(B) ≤ ‖TΩ,αf1‖Lq(B) + ‖TΩ,αf2‖Lq(B) .
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Since f1 ∈ Lp (Rn), TΩ,αf1 ∈ Lq (Rn) and from the boundedness of TΩ,α from
Lp(Rn) to Lq(Rn) (see Lemma 1.1) it follows that:

‖TΩ,αf1‖Lq(B) ≤ ‖TΩ,αf1‖Lq(Rn) ≤ C ‖f1‖Lp(Rn) = C ‖f‖Lp(2B) ,

where constant C > 0 is independent of f .

It is clear that x ∈ B, y ∈ (2B)
C

implies 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|. We
get

|TΩ,αf2 (x)| ≤ 2n−αc1

∫
(2B)C

|f (y)| |Ω (x− y)|
|x0 − y|n−α

dy.

By the Fubini’s theorem, we have

∫
(2B)C

|f (y)| |Ω (x− y)|
|x0 − y|n−α

dy ≈
∫

(2B)C

|f (y)| |Ω (x− y)|
∞∫

|x0−y|

dt

tn+1−α dy

≈
∞∫

2r

∫
2r≤|x0−y|≤t

|f (y)| |Ω (x− y)| dy dt

tn+1−α

.

∞∫
2r

∫
B(x0,t)

|f (y)| |Ω (x− y)| dy dt

tn+1−α .

Applying the Hölder’s inequality, we get

∫
(2B)C

|f (y)| |Ω (x− y)|
|x0 − y|n−α

dy

.

∞∫
2r

‖f‖Lp(B(x0,t))
‖Ω (x− ·)‖Ls(B(x0,t))

|B (x0, t)|1−
1
p−

1
s

dt

tn+1−α .(3.4)
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For x ∈ B (x0, t), notice that Ω is homogenous of degree zero and Ω ∈ Ls(Sn−1),
s > 1. Then, we obtain ∫

B(x0,t)

|Ω (x− y)|s dy


1
s

=

 ∫
B(x−x0,t)

|Ω (z)|s dz


1
s

≤

 ∫
B(0,t+|x−x0|)

|Ω (z)|s dz


1
s

≤

 ∫
B(0,2t)

|Ω (z)|s dz


1
s

=

 ∫
Sn−1

2t∫
0

|Ω (z′)|s dσ (z′) rn−1dr


1
s

= C ‖Ω‖Ls(Sn−1) |B (x0, 2t)|
1
s .(3.5)

Thus, by (3.5), it follows that:

|TΩ,αf2 (x)| .
∞∫

2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

.

Moreover, for all p ∈ [1,∞) the inequality

(3.6) ‖TΩ,αf2‖Lq(B) . r
n
q

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

is valid. Thus, we obtain

‖TΩ,αf‖Lq(B) . ‖f‖Lp(2B) + r
n
q

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

.

On the other hand, we have

‖f‖Lp(2B) ≈ r
n
q ‖f‖Lp(2B)

∞∫
2r

dt

t
n
q +1

≤ r
n
q

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

.(3.7)

By combining the above inequalities, we obtain

‖TΩ,αf‖Lq(B) . r
n
q

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

.
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Let 1 < q < s. Similarly to (3.5), when y ∈ B (x0, t), it is true that

(3.8)

 ∫
B(x0,r)

|Ω (x− y)|s dy


1
s

≤ C ‖Ω‖Ls(Sn−1)

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
s

.

By the Fubini’s theorem, the Minkowski inequality and (3.8) , we get

‖TΩ,αf2‖Lq(B) ≤

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∫
B(x0,t)

|f (y)| |Ω (x− y)| dy dt

tn+1−α

∣∣∣∣∣∣∣
q

dx


1
q

≤
∞∫

2r

∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lq(B) dy
dt

tn+1−α

≤ |B (x0, r)|
1
q−

1
s

∞∫
2r

∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Ls(B) dy
dt

tn+1−α

. r
n
q−

n
s

∞∫
2r

‖f‖L1(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
s dt

tn+1−α

. r
n
q−

n
s

∞∫
2r

‖f‖Lp(B(x0,t))
t
n
s−

n
q−1dt.

Let p = 1 < q < s ≤ ∞. From the weak (1, q) boundedness of TΩ,α and (3.7) it
follows that:

‖TΩ,αf1‖WLq(B) ≤ ‖TΩ,αf1‖WLq(Rn) . ‖f1‖L1(Rn)

= ‖f‖L1(2B) . r
n
q

∞∫
2r

‖f‖L1(B(x0,t))

dt

t
n
q +1

.(3.9)

Then from (3.6) and (3.9) we get the inequality (3.2), which completes the proof.
�

In the following theorem (our main result), we get the boundedness of the oper-
ator TΩ,α on the generalized Morrey spaces Mp,ϕ.

Theorem 3.1. (Our main result) Suppose that Ω ∈ Ls(S
n−1), 1 < s ≤ ∞, is

homogeneous of degree zero. Let 0 < α < n, 1 ≤ p < n
α , 1

q = 1
p −

α
n . Let TΩ,α be

a sublinear operator satisfying condition (1.1), bounded from Lp(Rn) to Lq(Rn) for
p > 1, and bounded from L1(Rn) to WLq(Rn) for p = 1. Let also, for s′ ≤ p < q,
p 6= 1, the pair (ϕ1, ϕ2) satisfies the condition

(3.10)

∞∫
r

essinf
t<τ<∞

ϕ1(x, τ)τ
n
p

t
n
q +1

dt ≤ Cϕ2(x, r),
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and for q < s the pair (ϕ1, ϕ2) satisfies the condition

(3.11)

∞∫
r

essinf
t<τ<∞

ϕ1(x, τ)τ
n
p

t
n
q−

n
s+1

dt ≤ C ϕ2(x, r)r
n
s ,

where C does not depend on x and r.
Then the operator TΩ,α is bounded from Mp,ϕ1

to Mq,ϕ2
for p > 1 and from

M1,ϕ1
to WMq,ϕ2

for p = 1. Moreover, we have for p > 1

‖TΩ,αf‖Mq,ϕ2
. ‖f‖Mp,ϕ1

,

and for p = 1
‖TΩ,αf‖WMq,ϕ2

. ‖f‖M1,ϕ1
.

Proof. Since f ∈ Mp,ϕ1 , by (2.6) and the non-decreasing, with respect to t, of the
norm ‖f‖Lp(B(x0,t))

, we get

‖f‖Lp(B(x0,t))

essinf
0<t<τ<∞

ϕ1(x0, τ)τ
n
p

≤ esssup
0<t<τ<∞

‖f‖Lp(B(x0,t))

ϕ1(x0, τ)τ
n
p

≤ esssup
0<τ<∞

‖f‖Lp(B(x0,τ))

ϕ1(x0, τ)τ
n
p

≤ ‖f‖Mp,ϕ1
.

For s′ ≤ p <∞, since (ϕ1, ϕ2) satisfies (3.10), we have
∞∫
r

‖f‖Lp(B(x0,t))
t−

n
q
dt

t

≤
∞∫
r

‖f‖Lp(B(x0,t))

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
q

dt

t

≤ C ‖f‖Mp,ϕ1

∞∫
r

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
q

dt

t

≤ C ‖f‖Mp,ϕ1
ϕ2(x0, r).

Then by (3.1), we get

‖TΩ,αf‖Mq,ϕ2
= sup
x0∈Rn,r>0

ϕ2 (x0, r)
−1 |B(x0, r)|−

1
q ‖TΩ,αf‖Lq(B(x0,r))

≤ C sup
x0∈Rn,r>0

ϕ2 (x0, r)
−1

∞∫
r

‖f‖Lp(B(x0,t))
t−

n
q
dt

t

≤ C ‖f‖Mp,ϕ1
.

For the case of p = 1 < q < s, we can also use the same method, so we omit the
details. This completes the proof of Theorem 3.1. �

In the case of q =∞ by Theorem 3.1, we get
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Corollary 3.1. Let 1 ≤ p < ∞, 0 < α < n
p , 1

q = 1
p −

α
n and the pair (ϕ1, ϕ2)

satisfies condition (3.10). Then the operators Mα and Tα are bounded from Mp,ϕ1

to Mq,ϕ2 for p > 1 and from M1,ϕ1 to WMq,ϕ2 for p = 1.

Corollary 3.2. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 0 < α < n, 1 ≤ p < n

α and 1
q = 1

p −
α
n . Let also for s′ ≤ p the pair

(ϕ1, ϕ2) satisfies condition (3.10) and for q < s the pair (ϕ1, ϕ2) satisfies condition
(3.11). Then the operators MΩ,α and TΩ,α are bounded from Mp,ϕ1

to Mq,ϕ2
for

p > 1 and from M1,ϕ1
to WMq,ϕ2

for p = 1.

Now using above results, we get the boundedness of the operator TΩ,α on the
generalized vanishing Morrey spaces VMp,ϕ.

Theorem 3.2. (Our main result) Let Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, be homogeneous
of degree zero. Let 0 < α < n, 1 ≤ p < n

α and 1
q = 1

p −
α
n . Let TΩ,α be a sublinear

operator satisfying condition (1.1), bounded on Lp(Rn) for p > 1, and bounded from
L1(Rn) to WL1(Rn). Let for s′ ≤ p, p 6= 1, the pair (ϕ1, ϕ2) satisfies conditions
(2.3)-(2.4) and

(3.12) cδ :=

∞∫
δ

sup
x∈Rn

ϕ1 (x, t)
t
n
p

t
n
q +1

dt <∞

for every δ > 0, and

(3.13)

∞∫
r

ϕ1 (x, t)
t
n
p

t
n
q +1

dt ≤ C0ϕ2(x, r),

and for q < s the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and also

(3.14) cδ′ :=

∞∫
δ′

sup
x∈Rn

ϕ1(x, t)
t
n
p

t
n
q−

n
s+1

dt <∞

for every δ′ > 0, and

(3.15)

∞∫
r

ϕ1(x, t)
t
n
p

t
n
q−

n
s+1

dt ≤ C0ϕ2(x, r)r
n
s ,

where C0 does not depend on x ∈ Rn and r > 0.
Then the operator TΩ,α is bounded from VMp,ϕ1

to VMq,ϕ2
for p > 1 and from

M1,ϕ1 to WVMq,ϕ2 for p = 1. Moreover, we have for p > 1

(3.16) ‖TΩ,αf‖VMq,ϕ2
. ‖f‖VMp,ϕ1

,

and for p = 1

(3.17) ‖TΩ,αf‖WVMq,ϕ2
. ‖f‖VM1,ϕ1

.

Proof. The norm inequalities follow from Theorem 3.1. Thus we only have to prove
that

(3.18) lim
r→0

sup
x∈Rn

Mp,ϕ1
(f ;x, r) = 0 implies lim

r→0
sup
x∈Rn

Mq,ϕ2
(TΩ,αf ;x, r) = 0
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and

(3.19) lim
r→0

sup
x∈Rn

Mp,ϕ1
(f ;x, r) = 0 implies lim

r→0
sup
x∈Rn

MW
q,ϕ2

(TΩ,αf ;x, r) = 0.

To show that sup
x∈Rn

r
−n
q ‖TΩ,αf‖Lq(B(x,r))

ϕ2(x,r) < ε for small r, we split the right-hand

side of (3.1):

(3.20)
r−

n
q ‖TΩ,αf‖Lq(B(x,r))

ϕ2(x, r)
≤ C [Iδ0 (x, r) + Jδ0 (x, r)] ,

where δ0 > 0 (we may take δ0 < 1), and

Iδ0 (x, r) :=
1

ϕ2(x, r)

δ0∫
r

t−
n
q−1 ‖f‖Lp(B(x,t)) dt,

and

Jδ0 (x, r) :=
1

ϕ2(x, r)

∞∫
δ0

t−
n
q−1 ‖f‖Lp(B(x,t)) dt,

and r < δ0. Now we use the fact that f ∈ VMp,ϕ1
and we choose any fixed δ0 > 0

such that

sup
x∈Rn

t−
n
p ‖f‖Lp(B(x,t))

ϕ1(x, t)
<

ε

2CC0
, t ≤ δ0,

where C and C0 are constants from (3.13) and (3.20). This allows to estimate the
first term uniformly in r ∈ (0, δ0) :

sup
x∈Rn

CIδ0 (x, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term may be obtained by choosing r sufficiently
small. Indeed, we have

Jδ0 (x, r) ≤ cδ0
‖f‖Mp,ϕ1

ϕ2 (x, r)
,

where cδ0 is the constant from (3.12) with δ = δ0. Then, by (2.3) it suffices to
choose r small enough such that

sup
x∈Rn

1

ϕ2(x, r)
≤ ε

2cδ0 ‖f‖Mp,ϕ1

,

which completes the proof of (3.18).
The proof of (3.19) is similar to the proof of (3.18). For the case of q < s, we

can also use the same method, so we omit the details. �

Remark 3.1. Conditions (3.12) and (3.14) are not needed in the case when ϕ(x, r)
does not depend on x, since (3.12) follows from (3.13) and similarly, (3.14) follows
from (3.15) in this case.

Corollary 3.3. Let Ω ∈ Ls(S
n−1), 1 < s ≤ ∞, be homogeneous of degree zero.

Let 0 < α < n, 1 ≤ p < n
α and 1

q = 1
p −

α
n . Let also for s′ ≤ p, p 6= 1, the

pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.12)-(3.13) and for q < s the
pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.14)-(3.15). Then the operators
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MΩ,α and TΩ,α are bounded from VMp,ϕ1
to VMq,ϕ2

for p > 1 and from VM1,ϕ1

to WVMq,ϕ2 for p = 1.

In the case of q =∞ by Theorem 3.2, we get

Corollary 3.4. Let 1 ≤ p < ∞ and the pair (ϕ1, ϕ2) satisfies conditions (2.3)-
(2.4) and (3.12)-(3.13). Then the operators Mα and Tα are bounded from VMp,ϕ1

to VMq,ϕ2 for p > 1 and from VM1,ϕ1 to WVMq,ϕ2 for p = 1.

4. Commutators of the sublinear operators with rough kernel TΩ,α

on the spaces Mp,ϕ and VMp,ϕ

In this section, we will first prove the boundedness of the operator TΩ,b,α satis-
fying (1.2) with b ∈ BMO (Rn) on the generalized Morrey spaces Mp,ϕ by using
Lemma 1.2 and the following Lemma 4.1. Then, we will also obtain the bounded-
ness of TΩ,b,α satisfying (1.2) with b ∈ BMO (Rn) on generalized vanishing Morrey
spaces VMp,ϕ.

Let T be a linear operator. For a locally integrable function b on Rn, we define
the commutator [b, T ] by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x)

for any suitable function f . Let T be a C–Z operator. A well known result of

Coifman et al. [9] states that when K (x) =
Ω(x′)
|x|n and Ω is smooth, the com-

mutator [b, T ]f = b Tf − T (bf) is bounded on Lp(Rn), 1 < p < ∞, if and only
if b ∈ BMO(Rn). The commutator of C–Z operators plays an important role in
studying the regularity of solutions of elliptic partial differential equations of second
order (see, for example, [7, 8, ?]). The boundedness of the commutator has been
generalized to other contexts and important applications to some non-linear PDEs
have been given by Coifman et al. [10]. On the other hand, For b ∈ Lloc1 (Rn),
the commutator [b, Tα] of fractional integral operator (also known as the Riesz
potential) is defined by

[b, Tα]f(x) = b(x)Tαf(x)− Tα(bf)(x) =

∫
Rn

b(x)− b(y)

|x− y|n−α
f(y)dy 0 < α < n

for any suitable function f .
The function b is also called the symbol function of [b, Tα]. The characterization

of (Lp, Lq)-boundedness of the commutator [b, Tα] of fractional integral operator
has been given by Chanillo [4]. A well known result of Chanillo [4] states that the
commutator [b, Tα] is bounded from Lp(Rn) to Lq(Rn), 1 < p < q <∞, 1

p−
1
q = α

n if

and only if b ∈ BMO(Rn). There are two major reasons for considering the problem
of commutators. The first one is that the boundedness of commutators can produce
some characterizations of function spaces (see [2, 4, 18, 19, 20, 21, 37, 42]). The
other one is that the theory of commutators plays an important role in the study of
the regularity of solutions to elliptic and parabolic PDEs of the second order (see
[7, 8, 14, 41, 43]).

Let us recall the defination of the space of BMO(Rn).

Definition 4.1. Suppose that b ∈ Lloc1 (Rn), let

‖b‖∗ = sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|dy <∞,



GENERALIZED VANISHING MORREY ESTIMATES 25

where

bB(x,r) =
1

|B(x, r)|

∫
B(x,r)

b(y)dy.

Define

BMO(Rn) = {b ∈ Lloc1 (Rn) : ‖b‖∗ <∞}.

If one regards two functions whose difference is a constant as one, then the space
BMO(Rn) is a Banach space with respect to norm ‖ · ‖∗.

Remark 4.1. [23] (1) The John-Nirenberg inequality [22]: there are constants C1,
C2 > 0, such that for all b ∈ BMO(Rn) and β > 0

|{x ∈ B : |b(x)− bB | > β}| ≤ C1|B|e−C2β/‖b‖∗ , ∀B ⊂ Rn.

(2) The John-Nirenberg inequality implies that

(4.1) ‖b‖∗ ≈ sup
x∈Rn,r>0

 1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|pdy


1
p

for 1 < p <∞.
(3) Let b ∈ BMO(Rn). Then there is a constant C > 0 such that

(4.2)
∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r and t.

As in the proof of Theorem 3.1, it suffices to prove the following Lemma (our
main lemma).

Lemma 4.1. (Our main lemma) Let Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, be homogeneous
of degree zero. Let 1 < p < ∞, 0 < α < n

p , 1
q = 1

p −
α
n , b ∈ BMO (Rn), and

TΩ,b,α is a sublinear operator satisfying condition (1.2) and bounded from Lp(Rn)
to Lq(Rn). Then, for s′ ≤ p the inequality

(4.3) ‖TΩ,b,αf‖Lq(B(x0,r)) . ‖b‖∗ r
n
q

∞∫
2r

(
1 + ln

t

r

)
t−

n
q−1‖f‖Lp(B(x0,t))dt

holds for any ball B(x0, r) and for all f ∈ Llocp (Rn).
Also, for q < s the inequality

‖TΩ,b,αf‖Lq(B(x0,r)) . ‖b‖∗ r
n
q−

n
s

∞∫
2r

(
1 + ln

t

r

)
t
n
s−

n
q−1‖f‖Lp(B(x0,t))dt

holds for any ball B(x0, r) and for all f ∈ Llocp (Rn).

Proof. Let 1 < p <∞, 0 < α < n
p and 1

q = 1
p −

α
n . As in the proof of Lemma 3.1,

we represent f in form (3.3) and have

‖TΩ,b,αf‖Lq(B) ≤ ‖TΩ,b,αf1‖Lq(B) + ‖TΩ,b,αf2‖Lq(B) .
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From the boundedness of TΩ,b,α from Lp(Rn) to Lq(Rn) (see Theorem 1.3) it follows
that:

‖TΩ,b,αf1‖Lq(B) ≤ ‖TΩ,b,αf1‖Lq(Rn)

. ‖b‖∗ ‖f1‖Lp(Rn) = ‖b‖∗ ‖f‖Lp(2B) .

It is known that x ∈ B, y ∈ (2B)
C

, which implies 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|.
Then for x ∈ B, we have

|TΩ,b,αf2 (x)| .
∫
Rn

|Ω (x− y)|
|x− y|n−α

|b (y)− b (x)| |f (y)| dy

≈
∫

(2B)C

|Ω (x− y)|
|x0 − y|n−α

|b (y)− b (x)| |f (y)| dy.

Hence we get

‖TΩ,b,αf2‖Lq(B) .

∫
B

 ∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|b (y)− b (x)| |f (y)| dy


q

dx


1
q

.

∫
B

 ∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|b (y)− bB | |f (y)| dy


q

dx


1
q

+

∫
B

 ∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|b (x)− bB | |f (y)| dy


q

dx


1
q

= J1 + J2.

We have the following estimation of J1. When s′ ≤ p and 1
µ + 1

p + 1
s = 1, by the

Fubini’s theorem

J1 ≈ r
n
q

∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|b (y)− bB | |f (y)| dy

≈ r
n
q

∫
(2B)C

|Ω (x− y)| |b (y)− bB | |f (y)|
∞∫

|x0−y|

dt

tn+1−α dy

≈ r
n
q

∞∫
2r

∫
2r≤|x0−y|≤t

|Ω (x− y)| |b (y)− bB | |f (y)| dy dt

tn+1−α

. r
n
q

∞∫
2r

∫
B(x0,t)

|Ω (x− y)| |b (y)− bB | |f (y)| dy dt

tn+1−α holds.
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Applying the Hölder’s inequality and by (3.8), (4.1), (4.2), we get

J1 . r
n
q

∞∫
2r

∫
B(x0,t)

|Ω (x− y)|
∣∣b (y)− bB(x0,t)

∣∣ |f (y)| dy dt

tn+1−α

+ r
n
q

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|Ω (x− y)| |f (y)| dy dt

tn+1−α

. r
n
q

∞∫
2r

‖Ω (· − y)‖Ls(B(x0,t))

∥∥(b (·)− bB(x0,t)

)∥∥
Lµ(B(x0,t))

‖f‖Lp(B(x0,t))

dt

tn+1−α

+ r
n
q

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖Ω (· − y)‖Ls(B(x0,t))
‖f‖Lp(B(x0,t))

|B (x0, t)|1−
1
p−

1
s

dt

tn+1−α

. ‖b‖∗ r
n
q

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp(B(x0,t))

dt

t
n
q +1

.

In order to estimate J2 note that

J2 =
∥∥(b (·)− bB(x0,t)

)∥∥
Lq(B(x0,t))

∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|f (y)| dy.

By (4.1), we get

J2 . ‖b‖∗ r
n
q

∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|f (y)| dy.

Thus, by (3.4) and (3.5)

J2 . ‖b‖∗ r
n
q

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

.

Summing up J1 and J2, for all p ∈ (1,∞) we get

(4.4) ‖TΩ,b,αf2‖Lq(B) . ‖b‖∗ r
n
q

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp(B(x0,t))

dt

t
n
q +1

.

Finally, we have the following

‖TΩ,b,αf‖Lq(B) . ‖b‖∗ ‖f‖Lp(2B) + ‖b‖∗ r
n
q

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp(B(x0,t))

dt

t
n
q +1

,

which completes the proof of first statement by (3.7).
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On the other hand when q < s, by the Fubini’s theorem and the Minkowski
inequality, we get

J1 .

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| |Ω (x− y)| dy dt

tn+1−α

∣∣∣∣∣∣∣
q

dx


1
q

+

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| |Ω (x− y)| dy dt

tn+1−α

∣∣∣∣∣∣∣
q

dx


1
q

.

∞∫
2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| ‖Ω (· − y)‖Lq(B(x0,t))
dy

dt

tn+1−α

+

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lq(B(x0,t))
dy

dt

tn+1−α

. |B|
1
q−

1
s

∞∫
2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| ‖Ω (· − y)‖Ls(B(x0,t))
dy

dt

tn+1−α

+ |B|
1
q−

1
s

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Ls(B(x0,t))
dy

dt

tn+1−α .

Applying the Hölder’s inequality and by (3.8), (4.1), (4.2), we get

J1 . r
n
q−

n
s

∞∫
2r

∥∥(b (·)− bB(x0,t)

)
f
∥∥
L1(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
s dt

tn+1−α

+ r
n
q−

n
s

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖f‖Lp(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
s dt

t
n
q +1

. r
n
q−

n
s

∞∫
2r

∥∥(b (·)− bB(x0,t)

)∥∥
Lp′ (B(x0,t))

‖f‖Lp(B(x0,t))
t
n
s
dt

tn+1

+ r
n
q−

n
s

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖f‖Lp(B(x0,t))
t
n
s
dt

t
n
q +1

. ‖b‖∗ r
n
q−

n
s

∞∫
2r

(
1 + ln

t

r

)
t
n
s−

n
q−1 ‖f‖Lp(B(x0,t))

dt.
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Let 1
p = 1

ν + 1
s , then for J2, by the Fubini’s theorem, the Minkowski inequality,

the Hölder’s inequality and from (3.8), we get

J2 .

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∫
B(x0,t)

|f (y)| |b (x)− bB | |Ω (x− y)| dy dt

tn+1−α

∣∣∣∣∣∣∣
q

dx


1
q

.

∞∫
2r

∫
B(x0,t)

|f (y)| ‖(b (·)− bB) Ω (· − y)‖Lq(B) dy
dt

tn+1−α

.

∞∫
2r

∫
B(x0,t)

|f (y)| ‖b (·)− bB‖Lν(B) ‖Ω (· − y)‖Ls(B) dy
dt

tn+1−α

. ‖b‖∗ |B|
1
q−

1
s

∞∫
2r

∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Ls(B) dy
dt

tn+1−α

. ‖b‖∗r
n
q−

n
s

∞∫
2r

‖f‖L1(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
s dt

tn+1−α

. ‖b‖∗ r
n
q−

n
s

∞∫
2r

(
1 + ln

t

r

)
t
n
s−

n
q−1‖f‖Lp(B(x0,t))dt.

By combining the above estimates, we complete the proof of Lemma 4.1. �

Now we can give the following theorem (our main result).

Theorem 4.1. (Our main result) Suppose that Ω ∈ Ls(S
n−1), 1 < s ≤ ∞, is

homogeneous of degree zero and TΩ,b,α is a sublinear operator satisfying condition
(1.2) and bounded from Lp(Rn) to Lq(Rn). Let 1 < p <∞ 0 < α < n

p , 1
q = 1

p −
α
n

and b ∈ BMO (Rn).
Let also, for s′ ≤ p the pair (ϕ1, ϕ2) satisfies the condition

(4.5)

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1 (x, τ) τ
n
p

t
n
q +1

dt ≤ Cϕ2 (x, r) ,

and for q < s the pair (ϕ1, ϕ2) satisfies the condition

(4.6)

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1 (x, τ) τ
n
p

t
n
q−

n
s+1

dt ≤ Cϕ2 (x, r) r
n
s ,

where C does not depend on x and r.
Then, the operator TΩ,b,α is bounded from Mp,ϕ1

to Mq,ϕ2
. Moreover

‖TΩ,b,αf‖Mq,ϕ2
. ‖b‖∗ ‖f‖Mp,ϕ1

.

Proof. The statement of Theorem 4.1 follows by Lemma 1.2 and Lemma 4.1 in the
same manner as in the proof of Theorem 3.1. �

By Theorem 4.1, we get the following new result.
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Corollary 4.1. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 1 < p <∞ 0 < α < n

p , 1
q = 1

p −
α
n and b ∈ BMO (Rn). If for s′ ≤ p the

pair (ϕ1, ϕ2) satisfies the condition (4.5) and for q < s the pair (ϕ1, ϕ2) satisfies the
condition (4.6). Then, the operators MΩ,b,α and [b, TΩ,α] are bounded from Mp,ϕ1

to Mq,ϕ2 .

For the sublinear commutator of the fractional maximal operator is defined as
follows

Mb,α (f) (x) = sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|b (x)− b (y)| |f(y)|dy

by Theorem 4.1 we get the following new result.

Corollary 4.2. Let 0 < α < n, 1 < p < n
α , 1

q = 1
p −

α
n , b ∈ BMO (Rn) and the

pair (ϕ1, ϕ2) satisfies the condition (4.5). Then, the operators Mb,α and [b, Tα] are
bounded from Mp,ϕ1

to Mq,ϕ2
.

Now using above results, we also obtain the boundedness of the operator TΩ,b,α

on the generalized vanishing Morrey spaces VMp,ϕ.

Theorem 4.2. (Our main result) Let Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, be homogeneous
of degree zero. Let 1 < p < ∞, 0 < α < n

p , 1
q = 1

p −
α
n , b ∈ BMO (Rn), and

TΩ,b,α is a sublinear operator satisfying condition (1.2) and bounded from Lp(Rn)
to Lq(Rn). Let for s′ ≤ p the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and

(4.7)

∞∫
r

(
1 + ln

t

r

)
ϕ1 (x, t)

t
n
p

t
n
q +1

dt ≤ C0ϕ2 (x, r) ,

where C0 does not depend on x ∈ Rn and r > 0,

(4.8) lim
r→0

ln 1
r

inf
x∈Rn

ϕ2(x, r)
= 0

and

(4.9) cδ :=

∞∫
δ

(1 + ln |t|) sup
x∈Rn

ϕ1 (x, t)
t
n
p

t
n
q +1

dt <∞

for every δ > 0, and for q < s the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and
also

(4.10)

∞∫
r

(
1 + ln

t

r

)
ϕ1 (x, t)

t
n
p

t
n
q−

n
s+1

dt ≤ C0ϕ2(x, r)r
n
s ,

where C0 does not depend on x ∈ Rn and r > 0,

lim
r→0

ln 1
r

inf
x∈Rn

ϕ2(x, r)
= 0

and

(4.11) cδ′ :=

∞∫
δ′

(1 + ln |t|) sup
x∈Rn

ϕ1 (x, t)
t
n
p

t
n
q−

n
s+1

dt <∞
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for every δ′ > 0.
Then the operator TΩ,b,α is bounded from VMp,ϕ1 to VMq,ϕ2 . Moreover,

(4.12) ‖TΩ,b,αf‖VMq,ϕ2
. ‖b‖∗ ‖f‖VMp,ϕ1

.

Proof. The norm inequality having already been provided by Theorem 4.1, we only
have to prove the implication
(4.13)

lim
r→0

sup
x∈Rn

r−
n
p ‖f‖Lp(B(x,r))

ϕ1(x, r)
= 0 implies lim

r→0
sup
x∈Rn

r−
n
q ‖TΩ,b,αf‖Lq(B(x,r))

ϕ2(x, r)
= 0.

To show that

sup
x∈Rn

r−
n
q ‖TΩ,b,αf‖Lq(B(x,r))

ϕ2(x, r)
< ε for small r,

we use the estimate (4.3):

sup
x∈Rn

r−
n
q ‖TΩ,b,αf‖Lq(B(x,r))

ϕ2(x, r)
.
‖b‖∗

ϕ2(x, r)

∞∫
r

(
1 + ln

t

r

)
t−

n
q−1‖f‖Lp(B(x0,t))dt.

We take r < δ0, where δ0 will be chosen small enough and split the integration:

(4.14)
r−

n
q ‖TΩ,b,αf‖Lq(B(x,r))

ϕ2(x, r)
≤ C [Iδ0 (x, r) + Jδ0 (x, r)] ,

where δ0 > 0 (we may take δ0 < 1), and

Iδ0 (x, r) :=
1

ϕ2(x, r)

δ0∫
r

(
1 + ln

t

r

)
t−

n
q−1 ‖f‖Lp(B(x,t)) dt,

and

Jδ0 (x, r) :=
1

ϕ2(x, r)

∞∫
δ0

(
1 + ln

t

r

)
t−

n
q−1 ‖f‖Lp(B(x,t)) dt

Now we choose any fixed δ0 > 0 such that

sup
x∈Rn

t−
n
p ‖f‖Lp(B(x,t))

ϕ1(x, t)
<

ε

2CC0
, t ≤ δ0,

where C and C0 are constants from (4.7) and (4.14). This allows to estimate the
first term uniformly in r ∈ (0, δ0):

sup
x∈Rn

CIδ0 (x, r) <
ε

2
, 0 < r < δ0.

For the second term, writing 1 + ln t
r ≤ 1 + |ln t|+ ln 1

r , we obtain

Jδ0 (x, r) ≤
cδ0 + c̃δ0 ln 1

r

ϕ2(x, r)
‖f‖Mp,ϕ

,

where cδ0 is the constant from (4.9) with δ = δ0 and c̃δ0 is a similar constant with
omitted logarithmic factor in the integrand. Then, by (4.8) we can choose small
enough r such that

sup
x∈Rn

Jδ0 (x, r) <
ε

2
,
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which completes the proof of (4.13).
For the case of q < s, we can also use the same method, so we omit the details. �

Remark 4.2. Conditions (4.9) and (4.11) are not needed in the case when ϕ(x, r)
does not depend on x, since (4.9) follows from (4.7) and similarly, (4.11) follows
from (4.10) in this case.

Corollary 4.3. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 1 < p < ∞, 0 < α < n

p , 1
q = 1

p −
α
n and b ∈ BMO (Rn). If for s′ ≤ p

the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7) and for p < q
the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.11)-(4.10). Then, the
operators MΩ,b,α and [b, TΩ,α] are bounded from VMp,ϕ1

(Rn) to VMq,ϕ2
(Rn).

In the case of q =∞ by Theorem 4.2, we get

Corollary 4.4. Let 1 < p < ∞, 0 < α < n
p , 1

q = 1
p −

α
n and b ∈ BMO (Rn)

and the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7). Then
the operators Mb,α and [b, Tα] are bounded from VMp,ϕ1

(Rn) to VMq,ϕ2
(Rn).

5. some applications

In this section, we give the applications of Theorem 3.1, Theorem 3.2, Theorem
4.1, Theorem 4.2 for the Marcinkiewicz operator.

5.1. Marcinkiewicz Operator. Let Sn−1 = {x ∈ Rn : |x| = 1} be the unit
sphere in Rn equipped with the Lebesgue measure dσ. Suppose that Ω satisfies the
following conditions.

(a) Ω is the homogeneous function of degree zero on Rn \ {0}, that is,

Ω(µx) = Ω(x), for any µ > 0, x ∈ Rn \ {0}.

(b) Ω has mean zero on Sn−1, that is,∫
Sn−1

Ω(x′)dσ(x′) = 0,

where x′ = x
|x| for any x 6= 0.

(c) Ω ∈ Lipγ(Sn−1), 0 < γ ≤ 1, that is there exists a constant M > 0 such that,

|Ω(x′)− Ω(y′)| ≤M |x′ − y′|γ for any x′, y′ ∈ Sn−1.

In 1958, Stein [45] defined the Marcinkiewicz integral of higher dimension µΩ as

µΩ(f)(x) =

 ∞∫
0

|FΩ,t(f)(x)|2 dt
t3

1/2

,

where

FΩ,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y)dy.

Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been
extensively studied as a research topic and also provides useful tools in harmonic
analysis [29, 46, 47, 48].
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The Marcinkiewicz operator is defined by (see [49])

µΩ,α(f)(x) =

 ∞∫
0

|FΩ,α,t(f)(x)|2 dt
t3

1/2

,

where

FΩ,α,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1−α f(y)dy.

Note that µΩf = µΩ,0f .
The sublinear commutator of the operator µΩ,α is defined by

[b, µΩ,α](f)(x) =

 ∞∫
0

|FΩ,α,t,b(f)(x)|2 dt
t3

1/2

,

where

FΩ,α,t,b(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1−α [b(x)− b(y)]f(y)dy.

We consider the space H = {h : ‖h‖ = (
∞∫
0

|h(t)|2 dtt3 )1/2 < ∞}. Then, it is clear

that µΩ,α(f)(x) = ‖FΩ,α,t(x)‖.
By the Minkowski inequality, we get

µΩ,α(f)(x) ≤
∫
Rn

|Ω(x− y)|
|x− y|n−1−α |f(y)|

 ∞∫
|x−y|

dt

t3


1/2

dy ≤ C
∫
Rn

|Ω(x− y)|
|x− y|n−α

|f(y)|dy.

Thus, µΩ,α satisfies the condition (1.1). It is known that for b ∈ BMO (Rn) the
operators µΩ,α and [b, µΩ,α] are bounded from Lp(Rn) to Lq(Rn) for p > 1, and
bounded from L1(Rn) to WLq(Rn) for p = 1 (see [49]), then by Theorems 3.1, 3.2,
4.1 and 4.2 we get

Corollary 5.1. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 0 < α < n, 1 ≤ p < n

α and 1
q = 1

p −
α
n . Let also, for s′ ≤ p, p 6= 1, the pair

(ϕ1, ϕ2) satisfies condition (3.10) and for q < s the pair (ϕ1, ϕ2) satisfies condition
(3.11) and Ω satisfies conditions (a)–(c). Then the operator µΩ,α is bounded from
Mp,ϕ1

to Mq,ϕ2
for p > 1 and from M1,ϕ1

to WMq,ϕ2
for p = 1.

Corollary 5.2. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 0 < α < n, 1 ≤ p < n

α and 1
q = 1

p −
α
n . Let also, for s′ ≤ p, p 6= 1,

the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.12)-(3.13) and for q < s
the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.14)-(3.15) and Ω satisfies
conditions (a)–(c). Then the operator µΩ,α is bounded from VMp,ϕ1

to VMq,ϕ2
for

p > 1 and from VM1,ϕ1
to WVMq,ϕ2

for p = 1.

Corollary 5.3. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 1 < p < ∞, 0 < α < n

p , 1
q = 1

p −
α
n and b ∈ BMO (Rn). Let also, for

s′ ≤ p the pair (ϕ1, ϕ2) satisfies condition (4.5) and for q < s the pair (ϕ1, ϕ2)
satisfies condition (4.6) and Ω satisfies conditions (a)–(c). Then, the operator
[b, µΩ,α] is bounded from Mp,ϕ1

to Mq,ϕ2
.
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Corollary 5.4. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 1 < p < ∞, 0 < α < n

p , 1
q = 1

p −
α
n and b ∈ BMO (Rn). Let also, for

s′ ≤ p the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7) and for
q < s the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.11)-(4.10) and
Ω satisfies conditions (a)–(c). Then, the operator [b, µΩ,α] is bounded from VMp,ϕ1

to VMq,ϕ2 .
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Ankara, Turkey
E-mail address: feritgurbuz84@hotmail.com



IFSCOM2016 1 Proceeding Book
No. 1 pp. 37-41 (2016)

ISBN: 978-975-6900-54-3

TEACHERS’ OPINIONS ABOUT MATHEMATIC PROGRAM

REVISED WITH 4+4+4 EDUCATION SYSTEM
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Abstract. The purpose of this research is taking the teachers’ opinions about
the re-prepared secondary school (5, 6, 7 and 8 grades) mathematics pro-

gram with gradually changing education system in 2013-2014 academic year.

The universe of research is secondary school mathematics teachers working in
Mersin province, and the sample of research contains 149 teachers working in

city center, districts and villages and all agree to participate on a voluntary

basis to the research.
The scale of the research containing 5 factors (General features, activity,

and applications of mathematics course, new education system, and textbook)

with 28 questions has been developed by the researchers and the Cronbach Alfa
rate of the scale is 0,886. For the analysis of the data, descriptive statistics,

t-test and one-way ANOVA have been used.
As a result of the research, while the subdimension of achievement and

content has come out at middle level, and also the applications of mathematics

course has come out at medium level, the teaching period has been at good
level but course books and education system has been at low level. It has been

indicated that course books are not enough and the opinions of teachers hasn’t

been considered in research’s renewing stage. Some has mentioned that the
subjects has become simple regarding the omitted ones from curriculum while

some mentioned that the curriculum has been completely cleared. Besides, it

has also been mentioned that the curriculum has been able to be taught at
fundamental level.

Received: 23–August–2016 Accepted: 29–August–2016

1. Introduction

In our world maintaining to change continuously from past to present countries
have tried to keep up with this change. They are still placing great emphasize on
education in order to succeed it. Because reaching the way of the target indicated by
Mustafa Kemal Ataturk as “Reach and pass the level of contemporary civilization”
is provided with the education. The education programs and curriculums prepared
for our today’s conditions need to be improved most effectively and the programs
related to all of the courses need to be structured regarding this purpose so that this
education system can be performed and the individuals can succeed to get necessary
knowledge and skills (Karagöz,2010; Olkun and Toluk, 2007). Our world has been
in a complicated and quantitative status with the last technologic improvements;
therefore, mathematical thinking has been more important and the need of teaching
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mathematics has increased (Willoughby, 1990). In this period, mathematics as a
course has a great importance and our world’s need of people understanding and
interpreting the course, likely arises. As for considering either TEOG exam applied
in our country or TIMMS and PISA exams applied in international area, we see
which level we are at in terms of mathematics. So, it has been a must to change
the education system and mathematics programs regarding these results. Because
the education programs should follow the improvements all the time depending
on the ones in science and technology. Besides, the teaching ones should also
change according to time and conditions (Kemertaş, 1999). With these changes,
redefining and reviewing of mathematics and it’s education in accordance with the
identified needs need to be performed (MEB, 2005). The reason of the aforesaid
is that mathematics has always been the supporter of the forward but it hasn’t
been able to exceed the traditional status without it (Savaş and others, 2006).
Considering these reasons, mathematics programs regarding 5.,6.,7.,8. grades of
secondary school was renewed gradually in 2013-2014 school year in accordance
with the decision dated 01.02.2013 prepared by the Ministry of National Education,
the Board of Education and Discipline. This research has also been for analyzing
teacher’s opinions concerning the renewed mathematics program.

Consequently, this research has tried to seek answers for the question of “What
are the opinions of secondary school mathematics teacher about the reprepared
mathematics program with 4+4+4 education system?” and the following subprob-
lems.

2. Subproblems

1. How do the Secondary school mathematics teachers think about 4+4+4 ed-
ucation system, it’s achievement and teaching period degree, the course of mathe-
matical applications and the course books?

2. Is there a significant difference between the opinions of secondary school
mathematics teachers about sex, seniority, place of duty, whether they take seminar
or not, and whether the school buildings are the same or not when considered
the program’s general and subdimensions (System, achievement, teaching period,
mathematical applications, and course books) ?

3. How do the mathematics teachers think about the omission of some subjects
from the curriculum of secondary school mathematics program reprepared with
4+4+4 education system?

3. Method

In this study, the survey research design has been used. Survey models are the
approaches aiming to describe the situations as either it is in the past or it is still
continued (Karasar, 1995). Also, the study deals with that the different groups
are compared in terms of some variables thereby performing a relational research.
The data collection tool is a kind of likert scale developed by a researcher and the
rate of Cronbach alpha reliability coefficient has obtained as 0,886. The scale has
5 factors and contains 28 articles.

4. Findings and Results

According to findings obtained from the first subproblem of the research re-
garding the question “How do the teachers think about 4+4+4 education system,
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achievement dimension, teaching methods and techniques’ dimension, the course
of mathematical applications and course books?”, teachers have positively reacted
4+4+4 education system’s being compulsory and gradual with the arithmetic mean
2,62 in middle level. According to teachers’ opinions related with the research of Ay-
bek ve Aslan (2015), teachers have positively reacted the 12 years and discontinuous
education regarding 4+4+4 discontinuous compulsory education. In 4 interviews
of 6, they have positively reacted the 12 years compulsory education in the study of
Doğan, Demir ve Pınar (2014). But teachers have negatively reacted to the article
“5 grades have been accepted as secondary school” with arithmetic mean 3,32 in
middle level in terms of mathematics teaching. Teachers have expressed opinions to
the article “The opinions of teachers working in the field have been received while
passing to system” with the arithmetic mean 1,85 in weak level. Considering the
general of the articles related with the system, they have expressed opinion with
the arithmetic mean in weak level.

According to opinions obtained from the research regarding the achievements of
the program, suitability has been identified in middle level that the achievement
to the mental development is has arithmetic mean 3,24; the achievement to multi-
directional thinking has arithmetic mean 2,98; the achievement to their readiness
level has arithmetic mean 3,16. The study of Mercan (2011) done for the article
about readiness in the past years has the quality to support. Also, the achievement
associated with daily life has arithmetic mean 3,20; it’s suitability to Turkish Na-
tional Education and the general features of mathematics education has arithmetic
mean 3,32 in middle level. The ordering of subject from concrete to abstract has
arithmetic mean 3,42 in good level. The program organized from simple to com-
plicated and it’s having cyclical structure has arithmetic mean 3,53 in good level.
Teachers have expressed opinions that the article “the content of program is consis-
tent with the general features of mathematics education” has arithmetic mean 3,38;
the article “the subject in the program’s content is appropriate for the cognitive
development of students” has arithmetic mean 3,26; the article “the achievement
of the program are clearly understandable and applicable” has arithmetic mean
3,40; the article “the program have had the students like the mathematics course”
has arithmetic mean 2,71 in middle level. The results obtained also from the same
studies have quality to support the study (Mercan, 2011; Karagöz 2010;İyiol 2011).

In this research, the findings regarding the teaching period have been obtained
are the followings: Teachers have expressed opinions in good level to the articles
“Students are participating actively in course with the help of my applied activi-
ties” with arithmetic mean 3,54; “I am applying learning activities for increasing
problems solving skills of students” with arithmetic mean 3,76; “I am benefiting
from materials effectively while using learning methods” with arithmetic mean 3,50;
“Learning and teaching activities I am using have quality to like mathematics” with
arithmetic mean 3,69; “Teaching methods and techniques I am using addresses var-
ied intelligence areas” with arithmetic mean 3,49; “Activities I am getting to be
performed are at level which students can apply” with arithmetic mean 3,93; “I am
trying to increase the interaction between students in learning and teaching period”
with arithmetic mean 3,93.

When looked at the opinions of teachers about the mathematical applications
course, the rate of arithmetic mean has come out at 3,17 with middle level regard-
ing the article “Mathematics course has been more funny with the mathematical
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applications”. Another article “I am using the mathematical applications most
appropriately” has come out at arithmetic mean 3.20 and the other article “The
expectations of both mathematical applications and parents are coincided” has
come out at arithmetic mean 2,65 in middle level. The information missing of par-
ents about elected courses and the sufficient information can’t be transferred are
the problems come across by the teachers that have been identified also in the study
of Aslan ve Aybek (2015).

When looked at the opinions of the research regarding the course books, our
teachers has expressed opinions to the article “no assistant source are needed as
course books are enough for learning-teaching period” in weak level with the arith-
metic mean 1,60. They have expressed opinions with arithmetic mean 1,97 to the
article “The teaching style of course in course books is sufficiently clear”, 1,90 to
the article “The exercises developing operation capabilities are sufficiently included
in books” in weak level. Teachers has also mentioned in the research of Mutu (2008)
done about the same subject in the past years that the content of 6. and 7. grade
books is totally weak and the subject ordering is inconsistent; so they need assistant
books because of this, and the sample questions are missing.

When looked at the answers to open ended questions we have asked regarding
the omissions of some subjects, some teacher look positively at program’s becoming
simple but others has a number of concerns about that. They have considered that
the subjects fully omitted will cause problems in high school and next education life,
and they have defended that these subjects should be mentioned even a little. Fur-
thermore, the positive contribution of the subjects for the students to understand
and focus on other subjects is their another opinion and they have also considered
that it has a positive impact in terms of time because of the mathematics course’s
heavy subjects.
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Eğitim Programları ve Öğretimi Bilim Dalı Yüksek Lisans Tezi.
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değerlendirme İstanbul: Birsen Yayınevi
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Abstract. In this study, for Sturm-Liouville operator with discontinuous co-

efficient encountered in the non-homogeneous materials, direct and inverse
problems are investigated. The spectral properties of the Sturm-Liouville

problem with discontinuous coefficient such as the orthogonality of its eigen-

functions and simplicity of its eigenvalues are examined. Asymptotic formula
is found for eigenvalues, and resolvent operator is constructed. The expan-

sion formula with respect to eigenfunctions is obtained. It is shown that its

eigenvalues are in the form of a complete system. Also, the Weyl solution and
Weyl function are defined. Uniqueness theorems for the solution of the inverse

problem according to spectral date are proved.
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1. Introduction

In this study, the heat problem of a rod that consists of two parts with fixed
cross section is examined. The side surfaces of the rod have been isolated and have
different physical features [1]-[4]. When initial temperature is given arbitrary and
the temperature at the ending points is not equal to zero, the heat problem of the
rod takes the following form:

ρ(x)Ut = Uxx + q(x)U, 0 ≤ x ≤ π,

U(x, 0) = φ(x), Ut(x, 0) = ψ(x), 0 ≤ xπ

Ux(0, t) = 0, Ux(π, t) = 0, t > 0

where the function U(x, t) is the temperature in the bar at the time t, ρ(x) is a
piecewise constant function and refers to the density of the rod and φ(x), ψ(x) are
enough smooth functions. By the method of separation of variables, the preceding
equation is reduced to a boundary value problem for Sturm-Liouville equation:

(1.1) −y′′ + q(x)y = λ2ρ(x)y, 0 ≤ x ≤ π,

(1.2) y′(0) = y′(π) = 0,

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference

2010 Mathematics Subject Classification. 34A55, 34B24, 47E05.
Key words and phrases. Sturm-Liouville operator, expansion formula, inverse problem, Weyl

function.

42



THE DIRECT AND INVERSE SPECTRAL PROBLEM 43

where in particular, ρ(x) is chosen as

(1.3) ρ(x) =

{
1 0 ≤ x < a
α2 a ≤ x ≤ π.

q(x) ∈ L2(0, π) is a real valued function and λ is a complex parameter. Then, in
finding the solution of the above diffusion problem, spectral problem (1.1), (1.2)
must be examined [1]-[5]. The spectral problems with discontinuous coefficient on
the bounded interval are investigated in [6]-[15]. The similar problems on the half
line by different authors have been studied (see [16]-[18]). Let ϕ(x) and ψ(x) be
solutions of (1.1), (1.2) boundary value problem satisfying the initial conditions

(1.4) ϕ(0, λ) = 1, ϕ′(0, λ) = 0

and

(1.5) ψ(π, λ) = 1, ψ′(π, λ) = 0.

Denote

(1.6) ∆(λ) = W [ϕ(x, λ), ψ(x, λ)] = ϕ′(x, λ)ψ(x, λ)− ϕ(x, λ)ψ′(x, λ).

The function ∆(λ) is called the characteristic function of the problem (1.1), (1.2),
and substituting x = 0 and x = π into (1.6), we get

(1.7) ∆(λ) = ϕ′(π, λ) = −ψ′(0, λ).

Lemma 1.1. The eigenfunctions y1(x, λ1) and y2(x, λ2) corresponding to different
eigenvalues λ1 6= λ2 are orthogonal.

Proof. Since y1(x, λ1) and y2(x, λ2) are eigenfunctions of problem (1.1), (1.2), we
get

−y′′1 (x, λ1) + q(x)y1(x, λ1) = λ2
1ρ(x)y1(x, λ1),

−y′′2 (x, λ2) + q(x)y2(x, λ2) = λ2
2ρ(x)y2(x, λ2).

Multiplying these equalities by y1(x, λ1 ) and −y2(x, λ2, respectively, and adding
together,

d

dx
{< y2(x, λ2), y1(x, λ1) >} = (λ2

1 − λ2
2)ρ(x)y1(x, λ1)y2(x, λ2)

is found. Integrating from 0 to π and using the condition (1.2), we have

(λ2
1 − λ2

2)

∫ π

0

ρ(x)y1(x, λ1)y2(x, λ2)dx = 0.

Since λ1 6= λ2, ∫ π

0

ρ(x)y1(x, λ1)y2(x, λ2)dx = 0.

�

Corollary 1.1. The eigenvalues of the boundary value problem (1.1), (1.2) are
real.

Lemma 1.2. The zeros λn of characteristic function ∆(λ) coincide with the eigen-
values of the boundary value problem (1.1), (1.2). The functions ϕ(x, λn) and
ψ(x, λn) are eigenfunctions and there exists a sequence βn such that

(1.8) ψ(x, λn) = βnϕ(x, λn), βn 6= 0.
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Proof. 1) Let λ0 be zero of ∆(λ). Then, because of (1.6), ψ(x, λ0) = β0ϕ(x, λ0) and
the function ψ(x, λ0) and ϕ(x, λ0) satisfy the boundary condition (1.2). Thus, λ0

is an eigenvalue and ψ(x, λ0) , ϕ(x, λ0) are corresponding eigenfunctions.
2) Let λ0 be an eigenvalue of the problem (1.1), (1.2) and let y0(x) be a corre-

sponding eigenfunction. Then, y0(x) satisfies the boundary condition (1.2). Clearly,
y0(x) 6= 0. Without loss of generality, we put y0(0) = 1. Then y′0(0) = 0 ,and con-
sequently, y0(x) ≡ ϕ(x, λ). Hence, from (1.7), ∆0(λ) = 0. We have proved that for
each eigenvalue there exists only one eigenfunction. �

Lemma 1.3. The eigenvalues of the boundary value problem (1.1), (1.2) are simple
and

(1.9)
·

∆(λn) = 2λnαnβn,

where

αn :=

∫ π

0

ρ(x)ϕ2(x, λn)dx.

is the normalizing number of (1.1), (1.2).

Proof. Since ϕ(x, λn) and ψ(x, λ) are the solutions of this problem,

−ϕ′′(x, λn) + q(x)ϕ(x, λn) = λ2
nρ(x)ϕ(x, λn),

−ψ′′(x, λ) + q(x)ψ(x, λ) = λ2ρ(x)ψ(x, λ),

are valid. Multiplying these equations by ψ(x, λ ) and −ϕ(x, λn), respectively, and
adding them together, we get

d

dx
{< ψ(x, λ), ϕ(x, λn) >} = (λ2

n − λ2)ρ(x)ϕ(x, λn)ψ(x, λ).

Integrating from 0 to π and using the condition (1.2),∫ π

0

ρ(x)ϕ(x, λn)ψ(x, λ) =
∆(λn)−∆(λ)

λ2
n − λ2

is found. From Lemma 2, since ψ(x, λn) = βnϕ(x, λn), as λ→ λn, we obtain
·

∆(λn) = 2λnαnβn

where βn = ψ(0, λn). Thus, it follows that
·

∆(λn) 6= 0. �

2. On the Eigenvalues of Problem (1.1), (1.2) at q(x) ≡ 0

Denote by ϕ0(x, λ) the solution equation −y′′ = λ2ρ(x)y, satisfying the condition
(1.4). It has the following form:

(2.1) ϕ0(x, λ) =
1

2

(
1 +

1√
ρ(x)

)
cosλµ+(x) +

1

2

(
1− 1√

ρ(x)

)
cosλµ−(x),

where µ±(x) = ±x
√
ρ(x) + a(1∓

√
ρ(x)).

It is easy show that if (λ0
n)2 are eigenvalues of problem (1.1), (1.2) at q(x) ≡ 0,

then λ0
n can be found from the equation ϕ′0(π, λ) = 0,that is, from the equation

∆0(λ) = −1

2
λ(α+ 1) sinλµ+(π) +

1

2
(α− 1)λ sinλµ−(π) = 0

(2.2) sinλµ+(π)− α− 1

α+ 1
sinλµ−(π) = 0.
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At last, from (2.2), it follows that

(2.3) λ0
n =

1

µ+(π)
(nπ + εn)

where

εn = (−1)n
α− 1

α+ 1
sin

(
µ+(π)

µ−(π)
nπ

)
+O

(
1

n

)
.

Lemma 2.1. Roots of the function ∆0(λ) are isolated, that is,

inf
n 6=k

∣∣λ0
n − λ0

k

∣∣ = β > 0.

3. Asymptotic Formulas of Eigenvalues

Using representation for solution e(x, λ) of equation (1.1) satisfying the initial
conditions e(0, λ) = 1, e′(0, λ) = iλ (see[8]), it is easy to obtain the following
integral representation for the solution ϕ(x, λ):

ϕ(x, λ) = ϕ0(x, λ) +

∫ µ+(x)

0

A(x, t) cosλtdt

where K(x, .) ∈ L1(−µ+(x), µ+(x)) and A(x, t) = K(x, t) −K(x,−t). The kernel
A(x, t) processes the following properties:

i) A(π, µ+(π)) = 1
4

∫ π
0

1√
ρ(t)

(
1 + 1√

ρ(t)

)
q(t)dt,

ii) A(π, µ−(π) + 0)−A(π, µ−(π)− 0) = 1
4

∫ π
0

1√
ρ(t)

(
1− 1√

ρ(t)

)
q(t)dt.

Theorem 3.1. Boundary value problem (1.1), (1.2) has a countable set of simple
eigenvalues {λ2

n}n≥1, where

(3.1) λn = λ0
n +

dn
λ0
n

+
kn
n
, (λn > 0), kn ∈ l2

where λ0
n are zeros of the function

(3.2) ∆0(λ) = −1

2
λ(α+ 1) sinλµ+(π) +

1

2
(α− 1)λ sinλµ−(π).

{λ0
n}2 are the eigenvalues of problem (1.1), (1.2), when q(x) ≡ 0, dn is a bounded

sequence

(3.3) dn =
h+ cosλ0

nµ
+(π) + h− cosλ0

nµ
−(π)

1
2 (α+ 1)µ+(π) cosλ0

nµ
+(π)− 1

2 (α− 1)µ−(π) cosλ0
nµ
−(π)

.

Proof. Let ϕ(x, λ) be the solution of equation (1.1) at initial conditions ϕ(0, λ) =
1, ϕ′(0, λ) = 0. Then the characteristic function ∆(λ) = ϕ′(π, λ) is entire with
respect to λ and it has the most countable set of zeros λn and numbers λ2

n are eigen-
values of boundary value problem (1.1), (1.2). The standard method of variations
of an arbitrary constants leads to the following integral equation for the solution
ϕ(x, λ)

(3.4) ϕ(x, λ) = ϕ0(x, λ) +

∫ x

0

g(x, t;λ)q(t)ϕ(t, λ)dt
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where

g(x, t;λ) =
1

2

(
1√
ρ(x)

+
1√
ρ(t)

)
sinλ (µ+(x)− µ+(t))

λ
+

(3.5) +
1

2

(
1√
ρ(x)

− 1√
ρ(t)

)
sinλ (µ−(x)− µ+(t))

λ

and ϕ0(x, λ) is the solution of equation (1.1) at q(x) = 0, satisfying the conditions
ϕ(0, λ) = 1, ϕ′(0, λ) = 0. From (3.4), after differentiating, we find

(3.6) ϕ′(x, λ) = ϕ′0(x, λ) +

∫ x

0

gx(x, t;λ)q(t)ϕ(t, λ)dt

where

gx(x, t;λ) =
√
ρ(x)

1

2

(
1√
ρ(x)

+
1√
ρ(t)

)
cosλ (µ+(x)− µ+(t))

λ
+

(3.7) +
√
ρ(x)

1

2

(
1√
ρ(x)

− 1√
ρ(t)

)
cosλ (µ−(x)− µ+(t))

λ

Consequently, if we put here x = π, we have

(3.8) ∆(λ) = ∆0(λ) +

∫ π

0

g′π(x, t;λ)q(t)ϕ(t, λ)dt.

Now, from

(3.9) ϕ(x, λ) = ϕ0(x, λ) +O

(
e|Imλ|µ

+(x)

|λ|

)
, |λ| → +∞

we obtain

(3.10) ∆(λ) = ∆0(λ) + h+ cosλ0
nµ

+(π) + h− cosλ0
nµ
−(π) +K0(λ),

where

(3.11) h± =
1

4
(1± α)

∫ a

0

q(t)dt+
1

4

(
1± 1

α

)∫ π

a

q(t)dt,

and

K0(λ) =
1

4

∫ a

0

[
(1 + α)cosλ

(
2µ+(t)− µ+(π)

)
+ (1− α)cosλ

(
2µ+(t)− µ−(π)

)]
q(t)dt

+
1

4

∫ π

a

[(
1 +

1

α

)
cosλ

(
2µ+(t)− µ+(π)

)]
q(t)dt

+
1

4

∫ π

a

[(
1− 1

α

)
cosλ

(
µ+(π) + µ−(t)− µ+(t)

)]
q(t)dt

(3.12) +0

(
e|Imλ|µ

+(π)

|λ|

)
.

Let us denote Gδ = {λ :
∣∣λ− λ0

n

∣∣ ≥ δ}, where δ is a sufficiently small positive

number δ < β
2 (see lemma 4). It is easy to show that (see [3])

(3.13) |∆0(λ)| ≥ |λ|Cδe|Imλ|µ
+(π), λ ∈ Gδ, Cδ > 0.
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On the other hand, we obtain

(3.14) ∆(λ)−∆0(λ) ≤ O
(
e|Imλ|µ

+(π)
)
, |λ| → ∞.

Consider the contour Γn = {λ : |λ| =
∣∣λ0
n

∣∣+ β
2 }, (n = 1, 2, ...). We have from (3.10)

(3.15) |∆(λ)−∆0(λ)| ≤ C̃e|Imλ|µ
+(π), λ ∈ Γn,

for sufficiently large n, where C̃ > 0. Applying now Rouche’s theorem, we have
that the number of zeros of ∆0(λ) inside Γn coincides with the number of zeros of
∆(λ) = {∆(λ) − ∆0(λ)} + ∆0(λ). Further applying the Rouche’s theorem to the
circle γn(δ) = {λ :

∣∣λ− λ0
n

∣∣ ≤ δ}, we conclude that for sufficiently large n, there
exist only one zero λn of the function ∆(λ) in γn(δ). By virtue of the arbitrariness
of δ > 0 we have

(3.16) λn = λ0
n + εn, εn = o(1), n→∞.

Substituting (3.16) into (3.10), we obtain and taking into our account the relations

∆0(λ0
n) = −1

2
λ0
n(α+ 1) sinλ0

nµ
+(π) +

1

2
λ0
n(α− 1) sinλ0

nµ
−(π) = 0,

sin εnµ
+(π) ∼ εnµ+(π), cos εnµ

+(π) ∼ 1, n→∞

we get

(3.17) εn =
dn

λ0
n + εn

+
εn

λ0
n + εn

∼
dn +

∼
Kn

λ0
n + εn

where

dn =
h+ cosλ0

nµ
+(π) + h− cosλ0

nµ
−(π)

1
2 (α+ 1)µ+(π) cosλ0

nµ
+(π)− 1

2 (α− 1)µ−(π) cosλ0
nµ
−(π)

,

∼
Kn = K0(λ0

n + εn) and

∼
dn =

h+µ+(π) sinλ0
nµ

+(π) + h−µ−(π) sinλ0
nµ
−(π)

1
2 (α+ 1)µ+(π) cosλ0

nµ
+(π)− 1

2 (α− 1)µ−(π) cosλ0
nµ
−(π)

.

Since 1
λ0
n+εn

= O( 1
n ), εn

λ0
n+εn

= o( 1
n ), n→∞ we have that dn,

∼
dn are bounded and

(3.17) implies

εn = O(
1

n
), n→∞.

Using (3.17) once more, we can obtain more precisely as n→∞

(3.18) εn =
dn
λ0
n

+
kn
n
, kn ∈ l2

where kn = µ+(π)
π

∼
Kn +O( 1

n ), n→∞ .The theorem is proved. �
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4. Spectral Expansion Formula

Theorem 4.1. 1) The system of eigenfunctions {ϕ(x, λn)}n≥1 of boundary value
problem (1.1), (1.2) is complete in L2(0, π; ρ);

2) If f(x) is an absolutely continuous function on the segment [0, π], and f ′(0) =
f ′(π) = 0, then

(4.1) f(x) =

∞∑
n=1

anϕ(x, λn),

where

(4.2) an =
1

αn

∫ π

0

f(t)ϕ(t, λn)ρ(t)dt,

and the series (4.1) converges uniformly on [0, π];
3) For f(x) ∈ L2(0, π; ρ) the series (4.1) converges in L2(0, π; ρ), moreover the

Parseval equality

(4.3)

∫ π

0

|f(x)|2 ρ(x)dx =

∞∑
n=1

αn |an|2

holds.

Proof. Let ψ(x, λ) be a solution of equation (1.1) under the initial conditions
ψ(π, λ) = 1, ψ′(π, λ) = 0. Denote

(4.4) G(x, t;λ) = − 1

∆(λ)

{
ψ(x, λ)ϕ(t, λ), x ≥ t
ϕ(x, λ)ψ(t, λ), t ≥ x

and let us consider the function

(4.5) Y (x, λ) =

∫ π

0

ρ(t)f(t)G(x, t;λ)dt

which is a solution of the boundary value problem

(4.6) −Y ′′(x, λ) + q(x)Y (x, λ) = λ2ρ(x)Y (x, λ)− f(x)ρ(x),

Y ′(0, λ) = 0, Y ′(π, λ) = 0.

Using (1.9), we obtain

(4.7) Res
λ=λn

Y (x, λ) =
1

2αnλn
ϕ(x, λn)

∫ π

0

ρ(t)f(t)ϕ(t, λn)dt.

Let f(x) ∈ L2(0, π; ρ) be such that∫ π

0

ρ(t)f(t)ϕ(t, λn)dt = 0 n = 1, 2, 3, . . . .

Then, from (4.7), we have Res
λ=λn

Y (x, λ) = 0; consequently, for fixed x ∈ [0, π], the

function Y (x, λ) is entire with respect to λ. On the other hand, since

(4.8) ∆(λ) ≥ |λ|C̃δe|Imλ|µ
+(π), λ ∈ Gδ, C̃δ > 0.

(4.9)

ϕ(x, λ) = O
(
e|Imλ|µ

+(x)
)
, ψ(x, λ) = O

(
e|Imλ|(µ

+(π)−µ+(x))
)
, |λ| → ∞,
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from (4.5), it follows that for fixed δ > 0 and sufficiently large λ∗ > 0:

|Y (x, λ)| ≤ Cδ
|λ|
, λ ∈ Gδ, |λ| ≥ λ∗.

Using the maximum principle for module of analytic functions and Liouville theo-
rem, we conclude that Y (x, λ) ≡ 0. This fact and (4.6) imply that f(x) = 0 a.e. on
[0, π]. Thus, statement (1) of theorem is proved.

Let f(x) ∈ AC[0, π] be an arbitrary absolutely continuous function. Let us
transform the function Y (x, λ) to the form

Y (x, λ) = − 1

λ2∆(λ)

{
ψ(x, λ)

∫ x

0

(−ϕ′′(t, λ) + q(t)ϕ(t, λ)) f(t)dt−

−ϕ(x, λ)

∫ π

x

(−ψ′′(t, λ) + q(t)ψ(t, λ)) f(t)dt

}
.

Integrating by parts the addends with the second-order derivatives and taking into
account conditions f ′(0) = 0, f ′(π) = 0, we have

(4.10) Y (x, λ) =
f(x)

λ2
− 1

λ2
(Z1(x, λ) + Z2(x, λ)) ,

where

Z1(x, λ) =
1

∆(λ)

[
ψ(x, λ)

∫ x

0

g(t)ϕ′(t, λ)dt+ ϕ(x, λ)

∫ π

x

g(t)ψ′(t, λ)dt

]
,

Z2(x, λ) =
1

∆(λ)

[
ψ(x, λ)

∫ x

0

ϕ(t, λ))f(t)ρ(t)dt+

+ ϕ(x, λ)

∫ π

x

ψ(t, λ))f(t)ρ(t)dt

]
.

Here g(t) = f ′(t). Now consider the contour integral

(4.11) IN (x) = 2

N∑
n=1

Res
λ=λn

Y (x, λ) =

N∑
n=1

anϕ(x, λn)

where

an =
1

αn

∫ π

0

ρ(t)f(t)ϕ(t, λn)dt.

On the other hand taking into account (4.10), we have

(4.12) IN (x) = f(x)− 1

2πi

∫
Γn

1

λ
(Z1(x, λ) + Z2(x, λ)) dλ.

Comparing (4.11) and (4.12), we obtain

f(x) =

∞∑
n=1

anϕ(x, λn) + ξN (x),

where

ξN (x) =
1

2πi

∫
ΓN

1

λ
(Z1(x, λ) + Z2(x, λ)) dλ.

Therefore, in order to prove the item (2) of the theorem, it suffices to show that

(4.13) lim
N→∞

max
0≤x≤π

|ξN (x)| = 0.
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From the estimates of solution ϕ(x, λ), ψ(x, λ) and the function ∆(λ), it follows
that for fixed δ > 0 and sufficiently large λ∗ > 0,

(4.14) max
0≤x≤π

|Z2(x, λ)| ≤ C2

|λ|
, λ ∈ Gδ, |λ| ≥ λ∗, C2 > 0.

Let us show that

(4.15) lim
|λ|→∞
λ∈Gδ

max
0≤x≤π

|Z1(x, λ)| = 0.

At first, it was supposed that g(t) is absolutely continuous on [0, π]. In this case,
integration by parts gives

Z1(x, λ) = − 1

∆(λ)

{
ψ(x, λ)

∫ x

0

ϕ(t, λ)g′(t)dt+ ϕ(x, λ)

∫ π

x

ψ(t, λ)g′(t)dt

}
,

therefore, similarly to Z2(x, λ), we have

max
0≤x≤π

|Z1(x, λ)| ≤ C1

|λ|
, λ ∈ Gδ, |λ| ≥ λ∗, C1 > 0.

In the general case, we fix ε > 0 and choose absolutely continuous function gε(t)
such that ∫ π

0

|gε(t)− g(t)| dt < ε.

Then, using the estimates ϕ(x, λ), ψ(x, λ) ∆(λ), one can find λ∗∗ > 0 such that
when λ ∈ Gδ, |λ| ≥ λ∗∗, from the relation

Z1(x, λ) =
1

∆(λ)

[
ψ(x, λ)

∫ x

0

ϕ′(t, λ)(gε(t)− g(t))dt +

+ ϕ(x, λ)

∫ π

x

ψ′(t, λ)(gε(t)− g(t))dt

]
+

+
1

∆(λ)

[
ψ(x, λ)

∫ x

0

ϕ(t, λ)g′ε(t)dt− ϕ(x, λ)

∫ π

x

ψ(t, λ)g′ε(t)dt

]
,

we have

max
0≤x≤π

|Z1(x, λ)| ≤ C
∫ π

0

|gε(t)− g(t)| dt+
∼
C(ε)

|λ|
< Cε+

∼
C(ε)

|λ|
, λ ∈ Gδ, |λ| ≥ λ∗∗.

Consequently,

lim
|λ|→∞
λ∈Gδ

max
0≤x≤π

|Z1(x, λ)| ≤ Cε.

Since ε is an arbitrary positive number, we obtain the validity of equality (4.15).
Relations (4.14), (4.15) immediately imply (4.13), thus, statement (2) of theorem
is proved.

System of eigenfunction {ϕ(x, λn)}n≥1 is complete and orthogonal in L2(0, π; ρ).
Therefore, it forms the orthogonal basis in L2,ρ(0, π) and Parseval equality from
theorem is valid. �
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5. Weyl solution, Weyl function

Let Φ(x, λ) be the solution of equation (1.1) that satisfied the conditions Φ′(0, λ) =
1, Φ′(π, λ) = 0. Denote by C(x, λ) the solution of equation (1.1), which satisfied
the initial conditions C(0, λ) = 0, C ′(0, λ) = 1. Then, the solution ψ(x, λ) can be
represented as follows

(5.1) ψ(x, λ) = ψ(0, λ)ϕ(x, λ)−∆(λ)C(x, λ)

or

(5.2) −ψ(x, λ)

∆(λ)
= C(x, λ)− ψ(0, λ)

∆(λ)
ϕ(x, λ).

Denote

(5.3) M(λ) := −ψ(0, λ)

∆(λ)
.

It is clear that

(5.4) Φ(x, λ) = C(x, λ) +M(λ)ϕ(x, λ).

The function Φ(x, λ) and M(λ) = Φ(0, λ) are respectively called the Weyl solu-
tion and the Weyl function of the boundary value problem (1.1), (1.2). The Weyl
function is a meromorphic function having simple poles at points λn eigenvalues of
boundary value problem (1.1), (1.2). Relations (5.2), (5.4) yield

(5.5) Φ(x, λ) = −ψ(x, λ)

∆(λ)
.

It can be shown that

(5.6) < ϕ(x, λ),Φ(x, λ) >= 1.

Theorem 5.1. If M(λ) =
∼
M(λ), then L =

∼
L; that is, the boundary value problem

(1.1), (1.2), is unique by the Weyl function.

Proof. We describe the matrix P (x, λ) = [Pij(x, λ)]i,j=1,2 with the formula

(5.7) P (x, λ)

( ∼
ϕ(x, λ)

∼
Φ(x, λ)

∼
ϕ
′
(x, λ)

∼
Φ′(x, λ)

)
=

(
ϕ(x, λ) Φ(x, λ)
ϕ′(x, λ) Φ′(x, λ)

)
.

From (5.7), we have

(5.8)
ϕ(x, λ) = P11(x, λ)

∼
ϕ(x, λ) + P12(x, λ)

∼
ϕ′(x, λ),

Φ(x, λ) = P11(x, λ)
∼
Φ(x, λ) + P12(x, λ)

∼
Φ′(x, λ),

or

(5.9)
P11(x, λ) = ϕ(x, λ)

∼
Φ′(x, λ)− Φ(x, λ)

∼
ϕ′(x, λ),

P12(x, λ) = −ϕ(x, λ)
∼
Φ(x, λ) + Φ(x, λ)

∼
ϕ(x, λ).

Taking equation (5.5) into consideration in (5.9), we get (5.4) into (5.9), then we
get
(5.10)

P11(x, λ) = 1 + 1
∆(λ)

[
ϕ(x, λ)(

∼
ψ′(x, λ)− ψ′(x, λ))− ψ(x, λ)(

∼
ϕ′(x, λ)− ϕ′(x, λ))

]
P12(x, λ) = 1

∆(λ)

[
ψ(x, λ)

∼
ϕ(x, λ)− ϕ(x, λ)

∼
ψ(x, λ)

]
.
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Now, from (4.8)and (4.9), we have from equation (5.10)

(5.11) lim
|λ|→∞

max
0≤x≤π

|P11(x, λ)− 1| = lim
|λ|→∞

max
0≤x≤π

|P12(x, λ)| = 0.

Now, if we take into consideration equation (5.4) into (5.9), we get

P11(x, λ) = ϕ(x, λ)
∼
C ′(x, λ)− C(x, λ)

∼
ϕ′(x, λ) + (

∼
M(λ)−M(λ))ϕ(x, λ)

∼
ϕ′(x, λ)

P12(x, λ) = C(x, λ)
∼
ϕ(x, λ)−

∼
C(x, λ)ϕ(x, λ)− (

∼
M(λ)−M(λ))ϕ(x, λ)

∼
ϕ(x, λ).

Therefore if M(λ) =
∼
M(λ), then P11(x, λ) and P12(x, λ) are entire functions for

every fixed x. It can be easily seen from (5.11) that P11(x, λ) = 1 and P12(x, λ) = 0.

Substituting into (5.8), we get ϕ(x, λ) ≡ ∼ϕ(x, λ) and Φ(x, λ) ≡
∼
Φ(x, λ) for every x

and λ. Hence, we arrive at q(x) ≡ ∼q(x). �

Theorem 5.2. The expression

(5.12) M(λ) = −
∞∑
n=0

1

2αnλn(λ− λn)

holds.

Proof. Using (5.3), we get for sufficiently large λ∗ > 0,

(5.13) M(λ) ≤ Cδ
|λ|
, λ ∈ Gδ, |λ| > λ∗.

Further using (1.9) and (5.4) we calculate:

(5.14) Res
λ=λn

M (λ) = −ψ(0, λn)
·

∆(λn)
= − βn

·
∆(λn)

= − 1

2λnαn
.

Now, let’s consider the contour integral

JN (λ) =
1

2πi

∫
ΓN

M(µ)

λ− µ
dµ, λ ∈ IntΓN ,

where ΓN =
{
µ : |µ| =

∣∣λ0
N

∣∣+ γ
2

}
is a contour of counter-clockwise by pass.

By virtue of (5.13) we have lim
N→∞

JN (λ) = 0. On the other hand, by residue

theorem and (5.14) yield

JN (λ) = −M(λ)−
N∑

n=−N

1

2λnαn(λ− λn)

and when N →∞ we arrive at (5.12). �

Theorem 5.3. If λn =
∼
λn, αn =

∼
αn for all n ∈ Z then L =

∼
L. That is, the problem

(1.1), (1.2) is uniquely determined by spectral date.

Proof. Since λn =
∼
λn, αn =

∼
αn for all n ∈ Z and considering the formula (5.12),

we have M(λ) =
∼

M(λ). Using Theorem 4, L =
∼
L is obtained. �
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1. Introduction

The definition of n-th order symmetric derivations of Kähler modules were given
by H.Osborn at 1965 in [1]. J.Johnson made known the structures of differential
module on certain modules of Kähler differentials in [3]. Then, advanced principal
theories about the calculus of high order derivations and a few functorial features
of high order differential modules were presented by Y. Nakai in [4]. Higher deriva-
tions and universal differential operators of Kähler modules were studied by R.
Hart in [2]. Olgun defined generalized symmetric derivations on high order Kähler
modules in [6].Komatsu presented right differential operators on a noncommutative
ring extension in [10]. The more informations about these subjects were found in
[5,7,8,9,11].The aim of this study is to investigate these homological structures and
is to give more knowldege about them.

2. Preliminary

Throughout this paper we assume R be a commutative algebra over an alge-
braically closed field k with characteristic zero. When R is a k-algebra , Jn(R)
denotes the universal module of n-th order differentials of R over k and Ωn(R) be
the module of n-th order Kähler differentials of R over k and dn be the canonical
n− th order k-derivation R −→ Ωn(R) of R.The pair {Ωn(R), dn} has the universal
mapping property with regard to the n − th order k-derivations of R. Ωn(R) is
generated by the set {dn(r) : r ∈ R}.

Definition 2.1. Let R be a commutative algebra over a field k of characteristic
zero,A be an R-module, A ⊗R A be the tensor product of A with itself and let K
be the submodule of A ⊗R A generated by the elements of the form a ⊗ b − b ⊗ a
where a, b ∈ A. Consider the factor module ∨2A = A ⊗ A/K. The module ∨2A is
said to be the second symmetric power of A. The canonic balanced map is defined
such that
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⊗ : A×A −→ A⊗A
⊗(a, b) = a⊗ b

and a natural surjective map defined such that γ : A ⊗ A −→ ∨2A. Then the
composite map is bilinear and called γ⊗ = ∨.

Lemma 2.1. Let A and B be R-modules and let ζ : A × A −→ B be a bilinear
alternating map. Then there exists an R-module homomorphism f : ∨2A −→ B
such that the diagram

A×A ζ−→ B
∨ ↘ ↗ f

∨2A
commutes.

Definition 2.2. Let R be any k-algebra (commutative with unit), R → Ω1(R)
be first order Kähler derivation of R and let ∨(Ω1(R)) be the symmetric algebra⊕

p≥0 ∨p(Ω1(R)) generated over R by Ω1(R).

A symmetric derivation is any linear map D of ∨(Ω1(R)) into itself such that
i) D(∨p(Ω1(R))) ⊂ ∨p+1(Ω1(R))
ii) D is a first order derivation over k and
iii) the restriction of D to R (R ' ∨0(Ω1(R))) is the Kähler derivation

d1 : R→ Ω1(R).

Definition 2.3. Let R be any k-algebra (commutative with unit), R → Ωn(R)
be n-th order Kähler derivation of R and let ∨(Ωn(R)) be the symmetric algebra⊕

p≥0 ∨p(Ωn(R)) generated over R by Ωn(R).

A generalized symmetric derivation is any k-linear map D of ∨(Ωn(R)) into itself
such that

i) D(∨p(Ωn(R))) ⊂ ∨p+1(Ωn(R))
ii) D is a n-th order derivation over k and
iii) the restriction of D to R (R ' ∨0(Ωn(R))) is the Kähler derivation

dn : R→ Ωn(R).

Proposition 2.1. Let R = k[x1, ...., xs] be a polynomial algebra of dimension s.

Then Ωn(R) is a free R-module of rank (
n+ s
s

)− 1 with basis

{ dn(xi11 .....x
is
s ) : i1 + .....+ is ≤ n}

∨2(Ωn(R)) is a free R-module of rank (
t+ 1
t− 1

)

where t = (
n+ s
s

)−1 with basis { dn(xi11 .....x
is
s )⊗ dn(xi11 .....x

is
s ) : i1+.....+is ≤

n}

3. Symmetric Powers of Kähler Modules

In this section, we consider the tensor, exterior and symmetric algebras of Kähler
modules and define the symmetric powers of a given module A over a k-algebra and
a few elementary properties.
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Definition 3.1. Let A be a R-module.
i) By ⊗nA we shall denote the R-module with a universal R-bilinear map of
An −→ ⊗nA written (x1, ..., xn) −→ x1 ⊗ ...⊗ xn. This module is called the n-fold
tensor power of A.
ii) By ΛnA we shall denote the R-module with a universal alternating R-bilinear
map of An −→ Λn written (x1, ...xn) −→ x1 ∧ ... ∧ xn. This module is called the
n-fold exterior power of A.
iii) By ∨nA we shall denote the R-module with a universal symmetric R-bilinear
map of An −→ ∨nA written (x1, ..., xn) −→ x1...xn. This module is called the
n-fold symmetric power of A.

Let us the conventin that ⊗1A,Λ1A and ∨1A are all identified with A, while
⊗0A, Λ0A and ∨0A are all identified with R.

Theorem 3.1. Let A be a free R-module on a basis X = {x1, ..., xd}. If A is gen-
erated by x1, ..., xd then A⊗k is generated by xi1 ⊗ ...⊗ xik as an R-module. Where
1 ≤ i1, ..., ik ≤ d and dimR(⊗kA) = dk.

Since Λk(A) is factor module of A⊗k, so Λk(A) is generated by xi1 ∧ ...∧ xik as an
R-module where 1 ≤ i1, ..., ik ≤ d. For any x1, x2 ∈ X, it satisfied x1 ∧ x1 = 0 and
x1 ∧ x2 + x2 ∧ x1 = 0. If 0 6= A is affine free with x1, ..., xd then xi1 ∧ ... ∧ xik is

basis for ΛkA and dimR(ΛkA) =
(
d
k

)
.

∨A may be presented by the generating set X, and relation xy = yx (x, y ∈ X)
and is the (commutative) polynomial algebra R[X]. Then an R-module basis for
∨A is given by those products x1...xn with x1 ≤ ... ≤ xn ∈ X. If X is a finite set
{x1, ..., xr}, then the elements of this basis can be written xi11 ...x

ir
r with i1, ..., ir ≥ 0,

and for each n, dim(∨nA) =
(
r+n−1
r−1

)
.

4. Homological Properties of Symmetric Derivations

Theorem 4.1. Let R be an affine k-algebra. Then we have a long exact sequence
of R-modules

0 −→ kerη −→ Ω(2n)(R)
η−→ Jn(Ωn(R)) −→ cokerη −→ 0.

for all n ≥ 0.

Example 4.1. R = k[a, b] be a polynomial algebra of dimension 2.Then Ω1(R) is
a free R-module of rank 2 with basis {d1(a), d1(b)} and Ω2(R)) is a free R-module
of rank 5 with basis {d2(a), d2(b)), d2(a2), d2(ab), d2(b2).
J1(Ω1(R)) is a free R-module generated by
{∆1(d1(a)),∆1(d1(b)),∆1(ad1(a)),∆1(ad1(b)),∆1(bd1(a)),∆1(bd1(b))}

Theorem 4.2. Let R be an affine k-algebra. Then we have a long exact sequence
of R-modules

0 −→ kerγ −→ Jn(Ωn(R))
γ−→ ∨2(Ωn(R)) −→ cokerγ −→ 0.

for all n ≥ 0.

Lemma 4.1. Let R be an affine domain.Then Ωn(R) is a free R-module if and
only if ∨2(Ωn(R)) is a free R-module.
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Theorem 4.3. Let R be an affine k-algebra and ∨(Ω1(R)) has at least one symmet-
ric derivations. Ω1(R)is a projective R-module if and only if Ω2(R) is a projective
R-module.

Corollary 4.1. Let R be an affine local k-algebra and ∨(Ω1(R)) has at least one
symmetric derivation. Ω1(R) is a free R-module if and only if Ω2(R) is a free
R-module.
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1. Introduction

Integral boundary conditions for parabolic equations are well known problem
in applications (see, for example, Cannon[1], Ionkin[7], Kamynin[8], Day[3], Ero-
feeko and Kozlovski[6]). Such a boundary condition are called nonlocal boundary
condition or nonclassical boundary condition. Similar problems are also used for
hyperbolic equations.

In this study, we deal with a family saving model which can be represented by
Kolmogorov equation with two integral boundary conditions.

Suppose that x(t) denotes the saving of a family at time t and satisfy the differ-
ential equation

(1.1) dx = F (x, t) dt+G (x, t) dX, G ≥ 0

where X is the Markov process, F (x, t) is the rate of the change for the family
saving and G (x, t) dX is the random change of the family income.

For a family set let us assume that equation (1.1) describes the saving of all fam-
ilies by ignoring the dynamic of individual family saving. The density distribution
of the saving of families u(x, t) satisfies

(1.2)
∂u

∂t
= − ∂

∂x
((c(x, t) + F (x, t)) u) +

1

2

∂2

∂x2
(b(x, t)u) + f(x, t)

with initial condition

(1.3) u(x, 0) = ϕ(x), 0 ≤ x ≤ l
and boundary conditions

(1.4)

l∫
0

u (x, t) dx = N (t) , t ≥ 0
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(1.5)

l∫
0

xu (x, t) dx = K (t) , t ≥ 0

where c(x, t), b(x, t), K(t), N(t), ϕ(x) anf f(x, t) are continuously differentiable
functions. N(t), K(t) denote total number of families and total amount of family
saving in [0, l] respectively [6].

2. Special Case of The Model

We will consider special case of problem (1.2)-(1.5) on region D = (0 < t <∞)×
(0 < x < l)

(2.1)
∂u

∂t
= a2

∂2u

∂x2
+ f(x, t),

(2.2) u(x, 0) = ϕ(x), 0 ≤ t ≤ T,

(2.3)

1∫
0

u (x, t) dx = N (t) , t ≥ 0,

(2.4)

1∫
0

xu (x, t) dx = K (t) , t ≥ 0,

where f(x, t), K(t), N(t), ϕ(x) are continuously differentiable functions on region
D. Compatibility conditions of this problem are
1∫
0

xϕ(x)dx = N(0) and
1∫
0

ϕ(x)dx = K(0).

Using the transform

u(x, t) = v(x, t) + (12K(t)− 6N(t))x+ 4N(t)− 6K(t)

boundary conditions of equation (2.1)-(2.4) become homogenous:

(2.5)
∂v

∂t
= a2

∂2v

∂x2
+ F (x, t),

(2.6) v(x, 0) = ψ(x),

(2.7)

1∫
0

v(x, t)dx = 0,

(2.8)

1∫
0

xv(x, t)dx = 0,

where

F (x, t) = f(x, t)− (12K ′(t)− 6N ′(t))x+ 4N ′(t)− 6K ′(t)

and

ψ(x) = ϕ(x)− (12K(0)− 6N(0))x+ 4N(0)− 6K(0).



60 OLGUN CABRI AND KHANLAR R. MAMEDOV

Equations (2.5)-(2.8) are linear with respect to v(x,t), then this problem can
split into two auxiliary problems:

i)

(2.9)
∂v

∂t
= a2

∂2v

∂x2
,

(2.10) v(x, 0) = ψ(x),

(2.11)

1∫
0

v(x, t)dx = 0

(2.12)

1∫
0

xv(x, t)dx = 0

ii)

(2.13)
∂v

∂t
= a2

∂2v

∂x2
+ F (x, t),

(2.14) v(x, 0) = 0,

(2.15)

1∫
0

v(x, t)dx = 0

(2.16)

1∫
0

xv(x, t)dx = 0

If solution of the problem (i) is v1(x, t) and solution of the problem (ii) is v2(x, t)
then solution of the problem (2.5)-(2.8) is v(x, t) = v1(x, t) + v2(x, t).

Integrating both sides of (2.9) with respect to x from 0 to 1 and using integration
by parts, integral boundary conditions in (2.11) and (2.12) become, respectively,

vx(1, t)− vx(0, t) = 0,

vx(1, t)− v(1, t) + v(0, t) = 0.

Substituting these equations in (2.9)-(2.12), we have

(2.17)
∂v

∂t
= a2

∂2v

∂x2
,

(2.18) v(x, 0) = ψ(x),

(2.19) vx(1, t)− vx(0, t) = 0,

(2.20) vx(1, t)− v(1, t) + v(0, t) = 0.



ON A NONLOCAL BOUNDARY VALUE PROBLEM 61

By the separation of variables, a Sturm-Liouville problem and an ODE are,
respectively, obtained as

(2.21) X ′′(x) + λX(x) = 0,

(2.22) X ′(1)−X ′(0) = 0,

(2.23) X ′(1)−X(1) +X(0) = 0,

and

(2.24) T ′(t) + λa2T (t) = 0.

Sturm-Liouville problem (2.21)-(2.23) is self adjoint and boundary conditions
are regular, and also strongly regular. Therefore, the eigenfunctions of the Sturm-
Liouville problem are the Riesz basis on L2[0, 1] (Naimark[11], Kesselman[9], Mikhailov
[10]).

Characteristic equation of the Sturm-Liouville problem is

(2.25) 2− 2 cos k − k sin k = 0,

where
√
λ = k.

It is easily seen that k0 = 0 and k2n = 2nπ, (n = 1, 2, · · · ) are roots of the equation

(2.25). There is also another root of equation (2.25) in
[
nπ, (2n+1)

2 π
]
. By using

Langrange-Burmann formula root is calculated asymptotically as

k2n+1 = (2n+ 1)π − 4((2n+ 1)π)
−1 − 32

3
((2n+ 1)π)

−3 − 832

15
((2n+ 1)π)

−5

+ O(
1

n7
).

Corresponding eigenfunctions are obtained by

X0(x) = 1,

X2n = cos(2πn)x, n = 1, 2, · · · .

X2n+1 =
−kn

2
cos(knx) + sin(knx), n = 1, 2, · · · .

Therefore, solution of the problem (2.17)-(2.20) is

v1(x, t) =

∞∑
n=0

A2n cos(2πnx)e−a
24π2n2t +

∞∑
n=1

Bn

(
−kn

2
cos(knx) + sin(knx)

)
e−a

2kn
2t,

where

A0 =

∫ 1

0

ψ(x)dx,

An = 2

∫ 1

0

ψ(x) cos(2πn)x, , n = 1, 2, · · · .

Bn =
1

‖X2n+1(x)‖2
∫ 1

0

ψ(x)

(
−kn

2
cos(knx) + sin(knx)

)
, , n = 1, 2, · · · .
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Solution of the problem (2.13)-(2.16) can be easily obtained by

v2(x, t) =

∞∑
n=0

 t∫
0

F2n(τ)e−k
2
n(t−τ)dτ

X2n(x)

+

 t∫
0

F2n+1(τ)e−k
2
n(t−τ)dτ

X2n+1(x),

where

F0(τ) =

1∫
0

F (x, τ)xdx,

F2n(τ) =

1∫
0

F (x, τ)X2n(x)dx, n = 1, 2, · · · .

F2n+1(τ) =

1∫
0

F (x, τ)X2n+1(x)dx. n = 1, 2, · · · .

3. Numerical Solution

Method of Lines [12] and the Crank-Nicolson method [13] are used for numerical
solution of problem (2.1)-(2-4). In both methods, the Simpson’s rule is used to
approximate the integral in (2.3) and (2.4) numerically. We display here a few of
numerical results.

Example 3.1.
∂u

∂t
=
∂2u

∂x2
+ (x2 − 2)et,

u(x, 0) = x2,

1∫
0

u(x, t)dx = (1/6)− 2t,

1∫
0

xu(x, t)dx = (1/12)− t.

Exact solution of example 1 is u(x, t) = x−x2− 2t. The absolute relative errors
at various spatial lengths for u(0.5, 0.5) are shown in Table 1.

Relative Error at u(0.5,0.5) in Example 1
Spatial Length MOL Method Crank-Nicolson Method

h=0.1 1.3471E-14 2.9606E-16
h=0.05 8.4510E-13 2.9606E-16
h=0.025 1.7494E-12 6.8094E-15
h=0.0125 4.6876E-12 1.9244E-15
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Example 3.2.
∂u

∂t
=
∂2u

∂x2
,

u(x, 0) = sin(πx),
1∫

0

u(x, t)dx =
2

π
exp(−π2t),

1∫
0

xu(x, t)dx = (1/12)− t.

Exact solution of example 2 is u(x, t) = sin(πx) exp(−π2t). The absolute relative
errors at various spatial lengths for u(0.5, 0.5) are shown in Table 2.

Relative Error at u(0.5,0.5) in Example 2
Spatial Length MOL Method Crank-Nicolson Method

h=0.1 0.0029 0.0075
h=0.05 4.5074E-4 0.0023
h=0.025 6.4370E-5 5.6888E-4
h=0.0125 4.4595E-6 9.1160E-5

4. Conclusion

Diffusion equation with two integral boundary conditions is studied. Integral
boundary conditions are transformed to local one and by separation of variables,

analytic solution of this problem is found. In addition, by applying the Method of
Lines [12] and Crank Nicolson method [13], numerical solution of the problem is

found.
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Abstract. In this paper, firstly fuzzy basic concept is studied.We investi-

gated other Ostrowski type inequalities in literature. We obtained the very

general fuzzy fractional Ostrowski type inequality with right fractional Caputo
derivative using the Hölder inequality in this type.
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1. Introduction

Mathematical inequalities take an important place among mathematical con-
cepts.These enable us to find the values of these quantities approximately. Math-
ematical inequalities have also important applications in functional analysis. For
example when building norms on some linear spaces.

The following result is known in the literature as an Ostrowski’s inequality.
In 1938, the classical integral inequality was proved by A.M. Ostrowski [9] .

The inequality of Ostrowski gives us an estimation for the deviation of the
values of a smooth function from its mean value. More precisely, if f : [a, b]→ R is
a differentiable function with bounded derivative, then∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣≤
[

1

4
+

(x− a+b
2 )2

(b− a)2

]
(b− a) ‖f ′‖∞

for every x ∈ [a, b]. Moreover the constant 1/4 in the right side of the inequality
is the best possible value for the better result.

The theory of fractional calculus has known an intensive development over the
last few decades. It is shown that derivatives and integrals of fractional type provide
an adequate mathematical modelling of real objects and processes see [7]− [8].

We notice that the first generalization of Ostrowski’s inequality was given by
Milanovic and Pecaric in [2].

In [10] Pachpatte has proved the Ostrowski inequality in three independent
variables. In the past few years, many authors have obtained various generalizations
of this type of inequality and many researchers worked on a fractional form of it as
well as on time scale calculus [11] .

Univariate right fractional Ostrowski inequalities has been shown by Anatassiou
[12].

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference
Key words and phrases. Fuzzy fractional Ostrowski inequality, fuzzy right Caputo fractional

derivative,Hukuhara diference.
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Fuzzy sets were defined in [1] A standard fuzzy set in X is characterized by a
membership function µ : X → [0, 1] A standard fuzzy set is called normalized if
supµ
x∈X

(x) = 1

Fuzzy fractional calculus and the Ostrowski inequalities have been studied by
Anatassiou [5].

The main purpose of this manuscript is to establish Ostrowski-type inequality
involving right Caputo differentiability. First of all; we give basic information
about the fuzzy set .Then ,we introduce the very general univariate fuzzy fractional
Ostrowski type inequality.We show this inequality in fuzzy space.

2. Background

We need the following basic concepts

Definition 2.1. [5] Let µ : R→ [0, 1] with the following properties

i) is normal ,i.e.,∃x0 ∈ R; µ (x0) = 1
ii) µ (λx+ (1− λ) y) ≥ min {µ (x) , µ (y)} ,∀x, y ∈ R , ∀λ ∈ [0, 1] (µ is called a

convexs fuzzy subset).
iii) µ is upper semicontinouns on R, i.e. ∀ x0 ∈ R and ∀ε > 0,∃ neighborhood
V (x0) : µ (x) ≤ µ (x0) + ε,∀x ∈ V (x0)

iv) The set supp (µ) is compact in R. where (supp (µ) = {x ∈ R : µ (x) > 0})

We call µ a fuzzy real number.Denote the set of all µ with Rz.E.g., χ{x0} ∈ Rz
, for any x0 ∈ R, where χ{x0} is the characteristic function at x0.

For 0 < r ≤ 1 and µ ∈ Rz define

[µ]
r

= {x ∈ R : µ (x) ≥ r}

and

[µ]
0

= {x ∈ R : µ (x) ≥ r}

Then it is well known that for each r ∈ [0, 1] , [µ]
r

is a closed and bounded
interval of R.For u, v ∈ Rz and λ ∈ R,we define uniquely the sum u ⊕ v and the
product λ� u by

[u⊕ v]
r

= [u]
r

+ [v]
r
, [λ� u]

r
= λ [u]

r
,∀r ∈ [0, 1]

Notice 1� u = u and its holds

u⊕ v = v ⊕ u, λ� u = u� λ

İf 0 ≤ r1 ≤ r2 ≤ 1 then [µ]
r2 ⊆ [µ]

r1 .Actually [u]
r

=
[
ur−, u

r
+

]
, ur− ≤ ur+,

ur−, u
r
+ ∈ R, ∀r ∈ [0, 1]

For λ > 0 one has λr± = (λ� u)
r
± , respectively.

Definition 2.2. [5] D : Rz × Rz → R+ ∪ {0}

D(u, v) = sup max
{∣∣ ur− − vr−∣∣ , ∣∣ ur+ − vr+∣∣}r∈[0,1]
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where [u]
r

=
[
ur−, u

r
+

]
; u, v ∈ Rz. We have that D is a metric on Rz.

Then (Rz, D) is a complete metric space with the following properties:

i) D(u⊕ w, v ⊕ w) = D(u, v) ∀u, v, w ∈ Rz
ii) D(λ� u, λ� v) = |λ|D(u, v) ∀λ ∈ R,∀u, v ∈ Rz
iii) D( u⊕ v, w ⊕ e) ≤ D(u⊕ w) +D(v ⊕ e),∀u, v, w, e ∈ Rz

Here
∑∗

is stands for fuzzy summation and
∼
0 : χ{0} ∈ Rz is the neutral element

with respect to ⊕,i.e.,

u⊕
∼
0 =

∼
0 ⊕ u = u , ∀u ∈ Rz

Denote

D∗(f, g) = supD(f, g)x∈[a,b]

Where f, g : [a, b]→ Rz .

We define CUF ([a, b]) the space of uniformly continuous functions from [a, b] →
Rz ,also CF ([a, b]) the space of fuzzy continuous functions on [a, b] .İt is clear that

CUF ([a, b]) = CF ([a, b])

and LF ([a, b]) is the space of Lebesque integrable functions.

Definition 2.3. [13] Let u, v ∈ Rz.If there exists w ∈ Rz such that u = v +w,
the w is called the Hukuhara difference of u and v, and it is denoted by u	 v.

Definition 2.4. [13] Let u, v ∈ Rz.If there exists w ∈ Rz such that

u	gH v = w ⇐⇒
{

(i) u = v + w
or (ii) u = v + (−1)w

Then w is called the generalized Hukuhara difference of u and v.
Please note that a function f : [a, b]→ Rz so called fuzzy-valued function.The

r−level representation of fuzzy-valued function f is expressed by

fr(t) =
[
f−r (t), f+

r (t)
]
, t ∈ [a, b] , r ∈ [0, 1]

Here, fr(t) = fr(t)

Definition 2.5. [5] Let f : [a, b]→ Rz We say that f is Fuzzy-Riemann integrable
to I ∈ Rz if for any ε > 0,there exits δ > 0 such that for any division P = {[u, v] ; ξ}

of [a, b] with the norms ∆ (P ) < δ,we have

D

( ∗∑
P

(v − u)� f (ξ) , I

)
< ε

We write

I = (FR)

b∫
a

f (x) dx
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Theorem 2.1. [9] Let f : [a, b] → Rz be fuzzy continuous.Then (FR)
b∫
a

f (x) dx

exists and belongs to Rz, furthermore it holds(FR)

b∫
a

f (x) dx

r =

 b∫
a

f
(r)
− (x) dx,

b∫
a

f
(r)
+ (x) dx

 , r ∈ [0, 1]

Theorem 2.2. [5] Let f ∈ CF ([a, b]) and c ∈ [a, b] .Then

(FR)

b∫
a

f (x) dx = (FR)

c∫
a

f (x) dx+ (FR)

b∫
c

f (x) dx

Theorem 2.3. [5] Let f, g ∈ CF ([a, b]) and c1, c2 ∈ R.Then

(FR)

b∫
a

(c1f (x) + c2g(x)) dx = c1 (FR)

b∫
a

f (x) dx+ c2 (FR)

b∫
a

g (x) dx

also we need

Lemma 2.1. [5] If f, g : [a, b] ⊆ R → Rz are fuzzy continuous functions,then
the function F : [a, b] → R+ defined by F (x) = D(f(x), g(x)) is continuous on
[a, b]:

D

(FR)

b∫
a

f (x) dx, (FR)

b∫
a

g (x) dx

 ≤ (FR)

b∫
a

D (f (x) , g (x)) dx

Definition 2.6. [4] Let f ∈ CF ([a, b]) ∩ LF ([a, b]), 0 < v ≤ 1 .

The fuzzy Riemann-Liouville integral of fuzzy-valued function f is defined as
following:

( Ivα+f) (x) =
1

Γ(v)
�

x∫
a

(x− t)v−1 � f(t)dt, x ∈ [a, b]

I0
α+f (x) = f

Let us consider the r − level representation of fuzzy-valued function f as
fr(t) = [f−r (t), f+

r (t)] , t ∈ [a, b] , r ∈ [0, 1]
Also,we define the fuzzy fractional right Riemann-Liouville operator by

Ivb−f (x) =
1

Γ(v)
�

b∫
x

(t− x)v−1 � f(t)dt, x ∈ [a, b]

I0
b−f (x) = f

Above, Γ denotes the gamma function:

Γ(v)=
∞∫
0

e−ttv−1dt
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Definition 2.7. [4] Let f ∈ CF ([a, b]) ∩ LF ([a, b]), x0 in (a, b) and Φ(x) =

1
Γ(1−v)

x∫
a

f(t)
(x−t)v dt .We say that f is Riemann-Liouville H-differentiable about order

0 < v < 1 at x0 , if there exists an element
(
RLDv

α+

)
(x0 ) ∈ Rz,such that for h > 0

sufficiently small

i)
(
RLDv

α+

)
(x0 ) = lim

h→0+

Φ(x0+h)	Φ(x0)
h = lim

h→0+

Φ(x0)	Φ(x0−h)
h

or
ii)

(
RLDv

α+

)
(x0 ) = lim

h→0+

Φ(x0)	Φ(x0+h)
−h = lim

h→0+

Φ(x0−h)	Φ(x0)
−h

or
iii)

(
RLDv

α+

)
(x0 ) = lim

h→0+

Φ(x0+h)	Φ(x0)
h = lim

h→0+

Φ(x0−h)	Φ(x0)
−h

or
iv)

(
RLDv

α+

)
(x0 ) = lim

h→0+

Φ(x0)	Φ(x0+h)
−h = lim

h→0+

Φ(x0)	Φ(x0−h)
h

3. Main results

Definition 3.1. [14] Let f ∈ CF ([a, b]) ∩ LF ([a, b]) be a fuzzy set-valued func-
tion.Then f is said to be Caputo’s H-differentiable at x when

(
Dv
α+ f (x)

)
=

1

Γ(1− v)

x∫
a

f ′(t)

(x− t)v
dt

where 0 < α < 1 and 0 < v < 1.
Also,we adopt the some procedure to present Caputo’s H-differentiability,we say

f is
[(i)− v]-differentiable if Eq. (8) holds while f is (i)-differentiable,and f is

[(ii)− v]-differentiable if Eq. (21) holds while f is (ii)-differentiable.

Definition 3.2. [15] Let f ∈ CF ([a, b]) ∩ LF ([a, b]), fn is integrable.Then the right
fuzzy Caputo derivate of f for n − 1 < v < n, and x ∈ [a, b] , Dv

b−f (x) ∈ Rz
and defined by

Dv
b−f (x) =

(−1)
n

Γ(n− v)
�

b∫
x

(t− x)−v+n−1 � fn(t)dt

and for n = 1

Dv
b−f (x) =

(−1)

Γ(1− v)
�

b∫
x

(t− x)−v � f ′(t)dt

Theorem 3.1. [14] Let f ∈ CF ([a, b]) ∩ LF ([a, b]) , 0 < v < 1, 0 ≤ r ≤ 1,

i) Let f be (ii)-differentiable, then we have [(i)− v] differentiable right fuzzy
Caputo derivative and(

Dv
b−f

)
(x, r) =

[ (
Dv
b−f−

)
(x, r) ,

(
Dv
b−f+

)
(x, r)

]
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ii) Let f be (i)-differentiable, then we have [(ii)− v] differentiable right fuzzy
Caputo derivative and(

Dv
b−f

)
(x, r) =

[ (
Dv
b−f+

)
(x, r) ,

(
Dv
b−f−

)
(x, r)

]
Theorem 3.2. [14] Let 0 < V < 1, Dv

b−f (x) = g(x, f(x)) with the fuzzy initial
condition f0 = f(b) ,the fuzzy fractional differential equation is equivalent to one
of the following integral equations:

i) if f is a [(i)− v] differentiable fuzzy-valued function,then

f(x) = f(b)⊕ 1

Γ(v)
�

b∫
x

(t− x)v−1 � (Dv
b−f)(t)dt

ii) if f is a [(ii)− v] differentiable fuzzy-valued function,then

f(x) = f(b)⊕ −1

Γ(v)
�

b∫
x

(t− x)v−1 � (Dv
b−f)(t)dt

Theorem 3.3. Let f ∈ CF ([a, b]) ∩ LF ([a, b]) , 0 < v < 1, p, q > 0such that
1
p+ 1

q= 1 ,and (Dv
b−f) (x) ∈ Rz; (t ∈ [a, b])

D

 1

b− a
� (FR)

b∫
a

f (x) dx, f(b)

 ≤ sup D((D
v
b−f)(t),

∼
0)

Γ(v)(p(v − 1) + 1)
1
p (v+ 1

p )
(b− a)

v−1+ 1
p

Proof. We have

D

(
1
b−a � (FR)

b∫
a

f (x) dx, f(b)

)
= D

(
1
b−a � (FR)

b∫
a

f (x) dx, f(b)
b−a

b∫
a

dx

)

= D

(
1
b−a � (FR)

b∫
a

f (x) dx, 1
b−a � (FR)

b∫
a

f (b) dx

)

= 1
b−aD

(
(FR)

b∫
a

f (x) dx, (FR)
b∫
a

f (b) dx

)
≤ 1

b−a

b∫
a

D (f (x) , f(b)) dx (∗)

Here [(i)− v] differentiable .
We notice that f ∈ CF ([a, b]) ∩ LF ([a, b]) , 0 < v < 1,

f(x) = f(b)⊕ 1

Γ(v)
�

b∫
x

(t− x)v−1 � (Dv
b−f)(t)dt
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For a ≤ x ≤ b,we have

D (f (x) , f(b)) = D

(
f(b)⊕ 1

Γ(v) �
b∫
x

(t− x)v−1 � (Dv
b−f)(t)dt, f(b)

)

= D

(
1

Γ(v) �
b∫
x

(t− x)v−1 � (Dv
b−f)(t)dt,

∼
0

)

≤ 1
Γ(v)D

(
b∫
x

(t− x)v−1 � (Dv
b−f)(t)dt,

∼
0

)

≤ 1
Γ(v)D

(
b∫
x

(t− x)v−1 � (Dv
b−f)(t)dt,

b∫
x

∼
0dt

)
≤ 1

Γ(v)

b∫
x

(t− x)v−1
(
D
(

(Dv
b−f)(t),

∼
0
))

dt

≤ 1
Γ(v)

(
b∫
x

(t− x)p(v−1)

) 1
p
(
b∫
x

(
D
(

(Dv
b−f)(t),

∼
0
))q

dt

) 1
q

≤ 1
Γ(v)

(b−x)
v−1+ 1

p

(p(v−1)+1)
1
p

(
b∫
x

(
D
(

(Dv
b−f)(t),

∼
0
))q

dt

) 1
q

Now , ∀x ∈ [a, b] and for (∗)

D

(
1
b−a � (FR)

b∫
a

f (x) dx, f(b)

)
≤ 1

b−a

b∫
a

D (f (x) , f(b)) dx

≤
sup

(
D

(
(Dv

b−f)(t),
∼
0

))
(b−a)Γ(v)(p(v−1)+1)

1
p

(
b∫
a

(
(b− x)v−1+ 1

p

)
dx

)

=
sup

(
D

(
(Dv

b−f)(t),
∼
0

))
Γ(v)(p(v−1)+1)

1
p

(b−a)
v−1+ 1

p

v+ 1
p

(t ∈ [a, b])

�
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GÖKHAN ÇUVALCIOĞLU AND YELDA YORULMAZ

Abstract. The concept of Intuitionistic Fuzzy Sheet t−Cut Set and Intu-

itionistic Fuzzy α − t Block Cut Set are introduced. The differences between

Cα,β level set and new intuitionistic fuzzy sets is shown.

Received: 27–June–2016 Accepted: 29–August–2016

1. Introduction

The function µ : X → [0, 1] is called a fuzzy set over X(FS(X))[?]. For
x ∈ X, µ(x) is the membership degree of x and the non-membership degree
is 1 − µ(x).Intuitionistic fuzzy sets have been introduced by Atanassov [2], as
an extension of fuzzy sets. If X is a universal then a intuitionistic fuzzy set
A, the membership and non-membership degree for each x ∈ X respectively,
µA(x)(µA : X → [0, 1]) and νA(x)( νA:X → [0, 1]) such that 0 ≤ µA(x)+νA(x) ≤ 1.
The class of intuitionistic fuzzy sets on X is denoted by IFS(X).

Definition 1.1. [2] An intuitionistic fuzzy set (shortly IFS) on a set X is an object
of the form

A = {< x, µA(x), νA(x) >: x ∈ X}
where µA(x), (µA : X → [0, 1]) is called the “degree of membership of x in A ”,
νA(x), (νA : X → [0, 1])is called the “ degree of non- membership of x in A ”,and
where µA and νA satisfy the following condition:

µA(x) + νA(x) ≤ 1, for all x ∈ X.

Definition 1.2. [1] An intuitionistic fuzzy set A is said to be contained in an
intuitionistic fuzzy set B if and only if, for all x ∈ X : µA (x) ≤ µB (x) and
νA (x) ≥ νB (x) . If fuzzy set B contains fuzz set A then it is shown by A v B.

It is clear that A = B if and only if A v B and B v A.

Definition 1.3. [2]Let A ∈ IFS(X) and let A = {< x, µA(x), νA(x) >: x ∈ X}
then the set

Ac = {< x, νA(x), µA(x) >: x ∈ X}
is called the complement of A.

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference

2010 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.
Key words and phrases. Intuitionistic Fuzzy Sets, Intuitionistic Fuzzy Sheet t−Cut Sets, In-

tuitionistic Fuzzy α− t Block Cut Sets.
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Figure 1

The intersection and the union of two IFSs A and B on X are defined by

A uB = {< x, µA(x) ∧ µB(x), νA(x) ∨ νB(x) >: x ∈ X}

A tB = {< x, µA(x) ∨ µB(x), νA(x) ∧ νB(x) >: x ∈ X}
Some special Intuitionistic Fuzzy Sets on X are defined as following;

O∗ = {〈x, 0, 1〉 : x ∈ X}
U∗ = {〈x, 0, 0〉 : x ∈ X}

Definition 1.4. [4] Let A ∈ IFS(X).Then (α, β)−cut of A is a crisp subset
Cα,β(A) of the IFS A is given by

Cα,β(A) = {x : x ∈ X such that µA(x) ≥ α, νA(x) ≤ β}

where α, β ∈ [0, 1] with α+ β ≤ 1.

2. Sheet and Block Cut Intuitionistic Fuzzy Level Sets

Definition 2.1. Let X be a set and A = {< x, µA(x), νA(x) >: x ∈ X} ∈ IFS(X).
If t ∈ [0, 1] then sheet t−cut of A defined as following

A(t) = {〈x, µA (x) , νA (x)〉 : µA (x) + νA (x) = t, x ∈ X}

Proposition 2.1. Let X be a set and A,B ∈ IFS(X). For every t ∈ [0, 1],

(1) (A tB)(t) = A(t) tB(t)
(2) A(t) uB(t) = (A uB)(t)
(3) (Ac(t))c = A(t)
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Proof. (1)

A(t) tB(t) =

{
〈x,max(µA (x) , µB (x)),min(νA (x) , νB (x))〉 :
µA (x) + νA (x) = t ∧ µB (x) + νB (x) = t, x ∈ X

}
If µA (x) ≥ µB (x) then from µA (x) + νA (x) = t = µB (x) + νB (x) we obtain

νA (x) ≤ νB (x) .
max(µA (x) , µB (x)) + min(νA (x) , νB (x)) = µA (x) + νA (x) = t
If µA (x) ≤ µB (x) then from µA (x) + νA (x) = t = µB (x) + νB (x) we obtain

νA (x) ≤ νB (x) .
max(µA (x) , µB (x)) + min(νA (x) , νB (x)) = µB (x) + νB (x) = t
Thence, (A tB)(t) = A(t) tB(t).
(2)

A(t) uB(t) =

{
〈x,min(µA (x) , µB (x)),max(νA (x) , νB (x))〉 :
µA (x) + νA (x) = t ∧ µB (x) + νB (x) = t, x ∈ X

}
If µA (x) ≥ µB (x) then from µA (x) + νA (x) = t = µB (x) + νB (x) we obtain

νA (x) ≤ νB (x) .
min(µA (x) , µB (x)) + max(νA (x) , νB (x)) = µB (x) + νB (x) = t
If µA (x) ≤ µB (x) then from µA (x) + νA (x) = t = µB (x) + νB (x) we obtain

νA (x) ≤ νB (x) .
min(µA (x) , µB (x)) + max(νA (x) , νB (x)) = µA (x) + νA (x) = t
Therefore, we obtain that A(t) uB(t) = (A uB)(t).
(3) It is clear. �

Remark 2.1. Let X be a set and A ∈ IFS(X).A(t) is a fuzzy set on [0, t].

Proposition 2.2. Let X be a set and A ∈ IFS(X). If t, s ∈ [0, 1] then

Either A(t) uA(s) = O∗ or t = s

Proof. If A(t) uA(s) 6= O∗ and t 6= s then there exists x ∈ X,
µA (x) + νA (x) = t and µA (x) + νA (x) = s

⇒ t = s

�

Corollary 2.1. There exist an equivalence relation on X such that the sheet t−cuts
are equivalence class of that relation.

Definition 2.2. Let X be a set and A ∈ IFS(X). If t ∈ [0, 1] and α ∈ [0, t] then

A(t)α = {x : x ∈ X, A(t)(x) ≥ (α, t− α)}
is called α− t block cut of A.
From definitions, it is easily seen that for every t ∈ [0, 1], A(t) ∈ FS(X). Because

A(t) : X → [0, t] and [0, t] ∼ [0, 1]. For short notation, if A(t) : X → [0, t] then A(t)
will be called t−fuzzy set on X(A(t) ∈ FSt(X)). It is clear that A(t)α is a crisp
set.

Proposition 2.3. Let X be a set and A ∈ IFS(X). If t ∈ [0, 1] then

(1) A(t)t = {x : x ∈ X, µA (x) = t ∧ νA (x) = 0}
(2) A(t)0 = {x : x ∈ X, µA (x) ≥ 0 ∧ νA (x) ≤ t}
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Figure 2

(3) A(0) = U∗

Example 2.1. Let X = {a, b, c, d, e} and
A = {(a, 0.5, 0.4), (b, 0.2, 0.3), (c, 0.5, 0.3), (d, 0.4, 0.4), (e, 0.4, 0.1)}.

(1) A(0.5)0.3 = {e} but C0.3,0.5(A) = {a, c, d, e} and C0.5,0.3(A) = {c}.
(2) A(0.8)0.5 = {c} but 0.8 + 0.5 > 1 so, we can not obtain C0.5,0.8(A) or

C0.8,0.5(A).

Example 2.2. Let X = {a, b, c, d, e} and
A = {(a, 0.1, 0.2), (b, 0.4, 0.3), (c, 0.6, 0.2), (d, 0.7, 0.1), (e, 0.2, 0.5)}.

A(0.3)0.2 = ∅ but C0.2,0.3(A) = {b, c, d} and C0.3,0.2(A) = {c, d}.
That is seen from the examples, (α, β)−cut of an intuitionistic fuzzy set A and

α − t block cut of A are different sets. For all t ∈ [0, 1] and α ∈ [0, t], we can
determine α− t block cut of A, if α+ t > 1 then we can not determine (α, β)−cut of
A.Consequently, α−t block cut of an intuitionistic fuzzy set allows a more extensive
studying area.

Proposition 2.4. Let X be a set and A ∈ IFS(X). If t ∈ [0, 1] and α, β ∈ [0, t]
such that α ≤ β then A(t)β ⊆ A(t)α.

Proof. Let α ≤ β. If x ∈ A(t)β then

A(t)(x) ≥ (β, t− β) ≥ (α, t− α)

Therefore x ∈ A(t)α. �

Proposition 2.5. Let X be a set and A,B ∈ IFS(X). If t ∈ [0, 1] and α ∈ [0, t]
then

(1) A(t)α ∪B(t)α = (A(t) tB(t))α
(2) A(t)α ∩B(t)α = (A(t) uB(t))α
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(3) (A(t)c)α = t−A(t)α, (t(x) = t)
(4) (Ac(t)c)α = t−A(t)α = t−Ac(t)α

Proof. (1)

x ∈ A(t)α ∪B(t)α ⇔ A(t)(x) ≥ (α, t− α) ∨B(t)(x) ≥ (α, t− α)

⇔ (µA(t) (x) ≥ α ∧ νA(t) (x) ≤ t− α) ∨ (µB(t) (x) ≥ α ∧ νB(t) (x) ≤ t− α)

⇔ (µA(t) (x) ≥ α ∨ µB(t) (x) ≥ α) ∧ (νA(t) (x) ≤ t− α ∨ νB(t) (x) ≤ t− α)

⇔ (µA(t) (x) ∨ µB(t) (x)) ≥ α ∧ (νA(t) (x) ∧ νB(t) (x)) ≤ t− α)

⇔ µA(t)tB(t)(x) ≥ α ∧ νA(t)tB(t)(x) ≤ t− α
⇔ x ∈ (A(t) tB(t))α

(2)

A(t)α ∩B(t)α = {x ∈ X : A(t)(x) ≥ (α, t− α) ∧B(t)(x) ≥ (α, t− α)}
= {x ∈ X : (µA(t) (x) ≥ α ∧ νA(t) (x) ≤ t− α) ∧ (µB(t) (x) ≥ α ∧ νB(t) (x) ≤ t− α)}
= {x ∈ X : (µA(t) (x) ≥ α ∧ µB(t) (x) ≥ α) ∧ (νA(t) (x) ≤ t− α ∧ νB(t) (x) ≤ t− α)}
= {x ∈ X : (µA(t) (x) ∧ µB(t) (x)) ≥ α ∧ (νA(t) (x) ∨ νB(t) (x)) ≤ t− α)}
= {x ∈ X : µA(t)uB(t) (x) ≥ α ∧ νA(t)uB(t) (x) ≤ t− α)}
= (A(t) uB(t))α

(3)

(A(t)c)α = {x ∈ X : A(t)c(x) ≥ (α, t− α)}
= {x ∈ X : νA(t) (x) ≥ α ∧ µA(t) (x) ≤ t− α }
= {x ∈ X : t− νA(t) (x) ≤ t− α ∧ t− µA(t) (x) ≥ α}
= {x ∈ X : (t−A(t))(x) ≥ (α, t− α) }
= t−A(t)α

�
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and momentum of the particles. Some numerical results for the first few quan-

tum levels are determined with the help of MATHEMATICA software.

Received: 22–July–2016 Accepted: 29–August–2016

1. Introduction

Finding the exact solutions of the wave equations for the external fields is one of
the old problems. Among these equations Schrödinger and Klein-Gordon are the
most studied ones. Besides by the increase in the applications of the electric and
magnetic fields in fundamental areas of technology, especially in electromechanics,
health physics and so forth ,a significant interest has been given to these solutions.
Such efforts have been performed for different configurations of the external fields
[1-3].

These studies provide remarkable information regarding the quantum mechanical
systems. Some of these attempts are the interpretation of the physical processes.
The most important ones are Compton scattering by a laser source, Brownian
motion, coherent states, and energy levels of electrons.

There are very few studies in the literature on the solution of the wave equation of
the spinless particles in the presence of both electric and magnetic fields. The aim of
this study is to move this attempt one step further by obtaining the exact solutions
of the spinless particles for two orientations of decaying electric and magnetic fields
given by Case(i) A0 = E0

z , A1 = B0

y and Case(ii) A0 = E0

y , A1 = B0

y , where

E0 and B0 are constants. The first and second cases belong to the parallel and
orthogonal fields, respectively. We note that y and z variables are defined in the
region (0,∞) to keep the finite external fields. Such kind of varying electromagnetic
field is encountered in semiconductor heterostructures.

In the following sections, the exact solutions for nonrelativistic and relativistic
cases will be obtained, respectively. By comparing the solutions of the nonrelativis-
tic and relativistic wave equations of the spinless particles, contributions coming

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference
Key words and phrases. Relativistic particles, electromagnetic fields, energy spectrum.
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from the relativistic effects will be considered and by using the mathematical prop-
erties of the wave functions we will obtain the energy spectrum and exact solutions
for both cases.

2. Solution of the Schrodinger Equation

Motion of the nonrelativistic spinless particles is described by the Schrödinger
equation and in the existence of the external electromagnetic fields, it is given by
(we take ~ = 1)

(2.1)


(
~P − e ~A

)2
2m

Φ = (i
∂

∂t
− eA0)Φ

where e is charge, m is mass ot the particle, ~A is the vector electromagnetic poten-
tial. In the following steps we solve the Schrödinger equation for the cases where
electric and magnetic fields are parallel and perpendicular to each other.

2.1. Case (i) Parallel EM Fields. For the choice of A0 = E0

z , A1 = B0

y , ~E ‖ ~B.
We define the solution of (2.1) by

(2.2) Φ‖ = ei(Px−εt)H(y)K(z)

Plugging this solution into (2.1) we obtain,
(
Px −

eB0

y

)2

+ P 2
y︸ ︷︷ ︸

Q̂(y)

+P 2
z − 2m

(
ε− eE0

z

)
︸ ︷︷ ︸

D̂(z)

H(y)K(z) = 0

In short we can write [
Q̂(y) + D̂(z)

]
H(y)K(z) = 0

Separating this equation with respect to y and z, we obtain[
Q̂(y) + b

]
H(y) = 0(2.3) [

D̂(z)− b
]
K(z) = 0(2.4)

where b is the constant of separation.
Let γ2 = (P 2

x + b), and making ρ = 2γy change of variable (2.3) becomes Whit-
taker equation [4]

(2.5)

[
d2

dρ2
− e2B2

0

ρ2
+

2eB0Px
γρ

− 1

4

]
H(ρ) = 0

So exact solution of (2.3) is

(2.6) H(y) = Wλ,µ(2γy)

where µ2 = 1
4 + e2B2

0 , and λ = eB0Px

γ .

In order Whittaker function to be bounded [4]

µ− λ = −(n+
1

2
) = −N, n = 0, 1, 2, · · ·
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So from this equality we find

b = P 2
x

 1

1 + (1/4+N2)
e2B2

o
+ 2NeBo

√
1 + 1

4e2B2
0

− 1


Now for the solution of (2.4), this equation is written as[

P 2
z − 2m

(
ε− eE0

z

)
− b
]
K(z) = 0[

d2

dz2
− 2meE0

z
+ (2mε+ b)

]
K(z) = 0(2.7)

(2.7) is similar to the below equation

Definition 2.1.

xy′′ + (ax+ b)y′ + (cx+ d)y = 0

For a2 > 4c solution is given by [5]

y = x−
b
2 e−

ax
2 1F1

(
2d− ab

2
√
a2 − 4c

,
b− 1

2
, x
√
a2 − 4c

)
Returning to the equation (2.7),

zK ′′(z) + [(2mε+ b)z − 2meE0]K(z) = 0

for 0 > 2mε+ b

K(z) = 1F1

(
−meE0√
−(2mε+ b)

,−1

2
, z
√
−4(2mε+ b)

)
From the requirement of Hypergeometric functions to be finite

−2meE0√
−4(2mε+ b)

= −n

where n = 0, 1, 2, ... we obtain the energy spectrum of Schrödinger equation for the
parallel case as

ε‖ =
P 2
x

2m

1− 1

1 + (1/4+N2)
e2B2

o
+ 2NeBo

√
1 + 1

4e2B2
0

− me2E2
0

2n2

So the exact solution of (2.1) for parallel case is written as

Φ‖ = ei(xPx−εt)Wλ,µ(2γy)1F1(z)

2.2. Case (ii) Orthogonal EM Fields. For the choice of A0 = E0

y , A1 = B0

y ,

~E ⊥ ~B. In this case, we will look for the solution of (2.1) as

Φ⊥ = ei(xPx+zPz−εt)M(y)

Writing this in (2.1), we obtain[
d2

dy2
− e2B2

0

y2
+

2e(PxB0 −mE0)

y
+ (2mε− P 2

x − P 2
z )

]
M(y) = 0

Again solution of this equation is given by Whittaker function as

M(y) = Wκ,σ(2uy)
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where κ = e(Px−mE0)
iu , σ2 = 1

4 − e2B2
0 , u2 = (2mε − P 2

x − P 2
z ). For Whittaker

functions,

σ − κ = −(n+ 1/2)

should be satisfied. From this condition, we obtain the energy spectrum for the
Schrödinger equation for the orthogonal case

ε⊥ =
1

2m

P 2
x + P 2

z −
e2P 2

xB
2
0 + e2m2E2

0 − 2e2mPxB0E0

1
4 + e2B2

0 +N2 + 2N
√

1
4 + e2B2

0


So the exact solution of (2.1) in orthogonal case is written as

Φ⊥ = ei(xPx+zPz−εt)Wκ,σ(2uy)

3. Solution of the Klein-Gordon Equation

The Klein-Gordon equation for the relativistic spinless particles is given by (we
take ~ = 1)

(3.1)
[
(~P − e ~A)2 +m2

]
φ = (P0 − eA0)2φ

3.1. Case (i) Parallel EM Fields. Again we will look for the solution as

φ‖ = ei(xPx−εt)F (y)G(z)

writing this in (3.1) we obtain− d2

dy2
+ (Px −

eB0

y
)2︸ ︷︷ ︸

Q̂(y)

− d2

dz2
− (ε− eE0

z
)2︸ ︷︷ ︸

R̂(z)

+m2

F (y)G(z) = 0

In short we can write [
Q̂(y) + R̂(z) +m2

]
F (y)G(z) = 0

Separating this equation with respect to y and z, we obtain[
Q̂(y) + s

]
F (y) = 0(3.2) [

R̂(z) +m2 − s
]
G(z) = 0(3.3)

where s is the separation constant.
Equation (3.2) is written as

(3.4)

[
− d2

dy2
+ (Px −

eB0

y
)2 + s

]
F (y) = 0

This equation is the same equation obtained in the Schrödinger case. So the solution
is

F (y) = Wλ,µ(2γy)

where µ = ±
√

1
4 + e2B2

0 , λ = eB0√
1+ s

P2
x

and γ =
√
P 2
x + s



82 ÖZGÜR MIZRAK AND KENAN SOGUT

As before

s = P 2
x

 1

1 + (1/4+N2)
e2B2

o
+ 2NeBo

√
1 + 1

4e2B2
0

− 1


Equation (3.3) is written as

(3.5)

[
− d2

dz2
−
(
ε− eE0

z

)2

+m2 − s

]
G(z) = 0

Again solution of this equation is given by Whittaker functions

G(z) = Wλ̃,µ̃(2αz)

where λ̃ = ieE0ε
α , µ̃ = ±

√
1
4 − e2E

2
0 , and α2 = ε2−m2 +s and the energy spectrum

for the parallel case is given by

ε‖ = ±

 (m2 − s)
(

1
4 − e

2E2
0 +N2 + 2Ñ

√
1
4 − e2E

2
0

)
1
4 + Ñ2 + 2Ñ

√
1
4 − e2E

2
0


1
2

and the exact solution of Klein-Gordon equation for the parallel case is given by

φ‖ = ei(xPx−εt)Wλ,µ(2γy)Wλ̃,µ̃(2αz)

3.2. Case (ii) Orthogonal EM Fields. For the choice of A0 = E0

y , A1 = B0

y ,

~E ⊥ ~B.
Again we will look for the solution of (3.1) as

φ⊥ = ei(xPx+zPz−εt)N(y)

Writing this in (3.1), we obtain[
d2

dy2
+
e2(E2

0 −B2
0)

y2
+

2e(PxB0 − εE0)

y
+ (ε2 −m2 − P 2

x − P 2
z )

]
N(y) = 0

Again solution of this equation is given by Whittaker function as

N(y) = Wκ̃,σ̃(2vy)

where κ̃ = e(Px−εE0)
iv , σ̃2 = 1

4 − e2(E2
0 − B2

0), v2 = (ε2 − m2 − P 2
x − P 2

z ). For
Whittaker functions,

σ̃ − κ̃ = −(ñ+ 1/2)

should be satisfied. From this condition, we obtain the energy spectrum for the
Klein-Gordon equation for the orthogonal case from below quadratic equation

ε2 (w2 + e2E2
0)︸ ︷︷ ︸

a

+ε (−2e2PxB0E0)︸ ︷︷ ︸
b

+ e2P 2
xB

2
0 − w2(m2 + P 2

x + P 2
z )︸ ︷︷ ︸

c

= 0

where w =
√

1
4 − e2(E2

0 −B2
0) + Ñ .

ε⊥ =
−b±

√
b2 − 4ac

2a

Exact solution of the (3.1) for the orthogonal case is

φ⊥ = ei(xPx+zPz−εt)Wκ̃,σ̃(2vy)
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Figure 1. Parallel Case Figure 2. Orthogonal Case

4. Conclusion

We investigated the motion of the spin-0 particles in electromagnetic fields for
parallel and orthogonal orientations. Analysis is performed for Schrödinger and
Klein-Gordon cases and that present us the contribution of the relativistic effects.

In the case of
−→
E ‖

−→
B , the relativistic effects arise only for the motion in the z-

direction. In that case the Whittaker functions that occurred in the relativistic
solutions are replaced by the confluent hypergeometric function for nonrelativistic

solutions. In case of the orthogonal fields
−→
E ⊥

−→
B , exact solutions of the Schrödinger

and Klein-Gordon equations are found in terms of the Whittaker functions.
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1. Introduction

The original concept of fuzzy sets in Zadeh [9] was introduced as an extension of
crisp sets by enlarging the truth value set to the real unit interval [0, 1]. In fuzzy set
theory, if the membership degree of an element x is µ(x) then the nonmembership
degree is 1−µ(x) and thus it is fixed. Intuitionistic fuzzy sets have been introduced
by Atanassov in 1983 [1] and form an extension of fuzzy sets by enlarging the truth
value set to the lattice [0, 1]× [0, 1].

Definition 1.1. [1] An intuitionistic fuzzy set (shortly IFS) on a set X is an object
of the form

A = {< x, µA(x), νA(x) >: x ∈ X}
where µA(x), (µA : X → [0, 1]) is called the “degree of membership of x in A ”,
νA(x), (νA : X → [0, 1])is called the “ degree of non- membership of x in A ”,and
where µA and νA satisfy the following condition:

µA(x) + νA(x) ≤ 1, for all x ∈ X.
The hesitation degree of x is defined by πA(x) = 1− µA(x)− νA(x)

Definition 1.2. [1]An IFS A is said to be contained in an IFS B (notation A v B)
if and only if, for all x ∈ X : µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

It is clear that A = B if and only if A v B and B v A.
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Definition 1.3. [1]Let A ∈ IFS and let A = {< x, µA(x), νA(x) >: x ∈ X} then
the above set is callede the complement of A

Ac = {< x, νA(x), µA(x) >: x ∈ X}

Definition 1.4. [2] Let X be a set and A = {< x, µA(x), νA(x) >: x ∈ X} ∈

IFS(X).

(1) �A = {< x, µA(x), 1− µA(x) >: x ∈ X}

(2) ♦A = {< x, 1− νA(x), νA(x) >: x ∈ X}

Definition 1.5. [3] Let X be a set andA = {〈x, µA (x) , νA (x)〉 : x ∈ X} ∈ IFS(X),
for α, β ∈ I

(1) �(A) =
{〈
x.µA(x)

2 , νA(x)+1
2

〉
: x ∈ X

}
(2) �(A) =

{〈
x, µA(x)+1

2 , νA(x)
2

〉
: x ∈ X

}
(3) �α(A) = {〈x, αµA(x), ανA(x) + 1− α〉 : x ∈ X}
(4) �α(A) = {〈x, αµA(x) + 1− α, ανA(x)〉 : x ∈ X}
(5) for max{α, β}+ γ ∈ I, �α,β,γ(A) = {< x,αµA(x), βνA(x) + γ >: x ∈ X}
(6) for max{α, β}+ γ ∈ I, �α,β,γ(A) = {< x,αµA(x) + γ, βνA(x) >: x ∈ X}

Definition 1.6. [8] Let X be a set and A = {< x, µA(x), νA(x) >: x ∈ X} ∈
IFS(X), α, β, α+ β ∈ I

(1) �α,β(A) = {〈x, αµA(x), ανA(x) + β〉 : x ∈ X}
(2) �α,β(A) = {〈x, αµA(x) + β, ανA(x)〉 : x ∈ X}

The operators �α,β,γ ,�α,β,γare an extensions of �α,β ,�α,β(resp.).
In 2007, the author[4] defined a new operator and studied some of its properties.

This operator is named Eα,β and defined as follows:

Definition 1.7. [4]Let X be a set and A = {< x, µA(x), νA(x) >: x ∈ X} ∈
IFS(X), α, β ∈ [0, 1]. We define the following operator:

Eα,β(A) = {< x, β(αµA(x) + 1− α), α(βνA(x) + 1− β) >: x ∈ X}

If we choose α = 1 and write α insteed of β we get the operator �. Similarly, if
β = 1 is chosen and writen insteed of β, we get the operator �α.

In2007, Atanassov introduced the operator �α,β,γ,δ which is a natural extension
of all these operators in [3].

Definition 1.8. [3]Let Xbe a set, A∈ IFS(X), α, β, γ, δ ∈ [0, 1] such that

max(α, β) + γ + δ 6 1

then the operator �α,β,γ,δ defined by

�α,β,γ,δ(A) = {< x,αµA(x) + γ, βνA(x) + δ >: x ∈ X}

In 2010, the author [4] defined a new operator which is a generalization of Eα,β .
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Definition 1.9. [4]Let X be a set and A ∈ IFS(X), α, β, ω ∈ [0, 1]. We define the
following operator:

Zωα,β(A) = {< x, β(αµA(x) + ω − ω.α), α(βνA(x) + ω − ω.β) >: x ∈ X}

We have defined a new OTMO on IFS, that is generalization of the some OTMOs.

Zω,θα,β defined as follows:

Definition 1.10. [4]Let X be a set and A ∈ IFS(X), α, β, ω, θ ∈ [0, 1]. We define
the following operator:

Zω,θα,β(A) = {< x, β(αµA(x) + ω − ω.α), α(βνA(x) + θ − θ.β) >: x ∈ X}

The operator Zω,θα,β is a generalization of Zωα,β ,and also, Eα,β ,�α,β ,�α,β .

Definition 1.11. [5]Let G be a groupoid, A ∈ IFS(G).If for all x, y ∈ G,

A(xy) ≥ min(A(x), A(y))

then A called an intuitionistic fuzzy subgrupoid over G.

Definition 1.12. [6]Let G be a grupoid, A ∈ IFS(G). If for all x, y ∈ G,

A(xy) ≥ max(A(x), A(y))

then A called an intuitionistic fuzzy ideal over G, shortly IFI(G).

Definition 1.13. [6]Let G be a grup and A ∈ IFS(G) a grupoid. If for all x ∈ G,

A(x−1) ≥ A(x)

then A called an intuitionistic fuzzy subgroup over G,shortly IFG(G).

2. Main Results

Theorem 2.1. Let G be a groupoid and A ∈ IFS(G).

(1) If A ∈ IFI(G) then �A ∈ IFI(G)
(2) If A ∈ IFI(G) then ♦A ∈ IFI(G)

Proof. (1)For x, y ∈ G,
µ�A(xy) = µA(xy) ≥ µA(x) ∨ µA(y)

and

ν�A(xy) = 1− µA(xy) ≤ (1− µA(x)) ∧ (1− µA(y))

= ν�A(x) ∧ ν�A(y)

So,
�A(xy) ≥ �A(x) ∨�A(y)

�

Theorem 2.2. Let G be a groupoid and A ∈ IFS(G).

(1) If A ∈ IFI(G) then �(A) ∈ IFI(G)
(2) If A ∈ IFI(G) then �(A) ∈ IFI(G)
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Proof. (1)For x, y ∈ G,

µ�(A)(xy) =
µA(xy)

2
≥ µA(x)

2
∨ µA(y)

2
= µ�(A)(x) ∨ µ�(A)(y)

and

ν�(A)(xy) =
νA(xy) + 1

2
≤ νA(x) + 1

2
∧ νA(y) + 1

2
= ν�(A)(x) ∧ ν�(A)(y)

So,
�(A)(xy) ≥ �(A)(x) ∨�(A)(y)

�

Theorem 2.3. Let G be a groupoid and A ∈ IFS(G).

(1) If A ∈ IFI(G) then �α(A) ∈ IFI(G)
(2) If A ∈ IFI(G) then �α(A) ∈ IFI(G)

Proof. (1)For x, y ∈ G,
µ�α(A)(xy) = αµA(xy) + 1− α ≥ (αµA(x) + 1− α) ∨ (αµA(y) + 1− α)

= µ�α(A)(x) ∨ µ�α(A)(y)

and

ν�α(A)(xy) = ανA(xy) ≤ (ανA(x)) ∧ (ανA(y))

= ν�α(A)(x) ∨ ν�α(A)(y)

So,
�α(A)(xy) ≥ �α(A)(x) ∨�α(A)(y)

�

Theorem 2.4. Let G be a groupoid and A ∈ IFS(G).

(1) If A ∈ IFI(G) then �α,β(A) ∈ IFI(G)
(2) If A ∈ IFI(G) then �α,β(A) ∈ IFSI(G)
(3) If A ∈ IFI(G) then �α,β,γ(A) ∈ IFI(G)
(4) If A ∈ IFI(G) then �α,β,γ(A) ∈ IFI(G)

Proof. For x, y ∈ G,
µ�α,β,γ(A)(xy) = αµA(xy) ≥ αµA(x) ∨ αµA(y)

= µ�α,β,γ(A)(x) ∨ µ�α,β,γ(A)(y)

and

ν�α,β,γ(A)(xy) = βνA(xy) + γ ≤ (βνA(x) + γ) ∧ (βνA(y) + γ)

= ν�α,β,γ(A)(x) ∧ ν�α,β,γ(A)(y)

So,
�α,β,γ(A)(xy) ≥ �α,β,γ(A)(x) ∨�α,β,γ(A)(y)

The other properties can proof with same way. �

Theorem 2.5. Let G be a groupoid and A ∈ IFS(G) an ideal then Eα,β(A) ∈
IFS(G) is an ideal.
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Proof. For x, y ∈ G,
µEα,β(A)(xy) = β(αµA(xy) + 1− α) ≥ β(αµA(x) + 1− α) ∨ β(αµA(y) + 1− α)

= µEα,β(A)(x) ∨ µEα,β(A)(y)

and

νEα,β(A)(xy) = α(βνA(xy) + 1− β) ≤ α(βνA(x) + 1− β) ∧ α(βνA(y) + 1− β)

= νEα,β(A)(x) ∧ νEα,β(A)(y)

So,
Eα,β(A)(xy) ≥ Eα,β(A)(x) ∨ Eα,β(A)(y)

�

Theorem 2.6. Let G be a groupoid and A ∈ IFS(G) an ideal then �α,β,γ,δ(A) ∈
IFS(G) is an ideal.

Proof. For x, y ∈ G,
µ�α,β,γ,δ(A)(xy) = αµA(xy) + γ ≥ (αµA(x) + γ) ∨ (αµA(y) + γ)

= µ�α,β,γ,δ(A)(x) ∨ µ�α,β,γ,δ(A)(y)

and

ν�α,β,γ,δ(A)(xy) = βνA(xy) + δ ≤ (βνA(x) + δ) ∧ (βνA(y) + δ)

= ν�α,β,γ,δ(A)(x) ∧ ν�α,β,γ,δ(A)(y)

So,�α,β,γ,δ(A)(xy) ≥ �α,β,γ,δ(A)(x) ∨�α,β,γ,δ(A)(y) �

Theorem 2.7. Let G be a groupoid and A ∈ IFS(G) an ideal then Zω,θα,β(A) ∈
IFS(G) is an ideal.

Proof. For x, y ∈ G,
µZω,θα,β(A)(xy) = β(αµA(xy) + ω − ω.α) ≥ β(αµA(x) + ω − ω.α) ∨ β(αµA(y) + ω − ω.α)

= µZω,θα,β(A)(x) ∨ µZω,θα,β(A)(y)

and

νZω,θα,β(A)(xy) = α(βνA(xy) + θ − θ.β) ≤ α(βνA(x) + θ − θ.β) ∧ α(βνA(y) + θ − θ.β)

= νZω,θα,β(A)(x) ∧ νZω,θα,β(A)(y)

Therefore, we obtain Zω,θα,β(A)(xy) ≥ Zω,θα,β(A)(x) ∨ Zω,θα,β(A)(y). �

Theorem 2.8. Let G be a group and A ∈ IFS(G).

(1) If A ∈ IFG(G) then �A ∈ IFG(G).
(2) If A ∈ IFG(G) then ♦A ∈ IFG(G).

Proof. It is clear that, if A ∈ IFG(G) then it means A ∈ IFI(G) and for all x ∈ G,
A(x−1) ≥ A(x).

So, it will be enough to prove the correctness of the second condition.
(2)For x ∈ G

µ♦A(x−1) = 1− νA(x−1) ≥ 1− νA(x) = µ♦A(x)

and
ν♦A(x−1) = νA(x−1) ≤ νA(x) = ν♦A(x)
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The other property can be proved same way. �

Theorem 2.9. Let G be a group and A ∈ IFS(G).

(1) If A ∈ IFG(G) then �(A) ∈ IFG(G)
(2) If A ∈ IFG(G) then �(A) ∈ IFG(G)

Proof. (2)For x, y ∈ G,If A ∈ IFG(G) then �(A) ∈ IFI(G). So, �(A)(xy) ≥
�(A)(x) ∧�(A)(y).

Now,

µ�(A)(x
−1) =

µA(x−1) + 1

2
≥ µA(x) + 1

2
= µ�(A)(x)

and

ν�(A)(x
−1) =

νA(x−1)

2
≤ νA(x)

2
= ν�(A)(x)

Therefore,

�(A)(x−1) ≥ �(A)(x)

�

Theorem 2.10. Let G be a group and A ∈ IFS(G).

(1) If A ∈ IFG(G) then �α(A) ∈ IFG(G)
(2) If A ∈ IFG(G) then �α(A) ∈ IFG(G)

Proof. (1)For x, y ∈ G, it is clear that �α(A)(xy) ≥ �α(A)(x)∧�α(A)(y). On the
other hand,

µ�α(A)(x
−1) = αµA(x−1) ≥ αµA(x) = µ�α(A)(x)

and

ν�α(A)(x
−1) = ανA(x−1) + 1− α ≤ ανA(x) + 1− α = ν�α(A)(x)

So,

�α(A)(x−1) ≥ �α(A)(x)

�

Theorem 2.11. Let G be a group and A ∈ IFS(G).

(1) If A ∈ IFG(G) then �α,β(A) ∈ IFG(G)
(2) If A ∈ IFG(G) then �α,β(A) ∈ IFG(G)
(3) If A ∈ IFG(G) then �α,β,γ(A) ∈ IFG(G)
(4) If A ∈ IFG(G) then �α,β,γ(A) ∈ IFG(G)

Proof. For x, y ∈ G,

µ�α,β,γ(A)(x
−1) = αµA(x−1) + γ ≥ αµA(x) + γ = µ�α,β,γ(A)(x)

and

ν�α,β,γ(A)(x
−1) = βνA(x−1) ≤ βνA(x) = ν�α,β,γ(A)(x)

So,

�α,β,γ(A)(x−1) ≥ �α,β,γ(A)(x)

The other properties can proof with same way. �

Theorem 2.12. Let G be a group and A ∈ IFS(G). If A is an intuitionistic fuzzy
subgroup on G then Eα,β(A) ∈ IFG(G).
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Proof. It is clear that for x, y ∈ G, Eα,β(A)(xy) ≥ Eα,β(A)(x) ∧ Eα,β(A)(y).

µEα,β(A)(x
−1) = β(αµA(x−1) + 1− α) ≥ β(αµA(x) + 1− α)

= µEα,β(A)(x)

and

νEα,β(A)(x
−1) = α(βνA(x−1) + 1− β) ≤ α(βνA(x) + 1− β)

= νEα,β(A)(x)

So, Eα,β(A) ∈ IFG(G). �

Theorem 2.13. Let G be a group and A ∈ IFS(G) an intuitionistic fuzzy group
then �α,β,γ,δ(A) ∈ IFS(G) is an intuitionistic fuzzy subgroup.

Proof. For x ∈ G,
µ�α,β,γ,δ(A)(x

−1) = αµA(x−1) + γ ≥ αµA(x) + γ

= µ�α,β,γ,δ(A)(x)

and

ν�α,β,γ,δ(A)(x
−1) = βνA(x−1) + δ ≤ βνA(x) + δ

= ν�α,β,γ,δ(A)(x)

Therefore �α,β,γ,δ(A) ∈ IFG(G). �

Theorem 2.14. Let G be a group and A ∈ IFS(G). If A is an intuitionistic fuzzy

subgroup on G then Zω,θα,β(A) ∈ IFG(G).

Proof. It can shown easily. �
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STABILITY ANALYSIS ON EFFECT OF SYSTEM RESTORE ON

EPIDEMIC MODEL FOR COMPUTER VIRUSES

MEHMET EMRE ERDOGAN AND KEMAL USLU

Abstract. More than 317 million new pieces of malware computer viruses
or other malicious software were created last year. That means nearly one

million new threats were released each day. Every year computer viruses cost

homes and businesses billions of dollars in lost time and equipment. Com-
puter viruses are continually evolving and their structures increasingly becom-

ing more complex and transmission capabilities are becoming more powerful.

So, we consider a SEIS model to demonstrate the system restore has a more
effective role than antivirus softwares on virus defense. Also we have investi-

gated the global behavior of the endemic equilibrium and we have supported

our results with numerical simulation.

Received: 28–July–2016 Accepted: 29–August–2016

1. Introduction

Epidemiology is an area of medicine concerned with the identification of factors
and conditions associated with the spread of an infectious process in a community.
Because of a virus programs behavior is similar to the infectious process, this ar-
eas detects and strategies that may be useful for us [1]. Biological viruses enter
their host through an opening after passively being breathed in, swallowed or via
direct contact. Virtual viruses also enter their host passively when you insert an
infected disk or open an infected e-mail attachment. Similarly to a biological virus
which has to have the correct host and tissue specicity to gain a foothold a horse
virus would not make a human being sick a computer virus has to be compatible
with the system to gain a foothold. The damage these viruses do is also similar.
Biological viruses replicate at the cost of the host damage can include pain, suffer-
ing and even death. Computer viruses slow down the computer files can become
inaccessible and even lost, and sometimes the complete hard disk gets damaged
[2]. Community, population, carrier, portal of entry, vector, symptom, modes of
transmission, extra-host survival, immunity, susceptibility, sub-clinical, indicator,
effective transfer rate, quarantine, isolation, infection, medium and culture are all
terms from epidemiology that are useful in understanding and fighting computer
viruses [1].
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A computer virus is a program that can infect other programs by modifying
them to include a possibly evolved version of itself. With this infection property,
a virus can spread to the transitive closure of information flow, corrupting the in-
tegrity of information as it spreads. Given the widespread use of sharing in current
computer systems, the threat of a virus causing widespread integrity corruption is
significant [3]. Viruses, worms and trojans are all part of a class of software called
malware. Malware or malicious code (malcode) is short for malicious software. It is
code or software that is specifically designed to damage, disrupt, steal, or in general
inflict some other bad or illegitimate action on data, hosts, or networks. A com-
puter virus is a type of malware that propagates by inserting a copy of itself into
and becoming part of another program. It spreads from one computer to another,
leaving infections as it travels. Viruses can range in severity from causing mildly
annoying effects to damaging data or software and causing denial-of-service condi-
tions. Almost all viruses are attached to an executable file, which means the virus
may exist on a system but will not be active or able to spread until a user runs or
opens the malicious host file or program. When the host code is executed, the viral
code is executed as well. Normally, the host program keeps functioning after it is
infected by the virus. However, some viruses overwrite other programs with copies
of themselves, which destroys the host program altogether. Viruses spread when
the software or document they are attached to is transferred from one computer to
another using the network, a disk, file sharing, or infected e-mail attachments.

The proper assessment of computer viruses in the management of information
security and integrity depends on estimates of the risk and impact of computer
virus incidents and an analysis of how they are influenced by various factors in
the computing environment. Mathematical or computer simulation models of the
transmission and control of computer viruses can be useful in synthesizing avail-
able information and providing a theoretical basis for control strategies [4]. Pre-
dicting virus outbreaks is extremely difficult due to human natre of the attacks
but more importantly, detecting outbreaks early with a low probability of false
alarms seems quiet difficult [5]. By developing models it is possible to character-
ize essential properties of the attacks [6]. Consequently, anti-virus software has
been developed to take precautions. In order to understanding the effectiveness
of the antivirus technologies, numbers of mathematical models were suggested to
investigate the epidemic behaviors of computer virus. Due to analogical similarity
between the computer viruses and infectious diseases biological counterparts, sev-
eral propagation models of computer viruses have been proposed, and the obtained
results indicate that the long-term behavior of computer virus can be predicted.
One of the early triumphs of mathematical epidemiology was the formulation of
a simple model that predicted behaviour very similar to the behaviour observed
in countless epidemics [7]. The Kermack McKendrick model is a compartmental
model based on relatively simple assumptions on the rates of flow between different
classes of members of the population [8]. Thenceforward many computer viruses
modelling studies have been made. These are; SI models [9-11], SIS models [12-
14], SIR models [15-20], SIRS models [21-26], SAIC models [27], SEIR models [28],
SEIQR-SEIQRS models [29-32], SLBS models [33-36], and some other models [37-
41], have been proposed that every compartment which are Susceptible computers,
Infected computers including the latent and breaking-out computers based on some
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models, Recovered computers including the quarantine computers based on some
models are considered to have the same connecting and disconnecting constants,
on some models for the latent and breaking-out computers have the same infect-
ing, corrupting and recovered constants When considering today’s conditions, it
is clear that this situation is how inadequate. That’s what we have done in this
study, eliminating this deficiency we tried to develop an advanced epidemic model
by thinking total of 14 separate constants for connecting, disconnecting, infecting,
recovering and corrupting to the each compartment, instead of previous models
have been constructed by 4-5 parametres. Furthermore, we optimized our model
for the present day including the effect of system restore which is not considered so
far.

So, we consider a SEIS model (see also Fig.1), where the compartments are: S(t)
susceptible, E(t) exposed, I(t) infective at time t, respectively. The parameters of
the model are defined as:

D1.: Every computer connects to the Internet with constant rate α > 0.
Respectively positive constant rates for each compartments are: α1 for
Susceptible, α2 for Exposed, α3 for Infective. Let α = α1 + α2 + α3.

D2.: Every computer disconnects from the Internet with constant rate δ >
0. Respectively positive constant rates for each compartments are: δ1 for
Susceptible,δ2 for Exposed and δ3 for Infective. Let δ = δ1 + δ2 + δ3.

D3.: Every susceptible computer is infected with constant rate β > 0 by
infected removable storage media.

D4.: Every susceptible computer is infected by exposed computers with con-
stant rate γ1 > 0 and infective computers with constant rate γ2 > 0, where
γ = γ1 + γ2.

D5.: Every exposed computer is transformed into infective computer with
constant rate η > 0, and recovered with constant rate θ1 > 0.

D6.: Every infective computer is recovered with constant rate θ2 > 0.
D7.: Every infective computer is returned to susceptible computer with con-

stant rate µ1 > 0, and returned to exposed computer with constant rate
µ2 > 0 by using system restore. Let µ = µ1 + µ2.

Figure 1. The SEIS Model
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From the definitions, model can be shown by:

(1.1)

S′ (t) = α1 + θ1E(t) + (θ2 + µ1) I (t)− (β + γ1E (t) + γ2I (t) + δ1)S (t)

E′ (t) = α2 + (β + γ1E (t) + γ2I (t))S (t)− (θ1 + η + δ2)E (t) + µ2I (t)

I ′ (t) = α3 + ηE (t)− (θ2 + µ1 + µ2 + δ3) I (t)

with the initial conditions (S(0), E(0), I(0)) ∈ R3
+. Let N(t) = S(t) + E(t) + I(t).

Summing the system and simplifying, we get dN(t)
dt = α − δN(t), it is easy to get

limt→∞N(t) = α
δ . Hence, the following system would be obtained by system (1.1):

(1.2)
E′ = α2 + (β + γ1E + γ2I) (N − E − I)− (θ1 + η + δ2)E + µ2I

I ′ = α3 + ηE − (θ2 + µ1 + µ2 + δ3) I

with initial conditions (E(0), I(0)) ∈ R2
+. It is easy to verify that∆ = {(E, I)|E, I ≥

0, N ≥ E+ I} is positively invariant for the system (1.2). As thus, we will consider
the global stability of (1.2) on the set ∆. Let us shortly overview the theory of
asymptotically autonomous systems. An ordinary differential equation in Rn,

(1.3) x = f (t, x)

is called asymptotically autonomous with limit equation

(1.4) y = g (y)

if f (t, x) → g (x), t → ∞, locally uniformly in x ∈ Rn, i.e. for x in any compact
subset of Rn. For simplicity we assume that f (t, x) , g (x) are continuous functions
and locally Lipschitz in x. The ω−limit sets, ω (t0, x0), of forward bounded solutions
x to (1.3), subject to x (t0) = x0 x ∈ ω (t0, x0) ⇔ x = limj→∞ x (tj) for some
sequence tj →∞.

Theorem 1.1. Let n = 2 and ω be the ω− limit set of a forward bounded solu-
tion x of the asymptotically autonomous system (1.3). Assume that there exists a
neighborhood of ω which contains at most finitely many equilibria of system (1.4).
Then the following trichotomy holds:

• ω consists of an equilibrium of system (1.4).
• ω is the union of periodic orbits of system (1.4) and possibly of centers of

system (1.4) that are surrounded by periodic orbits of system (1.4) lying in
ω.

• ω contains equilibria of system (1.4) that are cyclically chained to each other
in ω orbits of system (1.4).

It follows from the Thieme’s Theorem and the subsequent study that, for the purpose
of understanding the behavior of the original system (1.1), it suffices to investigate
its limit system (1.2) [42].

2. Model Analysis

2.1. Equilibrium Point.
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Theorem 2.1. Assume (γ1 + γ2b)
(
α
δ − a

)
+µ2b > (b+ 1) (β + γ2a)+(θ1 + η + δ2).

Then the system (1.1) has a unique equilibrium point
−
E= (S∗, E∗, I∗), where

S∗ = N∗ − (E∗ + I∗)(2.1)

E∗ =
−m1 −

√
m2

1 − 4m0m2

2m0
(2.2)

I∗ =
α3 + ηE∗
θ2 + µ+ δ3

(2.3)

a =
α3

θ2 + µ+ δ3
(2.4)

b =
η

θ2 + µ+ δ3
(2.5)

m0 = − (b+ 1) (γ1 + γ2b)(2.6)

m1 = (γ1 + γ2b)
(α
δ
− a
)
− (b+ 1) (β + γ2a)− (θ1 + η + δ2) + µ2b(2.7)

m2 = α2 + (β + γ2a)
(α
δ
− a
)

+ µ2a(2.8)

Furthermore, S∗ + E∗ + I∗ > 0.

Proof. 1. If we solve the system,

(2.9)

α− δ (S + E + I) = 0

α2 + (β + γ1E + γ2I)
(α
δ
− E − I

)
− (θ1 + η + δ2)E + µ2I = 0

α3 + ηE − (θ2 + µ+ δ3) I = 0

From the third equation of system (2.9), we can get I∗ =
α3 + ηE∗
θ2 + µ+ δ3

. Substituting

this equation into the second equation of system (2.9) and rearranging terms we
have,

[− (b+ 1) (γ1 + γ2b)]E
2
∗ +

[
(γ1 + γ2b)

(α
δ
− a
)
− (b+ 1) (β + γ2a)

− (θ1 + η + δ2) + µ2b

]
E∗ + α2 + (β + γ2a)

(α
δ
− a
)

+ µ2a = 0

where a =
α3

θ2 + µ+ δ3
> 0, b =

η

θ2 + µ+ δ3
> 0. If we substituting equations

(2.6) , (2.7) , (2.8) into this equation, we have

(2.10) m0E
2
∗ +m1E∗ +m2 = 0

where m0 = − (b+ 1) (γ1 + γ2b) < 0, and we can get,

m1 = (γ1 + γ2b)
(
α
δ − a

)
− (b+ 1) (β + γ2a)− (θ1 + η + δ2) + µ2b > 0,

from our assuming

m2 = α2 + (β + γ2a)
(
α
δ − a

)
µ2a > 0,

Let the discriminant of (2.10) be ∆ = m2
1 − 4m0m2 > 0. So, E∗ = −m1−

√
∆

2m0
> 0.

That is shows us
−
E= (S∗, E∗, I∗) is the unique equilibrium of the system (1.1). It

is trivial to verify that E∗ + I∗ > 0.
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2.2. Stability Analysis.

Lemma 1. The equilibrium point
−
E is locally asymptotically stable.

Proof. 2. According to Theorem (1.1),

(2.11)

N ′ = α− δN,
E′ = α2 + (β + γ1E + γ2I) (N − E − I)− (θ1 + η + δ2)E + µ2I

I ′ = α3 + ηE − (θ2 + µ1 + µ2 + δ3) I

The dynamical system (2.11) has a unique equilibrium point
−
E= (N∗, E∗, I∗) and

locally asymptotically stable at
−
E. The Jacobian matrix of the linearized system of

system (2.11) evaluated at
−
E is

J =

 −δ 0 0
j21 j22 j23
0 −η − (θ2 + µ+ δ3)


where

(2.12)

j21 = β + γ1E∗ + γ2I∗,

j22 = − (β + γ1E∗ + γ2I∗) + γ1 (N∗ − E∗ − I∗)− (θ1 + η + δ2) ,

j23 = − (β + γ1E∗ + γ2I∗) + γ2 (N∗ − E∗ − I∗) + µ2,

in order to determine the characteristic equation,

det |λIn − J | =

∣∣∣∣∣∣
λ+ δ 0 0
j21 λ− j22 i23
0 η λ+ (θ2 + µ+ δ3)

∣∣∣∣∣∣,
(λ+ δ) [(λ− j22) (λ+ θ2 + µ+ δ3)− ηj23] = 0

Thus the characteristic polynomial is

(2.13) h (λ) = (λ+ δ)
(
n2λ

2 + n1λ+ n0
)
,

where

n2 = 1,

n1 = θ2 + µ+ δ3 + (β + γ1E∗ + γ2I∗)− γ1 (N∗ − E∗ − I∗) + (θ1 + η + δ2) ,

n0 = (θ2 + µ+ δ3 + η) (β + γ1E∗ + γ2I∗)− (γ1 (θ2 + µ+ δ3) + ηγ2) (N∗ − E∗ − I∗)
+ (θ2 + µ+ δ3) (θ1 + η + δ2)− ηµ2,

it is obvious that

α2 + (β + γ1E∗ + γ2I∗)S∗ − (θ1 + η + δ2)E∗ + µ2I∗ = 0

hence

α2 + βS∗ + γ1S∗E∗ + γ2S∗
α3 + ηE∗
θ2 + µ+ δ3

− (θ1 + η + δ2)E∗ + µ2
α3 + ηE∗
θ2 + µ+ δ3

= 0,

we have

γ1S∗ + γ2S∗
η

θ2 + µ+ δ3
< θ1 + η + δ2
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and

γ1S∗ + γ2S∗
η

θ2 + µ+ δ3
+ µ2

η

θ2 + µ+ δ3
< θ1 + η + δ2

it is,

S∗ <
(θ1 + η + δ2) (θ2 + µ+ δ3)− ηµ2

γ1 (θ2 + µ+ δ3) + γ2η

from here,

n1 = θ2 + µ+ δ3 + (β + γ1E∗ + γ2I∗)− γ1S∗ + (θ1 + η + δ2)

> θ2 + µ+ δ3 + (β + γ1E∗ + γ2I∗)−
θ1 + η + δ2

1 + γ2η
γ1(θ2+µ+δ3)

+ ηµ2 + (θ1 + η + δ2)

> θ2 + µ+ δ3 + (β + γ1E∗ + γ2I∗) + ηµ2

> 0

n0 = (θ2 + µ+ δ3 + η) (β + γ1E∗ + γ2I∗)− (γ1 (θ2 + µ+ δ3) + ηγ2)S∗

+ (θ2 + µ+ δ3) (θ1 + η + δ2)− ηµ2,

> η

(
β + γ1E∗ + γ2

α3 + ηE∗
θ2 + µ+ δ3

)
> 0

it follows from the Hurwitz criterion [43], that three roots of (2.13) have negative
reel parts. So, the claimed result follows by the Lyapunov theorem [43].

As a consequence of Theorem (2.1) to prove the global stability of the endemic

equilibrium point
−
E of system (1.1), it sufficies to prove the global stability of

−
E= (E∗, I∗) for system (1.2). For that purpose, let us establish two lemmas.

Lemma 2. (1.2) allows no periodic solution in the interior of ∆.

Proof. 3. Let,

f1 (E, I) = α2 + (β + γ1E + γ2I)
(α
δ
− E − I

)
− (θ1 + η + δ2)E + µ2I

f2 (E, I) = α3 + ηE − (θ2 + µ1 + µ2 + δ3) I

D (E, I) =
1

I
.

Then

∂ (Df1)

∂E
+
∂ (Df2)

∂I
= −γ1

(
1 +

E

I
− α

δI

)
− (β + γ1E + γ2I)− (θ1 + η + δ2)

−α3 + ηE

I2

< 0.

The claimed result follows from the Bendixson-Dulac criterion [43].

Lemma 3. System (1.2) allows no periodic solution that passes through a point on
the boundary of ∆.

Proof. 4. If there is a periodic solution that passing through a non-corner point on
∂∆, then it must be tangent to ∂∆ at this point. On the contrary, suppose there is
a periodic solution Γ that passes through a non-corner point (E, I) on ∂∆. There
are three cases to be considered.
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Case-1:: 0 < E <
α

δ
, I = 0. Then, I|E,I = α3 + ηE > 0, implying that Γ is

not tangent to ∂∆ at this point, which leads to a contradiction.
Case-2:: 0 < I < α

δ , E = 0. Then, E|E,I = α2 + (β + γ2I)
(
α
δ − I

)
+ µ2I >

0, implying that Γ is not tangent to ∂∆ at this point, which leads to a
contradiction.

Case-3:: E + I =
α

δ
,E 6= 0 and I 6= 0. Then, d(E+I)

dt |E,I = − (θ1 + δ2)E −
(θ2 + µ1 + δ3) I < 0, implying that Γ is not tangent to ∂∆ at this point,
also a contradiction.

The claimed result follows by combining the above discussions. Hence, the proof is
complete.

On this basis, we present

Theorem 2.2. The equilibrium point
−
E is globally asymptotically stable for system

(1.2).

Proof. 5. The claimed result follows by combining the generalized Poincarè-
Bendixson theorem [43] with lemmas 1-3.

3. Numerical Examples

This section provides numerical examples for illustrating main result and the
effects of System Restore and antivirus software on virus spread. In what follows,
observe the asymptotic behavior of system (1.2) with varying α1, α2, α3, δ1, δ2,
δ3, β, η, µ1, µ2, θ1, θ2, γ1 and γ2.

In Figs. 2, 3, 4, 5 Evolutions of S (t) , E (t) , I (t) are performed with constant
α1 = 0.6, α2 = 0.2, α3 = 0.3, β = 0.32, η = 0.65, δ1 = 0.02, δ2 = 0.03, δ3 =
0.04, γ1 = 0.28, γ2 = 0.42 and initial conditions (S (0) , E (0) , I (0)) = (10, 5, 2),
and varying µ1, µ2, θ1 and θ2 which are recover with antivirus software and system
restore parameters.

Whether system restore and a scanning with an antivirus software will not
be done, the number of infected computers will be equivalent to the number of
the total computer in the system shown by Fig.2 with µ1, µ2, θ1, θ2 = 0. Also

the system of computers equilibrium point
−
E1= (S1, E1, I1) equivalent to

−
E1=

(0.0574, 1.1753, 23.3037) in Fig.??.

If only a scanning with an antivirus software will be done, the system which
is newly formed is shown in Fig.3 with µ1, µ2 = 0 and θ1 = 0.65, θ2 = 0.35.
Also just system restore will be done, the system which is newly formed by new
parameters is shown in Fig.4 with µ1 = 0.7, µ2 = 0.2 and θ1, θ2 = 0. And also

the system of computers equilibrium point
−
E2= (S2, E2, I2) equivalent to

−
E2=

(1.2676, 9.1327, 15.7034) in Fig.3 and the system of computers equilibrium point
−
E3= (S3, E3, I3) equivalent to

−
E3= (0.8915, 15.2111, 10.7503) in Fig.4.

If system restore and a scanning with an antivirus software will be done, one
can easily see in the Fig.5 with µ1 = 0.7, µ2 = 0.2 and θ1 = 0.65, θ2 = 0.35 that
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Figure 2. Evolutions of S, E, I, N with µ1, µ2, θ1, θ2 = 0.

Figure 3. Evolutions of S, E, I, N with µ1, µ2 = 0 and θ1 =
0.65, θ2 = 0.35.

quite decreasing of the number of infected computers. And the system of comput-

ers equilibrium point
−
E4= (S4, E4, I4) equivalent to

−
E4= (2.3740, 16.6080, 8.5448)

in Fig.5.

Additionally one can see from Fig. 2, 3, 4, 5 that the equilibrium points
−
E1,2,3,4 are globally asymptotically stable. From the figures which exhibits so-
lutions S (t) , E (t) , I (t) are converging to stable state, which is consistent with the
main result.

If the System Restore will not done, infected computers will be dominate the
system in time. Therefore, total number of computers will be equivalent to infected
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Figure 4. Evolutions of S, E, I, N with µ1 = 0.7, µ2 = 0.2 and
θ1, θ2 = 0.

Figure 5. Evolutions of S, E, I, N with µ1 = 0.7, µ2 = 0.2 and
θ1 = 0.65, θ2 = 0.35.

computers. (Fig. 2).

If the System Restore will done, we will recover non-copy datas in infected com-
puters also total number of exposed and susceptible computers will be increase
while infected computers number decreasing. (Fig. 4).

If we use system restore after have a comprehensive virus scanning, we will have
prevented the pretty much deterioration of our computer. (Fig. 5).
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1. Introduction

The classical Morrey spaces Mp,λ have been introduced by Morrey in [32] to
study the local behavior of solutions of second order elliptic partial differential
equations(PDEs). Later, there are many applications of Morrey space to the Navier-
Stokes equations (see [29]), the Schrödinger equations (see [40]) and the elliptic
problems with discontinuous coefficients (see [3, 13, 35]).

Let B = B(x0, rB) denote the ball with the center x0 and radius rB . For a given
measurable set E, we also denote the Lebesgue measure of E by |E|. For any given
Ω0 ⊆ Rn and 0 < p <∞, denote by Lp (Ω0) the spaces of all functions f satisfying

‖f‖Lp(Ω0) =

∫
Ω0

|f (x)|p dx

 1
p

<∞.

We recall the definition of classical Morrey spaces Mp,λ as

Mp,λ (Rn) =

{
f : ‖f‖Mp,λ(Rn) = sup

x∈Rn,r>0
r−

λ
p ‖f‖Lp(B(x,r)) <∞

}
,

where f ∈ Llocp (Rn), 0 ≤ λ ≤ n and 1 ≤ p <∞.
Note that Mp,0 = Lp(Rn) and Mp,n = L∞(Rn). If λ < 0 or λ > n, then

Mp,λ = Θ, where Θ is the set of all functions equivalent to 0 on Rn.
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We also denote by WMp,λ ≡WMp,λ(Rn) the weak Morrey space of all functions
f ∈WLlocp (Rn) for which

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn,r>0
r−

λ
p ‖f‖WLp(B(x,r)) <∞,

where WLp(B(x, r)) denotes the weak Lp-space of measurable functions f for which

‖f‖WLp(B(x,r)) ≡ ‖fχB(x,r)
‖WLp(Rn)

= sup
t>0

t |{y ∈ B(x, r) : |f(y)| > t}|1/p

= sup
0<t≤|B(x,r)|

t1/p
(
fχ

B(x,r)

)∗
(t) <∞,

Where g∗ denotes the non-increasing rearrangement of a function g.
Throughout the paper we assume that x ∈ Rn and r > 0 and also let B(x, r)

denotes the open ball centered at x of radius r, BC(x, r) denotes its complement
and |B(x, r)| is the Lebesgue measure of the ball B(x, r) and |B(x, r)| = vnr

n,
where vn = |B(0, 1)|.

Morrey has stated that many properties of solutions to PDEs can be attributed
to the boundedness of some operators on Morrey spaces. For the boundedness of
the Hardy–Littlewood maximal operator, the fractional integral operator and the
Calderón–Zygmund singular integral operator on these spaces, we refer the readers
to [1, 5, 37]. For the properties and applications of classical Morrey spaces, see
[6, 7, 12, 13] and references therein.

The study of the operators of harmonic analysis in vanishing Morrey space, in
fact has been almost not touched. A version of the classical Morrey space Mp,λ(Rn)
where it is possible to approximate by ”nice” functions is the so called vanishing
Morrey space VMp,λ(Rn) has been introduced by Vitanza in [51] and has been
applied there to obtain a regularity result for elliptic PDEs. This is a subspace of
functions in Mp,λ(Rn), which satisfies the condition

lim
r→0

sup
x∈Rn
0<t<r

t−
λ
p ‖f‖Lp(B(x,t)) = 0.

Later in [52] Vitanza has proved an existence theorem for a Dirichlet problem, un-
der weaker assumptions than in [30] and a W 3,2 regularity result assuming that the
partial derivatives of the coefficients of the highest and lower order terms belong
to vanishing Morrey spaces depending on the dimension. Also Ragusa has proved
a sufficient condition for commutators of fractional integral operators to belong to
vanishing Morrey spaces VMp,λ(Rn) (see [38, 39]). For the properties and applica-
tions of vanishing Morrey spaces, see also [4]. It is known that, there is no research
regarding boundedness of the sublinear operators with rough kernel on vanishing
Morrey spaces.

Maximal functions and singular integrals play a key role in harmonic analysis
since maximal functions could control crucial quantitative information concerning
the given functions, despite their larger size, while singular integrals, Hilbert trans-
form as it’s prototype, recently intimately connected with PDEs, operator theory
and other fields.
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Let f ∈ Lloc (Rn). The Hardy-Littlewood(H–L) maximal operator M is defined
by

Mf(x) = sup
t>0
|B(x, t)|−1

∫
B(x,t)

|f(y)|dy.

Let T be a standard Calderón-Zygmund(C–Z) singular integral operator, briefly
a C–Z operator, i.e., a linear operator bounded from L2(Rn) to L2(Rn) taking
all infinitely continuously differentiable functions f with compact support to the
functions f ∈ Lloc1 (Rn) represented by

Tf(x) = p.v.

∫
Rn

k(x− y)f(y) dy x /∈ suppf.

Such operators have been introduced in [10]. Here k is a C–Z kernel [16]. Chiarenza
and Frasca [5] have obtained the boundedness of H–L maximal operator M and C–
Z operator T on Mp,λ (Rn). It is also well known that H–L maximal operator M

and C–Z operator T play an important role in harmonic analysis (see [15, 27, 47,
48, 49]). Also, the theory of the C–Z operator is one of the important achievements
of classical analysis in the last century, which has many important applications in
Fourier analysis, complex analysis, operator theory and so on.

Suppose that Sn−1 is the unit sphere in Rn (n ≥ 2) equipped with the normalized
Lebesgue measure dσ. Let Ω ∈ Lq(Sn−1) with 1 < q ≤ ∞ be homogeneous of degree
zero. Suppose that TΩ represents a linear or a sublinear operator, which satisfies
that for any f ∈ L1(Rn) with compact support and x /∈ suppf

(1.1) |TΩf(x)| ≤ c0
∫
Rn

|Ω(x− y)|
|x− y|n

|f(y)| dy,

where c0 is independent of f and x.
For a locally integrable function b on Rn, suppose that the commutator operator

TΩ,b represents a linear or a sublinear operator, which satisfies that for any f ∈
L1(Rn) with compact support and x /∈ suppf

(1.2) |TΩ,bf(x)| ≤ c0
∫
Rn

|b(x)− b(y)| |Ω(x− y)|
|x− y|n

|f(y)| dy,

where c0 is independent of f and x.
We point out that condition (1.1) in the case of Ω ≡ 1 has been introduced by

Soria and Weiss in [45] . Conditions (1.1) and (1.2) are satisfied by many interesting
operators in harmonic analysis, such as Marcinkiewicz operator, the C–Z operators,
Carleson’s maximal operator, H–L maximal operator, C. Fefferman’s singular multi-
pliers, R. Fefferman’s singular integrals, Ricci–Stein’s oscillatory singular integrals,
the Bochner–Riesz means and so on (see [25], [45] for details).

Let Ω ∈ Lq(Sn−1) with 1 < q ≤ ∞ be homogeneous of degree zero and satisfies
the cancellation condition ∫

Sn−1

Ω(x′)dσ(x′) = 0,

where x′ = x
|x| for any x 6= 0. The C–Z singular integral operator with rough kernel

TΩ is defined by
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TΩf(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n
f(y)dy,

satisfies condition (1.1).
It is obvious that when Ω ≡ 1, TΩ is the C–Z operator T .
The case when Ω is a smooth kernel and TΩ a standard C–Z singular integral

operator has been fully studied by many authors (see [16]).
In 1976, Coifman, Rocherberg and Weiss [8] introduced the commutator ge-

nerated by TΩ and a local integrable function b as follows:

(1.3) [b, TΩ]f(x) ≡ b(x)TΩf(x)−TΩ(bf)(x) = p.v.

∫
Rn

[b(x)−b(y)]
Ω(x− y)

|x− y|n
f(y)dy.

Sometimes, the commutator defined by (1.3) is also called the commutator in
Coifman-Rocherberg-Weiss’s sense, which has its root in the complex analysis and
harmonic analysis (see [8]).

Remark 1.1. [43, 44] When Ω satisfies the specified size conditions, the kernel of the
operator TΩ has no regularity, so the operator TΩ is called a rough C–Z singular
integral operator. In recent years, a variety of operators related to the C–Z singular
integral operators, but lacking the smoothness required in the classical theory, have
been studied. These include the operator [b, TΩ]. For more results, we refer the
reader to [2, 18, 19, 20, 26, 27].

In this paper, we prove the boundedness of certain sublinear operators with rough
kernel TΩ satisfying condition (1.1), generated by C–Z singular integral operators
on generalized vanishing Morrey spaces VMp,ϕ for q′ ≤ p, p 6= 1 or p < q, where
Ω ∈ Lq(Sn−1), 1 < q ≤ ∞ is a homogeneous of degree zero. The boundedness of the
commutators of sublinear operators TΩ,b satisfying condition (1.2) on generalized
vanishing Morrey spaces are also obtained. Provided that b ∈ BMO and TΩ,b

is a sublinear operator, we obtain the sufficient conditions on the pair (ϕ1, ϕ2)
which ensures the boundedness of the operators TΩ,b, from one vanishing generalized
Morrey space VMp,ϕ1

to another VMp,ϕ2
, where 1 < p < ∞. In all the cases the

conditions for the boundedness of TΩ and TΩ,b are given in terms of Zygmund-type
integral inequalities on (ϕ1, ϕ2), where there is no assumption on monotonicity of
ϕ1, ϕ2 in r. As an example to the conditions of these theorems are satisfied, we can
consider the Marcinkiewicz operator.

Finally, we present a relationship between essential supremum and essential in-
fimum.

Lemma 1.1. (see [53] page 143) Let f be a real-valued nonnegative function and
measurable on E. Then

(1.4)

(
essinf
x∈E

f (x)

)−1

= esssup
x∈E

1

f (x)
.

By A . B we mean that A ≤ CB with some positive constant C independent
of appropriate quantities. If A . B and B . A, we write A ≈ B and say that A
and B are equivalent.
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2. generalized vanishing Morrey spaces

After studying Morrey spaces in detail, researchers have passed to generalized
Morrey spaces. Mizuhara [31] has given generalized Morrey spaces Mp,ϕ consid-
ering ϕ = ϕ (r) instead of rλ in the above definition of the Morrey space. Later,
Guliyev [14] has defined the generalized Morrey spaces Mp,ϕ with normalized norm
as follows:

Definition 2.1. [14] Let ϕ(x, r) be a positive measurable function on Rn × (0,∞)
and 1 ≤ p < ∞. We denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space,
the space of all functions f ∈ Llocp (Rn) with finite quasinorm

‖f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖Lp(B(x,r)).

Also by WMp,ϕ ≡WMp,ϕ(Rn) we denote the weak generalized Morrey space of all
functions f ∈WLlocp (Rn) for which

‖f‖WMp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖WLp(B(x,r)) <∞.

According to this definition, we recover the Morrey space Mp,λ and weak Morrey

space WMp,λ under the choice ϕ(x, r) = r
λ−n
p :

Mp,λ = Mp,ϕ |
ϕ(x,r)=r

λ−n
p
, WMp,λ = WMp,ϕ |

ϕ(x,r)=r
λ−n
p

.

Everywhere in the sequel we assume that inf
x∈Rn,r>0

ϕ(x, r) > 0 which makes the

above spaces non-trivial, since the spaces of bounded functions are contained in
these spaces.

In [14, 23, 24, 31, 34], the boundedness of the maximal operator and C–Z sin-
gular integral operator on the generalized Morrey spaces has been obtained. For
generalized Morrey spaces with nondoubling measures see also [42].

For brevity, in the sequel we use the notations

Mp,ϕ (f ;x, r) :=
|B(x, r)|−

1
p ‖f‖Lp(B(x,r))

ϕ(x, r)

and

MW
p,ϕ (f ;x, r) :=

|B(x, r)|−
1
p ‖f‖WLp(B(x,r))

ϕ(x, r)
.

In this paper, extending the definition of vanishing Morrey spaces [51], we in-
troduce the generalized vanishing Morrey spaces VMp,ϕ(Rn), including their weak
versions and studies the boundedness of the sublinear operators with rough ker-
nel generated by C–Z singular integral operators and their commutators in these
spaces. Indeed, we find it convenient to define generalized vanishing Morrey spaces
in the form as follows.

Definition 2.2. (generalized vanishing Morrey space) The generalized van-
ishing Morrey space VMp,ϕ(Rn) is defined as the spaces of functions f ∈Mp,ϕ(Rn)
such that

(2.1) lim
r→0

sup
x∈Rn

Mp,ϕ (f ;x, r) = 0.
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Definition 2.3. (weak generalized vanishing Morrey space) The weak gen-
eralized vanishing Morrey space WVMp,ϕ(Rn) is defined as the spaces of functions
f ∈WMp,ϕ(Rn) such that

(2.2) lim
r→0

sup
x∈Rn

MW
p,ϕ (f ;x, r) = 0.

Everywhere in the sequel we assume that

(2.3) lim
r→0

1

inf
x∈Rn

ϕ(x, r)
= 0,

and

(2.4) sup
0<r<∞

1

inf
x∈Rn

ϕ(x, r)
<∞,

which make the spaces VMp,ϕ(Rn) and WVMp,ϕ(Rn) non-trivial, because bounded
functions with compact support belong to this space. The spaces VMp,ϕ(Rn) and
WVMp,ϕ(Rn) are Banach spaces with respect to the norm

(2.5) ‖f‖VMp,ϕ ≡ ‖f‖Mp,ϕ = sup
x∈Rn,r>0

Mp,ϕ (f ;x, r) ,

(2.6) ‖f‖WVMp,ϕ = ‖f‖WMp,ϕ = sup
x∈Rn,r>0

MW
p,ϕ (f ;x, r) ,

respectively.

3. Sublinear operators with rough kernel TΩ on the spaces Mp,ϕ and
VMp,ϕ

In this section, we will first prove the boundedness of the operator TΩ satisfying
(1.1) on the generalized Morrey spaces Mp,ϕ by using Lemma 1.1 and the following
Lemma 3.1. Then, We will also give the boundedness of TΩ satisfying (1.1) on
generalized vanishing Morrey spaces VMp,ϕ.

Theorem 3.1. [11, 33] Suppose that 1 ≤ p < ∞, Ω ∈ Lq(S
n−1), q > 1, is

homogeneous of degree zero and has mean value zero on Sn−1. If q′ ≤ p, p 6= 1
or p < q, then the operator TΩ is bounded on Lp(Rn). Also the operator TΩ is
bounded from L1(Rn) to WL1(Rn). Moreover, we have for p > 1∥∥TΩf

∥∥
Lp
≤ C ‖f‖Lp ,

and for p = 1 ∥∥TΩf
∥∥
WL1

≤ C ‖f‖L1
.

Lemma 3.1. (Our main lemma) Let Ω ∈ Lq(Sn−1), 1 < q ≤ ∞, be homogeneous
of degree zero, and 1 ≤ p <∞. Let TΩ be a sublinear operator satisfying condition
(1.1), bounded on Lp(Rn) for p > 1, and bounded from L1(Rn) to WL1(Rn).

If p > 1 and q′ ≤ p, then the inequality

(3.1) ‖TΩf‖Lp(B(x0,r))
. r

n
p

∞∫
2r

t−
n
p−1 ‖f‖Lp(B(x0,t))

dt

holds for any ball B (x0, r) and for all f ∈ Llocp (Rn).
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If p > 1 and p < q, then the inequality

‖TΩf‖Lp(B(x0,r))
. r

n
p−

n
q

∞∫
2r

t
n
q−

n
p−1 ‖f‖Lp(B(x0,t))

dt

holds for any ball B (x0, r) and for all f ∈ Llocp (Rn).
Moreover, for q > 1 the inequality

(3.2) ‖TΩf‖WL1(B(x0,r))
. rn

∞∫
2r

t−n−1 ‖f‖L1(B(x0,t))
dt

holds for any ball B (x0, r) and for all f ∈ Lloc1 (Rn).

Proof. Let 1 < p <∞ and q′ ≤ p. Set B = B (x0, r) for the ball centered at x0 and
of radius r and 2B = B (x0, 2r). We represent f as

(3.3) f = f1 + f2, f1 (y) = f (y)χ2B (y) , f2 (y) = f (y)χ(2B)C (y) , r > 0

and have

‖TΩf‖Lp(B) ≤ ‖TΩf1‖Lp(B) + ‖TΩf2‖Lp(B) .

Since f1 ∈ Lp (Rn), TΩf1 ∈ Lp (Rn) and from the boundedness of TΩ on Lp (Rn)
(see Theorem 3.1) it follows that:

‖TΩf1‖Lp(B) ≤ ‖TΩf1‖Lp(Rn) ≤ C ‖f1‖Lp(Rn) = C ‖f‖Lp(2B) ,

where constant C > 0 is independent of f .

It is clear that x ∈ B, y ∈ (2B)
C

implies 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|. We
get

|TΩf2 (x)| ≤ 2nc1

∫
(2B)C

|f (y)| |Ω (x− y)|
|x0 − y|n

dy.

By the Fubini’s theorem, we have∫
(2B)C

|f (y)| |Ω (x− y)|
|x0 − y|n

dy ≈
∫

(2B)C

|f (y)| |Ω (x− y)|
∞∫

|x0−y|

dt

tn+1
dy

≈
∞∫

2r

∫
2r≤|x0−y|≤t

|f (y)| |Ω (x− y)| dy dt

tn+1

.

∞∫
2r

∫
B(x0,t)

|f (y)| |Ω (x− y)| dy dt

tn+1
.

Applying the Hölder’s inequality, we get∫
(2B)C

|f (y)| |Ω (x− y)|
|x0 − y|n

dy

.

∞∫
2r

‖f‖Lp(B(x0,t))
‖Ω (x− ·)‖Lq(B(x0,t))

|B (x0, t)|1−
1
p−

1
q

dt

tn+1
.(3.4)
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For x ∈ B (x0, t), notice that Ω is homogenous of degree zero and Ω ∈ Lq(Sn−1),
q > 1. Then, we obtain ∫

B(x0,t)

|Ω (x− y)|q dy


1
q

=

 ∫
B(x−x0,t)

|Ω (z)|q dz


1
q

≤

 ∫
B(0,t+|x−x0|)

|Ω (z)|q dz


1
q

≤

 ∫
B(0,2t)

|Ω (z)|q dz


1
q

=

 2t∫
0

∫
Sn−1

|Ω (z′)|q dσ (z′) rn−1dr


1
q

= C ‖Ω‖Lq(Sn−1) |B (x0, 2t)|
1
q .(3.5)

Thus, by (3.5), it follows that:

|TΩf2 (x)| .
∞∫

2r

‖f‖Lp(B(x0,t))

dt

t
n
p+1

.

Moreover, for all p ∈ [1,∞) the inequality

(3.6) ‖TΩf2‖Lp(B) . r
n
p

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
p+1

holds. Thus

‖TΩf‖Lp(B) . ‖f‖Lp(2B) + r
n
p

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
p+1

.

On the other hand, we have

‖f‖Lp(2B) ≈ r
n
p ‖f‖Lp(2B)

∞∫
2r

dt

t
n
p+1

≤ r
n
p

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
p+1

.(3.7)

By combining the above inequalities, we obtain

‖TΩf‖Lp(B) . r
n
p

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
p+1

.
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Let 1 < p < q. Similarly to (3.5), when y ∈ B (x0, t), notice that

(3.8)

 ∫
B(x0,r)

|Ω (x− y)|q dy


1
q

≤ C ‖Ω‖Lq(Sn−1)

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
q

.

By the Fubini’s theorem, the Minkowski inequality and (3.8) , we get

‖TΩf2‖Lp(B) ≤

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∫
B(x0,t)

|f (y)| |Ω (x− y)| dy dt

tn+1

∣∣∣∣∣∣∣
p

dx


1
p

≤
∞∫

2r

∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lp(B) dy
dt

tn+1

≤ |B (x0, r)|
1
p−

1
q

∞∫
2r

∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lq(B) dy
dt

tn+1

. r
n
p−

n
q

∞∫
2r

‖f‖L1(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
q dt

tn+1

. r
n
p−

n
q

∞∫
2r

‖f‖Lp(B(x0,t))
t
n
q−

n
p−1dt.

Let p = 1 < q ≤ ∞. From the weak (1, 1) boundedness of TΩ and (3.7) it follows
that:

‖TΩf1‖WL1(B) ≤ ‖TΩf1‖WL1(Rn) . ‖f1‖L1(Rn)

= ‖f‖L1(2B) . r
n

∞∫
2r

‖f‖L1(B(x0,t))

dt

tn+1
.(3.9)

Then from (3.6) and (3.9) we get the inequality (3.2), which completes the proof.
�

In the following theorem, we get the boundedness of the operator TΩ on the
generalized Morrey spaces Mp,ϕ.

Theorem 3.2. (Our main result) Let Ω ∈ Lq(Sn−1), 1 < q ≤ ∞, be homogeneous
of degree zero, and 1 ≤ p <∞. Let TΩ be a sublinear operator satisfying condition
(1.1), bounded on Lp(Rn) for p > 1, and bounded from L1(Rn) to WL1(Rn). Let
also, for q′ ≤ p, p 6= 1, the pair (ϕ1, ϕ2) satisfies the condition

(3.10)

∞∫
r

essinf
t<τ<∞

ϕ1(x, τ)τ
n
p

t
n
p+1

dt ≤ Cϕ2(x, r),

and for 1 < p < q the pair (ϕ1, ϕ2) satisfies the condition

(3.11)

∞∫
r

essinf
t<τ<∞

ϕ1(x, τ)τ
n
p

t
n
p−

n
q +1

dt ≤ C ϕ2(x, r)r
n
q ,
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where C does not depend on x and r.
Then the operator TΩ is bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1 and from M1,ϕ1

to WM1,ϕ2 . Moreover, we have for p > 1

(3.12) ‖TΩf‖Mp,ϕ2
. ‖f‖Mp,ϕ1

,

and for p = 1

(3.13) ‖TΩf‖WM1,ϕ2
. ‖f‖M1,ϕ1

.

Proof. Since f ∈ Mp,ϕ1
, by (2.6) and the non-decreasing, with respect to t, of the

norm ‖f‖Lp(B(x0,t))
, we get

‖f‖Lp(B(x0,t))

essinf
0<t<τ<∞

ϕ1(x0, τ)τ
n
p

≤ esssup
0<t<τ<∞

‖f‖Lp(B(x0,t))

ϕ1(x0, τ)τ
n
p

≤ esssup
0<τ<∞

‖f‖Lp(B(x0,τ))

ϕ1(x0, τ)τ
n
p

≤ ‖f‖Mp,ϕ1
.

For q′ ≤ p <∞, since (ϕ1, ϕ2) satisfies (3.10), we have

∞∫
r

‖f‖Lp(B(x0,t))
t−

n
p
dt

t

≤
∞∫
r

‖f‖Lp(B(x0,t))

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
p

dt

t

≤ C ‖f‖Mp,ϕ1

∞∫
r

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
p

dt

t

≤ C ‖f‖Mp,ϕ1
ϕ2(x0, r).

Then by (3.1), we get

‖TΩf‖Mp,ϕ2
= sup
x0∈Rn,r>0

ϕ2 (x0, r)
−1 |B(x0, r)|−

1
p ‖TΩf‖Lp(B(x0,r))

≤ C sup
x0∈Rn,r>0

ϕ2 (x0, r)
−1

∞∫
r

‖f‖Lp(B(x0,t))
t−

n
p
dt

t

≤ C ‖f‖Mp,ϕ1
.

For the case of 1 ≤ p < q, we can also use the same method, so we omit the details.
This completes the proof of Theorem 3.2. �

In the case of q =∞ by Theorem 3.2, we get

Corollary 3.1. Let 1 ≤ p < ∞ and the pair (ϕ1, ϕ2) satisfies condition (3.10).
Then the operators M and T are bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1 and from
M1,ϕ1

to WM1,ϕ2
.
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Let f ∈ Lloc1 (Rn). The rough H–L maximal operator MΩ is defined by

MΩf (x) = sup
t>0

1

|B (x, t)|

∫
B(x,t)

|Ω (x− y)| |f (y)| dy.

Then we can get the following corollary.

Corollary 3.2. Let 1 ≤ p <∞, Ω ∈ Lq
(
Sn−1

)
, 1 < q ≤ ∞. For q′ ≤ p, p 6= 1, the

pair (ϕ1, ϕ2) satisfies condition (3.10) and for 1 < p < q the pair (ϕ1, ϕ2) satisfies
condition (3.11). Then the operators MΩ and TΩ are bounded from Mp,ϕ1

to Mp,ϕ2

for p > 1 and from M1,ϕ1
to WM1,ϕ2

.

Now using above results, we get the boundedness of the operator TΩ on the
vanishing generalized Morrey spaces VMp,ϕ.

Theorem 3.3. (Our main result) Let Ω ∈ Lq(Sn−1), 1 < q ≤ ∞, be homogeneous
of degree zero, and 1 ≤ p <∞. Let TΩ be a sublinear operator satisfying condition
(1.1), bounded on Lp(Rn) for p > 1, and bounded from L1(Rn) to WL1(Rn). Let
for q′ ≤ p, p 6= 1, the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and

(3.14) cδ :=

∞∫
δ

sup
x∈Rn

ϕ1 (x, t)
t
n
p

t
n
p+1

dt <∞

for every δ > 0, and

(3.15)

∞∫
r

ϕ1(x, t)
t
n
p

t
n
p+1

dt ≤ C0ϕ2(x, r),

and for 1 < p < q the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and also

(3.16) cδ′ :=

∞∫
δ′

sup
x∈Rn

ϕ1 (x, t)
t
n
p

t
n
p−

n
q +1

dt <∞

for every δ′ > 0, and

(3.17)

∞∫
r

ϕ1(x, t)
t
n
p

t
n
p−

n
q +1

dt ≤ C0 ϕ2(x, r)r
n
q ,

where C0 does not depend on x ∈ Rn and r > 0.
Then the operator TΩ is bounded from VMp,ϕ1 to VMp,ϕ2 for p > 1 and from

M1,ϕ1
to WVM1,ϕ2

. Moreover, we have for p > 1

(3.18) ‖TΩf‖VMp,ϕ2
. ‖f‖VMp,ϕ1

,

and for p = 1

(3.19) ‖TΩf‖WVM1,ϕ2
. ‖f‖VM1,ϕ1

.

Proof. The norm inequalities follow from Theorem 3.2. Thus we only have to prove
that

(3.20) lim
r→0

sup
x∈Rn

Mp,ϕ1
(f ;x, r) = 0 implies lim

r→0
sup
x∈Rn

Mp,ϕ2
(TΩf ;x, r) = 0
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and

(3.21) lim
r→0

sup
x∈Rn

Mp,ϕ1
(f ;x, r) = 0 implies lim

r→0
sup
x∈Rn

MW
p,ϕ2

(TΩf ;x, r) = 0.

To show that sup
x∈Rn

r
−n
p ‖TΩf‖Lp(B(x,r))

ϕ2(x,r) < ε for small r, we split the right-hand side

of (3.1):

(3.22)
r−

n
p ‖TΩf‖Lp(B(x,r))

ϕ2(x, r)
≤ C [Iδ0 (x, r) + Jδ0 (x, r)] ,

where δ0 > 0 (we may take δ0 < 1), and

Iδ0 (x, r) :=
1

ϕ2(x, r)

δ0∫
r

t−
n
p−1 ‖f‖Lp(B(x,t)) dt,

and

Jδ0 (x, r) :=
1

ϕ2(x, r)

∞∫
δ0

t−
n
p−1 ‖f‖Lp(B(x,t)) dt

and r < δ0. Now we choose any fixed δ0 > 0 such that

sup
x∈Rn

t−
n
p ‖f‖Lp(B(x,t))

ϕ1 (x, t)
<

ε

2CC0
, t ≤ δ0,

where C and C0 are constants from (3.15) and (3.22). This allows to estimate the
first term uniformly in r ∈ (0, δ0) :

sup
x∈Rn

CIδ0 (x, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term may be obtained by choosing r sufficiently
small. Indeed, we have

Jδ0 (x, r) ≤ cδ0
‖f‖Mp,ϕ1

ϕ2 (x, r)
,

where cδ0 is the constant from (3.14) with δ = δ0. Then, by (2.3) it suffices to
choose r small enough such that

sup
x∈Rn

1

ϕ2(x, r)
≤ ε

2cδ0 ‖f‖Mp,ϕ1

,

which completes the proof of (3.20).
The proof of (3.21) is similar to the proof of (3.20). For the case of 1 ≤ p < q,

we can also use the same method, so we omit the details. �

Remark 3.1. Conditions (3.14) and (3.16) are not needed in the case when ϕ(x, r)
does not depend on x, since (3.14) follows from (3.15) and similarly, (3.16) follows
from (3.17) in this case.

Corollary 3.3. Let 1 ≤ p <∞, Ω ∈ Lq
(
Sn−1

)
, 1 < q ≤ ∞. For q′ ≤ p, p 6= 1, the

pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.14)-(3.15) and for 1 < p < q the
pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.16)-(3.17). Then the operators
MΩ and TΩ are bounded from VMp,ϕ1 to VMp,ϕ2 for p > 1 and from VM1,ϕ1 to
WVM1,ϕ2

.
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In the case of q =∞ by Theorem 3.3, we get

Corollary 3.4. Let 1 ≤ p < ∞ and the pair (ϕ1, ϕ2) satisfies conditions (2.3)-
(2.4) and (3.14)-(3.15). Then the operators M and T are bounded from VMp,ϕ1

to
VMp,ϕ2

for p > 1 and from VM1,ϕ1
to WVM1,ϕ2

.

4. Commutators of the sublinear operators with rough kernel TΩ on
the spaces Mp,ϕ and VMp,ϕ

In this section, we will first prove the boundedness of the operator TΩ,b satisfying
(1.2) with b ∈ BMO (Rn) on the generalized Morrey spaces Mp,ϕ by using Lemma
1.1 and the following Lemma 4.1. Then, we will also obtain the boundedness of
TΩ,b satisfying (1.2) with b ∈ BMO (Rn) on generalized vanishing Morrey spaces
VMp,ϕ.

Let T be a linear operator. For a locally integrable function b on Rn, we define
the commutator [b, T ] by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x)

for any suitable function f .
The function b is also called the symbol function of [b, T ]. The investigation of

the operator [b, T ] begins with Coifman-Rocherberg-Weiss pioneering study of the
operator T (see [8]). Let T be a C–Z operator. A well known result of Coifman et

al. [8] states that when K (x) =
Ω(x′)
|x|n and Ω is smooth, the commutator [b, T ]f =

b Tf − T (bf) is bounded on Lp(Rn), 1 < p < ∞, if and only if b ∈ BMO(Rn).
There are two major reasons for considering the problem of commutators. The first
one is that the boundedness of commutators can produce some characterizations
of function spaces (see [2, 18, 19, 21, 36, 44]). The other one is that the theory of
commutators plays an important role in the study of the regularity of solutions to
elliptic and parabolic PDEs of the second order (see [6, 7, 12, 13]).

Many authors are interested in the study of commutators for which the symbol
functions belong to BMO(Rn) spaces (see [17, 21, 23, 28, 36] for example). The
boundedness of the commutator has also been generalized to other contexts and
important applications to some non-linear PDEs have been given by Coifman et al.
[9].

Let us recall the defination of the space of BMO(Rn) (bounded mean oscillation).

Definition 4.1. Suppose that b ∈ Lloc1 (Rn), let

‖b‖∗ = sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|dy <∞,

where

bB(x,r) =
1

|B(x, r)|

∫
B(x,r)

b(y)dy.

Define

BMO(Rn) = {b ∈ Lloc1 (Rn) : ‖b‖∗ <∞}.

If one regards two functions whose difference is a constant as one, then the space
BMO(Rn) is a Banach space with respect to norm ‖ · ‖∗.
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Remark 4.1. [23] (1) The John-Nirenberg inequality [22]: there are constants C1,
C2 > 0, such that for all b ∈ BMO(Rn) and β > 0

|{x ∈ B : |b(x)− bB | > β}| ≤ C1|B|e−C2β/‖b‖∗ , ∀B ⊂ Rn.
(2) The John-Nirenberg inequality implies that

(4.1) ‖b‖∗ ≈ sup
x∈Rn,r>0

 1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|pdy


1
p

for 1 < p <∞.
(3) Let b ∈ BMO(Rn). Then there is a constant C > 0 such that

(4.2)
∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r and t.

Theorem 4.1. [11, 27] Suppose that Ω ∈ Lq(S
n−1), q > 1, is homogeneous of

degree zero and has mean value zero on Sn−1. Let 1 < p <∞ and b ∈ BMO(Rn).
If q′ ≤ p or p < q, then the commutator operator [b, TΩ] is bounded on Lp(Rn).

Lemma 4.1. (Our main lemma) Let Ω ∈ Lq(Sn−1), 1 < q ≤ ∞, be homogeneous
of degree zero. Let 1 < p < ∞, b ∈ BMO (Rn) and TΩ,b is a sublinear operator
satisfying condition (1.2), bounded on Lp(Rn). Then, for q′ ≤ p the inequality

(4.3) ‖TΩ,bf‖Lp(B(x0,r)) . ‖b‖∗ r
n
p

∞∫
2r

(
1 + ln

t

r

)
t−

n
p−1‖f‖Lp(B(x0,t))dt

holds for any ball B(x0, r) and for all f ∈ Llocp (Rn).
Also, for p < q the inequality

‖TΩ,bf‖Lp(B(x0,r)) . ‖b‖∗ r
n
p−

n
q

∞∫
2r

(
1 + ln

t

r

)
t
n
q−

n
p−1‖f‖Lp(B(x0,t))dt

holds for any ball B(x0, r) and for all f ∈ Llocp (Rn).

Proof. Let 1 < p <∞. As in the proof of Lemma 3.1, we represent f in form (3.3)
and have

‖TΩ,bf‖Lp(B) ≤ ‖TΩ,bf1‖Lp(B) + ‖TΩ,bf2‖Lp(B) .

From the boundedness of TΩ,b on Lp(Rn) (see Theorem 4.1) it follows that:

‖TΩ,bf1‖Lp(B) ≤ ‖TΩ,bf1‖Lp(Rn)

. ‖b‖∗ ‖f1‖Lp(Rn) = ‖b‖∗ ‖f‖Lp(2B) .

It is known that x ∈ B, y ∈ (2B)
C

, which implies 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|.
Then for x ∈ B, we have

|TΩ,bf2 (x)| .
∫
Rn

|Ω (x− y)|
|x− y|n

|b (y)− b (x)| |f (y)| dy

≈
∫

(2B)C

|Ω (x− y)|
|x0 − y|n

|b (y)− b (x)| |f (y)| dy.
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Hence we get

‖TΩ,bf2‖Lp(B) .

∫
B

 ∫
(2B)C

|Ω (x− y)|
|x0 − y|n

|b (y)− b (x)| |f (y)| dy


p

dx


1
p

.

∫
B

 ∫
(2B)C

|Ω (x− y)|
|x0 − y|n

|b (y)− bB | |f (y)| dy


p

dx


1
p

+

∫
B

 ∫
(2B)C

|Ω (x− y)|
|x0 − y|n

|b (x)− bB | |f (y)| dy


p

dx


1
p

= J1 + J2.

We have the following estimation of J1. When s′ ≤ p and 1
µ + 1

p + 1
q = 1, by the

Fubini’s theorem

J1 ≈ r
n
p

∫
(2B)C

|Ω (x− y)|
|x0 − y|n

|b (y)− bB | |f (y)| dy

≈ r
n
p

∫
(2B)C

|Ω (x− y)| |b (y)− bB | |f (y)|
∞∫

|x0−y|

dt

tn+1
dy

≈ r
n
p

∞∫
2r

∫
2r<|x0−y|<t

|Ω (x− y)| |b (y)− bB | |f (y)| dy dt

tn+1

. r
n
p

∞∫
2r

∫
B(x0,t)

|Ω (x− y)| |b (y)− bB | |f (y)| dy dt

tn+1
holds.
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Applying the Hölder’s inequality and by (3.8), (4.1), (4.2), we get

J1 . r
n
p

∞∫
2r

∫
B(x0,t)

|Ω (x− y)|
∣∣b (y)− bB(x0,t)

∣∣ |f (y)| dy dt

tn+1

+ r
n
p

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|Ω (x− y)| |f (y)| dy dt

tn+1

. r
n
p

∞∫
2r

‖Ω (· − y)‖Lq(B(x0,t))

∥∥(b (·)− bB(x0,t)

)∥∥
Lµ(B(x0,t))

‖f‖Lp(B(x0,t))

dt

tn+1

+ r
n
p

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖Ω (· − y)‖Lq(B(x0,t))
‖f‖Lp(B(x0,t))

|B (x0, t)|1−
1
p−

1
q

dt

tn+1

. ‖b‖∗ r
n
p

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp(B(x0,t))

dt

t
n
p+1

.

In order to estimate J2 note that

J2 =
∥∥(b (·)− bB(x0,t)

)∥∥
Lp(B(x0,t))

∫
(2B)C

|Ω (x− y)|
|x0 − y|n

|f (y)| dy.

By (4.1), we get

J2 . ‖b‖∗ r
n
p

∫
(2B)C

|Ω (x− y)|
|x0 − y|n

|f (y)| dy.

Thus, by (3.4) and (3.5)

J2 . ‖b‖∗ r
n
p

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
p+1

.

Summing up J1 and J2, for all p ∈ (1,∞) we get

(4.4) ‖TΩ,bf2‖Lp(B) . ‖b‖∗ r
n
p

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp(B(x0,t))

dt

t
n
p+1

.

Finally, we have the following

‖TΩ,bf‖Lp(B) . ‖b‖∗ ‖f‖Lp(2B) + ‖b‖∗ r
n
p

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp(B(x0,t))

dt

t
n
p+1

,

which completes the proof of first statement by (3.7).
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On the other hand when p < q, by the Fubini’s theorem and the Minkowski
inequality, we get

J1 .

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| |Ω (x− y)| dy dt

tn+1

∣∣∣∣∣∣∣
p

dx


1
p

+

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| |Ω (x− y)| dy dt

tn+1

∣∣∣∣∣∣∣
p

dx


1
p

.

∞∫
2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| ‖Ω (· − y)‖Lp(B(x0,t))
dy

dt

tn+1

+

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lp(B(x0,t))
dy

dt

tn+1

. |B|
1
p−

1
q

∞∫
2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| ‖Ω (· − y)‖Lq(B(x0,t))
dy

dt

tn+1

+ |B|
1
p−

1
q

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lq(B(x0,t))
dy

dt

tn+1
.

Applying the Hölder’s inequality and by (3.8), (4.1), (4.2), we get

J1 . r
n
p−

n
q

∞∫
2r

∥∥(b (·)− bB(x0,t)

)
f
∥∥
L1(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
q dt

tn+1

+ r
n
p−

n
q

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖f‖Lp(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
q dt

t
n
p+1

. r
n
p−

n
q

∞∫
2r

∥∥(b (·)− bB(x0,t)

)∥∥
Lp′ (B(x0,t))

‖f‖Lp(B(x0,t))
t
n
q
dt

tn+1

+ r
n
p−

n
q

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖f‖Lp(B(x0,t))
t
n
q
dt

t
n
p+1

. ‖b‖∗ r
n
p−

n
q

∞∫
2r

(
1 + ln

t

r

)
t
n
q−

n
p−1 ‖f‖Lp(B(x0,t))

dt.
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Let 1
p = 1

ν + 1
q , then for J2, by the Fubini’s theorem, the Minkowski inequality,

the Hölder’s inequality and from (3.8), we get

J2 .

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∫
B(x0,t)

|f (y)| |b (x)− bB | |Ω (x− y)| dy dt

tn+1

∣∣∣∣∣∣∣
p

dx


1
p

.

∞∫
2r

∫
B(x0,t)

|f (y)| ‖(b (·)− bB) Ω (· − y)‖Lp(B) dy
dt

tn+1

.

∞∫
2r

∫
B(x0,t)

|f (y)| ‖b (·)− bB‖Lν(B) ‖Ω (· − y)‖Lq(B) dy
dt

tn+1

. ‖b‖∗ |B|
1
p−

1
q

∞∫
2r

∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lq(B) dy
dt

tn+1

. ‖b‖∗r
n
p−

n
q

∞∫
2r

‖f‖L1(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
q dt

tn+1

. ‖b‖∗ r
n
p−

n
q

∞∫
2r

(
1 + ln

t

r

)
t
n
q−

n
p−1‖f‖Lp(B(x0,t))dt.

By combining the above estimates, we complete the proof of Lemma 4.1. �

Now we can give the following theorem (our main result).

Theorem 4.2. (Our main result) Suppose that Ω ∈ Lq(S
n−1),1 < q ≤ ∞, is

homogeneous of degree zero and TΩ,b is a sublinear operator satisfying condition
(1.2), bounded on Lp(Rn). Let 1 < p <∞ and b ∈ BMO (Rn). Let also, for q′ ≤ p
the pair (ϕ1, ϕ2) satisfies the condition

(4.5)

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1 (x, τ) τ
n
p

t
n
p+1

dt ≤ Cϕ2 (x, r) ,

and for p < q the pair (ϕ1, ϕ2) satisfies the condition

(4.6)

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1 (x, τ) τ
n
p

t
n
p−

n
q +1

dt ≤ Cϕ2 (x, r) r
n
q ,

where C does not depend on x and r.
Then, the operator TΩ,b is bounded from Mp,ϕ1

to Mp,ϕ2
. Moreover,

‖TΩ,bf‖Mp,ϕ2
. ‖b‖∗ ‖f‖Mp,ϕ1

.

Proof. The statement of Theorem 4.2 follows by Lemma 1.1 and Lemma 4.1 in the
same manner as in the proof of Theorem 3.2. �

For the sublinear commutator of the fractional maximal operator with rough
kernel which is defined as follows
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MΩ,b (f) (x) = sup
t>0
|B(x, t)|−1

∫
B(x,t)

|b (x)− b (y)| |Ω (x− y)| |f(y)|dy

and for the linear commutator of the singular integral [b, TΩ] by Theorem 4.2 we
get the following new results.

Corollary 4.1. Suppose that Ω ∈ Lq(Sn−1), 1 < q ≤ ∞, is homogeneous of degree
zero, 1 < p < ∞ and b ∈ BMO (Rn). If for q′ ≤ p the pair (ϕ1, ϕ2) satisfies
condition (4.5) and for p < q the pair (ϕ1, ϕ2) satisfies condition (4.6). Then, the
operators MΩ,b and [b, TΩ] are bounded from Mp,ϕ1

to Mp,ϕ2
.

We get the following new results for the sublinear commutator of the maximal
operator

Mb (f) (x) = sup
t>0
|B(x, t)|−1

∫
B(x,t)

|b (x)− b (y)| |f(y)|dy

and for the linear commutator of the singular integral [b, T ] by Theorem 4.2.

Corollary 4.2. Let 1 < p < ∞, b ∈ BMO (Rn) and the pair (ϕ1, ϕ2) satisfies
condition (4.5). Then, the operators Mb and [b, T ] are bounded from Mp,ϕ1 to
Mp,ϕ2

.

Now using above results, we also obtain the boundedness of the operator TΩ,b

on the vanishing generalized Morrey spaces VMp,ϕ.

Theorem 4.3. (Our main result) Let Ω ∈ Lq(Sn−1),1 < q ≤ ∞, be homogeneous
of degree zero. Let TΩ,b is a sublinear operator satisfying condition (1.2) bounded
on Lp(Rn). Let 1 < p < ∞ and b ∈ BMO (Rn). Let for q′ ≤ p the pair (ϕ1, ϕ2)
satisfies conditions (2.3)-(2.4) and

(4.7)

∞∫
r

(
1 + ln

t

r

)
ϕ1 (x, t)

t
n
p

t
n
p+1

dt ≤ C0ϕ2 (x, r) ,

where C0 does not depend on x ∈ Rn and r > 0,

(4.8) lim
r→0

ln 1
r

inf
x∈Rn

ϕ2(x, r)
= 0

and

(4.9) cδ :=

∞∫
δ

(1 + ln |t|) sup
x∈Rn

ϕ1 (x, t)
t
n
p

t
n
p+1

dt <∞

for every δ > 0, and for p < q the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and
also

(4.10)

∞∫
r

(
1 + ln

t

r

)
ϕ1 (x, t)

t
n
p

t
n
p−

n
q +1

dt ≤ C0ϕ2(x, r)r
n
q ,

where C0 does not depend on x ∈ Rn and r > 0

lim
r→0

ln 1
r

inf
x∈Rn

ϕ2(x, r)
= 0
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and

(4.11) cδ′ :=

∞∫
δ′

(1 + ln |t|) sup
x∈Rn

ϕ1 (x, t)
t
n
p

t
n
p−

n
q +1

dt <∞

for every δ′ > 0.
Then the operator TΩ,b is bounded from VMp,ϕ1 to VMp,ϕ2 . Moreover,

(4.12) ‖TΩ,bf‖VMp,ϕ2
. ‖b‖∗ ‖f‖VMp,ϕ1

.

Proof. The norm inequality having already been provided by Theorem 4.2, we only
have to prove the implication
(4.13)

lim
r→0

sup
x∈Rn

r−
n
p ‖f‖Lp(B(x,r))

ϕ1(x, r)
= 0 implies lim

r→0
sup
x∈Rn

r−
n
p ‖TΩ,bf‖Lp(B(x,r))

ϕ2(x, r)
= 0.

To show that

sup
x∈Rn

r−
n
p ‖TΩ,bf‖Lp(B(x,r))

ϕ2(x, r)
< ε for small r,

we use the estimate (4.3):

sup
x∈Rn

r−
n
p ‖TΩ,bf‖Lp(B(x,r))

ϕ2(x, r)
.
‖b‖∗

ϕ2(x, r)

∞∫
r

(
1 + ln

t

r

)
t−

n
p−1‖f‖Lp(B(x0,t))dt.

We take r < δ0, where δ0 will be chosen small enough and split the integration:

(4.14)
r−

n
p ‖TΩ,bf‖Lp(B(x,r))

ϕ2(x, r)
≤ C [Iδ0 (x, r) + Jδ0 (x, r)] ,

where δ0 > 0 (we may take δ0 < 1), and

Iδ0 (x, r) :=
1

ϕ2(x, r)

δ0∫
r

(
1 + ln

t

r

)
t−

n
p−1 ‖f‖Lp(B(x,t)) dt,

and

Jδ0 (x, r) :=
1

ϕ2(x, r)

∞∫
δ0

(
1 + ln

t

r

)
t−

n
p−1 ‖f‖Lp(B(x,t)) dt

Now we choose any fixed δ0 > 0 such that

sup
x∈Rn

t−
n
p ‖f‖Lp(B(x,t))

ϕ1(x, t)
<

ε

2CC0
, t ≤ δ0,

where C and C0 are constants from (4.7) and (4.14). This allows to estimate the
first term uniformly in r ∈ (0, δ0):

sup
x∈Rn

CIδ0 (x, r) <
ε

2
, 0 < r < δ0.

For the second term, writing 1 + ln t
r ≤ 1 + |ln t|+ ln 1

r , we obtain

Jδ0 (x, r) ≤
cδ0 + c̃δ0 ln 1

r

ϕ2(x, r)
‖f‖Mp,ϕ

,
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where cδ0 is the constant from (4.9) with δ = δ0 and c̃δ0 is a similar constant with
omitted logarithmic factor in the integrand. Then, by (4.8) we can choose small
enough r such that

sup
x∈Rn

Jδ0 (x, r) <
ε

2
,

which completes the proof of (4.13).
For the case of p < q, we can also use the same method, so we omit the details.

�

Remark 4.2. Conditions (4.9) and (4.11) are not needed in the case when ϕ(x, r)
does not depend on x, since (4.9) follows from (4.7) and similarly, (4.11) follows
from (4.10) in this case.

Corollary 4.3. Suppose that Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, is homogeneous of

degree zero, 1 < p < ∞ and b ∈ BMO (Rn). If for q′ ≤ p the pair (ϕ1, ϕ2)
satisfies conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7) and for p < q the pair (ϕ1, ϕ2)
satisfies conditions (2.3)-(2.4)-(4.8) and (4.11)-(4.10). Then, the operators MΩ,b

and [b, TΩ] are bounded from VMp,ϕ1 to VMp,ϕ2 .

In the case of q =∞ by Theorem 4.3, we get

Corollary 4.4. Let 1 < p < ∞, b ∈ BMO (Rn) and the pair (ϕ1, ϕ2) satisfies
conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7). Then the operators Mb and [b, T ] are
bounded from VMp,ϕ1

to VMp,ϕ2
.

5. some applications

In this section, we give the applications of Theorem 3.2, Theorem 3.3, Theorem
4.2, Theorem 4.3 for the Marcinkiewicz operator.

5.1. Marcinkiewicz Operator. Let Sn−1 = {x ∈ Rn : |x| = 1} be the unit
sphere in Rn equipped with the Lebesgue measure dσ. Suppose that Ω satisfies the
following conditions.

(a) Ω is the homogeneous function of degree zero on Rn \ {0}, that is,

Ω(µx) = Ω(x), for any µ > 0, x ∈ Rn \ {0}.
(b) Ω has mean zero on Sn−1, that is,∫

Sn−1

Ω(x′)dσ(x′) = 0,

where x′ = x
|x| for any x 6= 0.

(c) Ω ∈ Lipγ(Sn−1), 0 < γ ≤ 1, that is there exists a constant M > 0 such that,

|Ω(x′)− Ω(y′)| ≤M |x′ − y′|γ for any x′, y′ ∈ Sn−1.

In 1958, Stein [46] defined the Marcinkiewicz integral of higher dimension µΩ as

µΩ(f)(x) =

 ∞∫
0

|FΩ,t(f)(x)|2 dt
t3

1/2

,

where

FΩ,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y)dy.
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Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been
extensively studied as a research topic and also provides useful tools in harmonic
analysis [27, 47, 48, 49].

The sublinear commutator of the operator µΩ is defined by

[b, µΩ](f)(x) =

(∫ ∞
0

|FΩ,t,b(f)(x)|2 dt
t3

)1/2

,

where

FΩ,t,b(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
[b(x)− b(y)]f(y)dy.

We consider the space H = {h : ‖h‖ = (
∞∫
0

|h(t)|2 dtt3 )1/2 < ∞}. Then, it is clear

that µΩ(f)(x) = ‖FΩ,t(x)‖.
By the Minkowski inequality and the conditions on Ω, we get

µΩ(f)(x) ≤
∫
Rn

|Ω(x− y)|
|x− y|n−1

|f(y)|

 ∞∫
|x−y|

dt

t3


1/2

dy ≤ C
∫
Rn

|Ω(x− y)|
|x− y|n

|f(y)|dy.

Thus, µΩ satisfies the condition (1.1). It is known that µΩ is bounded on Lp(Rn)
for p > 1, and bounded from L1(Rn) to WL1(Rn) for p = 1 (see [50]), then from
Theorems 3.2, 3.3, 4.2 and 4.3 we get

Corollary 5.1. Let 1 ≤ p < ∞, Ω ∈ Lq
(
Sn−1

)
, 1 < q ≤ ∞. Let also, for q′ ≤ p,

p 6= 1, the pair (ϕ1, ϕ2) satisfies condition (3.10) and for 1 < p < q the pair (ϕ1, ϕ2)
satisfies condition (3.11) and Ω satisfies conditions (a)–(c). Then the operator µΩ

is bounded from Mp,ϕ1
to Mp,ϕ2

for p > 1 and from M1,ϕ1
to WM1,ϕ2

for p = 1.

Corollary 5.2. Let 1 ≤ p < ∞, Ω ∈ Lq
(
Sn−1

)
, 1 < q ≤ ∞. Let also, for q′ ≤ p,

p 6= 1, the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.14)-(3.15) and for
1 < p < q the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.16)-(3.17) and
Ω satisfies conditions (a)–(c). Then the operator µΩ is bounded from VMp,ϕ1 to
VMp,ϕ2

for p > 1 and from VM1,ϕ1
to WVM1,ϕ2

.

Corollary 5.3. Suppose that Ω ∈ Lq(Sn−1), 1 < q ≤ ∞, is homogeneous of degree
zero, 1 < p < ∞ and b ∈ BMO (Rn). Let also, for q′ ≤ p the pair (ϕ1, ϕ2)
satisfies condition (4.5) and for p < q the pair (ϕ1, ϕ2) satisfies condition (4.6) and
Ω satisfies conditions (a)–(c). Then, the operator [b, µΩ] is bounded from Mp,ϕ1 to
Mp,ϕ2

.

Corollary 5.4. Suppose that Ω ∈ Lq(Sn−1), 1 < q ≤ ∞, is homogeneous of degree
zero, 1 < p <∞ and b ∈ BMO (Rn). Let also, for q′ ≤ p the pair (ϕ1, ϕ2) satisfies
conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7) and for p < q the pair (ϕ1, ϕ2) satisfies
conditions (2.3)-(2.4)-(4.8) and (4.11)-(4.10) and Ω satisfies conditions (a)–(c).
Then, the operator [b, µΩ] is bounded from VMp,ϕ1 to VMp,ϕ2 .

Acknowledgement: This study has been given as the plenary talk by the au-
thor at the “3rd International Intuitionistic Fuzzy Sets and Contemporary Mathe-
matics Conference (IFSCOM2016), August 29-September 1, 2016, Mersin, Turkey”.



GENERALIZED VANISHING MORREY ESTIMATE 127

References

[1] D.R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765-778.
[2] A.S. Balakishiyev, V.S. Guliyev, F. Gurbuz and A. Serbetci, Sublinear operators with rough

kernel generated by Calderon-Zygmund operators and their commutators on generalized local

Morrey spaces, J. Inequal. Appl. 2015, 2015:61. doi:10.1186/s13660-015-0582-y.
[3] L. Caffarelli, Elliptic second order equations, Rend. Semin. Math. Fis. Milano, 58 (1990),

253-284.

[4] X.N. Cao, D.X. Chen, The boundedness of Toeplitz-type operators on vanishing Morrey
spaces. Anal. Theory Appl. 27 (2011), 309-319.

[5] F. Chiarenza, M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat.,
7 (1987), 273-279.

[6] F. Chiarenza, M. Frasca, P. Longo, Interior W 2,p-estimates for nondivergence elliptic equa-

tions with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.
[7] F. Chiarenza, M. Frasca, P. Longo, W 2,p-solvability of Dirichlet problem for nondivergence

elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853.

[8] R.R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several
variables, Ann. of Math., 103 (3) (1976), 611-635.

[9] R.R. Coifman, P. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces.

J. Math. Pures Appl. 72 (1993), 247-286.
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1. Introduction

The concept of temporal intuitionistic fuzzy sets is defined by Atanassov in 1991.
In this theory membership and non-membership degrees are defined depending on
the time-moment and element. This idea leads to a rich field to be used in appli-
cations on dynamic fields such as weather, economy, image and video processing.
On the other hand, the similarity and distance measures on fuzzy and intuition-
istic fuzzy sets, as seen in present studies, are used in many different areas and
obtained effective results. Temporal intuitionistic fuzzy measures which achieved
by combining these two ideas are still not defined in the literature. This is one
of major shortcoming of temporal intuitionistic fuzzy set theory. Temporal intu-
itionistic fuzzy measurement is a natural consequence of idea that making dynamic
measurements used in the dynamic areas.

In this study, firstly we give definitions of temporal intuitionistic fuzzy distance
and similarity measures. Then, we investigate some major properties of these mea-
sures. Also we investigate how to define these measurements. With more clearly,
these measures will be examined by defining which parameters need to adhere to.
Additionally, the concept of entropy and inclusion which are closely related to afore-
mentioned measures are defined to the temporal intuitionistic fuzzy sets. Finally,
some other basic concepts needed in this context will be defined in temporal space
intuitionistic fuzzy sets.

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference
Key words and phrases. temporal intuitionistic fuzzy sets, distance measure, similarity mea-

sure, entropy, inclusion measure.
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2. Preliminaries

Definition 2.1. [1] An intuitionistic fuzzy set on a non-empty set X given by a set
of ordered triples A = {(x, µA (x) , ηA (x)) : x ∈ X} where µA (x) : X → I = [0, 1],
ηA (x) : X → I , are functions such that 0 ≤ µ (x) + η (x) ≤ 1 for all x ∈ X.
For x ∈ X, µA (x) and ηA (x) represent the degree of membership and degree of
non-membership of x to A respectively. For each x ∈ X; intuitionistic fuzzy index
of x in A is defined as follows πA (x) = 1− µA (x)− ηA (x). πA is the called degree
of hesitation or indeterminacy.

Definition 2.2. [1] Let A,B ∈ IFS (X). Then,
(i) A ⊆ B ⇔ µA (x) ≤ µB (x) and ηA (x) ≥ ηB (x) for ∀x ∈ X,
(ii) A = B ⇔ A ⊆ B and B ⊆ A,
(iii) Ā = {(x, ηA (x) , µA (x)) : x ∈ X},
(iv)

⋂
Ai = {(x, ∧µAi (x) ,∨ηAi (x)) : x ∈ X},

(v)
⋃
Ai = {(x, ∨µAi (x) ,∧ηAi (x)) : x ∈ X},

(vi) 0
∼

= {(x, 0, 1) : x ∈ X} and 1
∼

= {(x, 1, 0) : x ∈ X}..

Definition 2.3. [2] Let X be an universe and T be a non-empty time set. We call
the elements of T as ”time moments”. Based on the definition of IFS, a temporal
intuitionistic fuzzy set (TIFS) is defined as the following:

A (T ) = {(x, µA (x, t) , ηA (x, t) ) : X × T}
where:

a. A ⊆ X is a fixed set
b. µA (x, t) + ηA (x, t) ≤ 1 for every (x, t) ∈ X × T
c. µA (x, t) and ηA (x, t) are the degrees of membership and non-membership,

respectively, of the element x ∈ X at the time moment t ∈ T
For brevity, we write A instead of A (T ). The hesitation degree of an TIFS is

defined as πA (x, t) = 1 − µA (x, t) − ηA (x, t). Obviously, every ordinary IFS can
be regarded as TIFS for which T is a singleton set. All operations and operators
on IFS can be defined for TIFSs.

By TIFS(X,T ), we denote to the set of all temporal intuitionistic fuzzy sets
defined on X and time set T . Obviously, each intuitionistic fuzzy sets can be
expressed as temporal intuitionistic fuzzy set via a singular time set. In additionally,
all operations and operators defined for intuitionistic fuzzy sets can be defined for
temporal intuitionistic fuzzy sets.

Definition 2.4. [2] Let

A (T ′) = {(x, µA (x, t) , ηA (x, t) ) : X × T ′}
and

B (T ′′) = {(x, µB (x, t) , ηB (x, t) ) : X × T ′′}
where T ′ and T ′′ have finite number of distinct time-elements or they are time
intervals. Then;
A (T ′) ∩B (T ′′) =

{(x, min (µ̄A (x, t) , µ̄B (x, t)) , max (η̄A (x, t) , η̄B (x, t)) ) : (x, t) ∈ X × (T ′ ∪ T ′′)}
and
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A (T ′) ∪B (T ′′) =

{(x, max (µ̄A (x, t) , µ̄B (x, t)) , min (η̄A (x, t) , η̄B (x, t)) ) : (x, t) ∈ X × (T ′ ∪ T ′′)}
Also from definition of subset in IFS theory, Subsets of TIFS can be defined as

the following:

A (T ′) ⊆ B (T ′′)⇔ µ̄A (x, t) ≥ µ̄B (x, t) and η̄A (x, t) ≤ η̄B (x, t)

for every [(x, t) ∈ X × (T ′ ∪ T ′′) where

µ̄A (x, t) =

{
µA (x, t)

0
, if t ∈ T ′
, if t ∈ T ′′ − T ′

µ̄B (x, t) =

{
µB (x, t)

0
, if t ∈ T ′′
, if t ∈ T ′ − T ′′

η̄A (x, t) =

{
ηA (x, t)

1
, if t ∈ T ′
, if t ∈ T ′′ − T ′

η̄B (x, t) =

{
ηB (x, t)

1
, if t ∈ T ′′
, if t ∈ T ′ − T ′′

It is obviously seen that if T ′ = T ′′; µ̄A (x, t) = µA (x, t), µ̄B (x, t) = µB (x, t),
η̄A (x, t) = ηA (x, t), η̄B (x, t) = ηB (x, t). [2]

Let J be an index set and Ti is a time set for each i ∈ J . Let define that
T =

⋃
i∈J

Ti. Now we extend union and intersection of temporal intuitionistic fuzzy

sets to the family F = {Ai (Ti) = (x, µAi (x, t) , ηAi (x, t) ) : x ∈ X × Ti, i ∈ J} as:

⋃
i∈J

A (Ti) =

{(
x, max

i∈J
(µ̄Ai (x, t)) , min

i∈J
(η̄Ai (x, t)) : (x, t) ∈ X × T

)}
,

⋂
i∈J

A (Ti) =

{(
x, min

i∈J
(µ̄Ai (x, t)) , max

i∈J
(η̄Ai (x, t)) : (x, t) ∈ X × T

)}
where

µ̄Ai (x, t) =

{
µAi (x, t)

0
, if t ∈ Ti
, if t ∈ T − Ti

η̄Ai (x, t) =

{
ηAi (x, t)

1
, if t ∈ Ti
, if t ∈ T − Ti

3. Distance Measure, Similarity Measure, Entropy And Inclusion
Measure For Temporal Intuitionistic Fuzzy Sets

Let X be a universe and T be a non-empty time-moment set. The definition of
distance measure defined in [31] can be extended to TIFS(X,T ) such as:

Definition 3.1. Let X be a universe, T be a non-empty time-moment set and
dt : TIFS(X,T )×TIFS(X,T ) → R+∪{0} be a mapping for fixed t ∈ T . If dt satisfies
following properties for all A,B ∈ TIFS(X,T ) and fixed time-moment t ∈ T , then
dt is called a temporal intuitionistic fuzzy distance measure on TIFS(X,T ) at time-
moment t :

D1. dt (A,B) = 0 ⇔ A = B,
D2. dt (A,B) = dt (B,A),
D3. If A is crisp set, dt

(
A, Ā

)
= max
B,C∈TIFS(X,T )

dt (B,C)
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D4. If A ⊆ B ⊆ C for A, B, C∈ TIFS(X,T ), dt (A,C) ≥ dt (A,B) and
dt (A,C) ≥ dt (B,C).

If there exist a mapping d : TIFS(X,T )×TIFS(X,T ) → R+∪{0} which satisfies
these conditions for every time moment t ∈ T , then d is called a overall intuitionistic
fuzzy distance measure on TIFS(X,T ). In order to distinguish between these two
concepts from each other, the first measure is referred as temporal intuitionistic
fuzzy distance measure at just only time moment t. But the second one measures
overall distance between temporal intuitionistic fuzzy sets in full time range.

Distance measure between temporal intuitionistic fuzzy sets in terms of being
discrete time set or interval time set can be defined in the following way (see for
more information: [4], [13], [16], [18], [20], [22], [31], [33], [34], [37], [43]):

Theorem 3.1. Let X be non-empty set and T = {t1, t2, t3, ..., tn} be finite and
distinct time set. Let define A,B ∈ TIFS(X,T ) such as

A (T ) = {(x, µA (x, t) , ηA (x, t) ) : (x, t) ∈ X × T}

and

B (T ) = {(x, µB (x, t) , ηB (x, t) ) : (x, t) ∈ X × T}
, respectively. Then we define dit (A,B) mappings for t ∈ T and i = 1, 2, 3, 4 as
following:

1. d1t0 (A,B) =

√ ∑
x∈X

(
(µA (x, t0)− µB (x, t0))

2
+ (ηA (x, t0)− ηB (x, t0))

2
)

,

2. d2t0 (A,B) =
∑
x∈X

(|µA (x, t0)− µB (x, t0)|+ |ηA (x, t0)− ηB (x, t0)|),

3. d3t0 (A,B) =
∑
x∈E

(max {|µA (x, t0)− µB (x, t0)| , |ηA (x, t0)− ηB (x, t0)|}),

4. d4t0 (A,B) =

√∑
x∈E

max
{

(µA (x, t0)− µB (x, t0))
2
,
(
ηA (x, t0)− ηB (x, t0)

2
)}

.

It is clear that each mapping dit (A,B) is a temporal intuitionistic fuzzy distance
measures for t ∈ T . On the other hand, the following temporal distance measures
are obtained by adding the degree of uncertainty to former ones.
5. D1

t0 (A,B) =√∑
x∈X

(
(µA (x, t0)− µB (x, t0))

2
+ (ηA (x, t0)− ηB (x, t0))

2
+ (πA (x, t0)− πB (x, t0))

2
)

6. D2
t0 (A,B) =∑

x∈X
(|µA (x, t0)− µB (x, t0)|+ |ηA (x, t0)− ηB (x, t0)|+ |πA (x, t0)− πB (x, t0)|)

7. D3
t0 (A,B) =∑

x∈E
max {|µA (x, t0)− µB (x, t0)| , |ηA (x, t0)− ηB (x, t0)| , |πA (x, t0)− πB (x, t0)|}

8. D4
t0 (A,B) =√∑

x∈E
max

{
(µA (x, t0)− µB (x, t0))

2
,
(
ηA (x, t0)− ηB (x, t0)

2
)
, (πA (x, t0)− πB (x, t0))

2
}
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Additionally, the mappings di (or Di) defined as di (A,B) = max
t∈T

(
dit (A,B)

)
(or

Di (A,B) = max
t∈T

(
Di

t (A,B)
)
) are overall temporal intuitionistic fuzzy distance

measures for i = 1, 2, 3, 4. It is clear that these temporal and overall intuitionistic
fuzzy distance measures are intuitionistic fuzzy distance measure for a singleton
time set.

Proof. As it can be seen in studies ([4], [13], [16], [18], [20], [22], [31], [33], [34], [37],
[43], etc.) temporal intuitionistic fuzzy distance measures defined above is obtained
by the addition of time parameters to the intuitionistic fuzzy distance measures.
As stated previously, these measures are also intuitionistic fuzzy distance measure
for each individual time moment. Now we prove that d1 (A,B) = max

t∈T

(
d1t (A,B)

)
is an overall intuitionistic fuzzy distance measure.
D1: Since d1t (A,A) = 0 for all t ∈ T and A ∈ TIFS(X,T ) , it is clearly obtained
that d1 (A,A) = 0.
D2: Since d1t (A,B) = d1t (B,A) for all t ∈ T and A,B ∈ TIFS(X,T ) , Then
it is clearly obtained that d1 (A,B) = max

t∈T

(
d1t (A,B)

)
= max

t∈T

(
d1t (B,A)

)
=

d1 (B,A).
D3: Since d1t

(
A, Ā

)
= max

B,C∈TIFS(X,T )
d1t (B,C) for all t ∈ T and A crisp set.

Then, we can easily get d1
(
A, Ā

)
= max

t∈T

(
d1t
(
A, Ā

))
= max

t∈T

{
max

B,C∈TIFS(X,T )
d1t (B,C)

}
=

max
B,C∈TIFS(X,T )

{
max
t∈T

dt (B,C)

}
= max
B,C∈TIFS(X,T )

d1 (B,C)

D4: From the definition of being subset in concept of TIFS, When A ⊆ B ⊆ C
for A, B, C∈ TIFS(X,T ), the inequalities µA (x, t) ≥ µB (x, t) ≥ µC (x, t) and
ηA (x, t) ≤ ηB (x, t) ≤ ηC (x, t) are hold for each (x, t) ∈ X × T . From the last two
inequalities the inequalities dt1 (A,C) ≥ dt1 (A,B) and dt1 (A,C) ≥ dt1 (B,C) are
obtained for t ∈ T . Then the inequalities d1 (A,C) ≥ d1 (A,B) and d1 (A,C) ≥
d1 (B,C) are clearly obtained from definition of d1. The other situations can be
proved similarly. �

Each distance measures dit indicates temporal distance between the temporal in-
tuitionistic fuzzy sets at time moment t ∈ T . On the other hand, di measurements
which are obtained from the maximum of dit gives a overall distance measurement
between temporal intuitionistic fuzzy sets. These two approaches gain different
importance degrees depending on the applications. With more open expression,
overall distance measure expresses inferential distance in the total situation, while
since the temporal distance between the temporal intuitionistic fuzzy sets are sensi-
tive to sudden changes at distance, temporal distance is a measure of instant change
between cases represented by the temporal intuitionistic fuzzy set. This situation
offers multiple ways to ensure expected benefits from the application.

We give definition of temporal intuitionistic distance measures on infinite and
interval time set as follow:

Proposition 3.1. Let X be a infinite set and T = {t1, t2, , ...., ti, ...} be a infinite
time set (or time interval). Let suppose that tk ≤ tk+1 for each tk, tk+1 ∈ T . On
the other hand, let define A, B ∈ TIFS(X,T ) TIFSs as follows:

A (T ) = {(x, µA (x, t) , ηA (x, t) ) : (x, t) ∈ X × T}
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and

B (T ) = {(x, µB (x, t) , ηB (x, t) ) : (x, t) ∈ X × T} ,
respectively. With these definitions, the following statements are overall intu-

itionistic fuzzy distance measure on TIFS(X,T )

1. d∗1 (A,B) =

sup
t∈T

{
max

{
sup
x∈X

|µA (x, t)− µB (x, t)| , sup
x∈X

|ηA (x, t)− ηB (x, t)|
}}

2. d∗2 (A,B) =

sup
t∈T

{
sup
x∈X

(|µA (x, t)− µB (x, t)|+ |ηA (x, t)− ηB (x, t)|)
}

3. d∗3 (A,B) =

sup
t∈T

√
sup
x∈X

(
(µA (x, t)− µA (x, t))

2
+ (ηA (x, t)− ηA (x, t))

2
)

4.D∗1 (A,B) =

sup
t∈T

{
max

{
sup
x∈X

|µA (x, t)− µB (x, t)| , sup
x∈X

|ηA (x, t)− ηB (x, t)| , sup
x∈X

|πA (x, t)− πB (x, t)|
}}

5. D∗2 (A,B) =

sup
t∈T

(
sup
x∈X

(|µA (x, t)− µB (x, t)|+ |ηA (x, t)− ηB (x, t)|+ |πA (x, t)− πB (x, t)|)
)

6. D∗3 (A,B) =

sup
t∈T

√
sup
x∈X

(
(µA (x, t)− µB (x, t))

2
+ (ηA (x, t)− ηB (x, t))

2
+ (πA (x, t)− πB (x, t))

2
)

(see [4], [13], [16], [18], [20], [22], [31], [33], [34], [37], [43], etc.)

Proposition 3.2. Let X be an infinite set and T = [t1, t2] for t1, t2 ∈ R+ and
t1 < t2 . Then the following statements are overall intuitionistic c fuzzy distance
measures on TIFS(X,T )

1. D∗∗∗1 (A,B) = sup
t∈T

{∫
X

(µA (x, t)− µB (x, t)) .dx+

∣∣∣∣∫
X

(ηA (x, t)− ηA (x, t)) .dx

∣∣∣∣}
2.D∗∗∗2 (A,B) =

sup
t∈T


∣∣∣∣∣∣
∫
X

(µA (x, t)− µB (x, t)) .dx

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
X

(ηA (x, t)− ηB (x, t)) .dx

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
X

(πA (x, t)− πB (x, t)) .dt

∣∣∣∣∣∣


for A,B ∈ TIFS(X,T ) and t ∈ T = [t1, t2]. (see [4], [13], [16], [18], [20], [22],
[31], [33], [34], [37], [43], etc.)

Example 3.1. Let suppose that X = [0, 4] and T = [0, 5]. Let define that

A (T ) = {((x, t) , µA (x, t) , ηA (x, t) ) ; (x, t) ∈ X × T }

and

B (T ) = {((x, t) , µB (x, t) , ηB (x, t) ) ; (x, t) ∈ X × T }
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Figure 1

Figure 2

where degrees of membership and non-membership are defined as follows respec-

tively µA (x, t) = e−10
(x−1)2

t+1 and ηA (x, t) = 1 − e−
(x−1)2

t+1 ; µB (x, t) = 1
1+e−t.(x−2)2

and ηB (x, t) = e−t.(x−2)2

2+e−t.(x−2) for all (x, t) ∈ X × T . 3D- graphics of µA, ηA, µB and

ηB are given in Fig.1,2,3,4, respectively.

Fig 1. Graphic of temporal intuitionistic fuzzy membership function µA

Fig 2. Graphic of temporal intuitionistic fuzzy non-membership function ηA
Fig 3. Graphic of temporal intuitionistic fuzzy membership function µB
Fig 4. Graphic of temporal intuitionistic fuzzy non-membership function ηB

In the following figures, we give changing of distance between A and B obtained
by D∗∗∗1 and D∗∗∗2 over time in Fig 5. and Fig. 6.

Fig. 5. Changing of distance between A and B obtained by D∗∗∗1
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Figure 3

Figure 4

Figure 5
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Figure 6

Fig. 6. Changing of distance between A and B obtained by D∗∗∗2

From these figures, the following overall distances are obtained

dD∗∗∗
1

(A,B) = sup
t∈T
{D∗∗∗1 (A,B)} = 3, 391

and

dD∗∗∗
2

(A,B) = sup
t∈T
{D∗∗∗2 (A,B)} = 5, 415

respectively. A key issue at this point is D∗∗∗2 temporal distance measure is more
durable and more reliable than D∗∗∗1 in high degrees of uncertainty. As previously
stated in various studies of Szmidt and Kacprzyk for intuitionistic fuzzy sets, in
the cases which contains data with high degree of uncertainty, it is obvious that
temporal (or overall) distance which obtained with three parameters between tem-
poral intuitionistic fuzzy sets is more accurate than temporal (or overall) distance
which obtained with two parameters .

We use aggregation function to generalize the correlation between temporal and
overall intuitionistic fuzzy distance as used in [11].

Theorem 3.2. Let X be a non-empty set and T = {t1, t2, ..., tn} be a finite time
set. Let suppose that dt : TIFS(X,T ) × TIFS(X,T ) → [0, 1] is a normal temporal
intuitionistic fuzzy sets for t ∈ T and f is a n-aggregation function without zero
divisor. Then, the mapping d : TIFS(X,T ) × TIFS(X,T ) → [0, 1] which defined as:

d (A,B) = f (dt1 (A,B) , dt2 (A,B) , ..., dtn (A,B) )

for A,B ∈ TIFS(X,T ) is a overall intuitionistic fuzzy distance measure.

Proof. Since dt : TIFS(X,T ) × TIFS(X,T ) → [0, 1] is a intuitionistic fuzzy distance
measure on TIFSs for each t ∈ T . d (A,B) = f (dt1 (A,B) , dt2 (A,B) , ..., dtn (A,B) )
is a intuitionistic fuzzy distance measure (see [11]). Due to dt expresses temporal
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distance between A and B for each t ∈ T ,dwhich is obtained by dt expresses overall
distance between A and B. �

Now we give definitions of temporal and overall intuitionistic fuzzy similarity
measure in sense of [31]

Definition 3.2. Let X be a non-empty set, T be time set and st : TIFS(X,T ) ×
TIFS(X,T ) → [0, 1] be a mapping. If st satisfies following conditions for all
A,B,C ∈ TIFS(X,T ) and fixed time moment t ∈ T , st is called temporal intu-
itionistic fuzzy similarity measure on TIFS(X,T ) at time moment t.

S1. If A is a crisp set, st
(
A, Ā

)
= 0

S2. A = B ⇔ S (A,B) = 1 for all A,B ∈ TIFS(X,T )

S3. st (A,B) = st (B,A) for all A,B ∈ TIFS(X,T )

S4. The inequalties st (A,C) ≤ st (A,B) and st (A,C) ≤ st (B,C) are satisfied
for all A,B,C ∈ TIFS(X,T ) which are satisfied A ⊆ B ⊆ C

As in the concept of temporal distance measure, similarity measure can be exam-
ined in two parts as named temporal and overall. Let us give examples of temporal
intuitionistic fuzzy similarity measure can be defined in accordance with this ap-
proach. It is clear that these measures are obtained by changing domain set of
intuitionistic fuzzy similarity measure which are defined in the literature (see [4, 5,
6, 8, 10, 13, 23, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 41, 44, 45]) as TIFS(X,T ) :

1. St01 (A,B) =

1−

n∑
i=1

(
|µA (xi, t0)− µB (xi, t0)|t0 + |ηA (xi, t0)− ηB (xi, t0)|t0

) 1
t0

2n

where X = {x1, x2, ..., xn}, T = {t1, t2, ..., tm}, t0 ∈ T and A,B ∈ TIFS(X,T ),

2. S
tj0
2 (A,B) =

1−

n∑
i=1

ω(i,j0) |(|µA (xi, tj0)− µB (xi, tj0)|+ |ηA (xi, tj0)− ηB (xi, tj0)|)|

2n

where X = {x1, x2, ..., xn}, T = {t1, t2, ..., xm}, tj0 ∈ T , A,B ∈ TIFS(X,T )

and
n∑
i=1

ω(i,j0) = 1 for each j0 ∈ {1, 2, ...,m} where ω(i,j) ∈ [0, 1] for each (i, j) ∈

{1, 2, ..., n} × {1, 2, ...,m}.
3. S

tj0
3 (A,B) =

1−

n∑
i=1

ω(i,j0) (|µA (xi, tj0)− µB (xi, tj0)|+ |ηA (xi, tj0)− ηB (xi, tj0)|)

2n

where X = {x1, x2, ..., xn}, T = {t1, t2, ..., xm}, tj0 ∈ T , A,B ∈ TIFS(X,T ) and
n∑
i=1

ω(i,j0) = 1 for each j0 ∈ {1, 2, ...,m} where ω(i,j) ∈ [0, 1] for each (i, j) ∈

{1, 2, ..., n} × {1, 2, ...,m}.
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4. S
tj0
4 (A,B) =

1−

n∑
i=1

ω(i,j0) (|µA (xi, tj0)− µB (xi, tj0)|+ |ηA (xi, tj0)− ηB (xi, tj0)|+ |πA (xi, tj0)− πB (xi, tj0)|)

2n

where X = {x1, x2, ..., xn}, T = {t1, t2, ..., xm}, tj0 ∈ T , A,B ∈ TIFS(X,T ) and
n∑
i=1

ω(i,j0) = 1 for each j0 ∈ {1, 2, ...,m} where ω(i,j) ∈ [0, 1] for each (i, j) ∈

{1, 2, ..., n} × {1, 2, ...,m}.
5. St05 (A,B) = 1

n

n∑
i=1

min{µA(xi,t0),µB(xi,t0)}+min{ηA(xi,t0),ηB(xi,t0)}
max{µA(xi,t0),µB(xi,t0)}+max{ηA(xi,t0),ηB(xi,t0)}

where X = {x1, x2, ..., xn}, T = {t1, t2, ..., xm}, t0 ∈ T , A,B ∈ TIFS(X,T )

6. St06 (A,B) =

n∑
i=1

1− 1
2 (|µA(xi,t0)−µB(xi,t0)|+|ηA(xi,t0)−ηB(xi,t0)|)

n

where X = {x1, x2, ..., xn}, T = {t1, t2, ..., xm}, t0 ∈ T , A,B ∈ TIFS(X,T )

7. St07 (A,B) = 1
n

n∑
i=1

min{µA(xi,t0),µB(xi,t0)}+min{ηA(xi,t0),ηB(xi,t0)}
n∑
i=1

max{µA(xi,t0),µB(xi,t0)}+max{ηA(xi,t0),ηB(xi,t0)}

where X = {x1, x2, ..., xn}, T = {t1, t2, ..., xm}, t0 ∈ T , A,B ∈ TIFS(X,T )

8. St08 (A,B) = 1− 1
2 (max |µA (xi, t0)− µB (xi, t0)|+ max |ηA (xi, t0)− ηB (xi, t0)|)

where X = {x1, x2, ..., xn}, T = {t1, t2, ..., xm}, t0 ∈ T , A,B ∈ TIFS(X,T )

9. St09 (A,B) = 1−
n∑
i=1

(|µA(xi,t0)−µB(xi,t0)|+|ηA(xi,t0)−ηB(xi,t0)|)
n∑
i=1

(|µA(xi,t0)+µB(xi,t0)|+|ηA(xi,t0)+ηB(xi,t0)|)

where X = {x1, x2, ..., xn}, T = {t1, t2, ..., xm}, t0 ∈ T , A,B ∈ TIFS(X,T )

In these definitions, it is seen that the temporal similarity measures are depen-
dent on t the moment with selected temporal intuitionistic fuzzy sets. Since these
TIFSs change over time, similarity measures on TIFS(X,T ) inevitably change over
time. This approach elicits a more spacious work area for applications changed in
comparison mechanism. there are many different methods to achieve the overall
similarity measure defined from a temporal intuitionistic fuzzy similarity measures.
Among these the most significant are defined as follows:

Theorem 3.3. Let X be non-empty set, T be time set and st be a temporal intu-
itionistic fuzzy similarity measure for each t ∈ T . Then the mapping s defined as
s (A,B) = max

t∈T
{st (A,B)} is a overall intuitionistic fuzzy similarity measure.

More general version of this theorem with Du and Xu’s approach [11] can be
given as follows:

Theorem 3.4. : Let X be non-empty set and T = {t1, t2, ..., tn} be a time set.
Let suppose that the mappings st : TIFS(X,T ) × TIFS(X,T ) → [0, 1] are temporal
intuitionistic fuzzy similarity measure for each t ∈ T and f is a n-aggregation
function without zero divisor . Then, the mapping s : TIFS(X,T ) × TIFS(X,T ) →
[0, 1] defined as:

s (A,B) = f
(
st1 (A,B) , st2 (A,B) , ..., stn (A,B)

)
for all A,B ∈ TIFS(X,T ) is a overall intuitionistic fuzzy similarity measure.
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Proof. It can be proven as Theorem 1. �

As noted for temporal intuitionistic fuzzy distance measure, all similarity mea-
sures defined for intuitionistic fuzzy sets can be accepted as temporal intuitionis-
tic fuzzy similarity measure for singular time set and they also can be converted
into temporal intuitionistic fuzzy similarity measure by selecting the domain set
TIFS(X,T ). After this process, overall intuitionistic fuzzy similarity measurements
indicating the general jurisdiction can be obtained by using some methods such as
aggregation function. The most common feature of data used in real-world applica-
tions is that they can change over time. In this context, the most remarkable feature
is that the uncertainty of the situation will may increase sometimes. As in fuzzy
and intuitionistic fuzzy sets, temporal (or overall) intuitionistic fuzzy distance and
similarity measures are dual concepts. So, there are several ways to obtain other
one from another. In [11], Du and Xu have generalized this relationship by fuzzy
negation and aggregation function for intuitionistic fuzzy distance and similarity
measures. Their feature is also available in the temporal intuitionistic fuzzy sets.
Having not generalized some basic concepts for temporal intuitionistic fuzzy sets
is shortcoming in the literature. Some of these concepts which given in [11] are
generalized for the temporal intuitionistic fuzzy sets as follows:

Definition 3.3. Let T be a time set. If the mapping Nt : [0, 1]→ [0, 1] is satisfied
following condition for t ∈ T , it is called temporal fuzzy negation at time moment
t :
N1. Nt (0) = 1, Nt (1) = 0
N2. Nt (b) ≤ Nt (a) for all a ≤ b
if Nt is satisfied
a. Nt (Nt (a)) = a for t ∈ T and all a ∈ [0, 1] , it is called temporal fuzzy strong
negation at time moment t,
b. x = 0 ⇔ Nt (x) = 1 for t ∈ T and all a ∈ [0, 1] , it is called temporal fuzzy
non-filling negation at time moment t,
c. x = 1 ⇔ Nt (x) = 0 for t ∈ T and all a ∈ [0, 1] , it is called temporal fuzzy
non-vanishing negation at time moment t.

The novelty of this definition is that negation will change over time. Adding the
time parameters and changing temporal fuzzy negation over time offers unlimited
options for obtaining similarity measure from distance measure (or conversely).
the temporal fuzzy strong negations can be obtained by adding time parameters to
fuzzy negations as follows:

1. N1,λt (x) = 1−x
1+λtx

for λt ∈ (−1,+∞) and t ∈ T ,

2. N2,δt (x) = δt
√

1− xδt for δt ∈ (0,+∞) and t ∈ T ,

3.N3,ϕt (x) =

{
1, x ≤ ϕt
0, otherwise

for ϕt ∈ (0, 1) and t ∈ T .

Following theorems are obtained by adding time parameter to theorems which given
by Du and Xu [11].

Theorem 3.5. Let X be non-empty set, T be time set and A,B ∈ TIFS(X,T ).
Let suppose that dt is a temporal distance measure and Nt is a temporal fuzzy
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non-filling negation. Then, the mapping sNt : TIFS(X,T ) × TIFS(X,T ) → [0, 1]
defined as sNt (A,B) = Nt (dt (A,B))is a temporal intuitionistic fuzzy similarity
measure. Conversely, Let suppose that st is a temporal intuitionistic fuzzy similar-
ity measure and Nt is a temporal fuzzy non-vanishing negation, then the mapping
dNt : TIFS(X,T ) × TIFS(X,T ) → [0, 1] defined as dNt (A,B) = Nt (st (A,B)) is
a temporal intuitionistic fuzzy distance measure. If Nt is a temporal fuzzy strong
negation, the equations dt (A,B) = N t (sNt (A,B)) and st (A,B) = Nt (dNt (A,B))
are satisfied.

This theorem is preserved with Du and Xu‘s approach [11] for overall temporal
measures as follows.

Theorem 3.6. Let X be non-empty set, T be time set and A,B ∈ TIFS(X,T ). Let
suppose that d is overall intuitionistic fuzzy distance measure and N is a fuzzy non-
filling negation. Then, the mapping sN : TIFS(X,T ) × TIFS(X,T ) → [0, 1] defined
as sN (A,B) = N (d (A,B)) is an overall intuitionistic fuzzy similarity measure.
Conversely, let suppose that s is an overall intuitionistic fuzzy similarity measure
and N is a fuzzy non-vanishing negation, then the mapping dN : TIFS(X,T ) ×
TIFS(X,T ) → [0, 1] defined as dN (A,B) = N (s (A,B)) is a overall intuitionistic
fuzzy similarity measure. If N is a fuzzy strong negation, the equations d (A,B) =
N (sN (A,B)) and s (A,B) = N (dN (A,B)) are satisfied.

Another theorem which is given in [11] can be generalized to temporal intuition-
istic fuzzy sets as below.

Theorem 3.7. : Let X be a non empty set and T = {t1, t2, ..., tn} be a finite
time set. Let suppose that dt : TIFS(X,T ) × TIFS(X,T ) → [0, 1] is a temporal
intuitionistic fuzzy distance measure for each t ∈ T , f is a aggregation function
without zero divisor and Nt is a temporal fuzzy non-filling negation, then the map-
ping s : TIFS(X,T ) × TIFS(X,T ) → [0, 1]defined as

s (A,B) = f
(
sNt1 (A,B) , sNt2 (A,B) , ..., sNtn (A,B)

)
for all A,B ∈ TIFS(X,T ) is a overall intuitionistic fuzzy similarity measure.

Proof. It is clear that each sNt is a temporal intuitionistic similarity measure for
t ∈ T from Theorem 5. Then, it is obtained that s is a overall intuitionistic fuzzy
similarity measure from Theorem 4. �

Now, entropy which is a measure of difference between intuitionistic fuzzy set
(or fuzzy sets) and crisp set will be defined for temporal intuitionistic fuzzy sets.
the temporal variability encountered in real-world problems changes this differ-
ence in a continuous manner. The definition of entropy (as temporal entropy and
overall entropy) with Szmidt and Kacprzyk’s approach [35] is defined for temporal
intuitionistic fuzzy sets as follow:

Definition 3.4. Let X be a non-empty set and T be a time set. If the mapping
et : TIFS(X,T ) → [0, 1] is satisfied the following conditions for A ∈ TIFS(X,T ) and
fixed t ∈ T , et is called temporal intuitionistic fuzzy entropy on TIFS(X,T ).

E1. A is a crisp set for ⇔ et (A) = 0 ,
E2. et (A) = 1⇔ µA (x, t) = ηA (x, t) for all x ∈ X and fixed t ∈ T
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E3. et (A) ≤ et (B)⇔
i. µA (x, t) ≥ µB (x, t) and ηA (x, t) ≤ ηB (x, t) for µB (x, t) ≤ ηB (x, t)
ii. µA (x, t) ≤ µB (x, t) and ηA (x, t) ≥ ηB (x, t) for µB (x, t) ≥ ηB (x, t)
for all x ∈ X and fixed t ∈ T
E4. et (A) = et

(
A
)
.

With this definition, the value et (A) represents how much is far from being crisp
sets at time moment t. If we change the condition E1 with

E1*. A is a fuzzy set ⇔et (A) = 0
, the value et (A) represents how much is far from being fuzzy sets at time moment
t. Let’s call this second measure as type-2 temporal entropy. On the other hand,
If the mapping e : TIFS(X,T ) → [0, 1] is satisfied the conditions (E1, E2, E3,
E4) for each t ∈ T , e is called overall entropy on TIFS(X,T ). The mapping e :
TIFS(X,T ) → [0, 1] defined as e (A) = sup

t∈T
{et (A)} is an overall intuitionistic fuzzy

entropy.

Theorem 3.8. Let X be a non-empty set and T = {t1, t2, ..., tn} be a finite time
set. Let suppose that et : TIFS(X,T ) → [0, 1] is temporal intuitionistic fuzzy entropy
for t ∈ T and f is a aggregation function without zero divisor. Then the mapping
e : TIFS(X,T ) → [0, 1] defined as

e (A) = f
(
et1 (A) , et2 (A) , ..., etn (A)

)
for A ∈ TIFS(X,T ) is an overall intuitionistic fuzzy entropy.

Proof. It can be proven as Theorem 1. �

The intuitionistic fuzzy entropies which are defined in [12, 14, 19, 21, 24, 25,
28, 29, 30, 31, 35, 36, 38, 41, 42, 43, 45 ] can be converted into the temporal
intuitionistic fuzzy entropy with some minor modifications as follows:

Proposition 3.3. Let X = {x1, x2, ..., xn} be a non-empty set and T is a time set,
Then the following mappings are temporal intuitionistic fuzzy entropy on TIFS(X,T )

1. etSK (A) = 1− 1
n

n∑
i=1

|µA (xi, t)− ηA (xi, t)|

2. etV S−1 =

n∑
i=1

min{µA(xi,t),ηA(xi,t)}+min{1−µA(xi,t),1−ηA(xi,t)}
n∑
i=1

max{µA(xi,t),ηA(xi,t)}+max{1−µA(xi,t),1−ηA(xi,t)}

3. etV S−2 (A) =
n∑
i=1

2µA(xi,t)ηA(xi,t)+πA(xi,t)
2

µA(xi,t)
2+ηA(xi,t)

2+πA(xi,t)
2

4. etLi−1 (A) = 1− 1
2n

n∑
i=1

(
|µA (xi, t)− ηA (xi, t)|3 + |µA (xi, t)− ηA (xi, t)|

)
5. etGS−1 (A) = 1

n

n∑
i=1

(1− |µA (xi, t)− ηA (xi, t)|) 1+πA(xi,t)
2

6. etHuang−1 (A) = 1− 1
n

n∑
i=1

∣∣∣µA (xi, t)
2 − ηA (xi, t)

2
∣∣∣

7. etHuang−2 (A) = 1−
√

[p] 1n

n∑
i=1

∣∣∣µA (xi, t)
2 − ηA (xi, t)

2
∣∣∣p

8. etHuang−3 (A) = 1−
√

[p] 1n

n∑
i=1

|µA (xi, t)− ηA (xi, t)|p
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9. etHuang−4 (A) = 1
n

n∑
i=1

1−|µA(xi,t)−ηA(xi,t)|+πA(xi,t)
1+|µA(xi,t)−ηA(xi,t)|+πA(xi,t)

10. etHuang−5 (A) =

1

n

n∑
i=1

1− |µA (xi, t)− ηA (xi, t)|+ πA (xi, t) |µA (xi, t)− ηA (xi, t)|

11. etHung−1 (A) = 1−
n∑
i=1

1
n |µA (xi, t)− ηA (xi, t)|

12. etHung−2 (A) = 1−
√

n∑
i=1

1
n

∣∣∣µA (xi, t)− ηA (xi, t)
2
∣∣∣

13. etY e−1 (A) =

1

n

n∑
i=1

(
sin

(
π [1 + µA (xi, t)− ηA (xi, t)]

4

)
+ sin

(
π [1− µA (xi, t) + ηA (xi, t)]

4
− 1

)
1√

2− 1

)
14. etY e−2 (A) =

1

n

n∑
i=1

(
cos

(
π [1 + µA (xi, t)− ηA (xi, t)]

4

)
+ cos

(
π [1− µA (xi, t) + ηA (xi, t)]

4
− 1

)
1√

2− 1

)

15. et
ZL−1

= 1− 1
b−a

b∫
a

|µA (x, t)− ηA (x, t)| dx for X = [a, b]

16. etZL−1 =

b∫
a

µA(x,t)∧ηA(x,t)dx

b∫
a

µA(x,t)∨ηA(x,t)dx

for X = [a, b]

The other measure which is closely related with distance measure, similarity
measure and entropy in intuitionistic fuzzy sets (and fuzzy set) is inclusion measure
(named subsethood measure in some studies). Inclusion measure has been defined
for intuitionistic fuzzy sets by Cornelis and Kerre in [9]. This concept is defined for
temporal intuitionistic fuzzy sets as follows:

Definition 3.5. Let X be a non-empty set and T be a time set. If the mapping
It : TIFS(X,T )×TIFS(X,T ) → [0, 1] is satisfied following conditions for fixed t ∈ T ,
it is named temporal intuitionistic fuzzy inclusion measure on t ∈ T .

I1. It

(
1̃, 0̃
)

= 0,

I2. It (A,B) = 1⇔ A ⊆ B
I3. It (C,A) ≤ It (C,B)and It (B,C) ≤ It (A,C) when A ⊆ B and C ∈

TIFS(X,T )

On the other hand, if the mapping I : TIFS(X,T )×TIFS(X,T ) → [0, 1] is satisfied
the conditions (I1, I2, I3) for each t ∈ T , I is called overall intuitionistic fuzzy
inclusion measure on TIFS(X,T ). The mapping I : TIFS(X,T ) × TIFS(X,T ) →
[0, 1] defined as I (A,B) = sup

t∈T
{It (A,B)} for all A,B ∈ TIFS(X,T ) and t ∈ T is

an overall intuitionistic fuzzy inclusion measure.
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The intuitionistic fuzzy inclusion measures which are defined in [44], [45] can
be converted into the temporal intuitionistic fuzzy inclusion measures with some
minor modifications as well as for other measures.

Proposition 3.4. Let X = {x1, x2, ..., xn}be a non-empty set and T be a time set.
Then the following mappings are temporal intuitionistic fuzzy inclusion measure on
TIFS(X,T ).

1. ItZHXL−1 (A,B) =

1− 1

2n

n∑
i=1

{|µA (xi, t)−min {µA (xi, t) , µB (xi, t)}|+ |max {ηA (xi, t) , ηB (xi, t)} − ηA (xi, t)|}

2. ItZHXL−2 (A,B) =

1−

√√√√ 1

2n

n∑
i=1

{
|µA (xi, t)−min {µA (xi, t) , µB (xi, t)}|2 + |max {ηA (xi, t) , ηB (xi, t)} − ηA (xi, t)|2

}
3. ItZDZS−3 (A,B) =

1 ,
µB (xi, t) = µA (xi, t)
ηB (xi, t) = ηA (xi, t)

n∑
i=1

1
2

[
µB(xi,t)−µA(xi,t)+ηB(xi,t)−ηA(xi,t)
|µB(xi,t)−µA(xi,t)|+|ηB(xi,t)−ηA(xi,t)|

]
+ 1 , otherwise

The following theorem which is given for the others measures can be given for
temporal intuitionistic fuzzy inclusion measure and overall intuitionistic fuzzy in-
clusion measure as follows:

Theorem 3.9. Let X be a non-empty set and T = {t1, t2, ..., tn} be a finite time set.
Let suppose that the mappings It : TIFS(X,T ) × TIFS(X,T ) → [0, 1] is a temporal
intuitionistic fuzzy inclusion measure for each t ∈ T and f is a aggregation function
without zero divisor. Then the mapping I : TIFS(X,T )×TIFS(X,T ) → [0, 1] defined
as

I (A,B) = f (It1 (A) , It2 (A) , ..., Itn (A) )

for all A,B ∈ TIFS(X,T ) is a overall intuitionistic fuzzy inclusion measure.

The relationship between these measures are protected as described for the fuzzy
and intuitionistic fuzzy sets. Some of these relationships can be generalized for the
temporal intuitionistic fuzzy as follows. In this context, these relationships can be
proved as in the studies which are given in the reference. Therefore, we will give the
following theorems without proof (see more information: [3, 4, 5, 6, 8, 9, 10,12,
13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35,
37, 38, 40, 41, 42, 43, 44, 45, etc.]) .

Theorem 3.10. Let X be a non-empty set and T be time set. Let suppose that st

is a temporal intuitionistic fuzzy similarity measure for t ∈ T . Then the mapping
et : TIFS(X,T ) → [0, 1] defined as et (A) = st

(
A, Ā

)
for all A ∈ TIFS(X,T ) is a

temporal intuitionistic fuzzy entropy

Theorem 3.11. Let X be a non-empty set and T = {t1, t2, ..., tn} be finite time
set. Let suppose that st is a temporal intuitionistic fuzzy similarity measure for
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t ∈ T ve f is a aggregation function without zero divisor. Then the mapping
e : TIFS(X,T ) → [0, 1] defined as e (A) = f

(
st1
(
A, Ā

)
, st2

(
A, Ā

)
, ..., stn

(
A, Ā

))
for all A ∈ TIFS(X,T ) is a overall intuitionistic fuzzy entropy.

Theorem 3.12. Let X be a non-empty set and T be time set. Let suppose that dt

is a temporal intuitionistic fuzzy distance measure for t ∈ T and Nt is a temporal
fuzzy non-filling negation. Then the mapping et : TIFS(X,T ) → [0, 1] defined as
et (A) = Nt

(
dt
(
A, Ā

))
for all A ∈ TIFS(X,T ) is a temporal intuitionistic fuzzy

entropy.

Theorem 3.13. Let X be a non-empty set and T = {t1, t2, ..., tn} be finite time
set. Let suppose that st is a temporal intuitionistic fuzzy similarity measure for
t ∈ T , f is a aggregation function without zero divisor and Nt is a temporal fuzzy
non-filling negation. The mapping e : TIFS(X,T ) → [0, 1] defined as

e (A) = f
(
Nt1

(
dt1
(
A, Ā

))
, Nt2

(
dt2
(
A, Ā

))
, ..., Ntn

(
dtn
(
A, Ā

)))
for all A ∈ TIFS(X,T ) is a overall intuitionistic fuzzy entropy.

Theorem 3.14. Let X be a non-empty set and T be time set. Let suppose that
It is a temporal intuitionistic fuzzy inclusion measure. Then the mapping EtI :

TIFS(X,T ) → [0, 1] defined as EtI (A) =
(
It
(
A ∪A,A ∩A

))
for all A ∈ TIFS(X,T )

is a temporal intuitionistic fuzzy entropy.

Theorem 3.15. Let X be a non-empty set and T be time set. . Let suppose
that ∗ is a t− norm için It is a temporal intuitionistic fuzzy inclusion measure
for t ∈ T . Then the mapping EtI : TIFS(X,T ) → [0, 1] defined as StI (A,B) =

∗ (It (A,B) , It (B,A)) for all A,B ∈ TIFS(X,T ) is a temporal intuitionistic fuzzy
similarity measure.

As seen from the above theorem, the basic relationship between distance mea-
sure, similarity measure, entropy and coverage measure are protected for temporal
intuitionistic fuzzy sets as provided in for fuzzy and intuitionistic fuzzy sets. Fur-
thermore, these measures can be separate two groups which are named as temporal
and overall for temporal intuitionistic fuzzy sets. It can be done the first instant
evaluation and later general evaluation for all data with time-varying nature by
this method. Thus, the optimal results can be obtained by various way in the
application.
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Abstract. Distribution of saving for a family sets on a region satisfies Kol-

mogorov equation given by

∂u

∂t
= −

∂

∂x
((c + F )u) +

1

2

∂2

∂x2
(bu) + f

where u = u(x, t) is density distribution of family saving. Boundary condition

defined by distribution of minimum saving and total family saving are consid-
ered for the model. By the seperation of variables method, eigenvalues and

eigenfuncitons of problem are obtained and solution is written. In addition,

numerical methods are applied to problem and errors of numerical methods
are presented.

Received: 08–August–2016 Accepted: 29–August–2016

1. Introduction

Nonlocal boundary conditions are dealth with some wave,diffusion and any other
physical equations [Cannon, Van der Hoek, Ionkin,Kamynin,etc...] Generally these
type of problems are solved by numeric methods or reducing point boundary con-
ditions. In this study we consider a family saving model used in economy. This
problem is expressed with diffusion equation with integral boundary conditions.

Suppose that x(t) shows saving of a family at time t and satisfy the differential
equation

(1.1) dx = F (x, t) dt+G (x, t) dX, G ≥ 0

where X is Markov process, F (x, t) denotes rate of change of the family saving and
G (x, t) dX denotes random change of family income.

For a family set let us assume that equation (1.1) describes the saving of all fam-
ilies by ignoring the dynamic of individual family saving. The density distribution
of the saving of families u(x, t) satisfies

(1.2)
∂u

∂t
= − ∂

∂x
((c(x, t) + F (x, t)) u) +

1

2

∂2

∂x2
(b(x, t)u) + f(x, t)

with initial condition

(1.3) u(x, 0) = ϕ(x), 0 ≤ x ≤ l
and boundary conditions

(1.4) u(0, t) = 0

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference
Key words and phrases. Nonlocal Boundary Condition, Family Saving Model, Method of Lines

Method, Crank Nicolson Method.
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(1.5)

l∫
0

xu (x, t) dx = K (t) , t ≥ 0

where c(x, t), b(x, t), K(t) are continuously differentiable functions. K(t) in (1.5)
describes total amount of family saving in [0,l] [5].

We will consider special case of problem (1.1)-(1.5) on region
D = (0 < t <∞)× (0 < x < l)

(1.6)
∂u

∂t
= a2

∂2u

∂x2
+ f(x, t)

(1.7) u(x, 0) = ϕ(x), 0 ≤ t ≤ T

(1.8) u(0, t) = 0

(1.9)

1∫
0

xu(x, t)dx = K(t), 0 ≤ x ≤ l

where f(x,t), K(t) ,ϕ(x) are continuously differentible function on region D and

a is given constant. Compatibility conditions of this problem is
1∫
0

ϕ(x)dx = K(0).

In order to obtain classical solution of problem (1.6)-(1.9), we transform bound-
ary conditions into homegenous ones by the transformation

(1.10) u(x, t) = v(x, t) + 3K(t)x

Carrying out substitution (1.10) in (1.1)-(1.5) problem gives

(1.11)
∂v

∂t
= a2

∂2v

∂x2
+ F (x, t)

(1.12) v(x, 0) = ψ(x)

(1.13) v(0, t) = 0

(1.14)

1∫
0

xv(x, t)dx = 0

where F (x, t) = f(x, t)− 3K ′(t)x and ψ(x) = ϕ(x)− 3K(0)x
This problem has homegenous boundary conditions. Due to linearity, problem can
split into two auxilary problem:
i)

(1.15)
∂v

∂t
= a2

∂2v

∂x2

(1.16) v(x, 0) = ψ(x)

(1.17) v(0, t) = 0
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(1.18)

1∫
0

xv(x, t)dx = 0

ii)

(1.19)
∂v

∂t
= a2

∂2v

∂x2
+ F (x, t)

(1.20) v(x, 0) = 0

(1.21) v(x, t) = 0

(1.22)

1∫
0

xv(x, t)dx = 0

Integrating both sides of (1.15) with respect to x from 0 to 1 and using integration
by parts, integral boundary condition turns into Neumann boundary condition

vx(1, t)− v(1, t) = 0

Thus problem (1.15)-(1.18) becomes

(1.23)
∂v

∂t
= a2

∂2v

∂x2

(1.24) v(x, 0) = ψ(x)

(1.25) v(0, t) = 0

(1.26) vx(1, t)− v(1, t) = 0

By the Fourier method, Sturm Liouville problem and ODE are ,respectively,
obtained as

(1.27) X ′′(x) + λX(x) = 0

(1.28) X(0) = 0

(1.29) X ′(1)−X(1) = 0

and

(1.30) T ′(t) + λa2T (t) = 0

Sturm Liouville problem (1.27)-(1.29)is self adjoint and boundary conditions are
regular, morever strongly regular. Then eigenfunctions of Sturm Liouville problem
are Riesz basis on L2[0, 1].

Charecteristic equation of Sturm Liouville problem is

tan k = k

Thus the problem has the eigenvalues λn , n = 0, 1, 2.. such that λ0 = 0
and by using Langrange-Burmann formula

kn = (2n+1)π
2 −

(
(2n+1)π

2

)−1
− 2

3

(
(2n+1)π

2

)−3
− 13

15

(
(2n+1)π

2

)−5
− 146

105

(
(2n+1)π

2

)−7
+O( 1

n9 )

where
√
λn = kn.



152 OLGUN CABRI AND KHANLAR R. MAMEDOV

Corresponding eigenfunctions are obtained by

X0(x) = cx

Xn(x) = sin(knx), n = 1, 2...

Hence solution of problem (1.23)-(1.26) is

v1(x, t) = A0x+

∞∑
n=1

Ane
−a2k2nt sin(knx)

where

A0 = 3

∫ 1

0

xψ(x)dx

An =
1

1
2 −

sin(2kn)
4kn

∫ 1

0

ψ(x) sin(knx)dx, n = 1, 2...

Solution of problem (1.19)-(1.22) can easily obtained by

v2(x, t) =

 t∫
0

F0(τ)dτ

x+

∞∑
n=1

 t∫
0

Fn(τ)e−a
2k2n(t−τ)dτ

 sin(kn(x))

where

Fn(τ) =

1∫
0

F (x, τ) sin(knx)dx

F0(τ) =

1∫
0

F (x, τ)xdx

2. Numerical Solution

For the numerical solution of problem, we will use the Method of Lines method
and Crank-Nicolson method presented in [8],[9] respectively. In both methods,
Simpson’s rule is used to approximate the integral in (1.18) numerically. We display
here a few of numerical results.

Example 1..
∂u

∂t
=
∂2u

∂x2
+ (x2 − 2)et

u(x, 0) = x2

u(0, t) = 0
1∫

0

xu(x, t)dx =
et

4

Exact solution is u(x, t) = x2et. The computed results at various spatial lengths
are shown in Table 2. This table exhibits the absolute relative error results for
u(0.5, 0.5).

Example 2:
∂u

∂t
=
∂2u

∂x2
+
−2(x2 + t+ 1)

(t+ 1)
3
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Table 1. Relative Error at u(0.5,0.5) in Example 1

Spatial Length MOL Method Crank-Nicolson Method
h=0.1 1.6291E-5 4.8730E-5

h=0.05 2.553E-6 1.2398E-5
h=0.025 3.6733E-7 3.1067E-6
h=0.0125 4.8533E-8 7.7695E-7

Table 2. Relative Error at u(0.5,0.5) in Example 2

Spatial Length MOL Method Crank-Nicolson Method
h=0.1 1.4572E-4 3.7936E-4

h=0.05 2.2868E-5 1.0927E-4
h=0.025 3.3245E-6 2.7647E-5
h=0.0125 4.468E-7 6.9193E-6

u(x, 0) = x2

u(0, t) = 0
1∫

0

xu(x, t)dx =
1

4(t+ 1)
2

Exact solution is u(x, t) = x2

(t+1)2
. The computed results at various spatial

lengths are shown in Table 2. This table exhibits the absolute relative error results
for u(0.5, 0.5).

We studied a special case of family saving model which is diffusion equation with
nonlocal boundary condition. Analytic solution of this problem is obtained. Mor-
ever by applying the Method of Lines method [8] and Crank Nicolson [9], numerical
solution of problem is found.
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Abstract. In 1999, first Intuitionistic Fuzzy Modal Operators introduced

in[2]. Expansion of these operators and new operators defined by different

authors[3, 5, 6, 7, 8, 9]. Characteristics of these operators has been studied by
several researchers.

In this study, we obtained new results on modal operators which are called

Sα,β and Tα,β .
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1. Introduction

The concept of Intuitionistic fuzzy sets was introduced by Atanassov in 1986 [1],
form an extension of fuzzy sets[10] by expanding the truth value set to the lattice
[0, 1]× [0, 1].

Intuitionistic fuzzy modal operators defined firstly by Atanassov[1, 2]. Then
severel extensions of these operators introduced by different authors[2, 8, 5, 6].
Some algebraic and characteristic properties of these operators were studied by
several authors.

Definition 1.1. [1] An intuitionistic fuzzy set (shortly IFS) on a set X is an object
of the form

A = {〈x, µA(x), νA(x)〉 : x ∈ X}
where µA(x), (µA : X → [0, 1]) is called the “degree of membership of x in A ”,
νA(x), (νA : X → [0, 1])is called the “ degree of non- membership of x in A ”,and
where µA and νA satisfy the following condition:

µA(x) + νA(x) ≤ 1, for all x ∈ X.
The class of intuitionistic fuzzy sets on X is denoted by IFS(X).
The hesitation degree of x is defined by πA(x) = 1− µA(x)− νA(x)

Definition 1.2. [1]An IFS A is said to be contained in an IFS B (notation A v B)
if and only if, for all x ∈ X : µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

It is clear that A = B if and only if A v B and B v A.

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference
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Definition 1.3. [1]Let A ∈ IFS and let A = {〈x, µA(x), νA(x)〉 : x ∈ X} then the
above set is callede the complement of A

Ac = {〈x, νA(x), µA(x)〉 : x ∈ X}

The intersection and the union of two IFSs A and B on X is defined by

A uB = {〈x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)〉 : x ∈ X}

A tB = {〈x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)〉 : x ∈ X}
The notion of Second Type Intuitionistic Fuzzy Modal Operators was firstly

introduced by Atanassov as following:

Definition 1.4. [1]Let X be universal and A ∈ IFS(X) then

(1) �(A) = {〈x, µA(x), 1− µA(x)〉 : x ∈ X}
(2) ♦(A) = {〈x, 1− νA(x), νA(x)〉 : x ∈ X}

Definition 1.5. [2]Let X be universal and A ∈ IFS(X), α ∈ [0, 1] then

Dα(A) = {〈x, µA(x) + απA(x), νA(x) + (1− α)πA(x)〉 : x ∈ X}

Definition 1.6. [2]Let X be universal and A ∈ IFS(X), α, β ∈ [0, 1] and α+β ≤ 1
then

Fα,β(A) = {〈x, µA(x) + απA(x), νA(x) + βπA(x)〉 : x ∈ X}

Definition 1.7. [2]Let X be universal and A ∈ IFS(X), α, β ∈ [0, 1] then

Gα,β(A) = {〈x, αµA(x), βνA(x)〉 : x ∈ X}

Definition 1.8. [2]Let X be universal and A ∈ IFS(X), α, β ∈ [0, 1] then

(1) Hα,β(A) = {〈x, αµA(x), νA(x) + βπA(x)〉 : x ∈ X}
(2) H∗

α,β(A) = {〈x, αµA(x), νA(x) + β(1− αµA(x)− νA(x))〉 : x ∈ X}
(3) Jα,β(A) = {〈x, µA(x) + απA(x), βνA(x)〉 : x ∈ X}
(4) J∗

α,β(A) = {〈x, µA(x) + α(1− µA(x)− βνA(x)), βνA(x)〉 : x ∈ X}
The simplest One Type Intuitionistic Fuzzy Modal Operators defined in 1999.

Definition 1.9. [2] Let X be a set and A = {〈x, µA(x), νA(x)〉 : x ∈ X} ∈
IFS(X), α, β ∈ [0, 1].

(1) �A =
{〈
x, µA(x)

2 , νA(x)+1
2

〉
: x ∈ X

}
(2) �A =

{〈
x, µA(x)+1

2 , νA(x)
2

〉
: x ∈ X

}
After this definition, in 2001, the extension of these operators were defined as

following:

Definition 1.10. [3] Let X be a set and A = {〈x, µA(x), νA(x)〉 : x ∈ X} ∈
IFS(X), α, β ∈ [0, 1].

(1) �αA = {〈x, αµA(x), ανA(x) + 1− α〉 : x ∈ X}
(2) �αA = {〈x, αµA(x) + 1− α, ανA(x)〉 : x ∈ X}

The operators �αand �α are the extensions of the operators � , �, resp.
In 2004, Dencheva introduced the second extension of �αand �α.

Definition 1.11. [8] Let X be a set and A = {〈x, µA(x), νA(x)〉 : x ∈ X} ∈
IFS(X), α, β ∈ [0, 1].
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(1) �α,βA = {〈x, αµA(x), ανA(x) + β〉 : x ∈ X} where α+ β ∈ [0, 1].
(2) �α,βA = {〈x, αµA(x) + β, ανA(x)〉 : x ∈ X}where α+ β ∈ [0, 1].

In 2006, the third extension of the above operators was studied by author . He
defined the following operators;

Definition 1.12. [3]Let X be a set and A = {〈x, µA(x), νA(x)〉 : x ∈ X} ∈
IFS(X).

(1) �α,β,γ(A) = {〈x, αµA(x), βνA(x) + γ〉 : x ∈ X}
where α, β, γ ∈ [0, 1],max{α, β}+ γ 6 1.

(2) �α,β,γ(A) = {〈x, αµA(x) + γ, βνA(x)〉 : x ∈ X}
where α, β, γ ∈ [0, 1],max{α, β}+ γ 6 1.

In 2007, author[5] defined a new operator named Eα,β and studied some of its
properties. This operator as following:

Definition 1.13. [5]Let X be a set and A = {〈x, µA(x), νA(x)〉 : x ∈ X} ∈
IFS(X), α, β ∈ [0, 1]. We define the following operator:

Eα,β(A) = {〈x, β(αµA(x) + 1− α), α(βνA(x) + 1− β)〉 : x ∈ X}

At the same year, Atanassov introduced the operator �α,β,γ,δ which is a natural
extension of all these operators in [3].

Definition 1.14. [3]Let Xbe a set, A ∈ IFS(X), α, β, γ, δ ∈ [0, 1] such that

max(α, β) + γ + δ 6 1

then the operator �α,β,γ,δ defined by

�α,β,γ,δ(A) = {〈x, αµA(x) + γ, βνA(x) + δ〉 : x ∈ X}

In 2008, most general operator }α,β,γ,δ,ε,ζdefined as following:

Definition 1.15. [3]Let X be a set,A ∈ IFS(X), α, β, γ, δ, ε, ζ ∈ [0, 1] such that

max(α− ζ, β − ε) + γ + δ 6 1

and
min(α− ζ, β − ε) + γ + δ ≥ 0

then the operator }α,β,γ,δ,ε,ζ defined by

}α,β,γ,δ,ε,ζ(A) = {〈x, αµA(x)− ενA(x) + γ, βνA(x)− ζµA(x) + δ〉 : x ∈ X}

In 2010, Çuvalcıoğlu[6] defined a new operator which is a generalization of Eα,β .

Definition 1.16. [6]Let X be a set and A = {〈x, µA(x), νA(x)〉 : x ∈ X} ∈
IFS(X), α, β, ω ∈ [0, 1] then

Zωα,β(A) = {〈x, β(αµA(x) + ω − ω.α), α(βνA(x) + ω − ω.β)〉 : x ∈ X}

Definition 1.17. [6]Let X be a set and A = {〈x, µA(x), νA(x)〉 : x ∈ X} ∈
IFS(X), α, β, ω, θ ∈ [0, 1] then

Zω,θα,β(A) = {〈x, β(αµA(x) + ω − ω.α), α(βνA(x) + θ − θ.β)〉 : x ∈ X}

The operator Zω,θα,β is a generalization of Zωα,β ,and also, Eα,β ,�α,β ,�α,β .
Uni-type intuitionistic fuzzy modal operators introduced by author as following;

Definition 1.18. [7]Let X be a universal, A ∈ IFS(X) and α, β, ω ∈ [0, 1] then
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(1) �ωα,β(A) = {〈x, β(µA(x) + (1− α)νA(x)), α(βνA(x) + ω − ωβ)〉 : x ∈ X}
(2) �ωα,β(A) = {〈x, β(αµA(x) + ω − ωα), α((1− β)µA(x) + νA(x))〉 : x ∈ X}

Definition 1.19. [7]Let X be a set and A ∈ IFS(X), α, β, ω, θ ∈ [0, 1] then

Eω,θα,β(A) =

{〈
x, β((1− (1− α)(1− θ))µA(x) + (1− α)θνA(x) + (1− α)(1− θ)ω),

α((1− β)θµA(x) + (1− (1− β)(1− θ))νA(x) + (1− β)(1− θ)ω)

〉
: x ∈ X

}
Definition 1.20. [7]Let X be a set, A ∈ IFS(X) and α, β ∈ [0, 1] then

(1) Bα,β(A) = {〈x, β(µA(x) + (1− α)νA(x)), α((1− β)µA(x) + νA(x))〉 : x ∈ X}
(2) �α,β(A) = {〈x, β(µA(x) + (1− β)νA(x)), α((1− α)µA(x) + νA(x))〉 : x ∈ X}

In 2014, new one type intuitionistic fuzzy modal operators were defined in [9].

Definition 1.21. [9]Let X be a set and A ∈ IFS(X), α, β, ω ∈ [0, 1] and α+β ≤ 1

(1) Lωα,β(A) = {〈x, αµA(x) + ω(1− α), α(1− β)νA(x) + αβ(1− ω)〉x ∈ X}
(2) Kω

α,β(A) = {〈x, α(1− β)µA(x) + αβ(1− ω), ανA(x) + ω(1− α)〉x ∈ X}
As above, we get the following diagram;
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Figure 1

The intuitionistic fuzzy modal operator, represented by ⊗α,β,γ,δ, introduced in
2014 as following;

Definition 1.22. [4]Let X be a set and A ∈ IFS(X), α, β, γ, δ ∈ [0, 1] and α+β ≤
1, γ + δ ≤ 1 then

⊗α,β,γ,δ(A) = {〈x, αµA(x) + γνA(x), βµA(x) + δνA(x)〉}

2. Some Properties of New Intuitionistic Fuzzy Modal Operators

Definition 2.1. Let X be a set and A ∈ IFS(X), α, β, α+ β ∈ [0, 1].

(1) Tα,β(A) = {< x, β(µA(x) + (1− α)νA(x) + α), α(νA(x) + (1− β)µA(x)) >:
x ∈ X} where α+ β ∈ [0, 1].

(2) Sα,β(A) = {< x,α(µA(x) + (1− β)νA(x)), β(νA(x) + (1− α)µA(x) + α) >:
x ∈ X} where α+ β ∈ [0, 1].

It is clear that;

β(µA(x) + (1− α)νA(x) + α) + α(νA(x) + (1− β)µA(x)) = (µA(x) + νA(x))(α+ β − αβ) + αβ

≤ α+ β − αβ + αβ ≤ 1

Theorem 2.1. Let X be a set and A ∈ IFS(X). If α, β, α + β ∈ [0, 1] then
Tα,β(A)c = Sα,β(Ac).

Proof. It is clear from definition. �

Proposition 2.1. Let X be a set and A ∈ IFS(X). If α, β, α+ β ∈ [0, 1] then

(1) Tβ,α(A)c v Tα,β(Ac)
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Figure 2

(2) Sα,β(Ac) v Sβ,α(A)c

Proof. (1)From definition of this operators and complement of an intuitionistic
fuzzy set we get that,

β(νA(x) + (1− α)µA(x)) ≤ β(νA(x) + (1− α)µA(x) + α)

and

α(µA(x) + (1− β)νA(x) + β) ≥ α(µA(x) + (1− β)νA(x))

So, we can say Tβ,α(A)c v Tα,β(Ac).
(2)We can show this inclusion same way. �

Theorem 2.2. Let X be a set and A ∈ IFS(X). If α, β, α+ β ∈ [0, 1] and β ≤ α
then

(1) Tα,β(A) v Tβ,α(A)
(2) Sβ,α(A) v Sα,β(A)

Proof. It is clear. �

Theorem 2.3. Let X be a set and A,B ∈ IFS(X). If α, β, α+ β ∈ [0, 1] then

(1) Tα,β(A) u Tα,β(B) v Tα,β(A uB)
(2) Tα,β(A tB) v Tα,β(A) t Tα,β(B)

Proof. (1) Let α, β ∈ [0, 1],

β(1− α) min(νA(x), νB(x)) ≤ β(1− α) max(νA(x), νB(x))

⇒ β (min (µA(x), µB(x)) + (1− α) min (νA(x), νB(x)) + α)

≤ β (min (µA(x), µB(x)) + (1− α) max (νA(x), νB(x)) + α)
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and

α(1− β) max(µA(x), µB(x)) ≥ α(1− β) min(µA(x), µB(x))

⇒ α (max (νA(x), νB(x)) + (1− β) max (µA(x), µB(x)))

≥ α (max(νA(x), νB(x)) + (1− β) min(µA(x), µB(x)))

It is appear from here that Tα,β(A) u Tα,β(B) v Tα,β(A uB).
(2) It can be shown easily. �

Theorem 2.4. Let X be a set and A,B ∈ IFS(X). If α, β, α+ β ∈ [0, 1] then

(1) Sα,β(A tB) v Sα,β(A) t Sα,β(B)
(2) Sα,β(A) u Sα,β(B) v Sα,β(A uB)

Proof. (1) Let α, β ∈ [0, 1],

α(1− β) min(νA(x), νB(x)) ≤ α(1− β) max(νA(x), νB(x))

⇒ α (max (µA(x), µB(x)) + (1− β) min (νA(x), νB(x)))

≤ α (max (µA(x), µB(x)) + (1− β) max (νA(x), νB(x)))

and

β(1− α) max(µA(x), µB(x)) ≥ β(1− α) min(µA(x), µB(x))

⇒ β (min (νA(x), νB(x)) + (1− α) max (µA(x), µB(x)) + α)

≥ β (min (νA(x), νB(x)) + (1− α) min (µA(x), µB(x)) + α)

Thus, Sα,β(A tB) v Sα,β(A) t Sα,β(B).
(2) Can be proved similarly. �
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[7] Çuvalcıoğlu G., Yılmaz S. On New Intuitionistic Fuzzy Operators: Sα,β and Tα,β ,Kasmera,

43(2), 2015, 317-327.
[8] Dencheva K., Extension of intuitionistic fuzzy modal operators � and �,Proc.of the Second

Int. IEEE Symp. Intelligent systems, Varna, June 22-24, (2004), Vol. 3, 21-22.

[9] Yılmaz, S., Bal, A., Extentsion of Intuitionistic Fuzzy Modal Operators Diagram with New
Operators, ”Notes on IFS”, Vol. 20, 2014, Number 5, pp. 26-35.

[10] Zadeh L.A., Fuzzy Sets, Information and Control, 8, (1965) , p. 338-353.

University of Mersin Department of Mathematics Mersin, Turkey.
E-mail address: gcuvalcioglu@mersin.edu.tr

Dept. of Bioinformatics and Mathematical Modelling Institute of Biophysics and
Biomedical Engineering Bulgarian Academy of Sciences

E-mail address: krat@bas.bg

University of Mersin Department of Mathematics Mersin, Turkey.
E-mail address: sinemyilmaz@mersin.edu.tr



IFSCOM20161 Proceeding Book
No. 1 pp. 162-174 (2016)

ISBN: 978-975-6900-54-3

ON HERMITE-HADAMARD INEQUALITIES FOR

GEOMETRIC-ARITHMETICALLY ϕ-s-CONVEX FUNCTIONS

VIA FRACTIONAL NTEGRALS
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1. Introduction

Fractional calculus was born in 1695. In the past three hundred years, fractional
calculus developed in diverse fields from physical sciences and engineering to bi-
ological sciences and economics[1− 8] . Fractional Hermite-Hadamard inequalities
involving all kinds of fractional integrals have attracted by many researches. In
[12] , Shuang et al. introduced a new concept of geometric-arithmetically s-convex
functions and presented interesting Hermite-Hadamard type inequalities for inte-
ger integrals of such functions. In [15] ,Youness introduced a new concept of ϕ -
convex functions. In [16− 17] , YuMei Liao and colleagues gave Riemann-Lioville
Hermite-Hadamard integral inequalities for once and twice differentiable geometric-
arithmetically s−convex functions. We establish on Hermite-Hadamard inequalities
for twice differentiable geometric-arithmetically ϕ − s−convex functions via frac-
tional integrals.

2. Preliminaries

In this section, we will give some definitions, lemmas and notations which we
use later in this work.

Definition 2.1. (see [3]) Let f ∈ L [a, b] . The Riemann- Liouville fractional inte-
gral Jαa+f and Jαb−f of order α > 0 with α ≥ 0 are defined by

Jαa+f (x) = 1
Γ(α)

∫ x
a

(x− t)α−1f (t) dt, 0 ≤ a < x ≤ b

and

(2.1) Jαb−f (x) = 1
Γ(α)

∫ b
x

(t− x)α−1f (t) dt, 0 ≤ a < x ≤ b

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference

2010 Mathematics Subject Classification. 26A33, 26D15, 41A55.
Key words and phrases. Fractional Hermite-Hadamard inequalities, geometric-arithmetically

s-convex, ϕ-convex functions , Riemann-Liouville Fractional Integral.
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Here Γ is the gamma function.

Definition 2.2. (see [12− 16]) Let f : I ⊆ R+ → R+and s∈ (0, 1] . A function
f (x) is said to be geometric-arithmetically s-convex on I if for every x, y ∈ I and
t∈ [0, 1] , we have:

(2.2) f
(
xty1−t) ≤ tsf (x) + (1− t)s f (y)

Definition 2.3. (see [14]) The incomplete beta function is defined as follows:

(2.3) Bx (a, b) =
∫ x

0
ta−1 (1− t)b−1

dt.

Where x ∈ [0, 1] , a, b > 0.

Definition 2.4. (see [15]) Let ϕ : [a, b] ⊂ R → [a, b] A function f : [a, b] → R is
said to be ϕ − convex on [a, b] if, for every x, y ∈ [a, b] and t ∈ [0, 1] the following
inequality holds:

(2.4) f (tϕ (x) + (1− t)ϕ (y)) ≤ tf (ϕ (x)) + (1− t) f (ϕ (y))

Definition 2.5. Let ϕ : [a, b] ⊂ R→ [a, b] and s ∈ (0, 1] . A function f : [a, b]→ R
is said to be ϕ − s − convex on [a, b] if, for every x, y ∈ [a, b] and t ∈ [0, 1] the
following inequality holds:

(2.5) f
(
ϕ (x)

t
ϕ (y)

(1−t)
)
≤ tsf (ϕ (x)) + (1− t)s f (ϕ (y))

Lemma 2.1. (see [11]) For t∈ [0, 1], we have

(2.6) (1− t)n ≤ 21−n − tn for n ∈ [0, 1] ,

(1− t)n ≥ 21−n − tn for n ∈ [0,∞) .

The following inequality was used in the proof directly in[12] .

Lemma 2.2. (see [13]) for t ∈ [0, 1] and x, y > 0,we have

(2.7) tx+ (1− t) y ≥ y1−txt.

Lemma 2.3. (see [10]) Let f : [a, b]→ R be a twice differentiable mapping on (a, b)
with a < b. If f ′′ ∈ L [a, b], then the following equality for fractional integrals holds:

(2.8)

f(a)+f(b)
2 − Γ(α+1)

2(b−a)α

[
Jαa+f (b) + Jαb−f (a)

]
= (b−a)2

2

∫ 1

0
1−(1−t)α+1−tα+1

α+1 f ′′ (ta+ (1− t) b) dt.

Lemma 2.4. (see [9]) Let f : [a, b]→ R be a twice differentiable mapping on (a, b)
with a < b. If f ′′ ∈ L [a, b], then

(2.9)
Γ(α+1)
2(b−a)α

[
Jαa+f (b) + Jαb−f (a)

]
− f

(
a+b

2

)
= (b−a)2

2

∫ 1

0
m (t) f ′′ (ta+ (1− t) b) dt.

where

m (t) =

{
t− 1−(1−t)α+1−tα+1

α+1 , t ∈
[
0, 1

2

)
,

1− t− 1−(1−t)α+1−tα+1

α+1 , t ∈
[

1
2 , 1
)
.

Lemma 2.5. (see [9]) Let f : [a, b] → R be a differentiable mapping on (a, b) with
a < b. If f ′′ ∈ L [a, b], r > 0, then

(2.10)
f(a)+f(b)
r(r+1) + 2

r+1f
(
a+b

2

)
− Γ(α+1)

r(b−a)α

[
Jαa+f (b) + Jαb−f (a)

]
= (b− a)

2 ∫ 1

0
k (t) f ′′ (ta+ (1− t) b) dt.
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Where

k (t) =

{
1−(1−t)α+1−tα+1

α+1 − t
r+1 , t ∈

[
0, 1

2

)
,

1−(1−t)α+1−tα+1

α+1 − 1−t
r+1 , t ∈

[
1
2 , 1
)
.

YuMei Liao and colleagues based on our study, they have provided the following
theorems in [16],[17].

Theorem 2.1. Let f : [0, b]→ R be a differentiable mapping. If |f ′| is measurable
and |f ′| is decreasing and geometric-arithmetically s-convex on [0, b] for some fixed
α ∈ (0,∞), s ∈ (0, 1], 0 ≤ a < b, then the following inequality for fractional integrals
holds:

(2.11)

∣∣∣ f(a)+f(b)
2 − Γ(α+1)

2(b−a)α

[
Jαa+f (b) + Jαb−f (a)

]∣∣∣
≤ (b− a) (2α+s |f ′ (b)| − |f ′ (a)| − |f ′ (b)|)

2α+s+1 (α+ s+ 1)
+ (b− a) |f ′ (a)| [0.5B (s+ 1, α+ 1)−B0.5 (α+ 1, s+ 1)]
+ (b− a) |f ′ (b)| [B0.5 (s+ 1, α+ 1)− 0.5B (a+ 1, α+ 1)] .

Theorem 2.2. Let f : [0, b]→ R be a differentiable mapping. If |f ′′| is measurable
and |f ′′| is decreasing and geometric-arithmetically s-convex on [0, b] for some fixed
α ∈ (0,∞), s ∈ (0, 1], 0 ≤ a < b, then the following inequality for fractional integrals
holds:

(2.12)

∣∣∣ f(a)+f(b)
2 − Γ(α+1)

2(b−a)α

[
Jαa+f (b) + Jαb−f (a)

]∣∣∣
≤ (b−a)2(|f ′′(a)|+|f ′′(b)|)

2(α+1)

(
1
s+1 −

1
α+s+1 −B (s+ 1, α+ 2)

)
.

3. Main Results

Lemma 3.1. Let I be an interval a, b ∈ I with 0 ≤ a < b and ϕ : I → R a
continuous increasing function. Let f : [ϕ (a) , ϕ (b)] → R be a twice differentiable
mapping on (ϕ (a) , ϕ (b)). If f ′′ ∈ L [ϕ (a) , ϕ (b)], then the following equality for
fractional integral holds:

(3.1)

f(ϕ(a))+f(ϕ(b))
2 − Γ(α+1)

2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]

= (ϕ(b)−ϕ(a))2

2

∫ 1

0

(
1−(1−t)α+1−tα+1

α+1

)
f ′′ (tϕ (a) + (1− t)ϕ (b)) dt.

Proof. By using Lemma 3 and Definition 5, we have

I =
∫ 1

0

(
1−(1−t)α+1−tα+1

α+1

)
(f ′′ (tϕ (a) + (1− t)ϕ (b))) dt

= 1
ϕ(b)−ϕ(a)

[∫ 1

0
((1− t)α − tα) f ′ (tϕ (a) + (1− t)ϕ (b)) dt

]
= f(ϕ(a))+f(ϕ(b))

(ϕ(b)−ϕ(a))2
− α

(ϕ(b)−ϕ(a))2

×
(∫ 1

0
(1− t)α−1

f (tϕ (a) + (1− t)ϕ (b)) dt

+
∫ 1

0
tα−1f (tϕ (a) + (1− t)ϕ (b)) dt

)
= f(ϕ(a))+f(ϕ(b))

(ϕ(b)−ϕ(a))2
− αΓ(α)

(ϕ(b)−ϕ(a))α+2

×
(∫ ϕ(b)

ϕ(a)
(ϕ (x)− ϕ (a))

α−1
f (ϕ (x)) dϕ (x)

+
∫ ϕ(b)

ϕ(a)
(ϕ (b)− ϕ (x))

α−1
f (ϕ (x)) dϕ (x)

)
= f(ϕ(a))+f(ϕ(b))

(ϕ(b)−ϕ(a))2
− Γ(α+1)

(ϕ(b)−ϕ(a))α+2

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]
.
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If I by multiplying (ϕ(b)−ϕ(a))2

2 , it obtain that

(ϕ(b)−ϕ(a))2

2

∫ 1

0

(
1−(1−t)α+1−tα+1

α+1

)
f ′′tϕ (a) + (1− t)ϕ (b) dt

= f(ϕ(a))+f(ϕ(b))
2 − Γ(α+1)

2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]
.

The proof is done. �

Lemma 3.2. Let I be an interval a, b ∈ I with 0 ≤ a < b and ϕ : I → R a
continuous increasing function. Let f : [ϕ (a) , ϕ (b)] → R be a twice differentiable
mapping on (ϕ (a) , ϕ (b)). If f ′′ ∈ L [ϕ (a) , ϕ (b)], then the following equality for
fractional integral holds:

(3.2)

Γ(α+1)
2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]
− f

(
ϕ(a)+ϕ(b)

2

)
= (ϕ(b)−ϕ(a))2

2

∫ 1

0
m (t) f ′′ (tϕ (a) + (1− t)ϕ (b)) dt,

where

m (t) =

{
t− 1−(1−t)α+1−tα+1

α+1 , t ∈
[
0, 1

2

)
,

1− t− 1−(1−t)α+1−tα+1

α+1 , t ∈
[

1
2 , 1
)
.

Proof. By using Lemma 4 and Definition 5, we have:

I =
∫ 1

0
m (t) f ′′ (tϕ (a) + (1− t)ϕ (b)) dt

=
∫ 1

2

0

(
t− 1−(1−t)α+1−tα+1

α+1

)
(f ′′ (tϕ (a) + (1− t)ϕ (b))) dt

+
∫ 1

1
2

(
1− t− 1−(1−t)α+1−tα+1

α+1

)
(f ′′ (tϕ (a) + (1− t)ϕ (b))) dt

= I1 + I2.

If use twice the partial integration method for I1, we have

I1 =
∫ 1

2

0

(
t− 1−(1−t)α+1−tα+1

α+1

)
f ′′ (tϕ (a) + (1− t)ϕ (b)) dt

=
(α−1+21−α)f ′(ϕ(a)+ϕ(b)

2 )
2(α+1)(ϕ(a)−ϕ(b)) − f(ϕ(a)+ϕ(b)

2 )
(ϕ(a)−ϕ(b))2

+ Γ(α+1)

(ϕ(a)−ϕ(b))α+2

×
[∫ ϕ(b)

ϕ(a)+ϕ(b)
2

(ϕ (x)− ϕ (a))
α−1

f (ϕ (x)) dϕ (x)

+
∫ ϕ(b)
ϕ(a)+ϕ(b)

2

(ϕ (b)− ϕ (x))
α−1

f (ϕ (x)) dϕ (x)
]
.

If use twice the partial integration method for I2, we have

I2 =
∫ 1

1
2

(
1− t− 1−(1−t)α+1−tα+1

α+1

)
f ′′ (tϕ (a) + (1− t)ϕ (b)) dt

= −
(

(α−1+21−α)f ′(ϕ(a)+ϕ(b)
2 )

2(α+1)(ϕ(a)−ϕ(b))

)
− f(ϕ(a)+ϕ(b)

2 )
(ϕ(a)−ϕ(b))2

+ Γ(α+1)

(ϕ(a)−ϕ(b))α+2

[∫ ϕ(a)+ϕ(b)
2

ϕ(a) (ϕ (x)− ϕ (a))
α−1

f (ϕ (x)) dϕ (x)

+
∫ ϕ(a)+ϕ(b)

2

ϕ(a) (ϕ (b)− ϕ (x))
α−1

f (ϕ (x)) dϕ (x)

]
,

by add uping I1 and I2 , and by multiplying (ϕ(b)−ϕ(a))2

2 with I, it obtain that:

Γ(α+1)
2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]
− f

(
ϕ(a)+ϕ(b)

2

)
= (ϕ(b)−ϕ(a))2

2

∫ 1

0
m (t) f ′′ (tϕ (a) + (1− t)ϕ (b)) dt.

The proof is done.
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Lemma 3.3. Let I be an interval a, b ∈ I with 0 ≤ a < b and ϕ : I → R a
continuous increasing function. Let f : [ϕ (a) , ϕ (b)] → R be a twice differentiable
mapping on (ϕ (a) , ϕ (b)). If f ′′ ∈ L [ϕ (a) , ϕ (b)], then the following equality for
fractional integral holds:

(3.3)

f(ϕ(a))+f(ϕ(b))
r(r+1) + 2

r+1f
(
ϕ(a)+ϕ(b)

2

)
− Γ(α+1)

r(ϕ(b)−ϕ(a))α

×
[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]

= (ϕ (b)− ϕ (a))
2 ∫ 1

0
k (t) f ′′ (tϕ (a) + (1− t)ϕ (b)) dt.

Where

k (t) =

{
1−(1−t)α+1−tα+1

α+1 − t
r+1 , t ∈

[
0, 1

2

)
,

1−(1−t)α+1−tα+1

α+1 − 1−t
r:+1 , t ∈

[
1
2 , 1
)
.

�

Proof. By using Definition 5 and Lemma 5, we have

I =
∫ 1

0
k (t) f ′′ (tϕ (a) + (1− t)ϕ (b)) dt

= 1
r(r+1)(α+1)

×
∫ 1

2

0

[
(r + 1)

[
1− (1− t)α+1 − tα+1

]
− rt (α+ 1)

]
×f ′′ (tϕ (a) + (1− t)ϕ (b)) dt
+ 1
r(r+1)(α+1)

×
∫ 1

1
2

[
(r + 1)

[
1− (1− t)α+1 − tα+1

]
− r (1− t) (α+ 1)

]
×f ′′ (tϕ (a) + (1− t)ϕ (b)) dt

= I1 + I2.

If use twice the partial integration method for I1, we have

I1 =
∫ 1

2

0

[
(r + 1)

[
1− (1− t)α+1 − tα+1

]
− rt (α+ 1)

]
×f ′′ (tϕ (a) + (1− t)ϕ (b)) dt

=
[
(r + 1) (1− 2−α)− r(α+1)

2

]
f ′(ϕ(a)+ϕ(b)

2 )
ϕ(a)−ϕ(b)

+
r(α+1)f(ϕ(a)+ϕ(b)

2 )
(ϕ(b)−ϕ(a))2

+ (α+1)f(ϕ(b))

(ϕ(b)−ϕ(a))2
− (r+1)(α+1)αΓ(α)

(ϕ(b)−ϕ(a))α+2

×
[∫ ϕ(b)

ϕ(a)+ϕ(b)
2

(ϕ (x)− ϕ (a))
α−1

f (ϕ (x)) dϕ (x)

+
∫ ϕ(b)
ϕ(a)+ϕ(b)

2

(ϕ (b)− ϕ (x))
α−1

f (ϕ (x)) dϕ (x)
]

If use twice the partial integration method for I2, we have

I2 =
∫ 1

1
2

[
(r + 1)

[
1− (1− t)α+1 − tα+1

]
− r (1− t) (α+ 1)

]
×f ′′ (tϕ (a) + (1− t)ϕ (b)) dt

=
[
r(α+1)

2 − (r + 1) (1− 2−α)
]
f ′(ϕ(a)+ϕ(b)

2 )
ϕ(a)−ϕ(b)

+
r(α+1)f(ϕ(a)+ϕ(b)

2 )
(ϕ(b)−ϕ(a))2

+ (α+1)f(ϕ(a))

(ϕ(b)−ϕ(a))2
− (r+1)(α+1)αΓ(α)

(ϕ(b)−ϕ(a))α+2

×
[∫ ϕ(a)+ϕ(b)

2

ϕ(a) (ϕ (x)− ϕ (a))
α−1

f (ϕ (x)) dϕ (x)

+
∫ ϕ(a)+ϕ(b)

2

ϕ(a) (ϕ (b)− ϕ (x))
α−1

f (ϕ (x)) dϕ (x)

]
.
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By add uping I1 and I2, and by multipling with (ϕ(b)−ϕ(a))2

r(r+1)(α+1) ,it obtain that:

f(ϕ(a))+f(ϕ(b))
r(r+1) + 2

r+1f
(
ϕ(a)+ϕ(b)

2

)
− Γ(α+1)
r(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]

= (ϕ (b)− ϕ (a))
2 ∫ 1

0
k (t) f ′′ (tϕ (a) + (1− t)ϕ (b)) dt .

The proof is done.

Theorem 3.1. Let I be an interval a, b ∈ I with 0 ≤ a < b and ϕ : I → R a con-
tinuous increasing function. Let f : [0, ϕ (b)] → R be a differentiable mapping and
1 < q <∞. If |f ′′| is measurable and |f ′′| is decreasing and geometric-arithmetically
ϕ− s−convex on [0, ϕ (b)] for some fixed α ∈ (0,∞) , s ∈ (0, 1] , 0 ≤ a < b, then the
following inequality for fractional integrals holds:

(3.4)

f(ϕ(a))+f(ϕ(b))
2 − Γ(α+1)

2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]

≤ (ϕ(b)−ϕ(a))2(|f ′′(ϕ(a))|+|f ′′(ϕ(b))|)
2(α+1)

(
1
s+1 −

1
α+s+1 −B (s+ 1, α+ 2)

)
.

�

Proof. By using Definition 2, Lemma 2 and Lemma 6, we have∣∣∣ f(ϕ(a))+f(ϕ(b))
2 − Γ(α+1)

2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]∣∣∣

≤ (ϕ(b)−ϕ(a))2

2

∫ 1

0

∣∣∣ 1−(1−t)α+1−tα+1

α+1

∣∣∣ |f ′′ (tϕ (a) + (1− t)ϕ (b))| dt

≤ (ϕ(b)−ϕ(a))2

2(α+1)

∫ 1

0

(
1− (1− t)α+1 − tα+1

) ∣∣f ′′ (ϕt (a) + ϕ(1−t) (b)
)∣∣ dt

≤ (ϕ(b)−ϕ(a))2

2(α+1)

∫ 1

0

(
1− (1− t)α+1 − tα+1

)
× [ts |f ′′ϕ (a)|+ (1− t)s |f ′′ϕ (b)|] dt

≤ (ϕ(b)−ϕ(a))2

2(α+1) |f ′′ϕ (a)|
×
[
−
∫ 1

0
tα+s+1dt+

∫ 1

0
tsdt−

∫ 1

0
ts (1− t)α+1

dt
]

+ (ϕ(b)−ϕ(a))2

2(α+1) |f ′′ϕ (b)|
×
[
−
∫ 1

0
(1− t)α+s+1

dt+
∫ 1

0
(1− t)s dt−

∫ 1

0
tα+1 (1− t)s dt

]
≤ (ϕ(b)−ϕ(a))2

2(α+1) (|f ′′ϕ (a)|+ |f ′′ϕ (b)|)
×
[
− 1
α+s+1 + 1

s+1 −B (s+ 1, α+ 2)
]
.

The poof is done.

Theorem 3.2. Let I be an interval a, b ∈ I with 0 ≤ a < b and ϕ : I → R a
continuous increasing function. Let f : [0, ϕ (b)] → R be a differentiable mapping
and 1 < q < ∞. If |f ′′|q is measurable and |f ′′|q is decreasing and geometric-
arithmetically ϕ − s−convex on [0, ϕ (b)] for some fixed α ∈ (0,∞) , s ∈ (0, 1] , 0 ≤
a < b, then the following inequality for fractional integrals holds:

(3.5)

∣∣∣ f(ϕ(a))+f(ϕ(b))
2 − Γ(α+1)

2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]∣∣∣

≤ (ϕ(b)−ϕ(a))2 max{1−21−α,21−α−1}
2(α+1)

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

)
.

�
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Proof. To achieve our aim ,we divide our proof into two cases.
Case 1: α ∈ (0, 1), by using Definition 2 , Hölder’s inequality and Lemma 6 ,we

have

∣∣∣ f(ϕ(a))+f(ϕ(b))
2 − Γ(α+1)

2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]∣∣∣

≤ (ϕ(b)−ϕ(a))2

2

∫ 1

0

∣∣∣ 1−(1−t)α+1−tα+1

α+1

∣∣∣ |f ′′ (tϕ (a) + (1− t)ϕ (b))| dt

≤ (ϕ(b)−ϕ(a))2

2(α+1)

(∫ 1

0

∣∣∣1− (1− t)α+1 − tα+1
∣∣∣p) 1

p

×
(∫ 1

0
|f ′′ (tϕ (a) + (1− t)ϕ (b))|q dt

) 1
q

≤ (ϕ(b)−ϕ(a))2

2(α+1)

(∫ 1

0

∣∣∣1− (1− t)α+1 − tα+1
∣∣∣p) 1

p

×
(∫ 1

0

∣∣f ′′ (ϕt (a)ϕ(1−t) (b)
)∣∣q dt) 1

q

≤ (ϕ(b)−ϕ(a))2

2(α+1)

(∫ 1

0

∣∣∣1− (1− t)α+1 − tα+1
∣∣∣p) 1

p

×
(∫ 1

0
[ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt

) 1
q

≤ (ϕ(b)−ϕ(a))2

2(α+1)

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q (∫ 1

0
[(1− t)α + tα − 1]

p
dt
) 1
p

≤ (ϕ(b)−ϕ(a))2

2(α+1)

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q (∫ 1

0

[
21−α − 1

]p
dt
) 1
p

≤ (ϕ(b)−ϕ(a))2(21−α−1)
2(α+1)

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q

.

Where 1
p + 1

q = 1.

Case 2: α ∈ [1,∞), by using Definition 2, Hölder’s inequality and Lemma 6, we
have

∣∣∣ f(ϕ(a))+f(ϕ(b))
2 − Γ(α+1)

2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]∣∣∣

≤ (ϕ(b)−ϕ(a))2

2(α+1)

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q

×
(∫ 1

0
[1− (1− t)α − tα]

p
dt
) 1
p

≤ (ϕ(b)−ϕ(a))2(1−21−α)
2(α+1)

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q

.

The proof is done.

Theorem 3.3. Let I be an interval a, b ∈ I with 0 ≤ a < b and ϕ : I → R a con-
tinuous increasing function. Let f : [0, ϕ (b)] → R be a differentiable mapping and
1 < q <∞. If |f ′′| is measurable and |f ′′| is decreasing and geometric-arithmetically
ϕ− s−convex on [0, ϕ (b)] for some fixed α ∈ (0,∞) , s ∈ (0, 1] , 0 ≤ a < b, then the



ON HERMITE-HADAMARD INEQUALITIES 169

following inequality for fractional integrals holds:

(3.6)

∣∣∣ Γ(α+1)
2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]
− f

(
ϕ(a)+ϕ(b)

2

)∣∣∣
≤ (ϕ(b)−ϕ(a))2|f ′′(ϕ(a))|

2(α+1)

×
[
α−α2−s−1−2−s−1

1+s − α+1
2+s + 2B (s+ 1, α+ 2) + 1

α+s+2

]
+

(ϕ(b)−ϕ(a))2|f ′′(ϕ(a))|
2(α+1)

×
[
α2−s−1+2−s−1−1

1+s + 1
α+s+2 + 2B (s+ 1, α+ 2)

]
.

�

Proof. By using Definition 5 and Lemma 7, we have∣∣∣ Γ(α+1)
2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]
− f

(
ϕ(a)+ϕ(b)

2

)∣∣∣
≤ (ϕ(b)−ϕ(a))2

2

∫ 1

0
|m (t)| |f ′′ (tϕ (a) + (1− t)ϕ (b))| dt

≤ (ϕ(b)−ϕ(a))2

2

∫ 1

0
|m (t)|

[
f ′′
(
ϕt (a)ϕ(1−t) (b)

)]
dt

≤ (ϕ(b)−ϕ(a))2

2

∫ 1

0
|m (t)| [ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt

≤ (ϕ(b)−ϕ(a))2

2

∫ 1
2

0

∣∣∣t− 1−(1−t)α+1−tα+1

α+1

∣∣∣ [ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt

+ (ϕ(b)−ϕ(a))2

2

∫ 1
1
2

∣∣∣1− t− 1−(1−t)α+1−tα+1

α+1

∣∣∣ [ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt

≤ (ϕ(b)−ϕ(a))2

2(α+1) |f ′′ (ϕ (a))|
[∫ 1

2

0

[
−ts + (α+ 1) ts+1 + ts (1− t)α+1

+ tα+s+1
]
dt

+
∫ 1

1
2

[
αts − (α+ 1) ts+1 + ts (1− t)α+1

+ tα+s+1
]
dt
]

+ (ϕ(b)−ϕ(a))2

2(α+1) |f ′′ (ϕ (b))|

×
[∫ 1

2

0

[
− (1− t)s + (α+ 1) t (1− t)s+1

+ (1− t)α+s+1
+ tα+s (1− t)s

]
dt

+
∫ 1

1
2

[
α (1− t)s − (α+ 1) t (1− t)s + (1− t)α+s+1

+ tα+1 (1− t)s
]
dt
]

≤ (ϕ(b)−ϕ(a))2

2(α+1) |f ′′ (ϕ (a))|
[
α−α2−s−1−2−s−1

1+s − α+1
s+2 + 2B (s+ 1, α+ 2) + 1

α+s+2

]
+ (ϕ(b)−ϕ(a))2

2(α+1) |f ′′ (ϕ (b))|
[
α2−s−1+2−s−1−1

1+s + 2B (α+ 2, s+ 1) + 1
α+s+2

]
.

Theorem 3.4. Let I be an interval a, b ∈ I with 0 ≤ a < b and ϕ : I → R a
continuous increasing function. Let f : [0, ϕ (b)] → R be a differentiable mapping
and 1 < q < ∞. If |f ′′| is measurable and |f ′′|q is decreasing and geometric-
arithmetically ϕ − s−convex on [0, ϕ (b)] for some fixed α ∈ (0,∞) , s ∈ (0, 1] , 0 ≤
a < b, then the following inequality for fractional integrals holds:
(3.7)

Γ(α+1)
2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]
− f

(
ϕ(a)+ϕ(b)

2

)

≤ (ϕ(b)−ϕ(a))2

2(α+1)

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q (

(α+1)2−p−1+(α+0.5)p+1−αp+1

p+1

) 1
p

.

Where 1
p + 1

q = 1.

�
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Proof. By using Lemma 2, Hölder’s inequality and Lemma 7, we have

∣∣∣ Γ(α+1)
2(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]
− f

(
ϕ(a)+ϕ(b)

2

)∣∣∣
≤ (ϕ(b)−ϕ(a))2

2

∫ 1

0
|m (t)| |f ′′ (tϕ (a) + (1− t)ϕ (b))| dt

≤ (ϕ(b)−ϕ(a))2

2

(∫ 1

0
|m (t)|p dt

) 1
p

×
(∫ 1

0
|f ′′ (tϕ (a) + (1− t)ϕ (b))|q dt

) 1
q

≤ (ϕ(b)−ϕ(a))2

2

(∫ 1

0
|m (t)|p dt

) 1
p

×
(∫ 1

0

∣∣f ′′ (ϕt (a)ϕ(1−t) (b)
)∣∣q dt) 1

q

≤ (ϕ(b)−ϕ(a))2

2

(∫ 1

0
|m (t)|p dt

) 1
p

×
(∫ 1

0

[
ts |f ′′ (ϕ (a))|q + (1− t)s |f ′′ (ϕ (b))|q

]
dt
) 1
q

≤ (ϕ(b)−ϕ(a))2

2(α+1)

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q

×
(∫ 1

2

0

∣∣∣t− 1−(1−t)α+1−tα+1

α+1

∣∣∣p dt+
∫ 1

1
2

∣∣∣1− t− 1−(1−t)α+1−tα+1

α+1

∣∣∣p dt) 1
p

≤ (ϕ(b)−ϕ(a))2

2(α+1)

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q

u̇×
(

(α+ 1)
∫ 1

2

0
tpdt+

∫ 1
1
2

(α− t+ 1)
p
dt
) 1
p

≤ (ϕ(b)−ϕ(a))2

2(α+1)

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q (

(α+1)2−p−1+(α+0.5)p+1−αp+1

p+1

) 1
p

.

The proof is done.

Theorem 3.5. Let I be an interval a, b ∈ I with 0 ≤ a < b and ϕ : I → R a con-
tinuous increasing function. Let f : [0, ϕ (b)] → R be a differentiable mapping and
1 < q <∞. If |f ′′| is measurable and |f ′′| is decreasing and geometric-arithmetically
ϕ− s−convex on [0, ϕ (b)] for some fixed α ∈ (0,∞) , s ∈ (0, 1] , 0 ≤ a < b, then the
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following inequality for fractional integrals holds:
(3.8)∣∣∣ f(ϕ(a))+f(ϕ(b))

r(r+1) + 2
r+1f

(
ϕ(a)+ϕ(b)

2

)
− Γ(α+1)

r(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]∣∣∣

≤ (ϕ(b)−ϕ(a))2

r(r+1)(α+1) max

{
[r + 1− (r + 1) 2−α]

(
2−s−1|f ′′(ϕ(a))|+(1−2−s−1)|f ′′(ϕ(b))|

s+1

)
−r (α+ 1)

[
2−s−2(s+1)|f ′′(ϕ(a))|+(1−t)s+1(−ts−3t+1)f ′′(ϕ(a))

(s+1)(s+2)

]
,

r (α+ 1)

[
2−s−2(s+1)|f ′′(ϕ(a))|+(1−t)s+1(−ts−3t+1)f ′′(ϕ(a))

(s+1)(s+2)

]}
+ (ϕ(b)−ϕ(a))2

r(r+1)(α+1) max {(r + 1− (r + 1) 2−α − r (α+ 1))

×
[

(1−2−s−1)|f ′′(ϕ(a))|−2−s−1|f ′′(ϕ(b))|
s+1

]
+r (α+ 1)

[
(1−2−s−1)(s+1)|f ′′(ϕ(a))|+2−s−2(s+3)|f ′′(ϕ(b))|

(s+1)(s+2)

]
,

r (α+ 1)

[
(1−2−s−1)|f ′′(ϕ(a))|−2−s−1|f ′′(ϕ(b))|

s+1

− (1−2−s−2)(s+1)|f ′′(ϕ(a))|+2−s−2(s+3)|f ′′(ϕ(b))|
(s+1)(s+2)

]}
.

�

Proof. By using Definition 3, Lemma 3 and Lemma 8, we have∣∣∣ f(ϕ(a))+f(ϕ(b))
r(r+1) + 2

r+1f
(
ϕ(a)+ϕ(b)

2

)
− Γ(α+1)

r(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]∣∣∣

≤ (ϕ (b)− ϕ (a))
2 ∫ 1

0
|k (t)| [ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt

≤ (ϕ(b)−ϕ(a))2

r(r+1)(α+1)

∫ 1
2

0

∣∣∣(r + 1)
[
1− (1− t)α+1 − tα+1

]
− tr (α+ 1)

∣∣∣
× [ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt
+ (ϕ(b)−ϕ(a))2

r(r+1)(α+1)

∫ 1
1
2

∣∣∣(r + 1)
[
1− (1− t)α+1 − tα+1

]
− r (α+ 1) (1− t)

∣∣∣
× [ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt

≤ (ϕ(b)−ϕ(a))2

r(r+1)(α+1) max

{
[r + 1− (r + 1) 2−α]

(
2−s−1|f ′′(ϕ(a))|+(1−2−s−1)|f ′′(ϕ(b))|

s+1

)
− r (α+ 1)

[
2−s−2(s+1)|f ′′(ϕ(a))|+(1−t)s+1(−ts−3t+1)f ′′(ϕ(a))

(s+1)(s+2)

]
,

r (α+ 1)

[
2−s−2(s+1)|f ′′(ϕ(a))|+(1−t)s+1(−ts−3t+1)f ′′(ϕ(a))

(s+1)(s+2)

]}
+ (ϕ(b)−ϕ(a))2

r(r+1)(α+1) max (r + 1− (r + 1) 2−α − r (α+ 1))

[
(1−2−s−1)|f ′′(ϕ(a))|−2−s−1|f ′′(ϕ(b))|

s+1

]
+r (α+ 1)

[
(1−2−s−1)(s+1)|f ′′(ϕ(a))|+2−s−2(s+3)|f ′′(ϕ(b))|

(s+1)(s+2)

]
,

r (α+ 1)

[
(1−2−s−1)|f ′′(ϕ(a))|−2−s−1|f ′′(ϕ(b))|

s+1

− (1−2−s−2)(s+1)|f ′′(ϕ(a))|+2−s−2(s+3)|f ′′(ϕ(b))|
(s+1)(s+2)

]
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Where we have used the following inequality:∫ 1
2

0

∣∣∣(r + 1)
[
1− (1− t)α+1 − tα+1

]
− tr (α+ 1)

∣∣∣
× [ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt

≤ [(r + 1) (1− 2−α)]

[
2−s−1|f ′′(ϕ(a))|+(1−2−s−1)|f ′′(ϕ(b))|

s+1

]
−r (α+ 1)

[
2−s−2|f ′′(ϕ(a))|

s+2 +
1−(s+3)2−s−2|f ′′(ϕ(b))|

(s+2)(s+1)

]
and ∫ 1

2

0

∣∣∣−r − 1 + (r + 1)
[
(1− t)α+1

+ tα+1
]

+ tr (α+ 1)
∣∣∣

× [ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt

≤ r (α+ 1)

[
2−s−2|f ′′(ϕ(a))|

s+2 +
1−(s+3)2−s−2|f ′′(ϕ(b))|

(s+2)(s+1)

]
,

and ∫ 1
1
2

∣∣∣r + 1 + tr (α+ 1)− (r + 1)
[
(1− t)α+1

+ tα+1
]
− r (α+ 1)

∣∣∣
× [ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt

≤ [r + 1− (r + 1) 2−α − r (α+ 1)]

[
(1−2−s−1)|f ′′(ϕ(a))|−2−s−1|f ′′(ϕ(b))|

s+1

]
+r (α+ 1)

[
2−s−2|f ′′(ϕ(a))|

s+2 +
(s+3)2−s−2|f ′′(ϕ(b))|

(s+2)(s+1)

]
,

and∫ 1
1
2

∣∣∣−r − 1− tr (α+ 1) + (r + 1)
[
(1− t)α+1

+ tα+1
]

+ r (α+ 1)
∣∣∣

× [ts |f ′′ (ϕ (a))|+ (1− t)s |f ′′ (ϕ (b))|] dt
≤ r (α+ 1)

×
[

(1−2−s−1)|f ′′(ϕ(a))|−2−s−1|f ′′(ϕ(b))|
s+1 − (1−2−s−2)|f ′′(ϕ(a))|

s+2 − (s+3)2−s−2|f ′′(ϕ(b))|
(s+2)(s+1)

]
.

The proof is done.

Theorem 3.6. Let I be an interval a, b ∈ I with 0 ≤ a < b and ϕ : I → R a
continuous increasing function. Let f : [0, ϕ (b)] → R be a differentiable mapping
and 1 < q < ∞. If |f ′′| is measurable and |f ′′|q is decreasing and geometric-
arithmetically ϕ − s−convex on [0, ϕ (b)] for some fixed α ∈ (0,∞) , s ∈ (0, 1] , 0 ≤
a < b, then the following inequality for fractional integrals holds:
(3.9)∣∣∣ f(ϕ(a))+f(ϕ(b))

r(r+1) + 2
r+1f

(
ϕ(a)+ϕ(b)

2

)
− Γ(α+1)

r(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]∣∣∣

≤ (ϕ(b)−ϕ(a))2

[r(r+1)(α+1)]1+p
−1

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q

×
(

max

{
[(r + 1) (1− 2−α)]

p+1 −
[

2+r(1−α)−(1+r)2−α

2

]p+1

, [r (α+ 1)]
p+1

2−p−1

}
+ max

{
[r + 1− (r + 1) 2−α]

p+1 −
[

2+r(1−α)−(1+r)2−α

2

]p+1

,
[
r(α+1)

2

]p+1
}) 1

p

.

Where 1
p + 1

q = 1.

�
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Proof. By using Hölder’s inequality and Lemma 7,we have∣∣∣ f(ϕ(a))+f(ϕ(b))
r(r+1) + 2

r+1f
(
ϕ(a)+ϕ(b)

2

)
− Γ(α+1)

r(ϕ(b)−ϕ(a))α

[
Jα
ϕ(a)+

f (ϕ (b)) + Jα
ϕ(b)−

f (ϕ (a))
]∣∣∣

≤ (ϕ (b)− ϕ (a))
2 ∫ 1

0
|k (t)| |f ′′ (tϕ (a) + (1− t)ϕ (b))| dt

≤ (ϕ (b)− ϕ (a))
2
(∫ 1

0
|k (t)|p dt

) 1
p
(∫ 1

0
|f ′′ (tϕ (a) + (1− t)ϕ (b))|q dt

) 1
q

≤ (ϕ (b)− ϕ (a))
2
(∫ 1

0
|k (t)|p dt

) 1
p
(∫ 1

0

∣∣f ′′ (ϕt (a)ϕ(1−t) (b)
)∣∣q dt) 1

q

≤ (ϕ (b)− ϕ (a))
2
(∫ 1

0
|k (t)|p dt

) 1
p
(∫ 1

0

[
ts |f ′′ (ϕ (a))|q + (1− t)s |f ′′ (ϕ (b))|q

]
dt
) 1
q

≤ (ϕ (b)− ϕ (a))
2

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q (∫ 1

0
|k (t)|p dt

) 1
p

≤ (ϕ (b)− ϕ (a))
2

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q

×
(∫ 1

2

0

∣∣∣ 1−(1−t)α+1−tα+1

r(α+1) − t
r+1

∣∣∣p dt+
∫ 1

1
2

∣∣∣ 1−(1−t)α+1−tα+1

r(α+1) − 1−t
r+1

∣∣∣p dt) 1
p

≤ (ϕ(b)−ϕ(a))2

[r(r+1)(α+1)]1+p
−1

(
|f ′′(ϕ(a))|q+|f ′′(ϕ(b))|q

s+1

) 1
q

(
×max

{
[(r + 1) [1− 2−α]]

p+1 −
[

2+r(1−α)−(1+r)2−α−1

2

]p+1

, [r (α+ 1)]
p+1

2−p−1

}
+ max

{
[(r + 1) [1− 2−α]]

p+1 −
[

2+r(1−α)+(1+r)2−α−1

2

]p+1

,
[
r(α+1)

2

]p+1
}) 1

p

.

Where we have used the following inequalities:∫ 1
2

0

∣∣∣(r + 1)
[
1− (1− t)α+1 − tα+1

]
− tr (α+ 1)

∣∣∣p dt
≤

[(r+1)[1−2−α]]
p+1−

[
2+r(1−α)−(1+r)2−α−1

2

]p+1

r(α+1)(p+1) ,

and ∫ 1
2

0

∣∣∣−r − 1 + (r + 1)
[
(1− t)α+1

+ tα+1
]

+ tr (α+ 1)
∣∣∣p dt

≤ [r(α+1)]p+12−p−1

r(α+1)(p+1) ,

and ∫ 1
1
2

∣∣∣(r + 1)
[
1− (1− t)α+1 − tα+1

]
− r (1− t) (α+ 1)

∣∣∣p d
≤

[(r+1)[1−2−α]]
p+1−

[
2+r(1−α)+(1+r)2−α−1

2

]p+1

r(α+1)(p+1) ,

and∫ 1
1
2

∣∣∣−r − 1− tr (α+ 1) + (r + 1)
[
(1− t)α+1

+ tα+1
]

+ r (α+ 1)
∣∣∣p dt
≤ [ r(α+1)

2 ]
p+1

r(α+1)(p+1) .

The proof is done.
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Abstract. In this work a boundary value problem on the half axis is studied.
The special solution of this boundary value problem is defined. The simplicity

of the eigenvalues is shown and it is proven that all positive values of the

parameter λ are the eigenvalues of this boundary value problem.
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1. Introduction

In this work we study the boundary value problem

(1) y′′(x) + λy(x) +M(x)y(x−∆(x)) = 0 (0 ≤ x <∞),

(2) y′(0)− hy(0) = 0,

(3) y(x−∆(x)) ≡ φ(x−∆(x)), if x−∆(x) < 0,

(4) sup
[0,∞)

|y(x)| <∞,

where M(x) and ∆(x) ≥ 0 are defined and continuous on the half axis [0,∞), λ
is a real parameter (−∞ < λ < ∞), h is an arbitrary real number and φ(x) is a
continuous initial function on the initial set

E0 = {x−∆(x) : x−∆(x) < 0, x > 0} ∪ {0}
with φ(0) = 1.

The literature for the boundary value problems for differential equations of the
second order with retarded arguments begins with [1, 2, 3, 4, 5, 6, 7, 8, 9].

Differential equations with retarded argument, describe processes with afteref-
fect; they find many applications, particularly in the theory of automatic control,
in the theory of self-oscillatory systems, in the study of problems connected with
combustion in rocket engines, in a number of problems in economics, biophysics,
and many other fields. Equations with retarded argument appear, for example each
time when in some physical or technological problem, the force operating at the
mass point depends on the velocity and the position of this point, not only at the
given instant, but also at some given previous instant.

13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference

175



176 F. AYCA CETINKAYA, KHANLAR R. MAMEDOV, AND GIZEM CERCI

The presence of retardations in the system studied often proves to be a result of
a phenomenon which essentially influences the course of the process. For example,
in automatic control systems the retardation is the time interval which the system
requires to react to an input impulse. Various physical applications of such prob-
lems can be found in [8].

The rest of this paper is organized as follows. First, the equivalent integral
representation for the solution of the boundary value problem (1)-(4) is constructed.
Then, the simplicity of the eigenvalues is shown. It is proven that all positive values
of the parameter λ are the eigenvalues of the boundary value problem (1)-(4).

2. The special solution

Let w(x, λ) be a solution of (1) which satisfies the conditions

(5) w(0, λ) = 1, w′(0, λ) = h,

(6) w (x−∆(x), λ) ≡ φ(x−∆(x)), if x−∆(x) < 0.

From Theorem I.2.1 (see [8]) it follows that under conditions (5), (6) there exists
a unique solution of (1) on the half axis [0,∞).

Lemma 2.1. Equation (1) together with the initial conditions (5), (6) are equiva-
lent, for each value of λ > 0 to the integral equation:

(7) w(x, λ) = cos sx+
h sin sx

s
− 1

s

∫ x

0

M(t) sin s(x− t)w(t−∆(t), λ)dt, (s2 = λ).

Proof. If we seek the solution of equation

w′′(x, λ) + λw(x, λ) = −q(x)w(x−∆(x), λ)

as

w(x, λ) = c1cossx+ c2sinsx,

by applying the method of variation of parameters we have

w(x, λ) = c̃1cossx+ c̃2sinsx−
1

s

∫ x

0

q(t)sins(x− t)w(t−∆(t), λ)dt.

Taking condition (5) into consideration we find

c̃1 = 1 and c̃2 =
h

s
.

�
Before giving the following theorem, it will be useful to keep in mind that; here,

the multiplicity of an eigenvalue of a boundary value problem is defined to be the
number of linearly independent eigenfunctions corresponding to this eigenvalue.

Theorem 2.1. The boundary value problem (1)-(4) can have only simple eigenval-
ues.

Proof. Let λ̃ be an eigenvalue of the boundary value problem (1)-(4) and ϕ̃(x, λ̃)
a corresponding eigenfunction. By (2) and (5),

W
{
ϕ̃
(

0, λ̃
)
, w
(

0, λ̃
)}

=

∣∣∣∣∣∣ ϕ̃
(

0, λ̃
)

1

ϕ̃′
(

0, λ̃
)

h

∣∣∣∣∣∣ = 0,
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and according to Theorem II.2.2. in [8] the functions ϕ̃(x, λ̃) and w(x, λ̃) are lin-

early dependent on [0,∞). Hence it follows that w(x, λ̃) is an eigenfunction for
the boundary value problem (1)-(4) and all eigenfunctions of this boundary value

problem which correspond to the eigenvalue λ̃ are pairwise linearly dependent. �

3. Existence Theorem

Theorem 3.1. Let

(8) sup
t∈E0

|φ(x)| = φ0 <∞

and in equation (1) let

(9)

∫ ∞

0

|M(t)| dt = M∞ <∞.

Then all positive values of the parameter λ are eigenvalues of the boundary value
problem (1)-(4).

Proof. By (7), if λ > 0, then

(10) w(x, λ) = Rλ sin(st− ψλ)− 1

s

∫ x

0

M(t) sin s(x− t)w(t−∆(t), λ)dt,

where

Rλ =

√
1 +

h2

λ
, cosψλ =

1

Rλ
, sinψλ =

h

sRλ
, (0 ≤ ψλ < 2π).

Let x0 ∈ (0,∞), and Nλ(x0) = max
[0,x0]

|w(x, λ)|. Evidently, Nλ(x0) ≥ Nλ(x) (x0 ≥ x)

and, from (10), (5), (6), (8) and (9) one of the following inequalities holds:

(11) Nλ(x0) ≤ Rλ +
1

s

∫ x0

0

|M(t)|Nλ(t)dt

or

Nλ(x0) ≤ Rλ +
φ0
s

∫ x0

0

|M(t)| dt ≤ Rλ +
φ0M∞

s
.

By Lemma II.3.5 in [8] it follows from (11) that

Nλ(x0) ≤ Rλexp
1

s

∫ x0

0

|M(t)| dt ≤ Rλexp
M∞

s
,

and for s > 0

Nλ(x0) ≤ max

{
Rλexp

M∞

s
;Rλ +

φ0M∞

s

}
<∞.

The bound obtained is valid for any λ > 0 and is independent of x0, proving the
theorem. �
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Abstract. As known, co-Heyting algebras are dual to Heyting algebras. co-
Heyting algebra has many studying areas as topos theory, co-intuitionistic

logic, linguistics, quantum theory, etc.
In this paper, we studied on co-Heyting valued sets. The co-Heyting valued

Ω−algebra, co-Heyting Valued Algebra Homomorphism are defined and some

properties of these sets are examined.
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1. Introduction

co- Heyting algebra that is a lattice which dual is Heyting algebra. co-Heyting
algebra has applications in many different areas.

Definition 1.1. [1]A Boolean algebra is an algebra (H,∨,∧,−, 0H , 1H) where
(H,∨,∧, 0H , 1H) is a distributive lattice and for all a ∈ H,

a ∧ a = 0 and a ∨ a = 1

Definition 1.2. [1]A Heyting algebra is an algebra (H,∨,∧,→, 0H , 1H) such that
(H,∨,∧, 0H , 1H) is an lattice and for all a, b, c ∈ H,

a ≤ b→ c⇔ a ∧ b ≤ c

(H,∨,∧, 0H , 1H) is a Heyting algebra with ∀a, b ∈ H,

a→ b =
∨
{c : a ∧ c ≤ b, c ∈ H} .

Proposition 1.1. [4]An algebra (H,∨,∧,→, 0H , 1H) is a Heyting algebra if and
only if (H,∨,∧, 0H , 1H) is an lattice and the following identities hold for all a, b, c ∈
H,

(1) a→ a = 1
(2) a ∧ (a→ b) = a ∧ b
(3) b ∧ (a→ b) = b
(4) a→ (b ∧ c) = (a→ b) ∧ (a→ c)

Definition 1.3. [1]A co-Heyting algebra is an algebra (H∗,∨,∧, ↪→, 0H∗ , 1H∗) such
that (H∗,∨,∧, 0H∗ , 1H∗) is an lattice and for all a, b, c ∈ H∗,

a ↪→ b ≤ c⇔ a ≤ b ∨ c
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(H∗,∨,∧, 0H∗ , 1H∗) is a co-Heyting algebra with ∀a, b ∈ H∗,

a ↪→ b =
∧
{c : a ∨ c ≥ b, c ∈ H∗} .

A co-Heyting algebra with the ordering reversed will yield a Heyting algebra.
The implication operation in this algebra will be a→ b = b ↪→ a.

It is clear that H and H∗ are same sets with different order relations. 1H∗ and
0H∗ are greatest and least elements of H∗,respectively.

Proposition 1.2. An algebra (H∗,∨,∧, ↪→, 0H∗ , 1H∗) is a co-Heyting algebra if
and only if (H∗,∨,∧, 0H∗ , 1H∗) is an lattice and the following identities hold for all
a, b, c ∈ H∗,

(1) a ↪→ a = 0
(2) a ∨ (b ↪→ a) = a ∨ b
(3) b ∨ (b ↪→ a) = b
(4) (b ∨ c) ↪→ a = (b ↪→ a) ∨ (c ↪→ a)

Proof. (1) ∀ a ∈ H∗,

a ↪→ a =
∧
{c : a ∨ c ≥ a, c ∈ H∗} = 0

(2) From definition it is obtained that,

a ∨ (b ↪→ a) ≥ b ⇒ a ∨ (b ↪→ a) ≥ a ∨ b

and

(a ∨ b) ∨ a ≥ b⇒ a ∨ b ≥ b ↪→ a and a ≤ a ∨ b

⇒ a ∨ b ≥ a ∨ (b ↪→ a)

(3)∀a, b ∈ H∗,
b ≤ a ∨ b⇒ b ∨ (b ↪→ a) = b

(4)∀a, b, c ∈ H∗,

(b ↪→ a) ∨ (c ↪→ a) ∨ a = (a ∨ (b ↪→ a)) ∨ (a ∨ (c ↪→ a)) ≥ b ∨ c

⇒ (b ↪→ a) ∨ (c ↪→ a) ≥ (b ∨ c) ↪→ a

On the other hand, (b ∨ c) ↪→ a ≥ (b ↪→ a) ∨ (c ↪→ a). �

2. co-Heyting Valued Sets

In this section, the concepts of co-Heyting valued set, co-Heyting valued function
are defined and some properties of these structures are examined.

Definition 2.1. Let H∗ be a complete co-Heyting algebra and X be a universal.
H∗− valued set is determined with [=] function

[=] : X ×X → H∗, [=] (a, b) = [a = b]

which satisfy the following conditions.

(1) [a = b] ≥ [b = a]
(2) [a = b] ∨ [b = c] ≥ [a = c]

Let X be a universal. u ∈ X,E(u) means the degree of existence the
elemet u. For H∗−valued sets we will use,

E(u) = [u ∈ X] .

So, [u ∈ X] = [u = u] .
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Definition 2.2. Let A be a H∗−valued set. The subset of A is a s : A → H∗

function with following conditions.

(1) [x ∈ s] ∨ [x = y] ≥ [y ∈ s]
(2) [x ∈ s] ≥ [x ∈ A]

Definition 2.3. Let (X,=) and (Y,=) are H∗ − valued sets. If f : X × Y → H∗

function satisfy the following conditions then called H∗−valued function and it is
shown f : X → Y.

F1 f(x, y) ≥ [x = x] ∨ [y = y]
F2 [x = x′] ∨ f(x, y) ∨ [y = y′] ≥ f(x′, y′)
F3 f(x, y) ∨ f(x, y′) ≥ [y = y′]
F4 [x = x] ≥

∧
{f(x, y) : y ∈ Y }

Notation 1:f(x, y) := [f(x) = y]

Definition 2.4. Let (X,=) be an H∗−valued set. I : X × X → H∗ ,I(x, x′) =
[x = x′] function is called unit function.

Definition 2.5. Let (X,=) , (Y,=) and (Z,=) are H∗−valued sets and f : X → Y,
g : Y → Z are H∗−valued functions. For x ∈ X, z ∈ Z,

(g ◦ f) (x, z) =
∧
{f(x, y) ∨ g(y, z) : y ∈ Y } .

Proposition 2.1. Let (X,=) , (Y,=) and (Z,=) are H∗−valued sets and f : X →
Y, g : Y → Z are H∗−valued functions. The function (g ◦ f) : X → Z is a
H∗−valued function.

Proof. (i)Let x ∈ X, z ∈ Z,

(g ◦ f) (x, z) =
∧
{f(x, y) ∨ g(y, z) : y ∈ Y }

≥
∧
{[x = x] ∨ [y = y] ∨ [z = z] : y ∈ Y }

= [x = x] ∨ [z = z] ∨
∧
{[y = y] : y ∈ Y }

≥ [x = x] ∨ [z = z]

(ii)Let x, x′ ∈ X and z, z′ ∈ Z,

[x = x′] ∨ (g ◦ f) (x, z) ∨ [z = z′] = [x = x′] ∨
∧
{f(x, y) ∨ g(y, z) : y ∈ Y } ∨ [z = z′]

=
∧
{[x = x′] ∨ f(x, y) ∨ g(y, z) ∨ [z = z′] : y ∈ Y }

=
∧{

[x = x′] ∨ f(x, y) ∨ [y = y]
∨g(y, z) ∨ [z = z′] : y ∈ Y

}
≥

∧
{f(x′, y′) ∨ g(y′, z′) : y ∈ Y } = f(x′, y′) ∨ g(y′, z′)

≥
∧
{f(x′, y′) ∨ g(y′, z′) : y′ ∈ Y } = (g ◦ f) (x′, z′)

(iii)Let x ∈ X and z, z′ ∈ Z,

(g ◦ f) (x, z) ∨ (g ◦ f) (x, z′) =
∧
{f(x, y) ∨ g(y, z) : y ∈ Y } ∨

∧
{f(x, t) ∨ g(t, z′) : t ∈ Y }

=
∧
{f(x, y) ∨ f(x, y) ∨ g(y, z) ∨ g(y, z′) : y ∈ Y }

≥
∧
{[y = y] ∨ [z = z′] : y ∈ Y }

≥ [z = z′]
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(iv)Let x ∈ X,∧
{(g ◦ f) (x, z) : z ∈ Z} =

∧{∧
{f(x, y) ∨ g(y, z) : y ∈ Y } : z ∈ Z

}
=

∧{∧
{f(x, y) : y ∈ Y } : z ∈ Z

}
∨∧{∧

{g(y, z) : y ∈ Y } : z ∈ Z
}

≤ [x = x] ∨
∧
{[y = y] : y ∈ Y } = [x = x]

�

Definition 2.6. Let (X,=) and (Y,=) are H∗−valued sets and f : X → Y is
H∗−valued function.

(1) f is a monomorphism. ⇔ ∀x, x′ ∈ X, y ∈ Y,

f(x, y) ∨ f(x′, y) ≥ [x = x′]

(2) f is a epimorphism. ⇔ ∀y ∈ Y,

[y = y′] ≥
∧
{f(x, y) : x ∈ X}

Definition 2.7. Let (X,=) be a H∗−valued set. R : X × X → H∗ is called
H∗−valued equivalence relation.⇔

R1 R(x, y) ∨ [x = x] = R(x, y), R(x, y) ∨ [y = y] = R(x, y)
R2 R(x, y) ∨ [x = x′] ≥ R(x′, y), R(x, y) ∨ [y = y′] ≥ R(x, y′)
R3 [x = x] ≥ R(x, x) :
R4 R(x, y) ≥ R(y, x)
R5 R(x, y) ∨R(y, z) ≥ R(x, z)

Example 2.1. Let (X,=) , (Y,=) are H∗−valued sets and f : X → Y is H∗−valued
function.∀x1, x2 ∈ X,

Cf (x1, x2) = [f(x1) = f(x2)]

function is a H∗−valued equivalence relation on X.

Definition 2.8. Let R be a H∗−valued equivalence relation on X. d : X → H∗ is
called equivalence class of R ⇔

d1 d(x) ∨R(x, x′) ≥ d(x′)
d2 d(x) ∨ d(y) ≥ R(x, y)

d(x) is the equivalence class of x ∈ X.

Proposition 2.2. Let R be a H∗−valued equivalence relation on X and d1, d2 are
equivalence class of R.∧

{d1(x) : x ∈ X} =
∧
{d2(x) : x ∈ X} and

d1(x) ≥ d2(x)⇒ d1 = d2

Proof. x0 ∈ X,

d2(x0) =
∧
{d2(x) ∨ d1(x) : x ∈ X}

≥
∧
{R(x0, x) ∨ d1(x) : x ∈ X}

≥ d1(x0)

�
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Proposition 2.3. Let (X,=) , (Y,=) are H∗− valued sets and f : X → Y is
H∗−valued function. f is surjective ⇔ ∀y ∈ Y,∧

{[f(x) = y] : x ∈ X} = [y = y]

3. H∗-Valued Ω−Algebras

Now, let Ω is defined as follows,

Ω = {ω : Xn ×X → H∗ : ω satisfy F1-F4 conditions}

It means that, if ω ∈ Ω, ω is H∗−valued function. The concept of H∗−valued
Ω−algebra can be defined as following;

Definition 3.1. A = 〈X,Ω〉 is H∗−valued Ω−algebra.⇔ For ω ∈ Ω and ((x1, x2, ..., xn) , c) ∈
Xn ×X,∧{{ ∨

[xi ∈ A] ∨ ω ((x1, x2, ..., xn) , d)
∨ [c = d] : i = 1, 2, ..., n

}
: d ∈ X

}
≥ ω ((x1, x2, ..., xn) , c)

Example 3.1. Let A = 〈X,Ω〉 be a H∗−valued Ω−algebra.

{Θ} : A→ H∗, [x ∈ {Θ}] = 1H∗

is a subset of A.

E = 〈{Θ} ,Ω〉

is a H∗−valued Ω−algebra. E is called trivial H∗−valued Ω−algebra.

Definition 3.2. Let A = 〈X,Ω〉 be a H∗−valued Ω−algebra. If K ⊆ X,B : K →
H∗ is H∗−valued set, (B,=) ⊆ (A,=) and for all ω ∈ Ω, ω ↓Bsatisfy the (1) then
B is H∗−valued Ω−subalgebra of A.

Example 3.2. Let A = 〈X,Ω〉 be a H∗−valued Ω−algebra.E = 〈{Θ} ,Ω〉 is
H∗−valued Ω− subalgebra.

Definition 3.3. Let A = 〈X,Ω〉 and B = 〈Y,Ω〉 are similar H∗−valued Ω− al-
gebras and f : A → B be H∗−valued function. f is a H∗−valued Ω− algebra
homomorphism⇔

H1 [x = x] = [f(x) = f(x)]
H2 [x = x′] ≤ [f(x) = f(x′)]
H3 f (ω (x1, x2, ..., xn) , y) =

∨
{f (xi, yi) : y = ω(y1, y2, ..., yn), f (xi, yi) > 0}

Example 3.3. Let A = 〈X,Ω〉 be a H∗−valued Ω−algebra and f : E → A,
g : E → A are H∗−valued functions. ∀x, I ({Θ} , x) = 1H∗ H∗−valued Ω− algebra
homomorphism exist. This homomorphism is unique.

Proposition 3.1. Let A,B,C are similar H∗−valued Ω− algebras. If f : A→ B,
g : B → C are H∗−valued Ω− algebra homomorphisms then (g ◦ f) : A → C is a
H∗−valued Ω− algebra homomorphism.
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Proof. Let x1, x2, ..., xn ∈ A, z ∈ C,

(g ◦ f) (ω (x1, x2, ..., xn) , z) =
∧
{f (ω (x1, x2, ..., xn) , y) ∨ g(y, z) : y ∈ B}

=
∧{ ∨

{f (xi, yi) : y = ω (y1, y2, ..., yn) , f (xi, yi) > 0}
∨g(y, z) : y ∈ B

}
=

∧{ ∨
{f (xi, yi) : i = 1, ..., n}∨

{g (ω (y1, y2, ..., yn) , z) : y = ω (y1, y2, ..., yn) , f (xi, yi) > 0}

}

=
∧

∨
{f (xi, yi) : i = 1, ..., n}∨{ ∨

g (yi, zi) : z = ω (z1, z2, ..., zn) , g (yi, zi) > 0 :
y = ω (y1, y2, ..., yn) , f (xi, yi) > 0

} 
=

∧{∨{
f (xi, yi) ∨ g (yi, zi) : y = ω (y1, y2, ..., yn) , f (xi, yi) > 0,

z = ω (z1, z2, ..., zn) , g (yi, zi) > 0 : yi ∈ B

}}
=

∨{∧{
f (xi, yi) ∨ g (yi, zi) : y = ω (y1, y2, ..., yn) , f (xi, yi) > 0,

z = ω (z1, z2, ..., zn) , g (yi, zi) > 0 : yi ∈ B

}}
=

∨{{
(g ◦ f) (xi, zi) : y = ω (y1, y2, ..., yn) , f (xi, yi) > 0,

z = ω (z1, z2, ..., zn) , g (yi, zi) > 0

}
: yi ∈ B

}
=

∨
{(g ◦ f) (xi, zi) : z = ω (z1, z2, ..., zn) , (g ◦ f) (xi, zi) > 0, i = 1, ..., n}

�

4. Conclusion

In this paper, we introduced the H∗−valued Ω−algebra and H∗−valued Ω−
algebra homomorphism. To study these concepts, firstly we defined H∗− valued
set and H∗− valued function. In continuation of this study, injection and projection
mappings on H∗−valued Ω−algebra can be defined, isomorphism theorems can be
proved.
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E-mail address: citil@ksu.edu.tr

Mersin University, Department of Mathematics, Mersin, Turkey

E-mail address: sinemnyilmaz@gmail.com



IFSCOM20161 Proceeding Book
No. 1 pp. 185-191 (2016)

ISBN: 978-975-6900-54-3

SOME CLASSIFICATIONS OF AN X FDK-SPACE
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1. Introduction

In [4], the first study on double sequences was examined by Bromwich. And
than it was investigated by many authors such as Hardy [6], Moricz [7], Tripathy
[16], Başarır and Sonalcan [2]. The notion of regular convergence for double se-
quences was defined by Hardy [6]. After that both the theory of topological double
sequence spaces and the theory of summability of double sequences were studied
by Zeltser [17]. The statistical and Cauchy convergence for double sequences were
examined by Mursaleen and Edely [8] and Tripathy [15] in recent years. Many re-
cent improvements containing the summability by four dimensional matrices might
be found in [10].

Ω denotes the space of all complex valued double sequences which is a vector
space with coordinatewise addition and scalar multiplication. Any vector subspace
of Ω is called as a double sequence space. The space Mu of all bounded double
sequences is defined by

Mu :=

{
x ∈ Ω : ‖x‖∞ := sup

k,l
|xkl| <∞

}
,

which is a Banach space with the norm ‖.‖∞. In addition we consider the double
sequence spaces

Φ := span{ekl : k, l ∈ N} =
{
x ∈ Ω : ∃N0 ∈ N,∀(k, l) ∈ N2/[1, N0]2 : xkl = 0

}
Φ1 := Φ ∪ {e}

Lu :=

x ∈ Ω :
∑
k,l

|xkl| <∞


13rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference
2010 Mathematics Subject Classification. 40A05, 40C05, 40B05, 40D25.
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BV :=

x ∈ Ω : ‖x‖BV :=
∑
k,l

|xkl − xk+1,l − xk,l+1 + xk+1,l+1| <∞


C0 :=

{
x ∈ C : ∀l ∈ N : lim

k
xkl = 0

}
Cc :=

{
x ∈ Ω : ∀l ∈ N : lim

k,l
xkl exist

}
.

Throughout this paper e denotes the double sequence of ones; (δij), i, j = 1, 2, . . .,
with the one in the (i, j) position.

A subspace E of the vector space Ω is called DK-space, if all the seminorms
rkl : E → R, x 7→ |xkl| (k, l ∈ N) are continuous. An FDK space is a DK-space with
a complete, metrizable, locally convex topology. A normable FDK-space is called
BDK-space.

2. Main Results

In this section conull (strongly conull) and double wedge (weak double wedge)
FDK-spaces are defined and several characterizations are given.

Definition 2.1. If (E, τ) is a FDK-space containing Φ, and δij → 0 in τ , then
(E, τ) is called a double wedge space.

Definition 2.2. If (E, τ) is a FDK-space containing Φ, and δij → 0 (weakly) in τ ,
then (E, τ) is called a weak double wedge space.

Definition 2.3. Let (E, τ) is an FDK-space containing Φ1. If ∀f ∈ E′,

f(e) = lim
m,n→∞

m,n∑
k,l=1

f(δkl)

then (E, τ) is called a conull FDK-space.

Definition 2.4. Let (E, τ) is an FDK-space containing Φ1. If ∀f ∈ E′,

e = lim
m,n→∞

m,n∑
k,l=1

δkl

then (E, τ) is called a strong conull FDK-space.

Clearly, each strong conull (wedge) FDK-space is a conull (weak wedge) FDK-
space and the following diagram is hold:

conull FDK
↗ ↘

strong conull FDK weak wedge FDK
↘ ↗

wedge FDK

Indeed, let E be a strong conull FDK-space. Then we have e(kl) → e. Hence
P (e(kl) − e) → 0 (k, l → ∞) for the seminorm P in τ . In this case, the following
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equation is hold

δkl = e(k,l) − e(k−1,l−1) −
k,l∑

i=k,j=1

δij −
k,l∑

i=1,j=l

δij

= e(k,l) − e(k−1,l−1) −
k,l∑

i=k,j=1

δij −
k,l∑

i=1,j=l

δij + e(k−1,l−1) − e(k−1,l−1)

= e(k,l) − e(k,l−1) − e(k−1,l) + e(k−1,l−1) + e− e+ e− e .

So, we have

P
(
δkl
)

= P
(
e(k,l) − e(k,l−1) − e(k−1,l) + e(k−1,l−1) + e− e+ e− e

)
≤ P

(
e(k,l) − e

)
+ P

(
e(k,l−1) − e

)
+ P

(
e(k−1,l) − e

)
+ P

(
e(k−1,l−1) − e

)
.

It is clearly that since P
(
δkl
)
→ 0, k, l→∞, E is double wedge space.

We recall that the α−dual of a subset E of Ω is defined to be ([14])

Eα :=

x = (xkl) :

∞,∞∑
k,l=1

|xklykl| <∞ , ∀y = (ykl) ∈ E

 .

Lemma 2.1. If z(mn) ∈ C0, m,n = 1, 2, . . ., then there exists z ∈ C0 such that

lim
i,j→∞

z
(mn)
ij

zij
= 0 (m,n = 1, 2, . . .).

Furthermore, for any such z, we have zα ⊆
∞,∞⋂
m,n=1

{z(mn)}α.

Proof. Let z(mn) ∈ C0. We can choose two sequences (ik), (jl) of positive integers
such that

1 = i0 < i1 < i2 < . . . 1 = j0 < j1 < j2 < . . .

and

max
1≤m≤k
1≤n≤l

|z(mn)
ij | < 1

4kl

(
i ≥ ik, j ≥ jl
k, l = 1, 2, . . .

)
.

Define z ∈ Ω as follows:

zij =
1

2kl

(
ik ≤ i < ik+1, jl ≤ j < jl+1

k, l = 0, 1, 2, . . .

)
.

Clearly, z ∈ C0 and, fixing m,n∣∣∣∣∣z
(mn)
ij

zij

∣∣∣∣∣ < 1

2kl

(
i ≥ ik, j ≥ jl
k ≥ m, l ≥ n

)
.

Thus, lim
i,j→∞

z
(mn)
ij

zij
= 0 ∀m,n.

Now let x ∈ zα, then
∞,∞∑
i,j=1

|xijzij | <∞ .
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Moreover, for m,n = 1, 2, . . . we have
∞,∞∑
i,j=1

|xijz(mn)
ij | <

∞,∞∑
i,j=1

|xijzij |
1

2kl

<
1

2kl

∞,∞∑
i,j=1

|xijzij | <∞.

Hence, x ∈
∞,∞⋂
m,n=1

{z(mn)}α. The proof is completed. �

s = (sm), t = (tn) always denote strictly increasing of nonnegative integers with
s1 = 0, t1 = 0. We will be interested in spaces of the form:

m|(s, t)| =

x ∈ Ω : sup
m,n

sm+1,tn+1∑
k=sm+1
l=tn+1

|xkl| <∞


which becomes a BDK-space under the norm:

x→ sup
m,n

sm+1,tn+1∑
k=sm+1
l=tn+1

|xkl|.

Theorem 2.1. Let (E, τ) be an FDK-space. These are equivalent:
i) E is a double wedge space,
ii) E contains zα for some z ∈ C0,
iii) E contains m|(s, t)| for some s, t and the inclusion mapping is compact,
iv) E contains Lu and the inclusion mapping is compact.

Proof. (i⇒ ii) Let {pmn} be a defining family of seminorms for the topology τ and
let

z
(mn)
ij = pmn(δij) (m,n, i, j = 1, 2, . . .).

Then z(mn) ∈ C0, m,n = 1, 2, . . ., since E is a double wedge space. Suppose

y ∈
∞,∞⋂
m,n=1

{
z(mn)

}α
, then for each m,n∑

i,j

|yijz(mn)
ij | <∞ .

Therefore, ∑
i,j

|yijpmn(δij)| =
∑
i,j

pmn(yijδ
ij) <∞

is obtained. Since the space E is complete
∑
i,j

yijδ
ij converges in (E, τ) to, say x,

or y(mn) → x. Thus y
(mn)
ij → xij for each i, j; also we always have y

(mn)
ij → yij for

each i, j. Consequently y = x; that is
∞,∞⋂
m,n=1

{
z(mn)

}α
⊆ E .

Choosing z as in Lemma 2.1, (ii) follows.
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(ii⇒ iii) Let us choose strictly increasing sequences (sm), (tn) of positive inte-
gers such that s1 = 0, t1 = 0 and

|zij | ≤
1

2mn

whenever i ≥ sm, j ≥ tn, m,n ≥ 2.
For x ∈ m|(s, t)| and any positive integers k, l, u, v such that l ≥ k and v ≥ u

we have
sl+1,tv+1∑
i=sk+1
j=tp+1

|xijzij | =
l,v∑

m=k,n=u

sm+1,tn+1∑
i=sm+1
j=tn+1

|xijzij | ≤ ‖x‖
l,v∑

m=k,n=u

1

2mn
.

Hence x ∈ zα. That is; m|(s, t)| ⊆ zα ⊆ E. Also, the inclusion theorem i :
(m|(s, t)|, ‖.‖)→ (E, τ) is compact.

(iii ⇒ iv) Since Lu ⊂ m|(s, t)| always true, the inclusion theorem i : Lu →
m|(s, t)| is continuous. By hypothesis Lu ⊂ m|(s, t)| ⊂ E and because of i :
(m|(s, t)|, ‖.‖)→ (E, τ) is compact i∗ : Lu → E is compact. �

Corollary 2.1. The intersection of all double wedge FDK-spaces is Lu.

Proof. Let E be a double wedge FDK-space. Then we have⋂
E =

⋂
{zα : z ∈ C0} = Cα0 .

Now we need show that Cα0 = Lu. Since C0 ⊂ Mu, Mα
u ⊂ Cα0 . That is,

Lu = Mα
u ⊂ Cα0 is obtained. Suppose that x = (xkl) ∈ Cα0 but x = (xkl) /∈ Lu.

Then for y = (ykl) = 1
k!l! ∈ C0 we have∑
|xklykl| =

∑
|xkl

1

k!l!
| = e2

∑
|xkl| =∞.

This means that x = (xkl) /∈ Cα0 which contradicts the hypothesis. So, x = (xkl)
must be in Lu. That is, Lu ⊂ Cα0 . This completes the proof. �

The one to one mapping S(2) of Ω to itself defined by

S(2)x =



x11 x11 + x12 . . . . . . . . .
x11 + x21 x11 + x12 + x21 + x22 . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . .
m,n∑
k,l=1

xkl . . .

. . . . . . . . . . . . . . .



(S(2))−1x =


x11 x12 − x11 . . . . . . . . .

x21 − x11 x22 − x12 − x21 + x11 . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . xmn − xm,n−1 − xm−1,n + xm−1,n−1 . . .
. . . . . . . . . . . . . . .


Theorem 2.2. i) (E, τ) is strongly conull FDK-space if and only if the space
(S(2))−1(E) is a double wedge FDK-space.

ii) (E, τ) is conull FDK-space if and only if the space (S(2))−1(E) is a weak
double wedge FDK-space.
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Proof. i) Let (E, τ) is strongly conull FDK-space and {Pmn} is a set of seminorms on
the topology τ . Then a topology with the set of seminorms {qmn}make (S(2))−1(E)
is a FDK-space such that

qmn(x) := Pmn(S(2)(x)).

Since (E, τ) is strongly conull FDK-space, for all m,n ∈ N Pmn
(
e− e(mn)

)
→ 0.

Otherwise,

S(2)x = e− e(mn) =

∞,∞∑
k=m+1
l=n+1

δkl +

m,∞∑
k=1
l=n+1

δkl +

∞,n∑
k=m+1
l=1

δkl

is hold. Thus we have

x = (S(2))−1

 ∞,∞∑
k=m+1
l=n+1

δkl +

m,∞∑
k=1
l=n+1

δkl +

∞,n∑
k=m+1
l=1

δkl



= (S(2))−1


0 . . . 0 1 . . . 1
. . . . . . . . . . . . . . . . . .
0 . . . 0 1 . . . 1
1 . . . 1 1 . . . 1
. . . . . . . . . . . . . . . . . .
1 . . . . . . . . . . . . 1


= δm+1,1 + δ1,n+1 − δm+1,n+1.

From the definition of (qmn) the following equation is obtained:

qmn(δm+1,1 + δ1,n+1 − δm+1,n+1) = Pmn

e− m,n∑
k,l=1

δkl

 .

Since Pmn

(
e−

∑m,n
k,l=1 δ

kl
)
→ 0 (m,n → ∞), we can say qmn(δm+1,1 + δ1,n+1 −

δm+1,n+1)→ 0 (m,n→∞).
In this case, we have (δm+1,1 + δ1,n+1 − δm+1,n+1) → 0 (m,n → ∞) according

to the topology of the space (S(2))−1(E). Since δm+1,1 → 0 and δ1,n+1 → 0,
δm+1,n+1 → 0 is hold. This gives that (S(2))−1(E) is a double wedge FDK-space.

Now we suppose that (S(2))−1(E) is a double wedge FDK-space. Then we have
for all m,n ∈ N qmn(δm+1,1 + δ1,n+1 − δm+1,n+1)→ 0 (m,n→∞). Since

qmn(δm+1,1 + δ1,n+1 − δm+1,n+1) = Pmn

e− m,n∑
k,l=1

δkl

 ,

Pmn

(
e−

∑m,n
k,l=1 δ

kl
)
→ 0 (m,n → ∞) is obtained. So E strongly conull FDK-

space.
ii) Let (E, τ) is conull FDK-space and let us define the topology of (S(2))−1(E) as

the proof of (i). Then qmn(x) := Pmn(S(2)(x)) and since (S(2))−1
(
e−

∑m,n
k,l=1 δ

kl
)

=

δm+1,1 + δ1,n+1 − δm+1,n+1, we have

qmn(δm+1,1 + δ1,n+1 − δm+1,n+1) = Pmn

e− m,n∑
k,l=1

δkl

 .



SOME CLASSIFICATIONS OF AN X FDK-SPACE 191

Because of E is conull FDK space, Pmn

(
e−

∑m,n
k,l=1 δ

kl
)
→ 0 (weak) (m,n →

∞). Hence δm+1,1 + δ1,n+1 − δm+1,n+1 → 0 (weak) (m,n → ∞). Consequently
δm+1,n+1 → 0 (weak) (m,n → ∞) is obtained. That is, (S(2))−1(E) is a weak
double wedge FDK-space. The other hand of the proof is as the proof of (i). �
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A NOTE ON POROSITY CLUSTER POINTS
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Abstract. Porosity cluster points of real valued sequences was defined and
studied in [3]. In this paper we give the relation between porosity cluster

points and distance function.
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1. Introduction

Porosity is appeared in the papers of Denjoy [5], [6], Khintchine [11] and, Dolzenko
[7]. It has many applications in theory of free boundaries [10], generalized subhar-
monic functions [8], complex dynamics [12], quasisymmetric maps [14], infinitesimal
geometry [4] and other areas of mathematics.

Let A ⊂ R+ = [0,∞), then the right upper porosity of A at the point 0 is defined
as

p+(A) := lim sup
h→0+

λ(A, h)

h

where λ(A, h) denotes the length of the largest open subinterval of (0, h) that con-
tains no point of A (for more information look [13]). The notion of right lower
porosity of A at the point 0 is defined similarly.

In [1], the notation of porosity which was defined at zero for the subsets of real
numbers, has been redefined at infinity for the subsets of natural numbers.

Let µ : N→ R+ be a strictly decreasing function such that lim
n→∞

µ(n) = 0, (it is

called scaling function) and let E be a subset of N.
Upper porosity and lower porosity of the set E at infinity were defined respec-

tively in [1] as follows:

(1.1) pµ(E) := lim sup
n→∞

λµ(E,n)

µ(n)
, p

µ
(E) := lim inf

n→∞

λµ(E,n)

µ(n)
,

where

λµ(E,n) := sup{|µ(n(1))− µ(n(2))| : n ≤ n(1) < n(2), (n(1), n(2)) ∩ E = ∅}.
Using the definition of upper porosity, all subsets of natural numbers can be

classify as follows: E ⊆ N is
(i) porous at infinity if pµ(E) > 0;
(ii) strongly porous at infinity if pµ(E) = 1;
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(iii) nonporous at infinity if pµ(E) = 0. Throughout this paper, we will consider
only the upper porosity of subsets of N.

Let us recall the definition of pµ-convergence of real valued sequences for any
scaling function:

Definition 1.1. [2] A sequence x = (xn)n∈N is said to pµ-convergent to l if for
each ε > 0,

pµ(Aε) > 0,

where Aε := {n : |xn − l| ≥ ε}. It is denoted by x→ l(pµ) or (pµ − lim
n→∞

xn = l).

Let x′ = (xnk) be a subsequence of x = (xn) for monotone increasing sequence
(nk)k∈N and K := {nk : k ∈ N}, then we abbreviate x′ = (xnk) by (x)K .

Definition 1.2. [3]. Let x = (xn) be a sequence and (x)K be a subsequence of
x = (xn). If
(i) pµ(K) > 0, then (x)K is called pµ-thin subsequence of x = (xn),
(ii) pµ(K) = 1, then (x)K is called a strongly pµ-thin subsequence of x = (xn),
(iii) pµ(K) = 0, then (x)K is a pµ-nonthin (or pµ-dense) subsequence of x = (xn).

Definition 1.3. [3]. A number α is said to be pµ-limit point of the sequence
x = (xn) if it has a pµ-nonthin subsequence that converges to α.

The set of all pµ-limit points of x = (xn) is denoted by Lpµ(x).

Definition 1.4. [3]. A number β is said to be a pµ-cluster point of x = (xn) if for
every ε > 0, the set

{n : |xn − β| < ε}
is nonporous. i.e.,

pµ({n : |xn − β| < ε}) = 0.

For a given sequence x = (xn); the symbol Γpµ(x) denotes the set of all pµ-cluster
points.

2. Main Results

Some results about the set of Lpµ(x)-cluster, and Lpµ(x)-limit points of given

real valued sequences has been investigated in [3]. In this paper, as a continuation
of [3] the same subject will be studied.

Theorem 2.1. Assume that x = (xn) is monotone increasing (or decreasing) se-
quence of real numbers. If supxn < ∞ (or inf xn < ∞), then supxn ∈ Γpµ(x) (or

inf xn ∈ Γpµ(x)).

Proof. The proof will be given only for monotone increasing sequences. The other
case can be proved by following similar steps. From the definition of supremum for
any ε > 0, there exists an n0 = n0(ε) ∈ N such that the inequality

supxn − ε < xn0
≤ supxn

holds. Since the sequence is monotone increasing, then we have

(2.1) supxn − ε < xn0
< xn ≤ supxn < supxn + ε

for all n > n0.
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From (2.1), for any ε > 0 there exists an n0 = n0(ε) ∈ N such that following
inequality

(2.2) |xn − supxn| < ε

holds for all n > n0(ε).
From (2.2), following inclusion

N\{1, 2, 3, ..., n0} ⊂ {n : |xn − supxn| < ε}
and the inequality

pµ({n : |xn − supxn| < ε}) ≤ pµ(N\{1, 2, ..., n0})
hold.

Since pµ(N\{1, 2, 3, ..., n0}) = 0, then from Lemma 1.1 in [3] we have

pµ({n : |xn − supxn| < ε}) = 0.

This gives the desired proof. �

Corollary 2.1. If x = (xn) is a bounded sequence, then supxn and inf xn are
belong to Γpµ(x).

Let A,B ⊂ R and recall the distance between A and B is defined as

d(A,B) := inf{|a− b| : a ∈ A, b ∈ B}.

Theorem 2.2. Let x = (xn) be a real valued sequence. If Γpµ(x) 6= ∅, then

d(Γpµ(x), x) = 0.

Proof. Assume Γpµ(x) 6= ∅. Let us consider an arbitrary element y∗ ∈ Γpµ(x).
Then, for an arbitrary ε > 0 we have

pµ({n : |xn − y ∗ | < ε}) = 0.

So, the set {xn : |xn−y∗| < ε} has at least countable number elements of x = (xn).
Let us denote this set by D where D := {nk : |xnk − y ∗ | < ε} ⊂ N. Therefore, we
have

0 ≤ dist(Γpµ(x), x) = inf{|y − xn| : y ∈ Γpµ(x), n ∈ N}
≤ inf{|y ∗ −xnk | : nk ∈ D} < ε.

So, for every ε > 0, we have 0 ≤ d(Γpµ(x), x) < ε. �

Theorem 2.3. Let x = (xn) be a real valued sequence and γ ∈ R be an arbitrary
fixed point. If d(γ, x) 6= 0, then γ /∈ Γpµ(x).

Proof. From the hypothesis we have

d(γ, x) := inf{|xk − γ| : k ∈ N} = m > 0.

From the assumption the inequality

|xk − γ| ≥ m
holds for all k ∈ N. It means that the open interval (γ−m, γ+m) has no elements
of the sequence x = (xn). So, we have

pµ({k : |xk − γ| < m}) = 1.

For 0 < ε < m we have
pµ({k : |xk − γ| < ε}) = 1.
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So, γ /∈ Γpµ(x). �

Remark 2.1. If d(γ, x) = 0, it is not necessary for γ ∈ Γpµ(x).

Let us consider (xn) = ( 1
n )n∈N. For γ = 1

2 , it is clear that d( 1
2 ,

1
n ) = 0 holds, but

1
2 /∈ Γpµ(x) = {0}.
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Abstract

Numerous papers have been presented[1,2,3,4,5] to implement the dynamics of
scalar field describing nature of the dark energy by establishing a connection be-
tween the pilgrim/new agegraphic/Ricci/ghost/holographic energy density and
a scalar field definition. These works showed that the analytical form of poten-
tial in terms of the scalar field cannot be obtained due to the complexity of the
involved equations. On the other hand, writing a meaningful quantum gravity
theory is one of the tough puzzles in modern theoretical physics[6,7]. In the
quantum gravity theories, the universe is described as a dimensional flow and
one can discuss whether and how these attractive features are connected with
the ultraviolet-divergence problem[8]. That’s why, such important points mo-
tivated us to reconstruct the potential and dynamics of the dilaton scalar field
model[9] according to the evolutionary behavior of the extended holographic
energy description[10] in fractal geometry.
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Abstract

In this paper, we discuss the existence of a solution to the Cauchy problem for
complex intuitionistic fuzzy differential equations. We first propose definitions
of complex intuitionistic fuzzy sets and discuss entailed results which parallel
those of complex fuzzy sets.

Keywords : complex intuitionistic fuzzy sets, complex intuitionistic fuzzy
differential equations.
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Abstract

This paper presents solution for first order fuzzy differential equation by Runge-
Kutta method of order four. This method is discussed in detail and this is fol-
lowed by a complete error analysis. The accuracy and efficiency of the proposed
method is illustrated by solving an intuitionistic fuzzy initial value problem.

Keywords : intuitionistic fuzzy Cauchy problem, Runge-Kutta method of
order four.
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Abstract

The purpose of this paper is to study the existence and uniqueness of solution
for fractional differential equation with intuitionistic fuzzy data where the intu-
itionistic fuzzy fractional derivatives and integral are considered in the Riemann-
Liouville sense. Finally we give an example.
Keywords : intuitionistic fuzzy number, Fractional differential equations.
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Abstract

In this work, we examined the solution of the following second order intuitionis-
tic fuzzy initial value problem through intuitionistic Zadeh’s Extension Principle
[17]:

y′′(x) + āi1y
′(x) + āi2y(x) =

r∑
j=1

b̄ijgj(x); (0.0.1)

y(0) = γ̄i0; (0.0.2)

y′(0) = γ̄i1. (0.0.3)

Here āi1, ā
i
2, γ̄

i
0, γ̄

i
1 and b̄ij (j=1,2,...,r) are intuitionistic fuzzy numbers

and gi(x)(i=1,2,...,r) are continuous functions on the interval [0,∞). We re-
formulated the approach in [2] and [3] for finding an analytical form of alpha
and beta cuts for the solution of intuitionistic fuzzy initial value problem for
the second order differential equation with the help of Heaviside step function.
Firstly we reformulated the general solution of the crisp differential equation
corresponding to Eq. 0.1 and applied intuitionistic Zadeh’s Extension Principle
to intuitionisticly fuzzify the solution. Then, we obtained the analytical form
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of (α, β)-cuts of the solution of the fuzzy initial value problem by using inter-
val operations and Heaviside step function. Finally, we have illustrated some
examples by using this algorithm.

Keywords : Intuitionistic Fuzzy Initial Value Problem, Intuitionistc Zadeh’s
Extension Principle, Heaviside Function.
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Abstract

There are two known 2-norms defined on the space of p-summable sequences of
real numbers. The first 2-norm is a special case of Gähler’s formula [Mathema-
tische Nachrichten, 1964], while the second is due to Gunawan [Bulletin of the
Australian Mathematical Society, 2001]. The aim of this paper is to define a
new 2-norm on `p and prove the equivalence among these three 2-norms.

Keywords : 2-normed spaces; the space of p-summable sequences; com-
pleteness; norm equivalence.
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Abstract

In this study we define the soft topology generated by the soft metric and show
that every soft metric space is a soft normal space. We also investigate some
properties of soft continuous mappings on soft metric spaces and finally we give
a few examples of soft contraction mapping on soft metric spaces.

Keywords: soft metric space, soft normal sapce, soft continuous mapping,
soft contraction mapping.
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Abstract

In this study we define the soft topology generated by the soft metric and show
that every soft metric space is a soft normal space. We also investigate some
properties of soft continuous mappings on soft metric spaces and finally we give
a few examples of soft contraction mapping on soft metric spaces.

Keywords: Soft set, soft metric space, soft sequential compact, soft totally
bounded sets.
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Abstract

In this talk, we give new contractive mappings on an S-metric space. We inves-
tigate some generalizations of the Banach’s contraction principle and new fixed
point type theorems using the notion of periodic index on an S -metric space.

Keywords: S-metric, Banach’s contraction principle, periodic index.
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Abstract

In this talk, we describe the notion of a soft S-metric as a generalization of a
soft metric. We investigate some basic and topological properties of this new
metric. Also we give some existence and uniqueness conditions of fixed-point
theorems on a complete soft S-metric space. We verify our results with some
examples.

Keywords: Soft S-metric space, fixed point, topological properties
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[7] Özgür, N.Y. and Taş, N., Some generalizations of the Banach’s contraction
principle on complete soft S-metric spaces, submitted for publication.



207

[8] Sedghi, S., Shobe, N. and Aliouche, A., A generalization of fixed point theo-
rems in S-metric spaces, Mat. Vesnik, Vol. 64, No. 3, 258-266, 2012.
[9] Sedghi, S. and Dung, N.V., Fixed point theorems on S-metric spaces, Mat.
Vesnik, Vol. 66, No. 1, 113-124, 2014.

Some Separation Axioms in Fuzzy Soft
Topological Spaces
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Abstract

Molodtsov (1999) proposed a completely new concept called soft set theory to
model uncertainty, which associates a set with a set of parameters. Pei and Miao
(2005) showed that soft sets are a class of special information systems. Later,
Maji et al. (2001) introduced the concept of a fuzzy soft set which combines
a fuzzy set and a soft set. From then on, many authors have contributed to
(fuzzy) soft set theory in the different fields such as algebra, topology and etc.
Soft topology is a relatively new and promising domain which can lead to the
development of new mathematical models and innovative approaches that will
significantly contribute to the solution of complex problems in natural sciences.
Separation is an essential part of topology, on which a lot of work has been
done. The aim of this work is to generalize some low-level separation axioms in
fuzzifying topology and fuzzy topology to the fuzzifying soft topology and fuzzy
soft topology by considering parametrization. So, we obtain some fundamental
prperties and characterizations of proposed separations.

Keywords: Fuzzy soft set, fuzzy soft topology, separation axiom
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Abstract

In this paper, we focused on the solution process of a fuzzy transportation
network equilibrium problem. This problem aims to minimize the total travel
time of vehicles on traffic flows between specified origin and destination points.
The link travel time for a vehicle is taken as a linear function of link flow (the
number of vehicles on that link). Thus, the objective function can be formulated
in terms of link flows and link travel times in a quadratic form while satisfying
the flow conservation constraints. The parameters of this problem are path
lengths, number of lanes, average velocity of a vehicle, vehicle-length, clearance,
spacing, link capacity and free flow travel time. Considering a road network,
path lengths and number of lanes are taken as crisp numbers. The average
velocity of a vehicle and the vehicle-length are imprecise in nature, so these are
taken as triangular fuzzy numbers. Since the remaining parameters, that are
clearance, spacing, link capacity and free flow travel time, are determined by the
average velocity of a vehicle and vehicle-length, all of them will be triangular
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fuzzy numbers. Finally, the original fuzzy transportation network problem is
converted to a fuzzy quadratic programming problem, and it is solved with an
existing approach from the literature. A numerical experiment is illustrated.

Keywords: Fuzzy transportation network equilibrium problem, fuzzy quadratic
programming, triangular fuzzy numbers.
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Abstract

Sasakian Finsler structures can be obtained on horizontal and vertical distri-
butions of vector bundles. In this paper, Sasakian Finsler structures satisfying
R(XH , Y H)C∗ = 0 on horizontal distribution of vector bundles are examined
where Ris Riemann curvature tensor, C∗ is quasi-conformal curvature tensor
and XH , Y H are elements of family of vector fields on horizontal distribution.
In this regard some structure theorems are examined.

Keywords: Quasi-conformal curvature tensor, Sasakian Finsler structure.
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Abstract

Let A be the infinitesimal operator of a strongly continuous linear representation
of the unit circle group on a complex Banach space H. In this talk, the quasi-
resolvent operator of A which is denoted by Rλ is defined by the spectrum of
A. Some properties and inter relations of operators Rλare introduced, and by
using them, some theorems on existence of periodic solutions to the non-linear
equations φ(A)x = f(x) are stated and proven, where φ(A) is a polynomial of
A and f is a continuous mapping of H into itself.
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Abstract

Let Ø ⊂ RN be a bounded regular domain of RN we consider the following class
of elliptic problem 

−∆u =
uq

d2
in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where 0 < q ≤ 2∗−1. We investigate the question of existence and nonexistence
of positive solutions depending on the range of the exponent q.
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Abstract

Shabir and Naz [7] introduced the notion of soft topological spaces which are
defined over an initial universe with a fixed set of parameters. They also stud-
ied some of basic concepts of soft topological spaces. In the present study, we
introduce some new concepts in intuitionistic fuzzy soft topological spaces such
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as intuitionistic fuzzy soft generalized superconnected. We also give characteri-
zations and properties of this notion.

Keywords: intuitionistic fuzzy soft set, Intuitionistic fuzzy soft toplogy,
intuitionistic fuzzy soft mapping.
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[2] A. Csázar, Generalized open sets in generalized topologies , Acta math.
Hungar., 106 (2005) 53–66.
[3] A. Kharal and B. Ahmad, Mappings on soft classes, to appear in New Math.
Nat. Comput.
[4] K. Kannan, Soft Generalizied Closed Sets In Soft Topological Spaces, J.
Theoret. Appl. Inf. Tech., 37 (2012) 17–21.
[5] P. K. Maji, R. Biswas and A. R. Roy, Intutionistiv fuzzy soft sets, J. Fuzzy
Mathematics, 9 (3) (2001) 677–693.
[6] D. Molodtsov, Soft set theory-first results, Computers and Mathematics with
Applications, 37 (1999) 19–31.
[7] M. Shabir and M. Naz , On soft topological spaces , Comput. Math. Appl.,
61 (2011) 1786-1799.
[8] I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topo-
logical spaces, Ann. Fuzzy Math. Inform., 3 (2) (2012) 171–185.
[9] I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topo-
logical spaces, Ann. Fuzzy Math. Inform., 3 (2) (2012) 171–185.

Vietoris Topology in the Context of Soft Set
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Abstract

In the present paper, we study the notion of a Vietoris topology by using soft
sets. We obtain some properties related to the first countability of soft Vietoris
topology. Then, we focus on second countability of it.

Keywords: Soft set, Soft Vietoris topology, Soft first countability, Soft
second countability.
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Abstract

In this talk, we survey Cauchy Riemannian lightlike submanifolds of an indef-
inite Kaehler manifold. Firstly, we mention definition of Cauchy Riemannian
(CR, SCR and GCR) lightlike submanifolds of an indefinite Kaehler manifold.
Then, we investigate minimal and totally umbilical Cauchy Riemannian lightlike
submanifolds and give some examples for these classes.
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Abstract

In this work, we consider the algebra of dual quasi-quaternion and give some
algebraic properties of this algebra.
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Abstract

Atanassov (see [2,3]) introduced and studied the concept of intuitionistic fuzzy
sets (i-fuzzy set, for short) and later there has been much progress in the study
of i-fuzzy sets by many authors (see [1,4,5,10]). Using the idea of i-fuzzy set,
Park [10] defined the notion of intuitionistic fuzzy metric space with the help
of continuous t-norms and continuous t-conorms as a generalization of fuzzy
metric space due to George and Veeramani [7] and proved some known results
of metric spaces for intuitionistic fuzzy metric space. In 2001 Estruch and Vidal
[6] introduced the concept of intuitionistic fuzzy mapping (i-fuzzy mapping,for
short) and gived an intuitionistic version of Heilpern’s mentioned theorem (see
[9]). After that, Gregori et al [8] defined Hausdorff intuitionistic fuzzy metric
on a family of non-empty compact subsets of a given intuitionistic fuzzy metric
space.

In this study we modify concept of Hausdorff intuitionistic fuzzy metric using
i-fuzzy sets and obtain fixed i-fuzzy point results for i-fuzzy mappings.

Keywords: i-fuzzy mapping, i-fuzzy point.
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Orthonormal Systems in Spaces of Number
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Abstract

In this paper we regard some (for number theory important) examples of set al-
gebras A on N. In each example we obtain the measure space Ω := (βN, σ(A), δ)
by the model of Indlekofer which is based on the Stone-Cech compactification
of N.

Let E(A) be the set of simple functions on A and let L∗α(A) be ‖.‖α the
closure of E(A) with

‖f‖α :=

lim sup
x→∞

1

x

∑
n≤x

|f(n)|α


1
α

, 1 ≤ α <∞.

Now our aim was to give a description of a complete orthonormal system
for L∗2(A) in each regarded case where L∗2(A) is denoted the quotient space
L∗2(A) modulo null-functions.

Keywords: Stone-Cech compactification, function spaces, complete or-
thonormal systems.
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Abstract

For the efficiency of the numerical integration of the Cauchy problems, it is
not practical to use constant step size. There are some studies in the lit-
erature about the variable step size for numerical integration (for example
see; [3,4,5]). One of these studies has given in [1,2]. On the region D =
(t,X) : |t− t0| ≤ T, |xj − xj0| ≤ bj , in [1,2] the step size strategy for the Cauchy
Problem

X ′ = AX,X(t0) = X0

has proposed such that the local error ||LEi|| ≤ δL, where δL is the error
level that is determined by user. Here X(t) = (xj(t)), X0 = (xj0); xj0 = xj(t0),
A ∈ RN×N , X(t), X0 and b = (bj) ∈ RN .

In this study, we aimed to develop the step size strategy in [1,2] for the
system

X ′N×N - Hurwitz stable matrix.
A step size strategy and an algorithm for the Hurwitz systems which cal-

culate the step sizes based on the given strategy and numerical solutions are
given. The numerical solutions obtained with the new strategy and algorithm
are compared with the results in [1,2]. The given strategy and algorithm are
applied to some industrial problems.
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Abstract

The representation of the numbers F = F (γ, p−, p+, k) = {0}∪
{
z|z = ±γp(z)mγ(z)

}
,

which are called floating point numbers [1,9,13,14]. Computers use floating point
numbers for computing. These numbers are also called computer numbers or
machine numbers [3,10,15,17]. If the results of arithmetic operations are ele-
ments of set F, they are directly stored in the memory. Otherwise they are
stored with error [4,7,11,12,16,18].

The linear difference equation in order of N as
y(n+N) = aNy(n+N − 1) + ...+ a1y(n)
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can be transform to one order system as
x(n+ 1) = Ax(n), n-integer number,
where matrix A (N × N dimension) is the companion matrix. It is well

known that the solution of the Cauchy problem
x(n+ 1) = Ax(n), x(0) = x0

is x(n) = Anx0 (see, [1,8]). In [2], an algorithm has given which have
computed power of the companion matrix.

The matrix fl(An) is the computed companion matrix An in floating point
arithmetic. The effects of floating point arithmetic in the computation of the
companion matrix An were investigated [5,6]. Error bounds were obtained for
||An − fl(An)||, where A ∈ MN (D). Additionally, Schur stability were in-
vestigated according to floating point arithmetic. The obtained results were
supported with numerical examples.

Keywords: floating point arithmetics, difference equation, error analysis,
companion matrix.
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[6] Çıbıkdİken, A.O., AydÄ±n, K., Computation of monodromy matrix on float-
ing point arithmetic with Godunov Model, Konuralp Journal of Mathematics,
Volume 4, No 1, 2016.
[7] Dahlquist, G., Bjoerck, A., Numerical Mathematics and Scientific Compu-
tation, SIAM, Vol. 1, 2008.
[8] Elaydi, S.N., An Introduction to Difference Equations, Second Edition, Springer-
Verlag, New York, 1999.
[9] Godunov, S.K., Antonov, A.G., Kiriluk, O.P., Kostin, V.I., Guaranteed Accu-
racy in Mathematical Computations, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[10] Goldberg, D., What every computer scientist should know about floating-
point arithmetic, J. ACM Comput. Surv., Vol. 23, No. 1, 5-48, 1991.
[11] G.H. Golub, C.F. Van Loan, Matrix Computations, (third ed.)The Johns
Hopkins University Press, Baltimore (1996).



220

[12] Higham, N.J., Accuracy and Stability of Numerical Algorithms, SIAM, 1996.
[13] Kulisch, U.W., Mathematical foundation of computer arithmetic, IEEE
Trans. Comput., C-26 (7), 610-621, 1977.
[14] Kulisch, U.W., Miranker, W.L., Computer Arithmetic in Theory and Prac-
tice, Academic Press Inc., 1981.
[15] Overton, M.L., Numerical Computing with IEEE Floating Point Arithmetic,
SIAM, 2001.
[16] Shampine, L.F., Allen, R.C., Pruess, S., Fundamentals of Numerical Com-
puting, John Wiley - Sons Inc., 1997.
[17] Sterbenz, P.H., Floating-Point Computation, Prentice-Hall Inc., Englewood
Cliffs, NJ, 1974.
[18] Wilkinson, J.H., Rounding Errors in Algebraic Processes, Prentice-Hall Inc.,
1963.

The Numerical Solution of Some SIR Epidemic
Models with Variable Step Size Strategy
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Abstract

Selection of step size is one of the most important concepts in numerical inte-
gration of differential equation systems. Even to use constant step size, it must
be investigated how should be selected the step size in the first step of numerical
integration. Because, if the selected step size is large in numerical integration,
computed solution can diverge from the exact solution. And if the chosen step
size is small; calculation time, number of arithmetic operations, the calculation
errors start to increase. So, it will be sensible to use small step sizes in the re-
gion where the solution changes rapidly and to use bigger step size in the region
where the solution changes slowly. So, it is not practical to use constant step
size in numerical integration. In literature, step size strategies have been given
for the numerical integration. One of these strategies is given for the Cauchy
problem

X ′(t) = AX(t) + ϕ(t,X), X(t0) = X0 (0.0.4)

where A = (aij) ∈ RN×N , X ∈ RN and ϕ ∈ C1([t0 − T, t0 + T ]×RN ) in [3,4].
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Many dynamical system models are represented by non-linear dïı¬differential
equation systems as in (0.0.4). The epidemic models is one of these systems also
attracted attention in recent years (for example see, [1,2,5,6,7]). The classical
epidemic model is SIR model.

In this study, we have aimed to investigate the effectiveness of the variable
step size strategy for some SIR epidemic models. We have applied the variable
step size strategy to the SIR model and its modifications.

Keywords: Step size strategy, variable step size, epidemic model, SIR
model, system of non-linear differential equations.
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In this note, we give necessary and sufficient conditions for an Archimedean f -
algebra to be of finite dimensional. As an application, we give a positive answer
to a question raised by Bresar in [1].
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Abstract

In mathematics,we investigate a Korovkin-type approximation theorem for se-
quences of positive linear operators on the space of all continuous real valued
functions defined on [a,b] in ”Approximation theory”. In this paper, we get some
approximation properties for sequences of positive linear operators constructed
by means of the Bernstein operator and give a Korovkin-type approximations
properties for them. We research convergence and approximation properties for
type generalized Stancu operators and Bernstein operator to give some exam-
ples. We also made a comparison between the approximations obtained by them
with calculating the errors in the approximations for different continuous func-
tions. Recently, some authors draw graphics of some modified operators and
calculating the errors in approximations[1,2]. Figures of these kind of operator
are very difficult because these operators have many of properties such that in-
tegrals, summations etc. Consequently figures and numerical results verify the
theoretical results in the view of different aspects.

Keywords: Approximation,Positive linear operators, Korovkin-type theo-
rem, Comparison, Errors, Figures.
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Abstract

In this paper, we introduce the concept of intuitionistic fuzzy soft point as a
generalization of intuitonistic fuzzy point and study some basic properties. We
consider the neighborhood structures of an intuitionistic fuzzy point and gener-
ate an intuitonistic fuzzy soft topology by using the systems of neighborhood.

Keywords: Intuitionistic fuzzy soft set, intuitionistic fuzzy soft point, in-
tuitionistic fuzzy soft topology, neighborhood.
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Abstract

In this study, the offset curves of nonligthlike curves are investigated in three
different cases. Then the curvature, torsion and arclength of a given offset curve
are expressed in terms of the curvature, torsion of the main curve and constants
A and B for each case. Moreover, it is proved that the offset curve constitutes
another Bertrand curve.

Keywords: Bertrand Curve, Offset Curve, Minkowski Space.
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Abstract

In this talk, we present on a minimal surface using Weierstrass representation in
the four dimensional Euclidean space. We compute implicit equations, degree
and class of the surface.

Keywords: 4-space, Weierstrass representation, minimal surface, degree,
class.
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Abstract

The graph theory has been improved fastly since it has applications in different
fields of science. In this paper a special algebraic graph has been defined then
some parameters of this graph have been studied.

Keywords: Graph, Graph Parameter.
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Abstract

We can identify S as a cartesian product of finite times a finite semigroup SnM
which has some elements like {0,x, x2, ... , xn} Let Γ(S) be a dot product
graph whose vertices are the nonzero elements of S. In this study we are going
to analyze some parameters of Γ(S).

Keywords: Dot Product, Monogenic Semigroup, Graph.
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Abstract

In this work, we study the congruence subgroup Γ0(
n

h
) of the Modular group Γ

acting transitively on the subset Q̄(h). From the suborbital graph F (1, n) we
obtain some interesting number theoretical results, for instance, for all n ∈ N,
the numbers n(n− 4)b2 − 4 are not squares.

Keywords: Graph Theory, Number Theory.
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Selçuk University, Department of Mathematics, Konya, Turkey
aocdiken@konya.edu.tr, aduman@konya.edu.tr, kaydin@selcuk.edu.tr

Abstract

The representation of the numbers

F = F (γ, p−, p+, k) = {0} ∪
{
z|z = ±γp(z)mγ(z)

}
, (0.0.5)

which are called floating point numbers [2, 13, 17, 18]. Computers use floating
point numbers for computing. These numbers are also called computer numbers
or machine numbers [6, 14, 19, 21]. If the results of arithmetic operations are
elements of set F, they are directly stored in the memory. Otherwise they are
stored with error [7, 11, 15, 16, 20, 22].

Let An be an N-dimensional periodic matrix (T-period) and difference equa-
tion system xn+1 = Anxn. The matrix Xn is called the fundamental matrix of
the system, and the matrix XT is called the monodromy matrix of the system
[1, 3, 4, ,5, 12]. The matrix Yn = fl(An−1Yn−1) is the computed fundamental
matrix XN in floating point arithmetic. Cauchy problem of difference equation
system can be written

fl(An−1Yn−1) = Yn = An−1Yn−1 + φN ;Y0 = I, (0.0.6)

where φN is computation error of (An−1Yn−1).
The effects of floating point arithmetic in the computation of the fundamen-

tal matrix XN were investigated. Error bounds were obtained for ‖XN − YN‖,
where AN ∈MN (D). The obtained results were investigated for Schur stability
of the system [8, 9, 10]. These results were supported with numerical examples.

Keywords: floating point arithmetic, difference equation, error analysis,
Schur stability.
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Abstract

In this talk, we extend the concepts of I−Limit superior and I−Limit inferior for
reel number sequences to I−Limit superior and I−Limit inferior for sequences
of sets, study their certain properties and establish some basic theorems.

Keywords: Statistical convergence, I−convergence and I∗−convergence,
sequence of sets , Wijsman convergence.
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Abstract

One of the theories defined to develop some complement-free concepts is the
texture (fuzzy structure) theory and it was constructed in [1] as a point-based
setting for the study of classical sets and fuzzy sets. Add to that, the notion of
ditopology described on a texture is essentially a topology for which there is no
a priori relation between the open and closed sets, and thus ditopological fuzzy
structures [1] were conceived as a unified setting for the study of fuzzy topology.
Especially, some useful relationships with fuzzy topology may be found in [3].

In the previous study [2], the foundations of a corresponding theory of inverse
(projective) systems and their limits, called inverse limits were laid in the cat-
egory ifPTex of plain textures which are special types of textures, and point
functions satisfying a compatibility condition, named w-preserving. Therefore
firstly, a detailed analysis of inverse systems and inverse limits was presented in
[2] insofar as the category of plain textures is concerned. Evidently, this the-
ory was constituted as an analogue of the inverse system theory in the classical
categories Set, Top and Rng in algebra, simultaneously.

As the main theme of this presentation, a suitable theory of inverse systems
and their limits is established for some subcategories of the category ifPDitop
topological over ifPTex, whose objects are ditopological fuzzy structures which
have plain texturing and morphisms are bicontinuous ifPTex-morphisms. In
addition, many useful properties of inverse limits in ifPDitop are studied via
examples in the context of ditopological fuzzy structures, as natural counter-
parts of the classical cases.

Keywords: Inverse Limit, Fuzzy Topology, Category, Texture, Ditopology.
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Abstract

t-operators and nullnorms were introduced in [9], [7] respectively, which are also
generalizations of the notions of t-norms and t-conorms. And then in [10], it is
pointed out that nullnorms and t-operators are equivalent since they have the
same block structures in [0, 1]2. Namely, if a binary operator F is a nullnorm
then it is also a t-operator and vice versa.

Definition 0.0.1 Let (L,≤, 0, 1) be a bounded lattice. A commutative, associa-
tive, non-decreasing in each variable function F : L2 → L is called a nullnorm
if there is an element a ∈ L such that F (x, 0) = x for all x ≤ a, F (x, 1) = x for
all x ≥ a.

In this study, given a bounded lattice L and a nullnorm on it, taking into
account the properties of nullnorms, we investigate an order induced by null-
norms and equivalence relation on bounded lattice. In this way, we obtain that
interesting results.

Keywords: Nullnorm, Bounded lattice, Partial order.
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Abstract

In this work, we are interested in ideal version of weighted lacunary statistical
convergence of sequences of order α and we examine some inclusion relations.

Keywords: I-convergence; I-statistical convergence; weighted lacunary I-
statistical convergence of order α; sequence space
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[6] Şengül, H. and Et, M. On lacunary statistical convergence of order α, Acta
Mathematica Scientia Series, Vol. 34 No. 2 (2014) 473–482.
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matfonks@gmail.com

Abstract

A typical sum s on a K- space S has often the representation,

s(z) = lim
γ∈Γ

∑
k

uγkzk, z = (zk) ∈ S (0.0.7)

where Γ is a directed index set and uγ = (uγk) ∈ φ, the space of finitely non-zero
sequences, for each γ ∈ Γ. Let a K-space S be equipped with a sum (0.0.7).
Then, for each x = (xk) and γ ∈ Γ, the sequence Pγ(x) =

∑
k uγkxkδ

k, (γ ∈ Γ)
is called the γth S-section of x [2]. Here δk is the sequence whose kth component
is 1 all the others are 0.

If λ ⊃ φ is a K space, then Boos and Leiger defined the spaces λAB(S) and
λAK(S) in [?] as

λAB(S) = {x ∈ ω|(Pγ(x))γ∈Γ is a bounded net in λ},

and
λAK(S) = {x ∈ (λAB(S) ∩ λ)| lim

γ
Pγ(x) exists in λ}.

In this work, we investigate some properties of these spaces and give some
theorems related to the duals.

Keywords: K- spaces, n-th section of a sequence, β-, γ-, f -duality.
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Abstract

For two finite monoids S and T , we prove that the second integral homology of
the Schützenberger product S♦T is equal to

H2(S♦T ) = H2(S)×H2(T )× (H1(S)⊗Z H1(T ))

as the second integral homology of the direct product of two monoids.
This is joint work with Hayrullah Ayık and Leyla Bugay.
(Melek Yağcı is supported by Ç.Ü. BAP.)
Keywords: Monoid, Schützenberger product, Second integral homology.
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[2] Çevik, A.S., The p-Cockcroft property of the semi-direct products of monoids,
Internat. J. Algebra Comput. 13, 1-16, 2003.
[3] Campbell, C.M., Mitchell, J.D., Ruskuc, N., On defining groups efficiently
without using inverses, Math. Proc. Camb. Phil. Soc. 133, 31-36, 2002.
[4] Squier, C., Word problems and a homological finiteness condition for monoids,
Journal Pure Appl. Algebra, 49, 201-217, 1987.
[5] Johnson D.L., Presentations of Groups, Cambridge Univ. Press, Cambridge,
1990.
[6] Ayık, H., Campbell, C.M., O’Connor, J.J., On the efficiency of the direct
products of Monogenic Monoids, Algebra Colloq. 14, 279-284, 2007.
[7] Ayık, H., Campbell, C.M., O’Connor, J.J., Ruskuc, N., Minimal presenta-
tions and efficiency of semigroups, Semigroup Forum, 60, 231-242, 2000.
[8] Ayık, H., Campbell, C.M., O’Connor, J.J., Ruskuc, N., On the efficiency of
finite simple semigroups, Turkish Journal of Math. 24, 129-146, 2000.
[9] Howie, J.M., Fundamentals of Semigroup Theory, New York, Oxford Uni-
versity Press, 1995.
[10] Howie, J.M., Ruskuc, N., Constructions and presentations for monoids,
Comm. Algebra, 49, 6209-6224, 1994.



236

[11] Guba, V.S., Pride, S.J., Low dimensional (co)homology of free Burnside
monoids, Journal Pure Appl. Algebra, 108, 61-79, 1996.
[12] Guba, V.S., Pride, S.J., On the left and right cohomological dimension of
monoids, Bull London Math. Soc. 30, 391-396, 1998.

New Sequence Spaces with Respect to a
Sequence of Modulus Functions
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Abstract

In this talk, we introduce the notion of AI-invariant statistical convergence, AI-
lacunary invariant statistical convergence with respect to a sequence of modulus
functions. We establish some inclusion relations between these spaces under
some conditions.

Keywords: Lacunary invariant statistical convergence; Invariant statistical
convergency, ideal convergence, modulus function.
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Abstract

We study on translation and factorable hypersurfaces in the four dimensional
Euclidean space. We calculate implicit algebraic equations of the hypersurfaces.

Keywords: 4-space, translation hypersurface, factorable hypersurface, al-
gebraic equation.
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Abstract

The q-calculus has been developing fast. In the present work we study on a
q-extension of binomial coefficients. The infinite sum of q-extension of binomial
coefficients is obtained. Then, by using its infinite sum , we obtain Volkenborn
integral velue of q-extension of binomial coefficients.

Keywords: p-adic number, Indefinete sum, q-analogue of the binomial co-
efficients, Volkenborn integral.
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Abstract

Let p be a fixed prime number. By Qp we denote the field of p-adic numbers, the
completion of the rational numbers field Q with respect to the p-adic norm |·|p.
The concept of statistical convergence was introduced by H. Fast (1951) [1] and
R. C. Buck (1953) [2] independently for real or complex sequences. This concept
was studied by T.Salat (1980) [3], J. A. Fridy (1985) [4] and many authors. We
note that the field of p-adic numbers Qp is non-Archimedean, means that the
ultrametric inequality is valid

|x+ y|p ≤ max
{
|x|p , |y|p

}
for all x, y ∈ Qp. In the present work we define the concept of statistical
convergence of sequences for p-adic numbers and give some its properties.

Keywords: p-adic number, statistical convergence of sequence of p-adic
numbers, statistical Cauchy sequence of p-adic numbers.
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Abstract

In this paper, we study lightlike hypersurface of an indefinite Kaehler manifold
admitting a complex semi-symmetric metric connection. We get the equations
of Gauss and Codazzi. Then, we give some characterizations of lightlike hy-
persurface in an indefinite complex space form with a complex semi-symmetric
metric connection. Finally, we show that the Ricci tensor of lightlike hyper-
surface of an indefinite Kaehler manifold with complex semi-symmetric metric
connection is not symmetric.

Keywords: Lightlike Hypersurface, Indefinite Complex space form, Com-
plex Semi-Symmetric Metric Connection, Levi-Civita connection, Ricci tensor.
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We introduce the generalized intutionistic fuzzy derivative, this concept used
in order to give a generalized intuitionistic fuzzy Caputo fractional derivative.
And we descuse the intuitionistic fuzzy fractional evolution problem.

Keywords: Generalized intuitionistic fuzzy Hukuhara difference, Gener-
alized intuitionistic fuzzy derivative, generalized intuitionistic fuzzy Caputo-
derivative, intuitionistic fuzzy fractional evolution problem.
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Abstract

In this paper, we focus our attention on tableau methods for contact logics inter-
preted over intervals on the reals. Contact logics provide a natural framework
for representing and reasoning about regions in several areas of computer science
such as geological information systems, artificial intelligence and etc. In this pa-
per, we focus our attention on tableau methods for contact logics interpreted
over intervals on the reals. Contact logics provide a natural framework for repre-
senting and reasoning about regions in several areas of computer science such as
geological information systems, artificial intelligence and etc.[1,3,4] . However,
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while various tableau methods have been developed for classical logic, modal log-
ics and intuitionistic logic, not much work has been done on tableau methods
for contact logics [1,2]. We develop a general tableau method for contact logic
interpreted over intervals. In this paper we give sound and complete tableaux-
based decision procedures for contact logics. Developing such tableaux-based
decision procedures, we obtain new decidability/complexity results.
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Abstract

In this paper we presented intuitionistic fuzzy differential equation with linear
differential operator which can be of any order and it also involves nonlinear
functional. So our solution procedure gives the solutions of a large area of
problems involving intuitionistic fuzzy differential equations. Adomain decom-
position method (ADM) has been used to find the approximate solution. Note
that we used ADM which gives solution even for some nonlinear problems that
can’t be solved by classical methods. We have given two numerical examples and
by comparing the numerical results obtain from ADM with the exact solution,
we have studied their accuracy.
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Abstract

In this work, we consider the 1
4−quaternion algebra and give the matrix repre-

sentations of the involution and anti-involution maps obtained by this algebra.
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Abstract

In this work, we study topological full groups of Cantor minimal systems. In
recent years, this subject has been very popular since it supplies a connection
between dynamical systems and group theory. We will investigate the rela-
tionship between conjugation of dynamical systems and isomorphism of their
topological full groups. Moreover, topological full groups provide the first ex-
amples of finitely generated, simple and amenable groups. We will survey the
ideas behind the proofs of these facts.

Keywords: Cantor Space, Topological Full Group, Simple Grup, Amenable
Group.
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Abstract

In this paper, we study globally asymptotically stability of zero solution to a
nonlinear neutral differential of first order. The technique of the proof involves
the fixed point method. By this way, we extend and improve some recent works
in the literature.

Keywords: Fixed point theorem, globally asymptotically stability, neutral
differential equation, firs order.
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Nihat AKGÜNEŞ, Ahmet Sinan ÇEVİK
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Abstract

Our main aim in this presentation is to extend these studies over Γ(SM ) to the
cartesian product. In here, Γ(SM ) is a graph of monogenic semigroup SM =
{x, x2, x3, ..., xn} with zero. In detail, we will investigate some important graph
parameters for the cartesian product of any two (not necessarily different) graphs
Γ(SM1) and Γ(SM2).

Keywords: Monogenic semigroup graph, Graph product.
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Abstract

The purpose of this study is two-fold, firstly to recall some basic concepts and
notions of unit dual Lorentzian sphere. Secondly, to define a one-to-one relation-
ship between the unit dual Lorentzian sphere and tangent bundle of Lorentzian
unit 2-sphere.
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Abstract

In this study, it is investigated nonhomogenous boundary value problem.During
the solution it is encountered Sturm-Liouville problem with piecewise continu-
ous coefficients and that contained eigenvalue parameter.One transmission con-
dition, which given by as relations between the right and left hand limit of the
solution at the point of discontinuity are added to the boundary conditions.
We examined some spectral properties of the problem.The numeric solutions of
eigenvalues are obtained. According to the spectral datas the inverse problem
are researched.

Keywords: Discontinuous Sturm-Liouville Problem, Inverse Problem, Trans-
mission Condition.
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Abstract

Light-emitting electrochemical cells (LECs) is one of the simplest kinds of elec-
troluminescent devices. LEC is constituted to an organic single layer structure
that was sandwiched between a cathode and an anode. In this study we cal-
culated theoretically of the electronic parameter of LECs device through I-V
based modeling. The LEC diode electronic parameters as the ideality factor n
and barrier height φb were obtained using a method developed by Cheung and
confirmed by Werner. The net current of a LEC device is due to the thermionic
emission and it can be expressed as

I = I0 exp

(
q (V − IRs)

nkT

)
where V is applied voltage and saturation current I0 is defined as

I0 = AA∗T 2 exp

(
−qφb
kT

)
.

Keywords: LECs device, Electronic parameters, I-V modeling.
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Abstract

A sum is a continuous linear functional s defined on a K- space λ ⊃ φ (space of
finitely non-zero sequences) such that, s(z) =

∑
k zk, ∀z = (zk) ∈ φ. A K-space
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λ is called a sum space if and only if λ ⊃ φ and λf = λλ, where λf = {(f(δk)) :
f ∈ λ′} and λλ is the set of all sequences x such that xy ∈ λ, ∀y ∈ λ [4,6]. Here
δk is the sequence whose kth component is 1 all the others are 0, xy = (xkyk)
for x = (xk), y = (yk) and λ′ is the space of continuous linear functionals on λ.

An FK space λ ⊃ φ is generalized semiconservative FK space if λf ⊂ λλ
2

,

where λλ
2

= λλλ = (λλ)
λ
.

In this work, we give some definitions and theorems related with sum spaces
and generalized semiconservative FK spaces.

Keywords: FK spaces, β− dual, f - dual, Semiconservative FK spaces.
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Abstract

Invariant sequence spaces are very helpful for investigations of the duality of
sequence spaces. For instance, if the sequence space X satisfies the condition
`∞.X = X then its α−, β- and γ- duals are same [4]. Garling [1] investigated B-
and B0- invariant sequence spaces and Buntinas [2] introduced and investigated
q- and q0- invariant sequence spaces and recently, Grosse- Erdmann [3] studied
on `1 invariant sequence spaces.

In this work, we define qλ and qλ0 invariant sequence spaces, X with qλ.X =
X and qλ0 .X = X, respectively. and give some related theorems.
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Keywords: K- spaces, λ-boundedness and λ-convergence of a sequence, β-,
γ-, f - duality.
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Abstract

In [2], it has been defined a new graph Γ(SM ) on monogenic semigroups SM
(with zero) having elements {0, x, x2, x3, ..., xn}. Many researchers have been
working on this area after that work, for example [1,3,4]. As a continues study
of these studies, in this paper, it will be investigated define some new graph
parameters (such as covering number, accessible number, Zagreb indices, ect.)
for monogenic semigroup graph Γ(SM ).
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Abstract

In conjunction with the development of fractional calculus, conformable deriva-
tives and integrals has been widely used a number of scientic areas. In this talk,
we provide a numerical scheme to solve Katugampola conformable fractional
differential equations via radial basis function (RBF) collocation technique. In
order to confirm our numerical scheme, we present some numerical experiments
results.
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Abstract

The purpose of this talk is making generalization of Gronwall, Volterra and
Pachpatte type inequalities for conformable differential equations. Then we
provide some upper or lower bound for fractional derivatives and integrals with
the help of Katugampola definition for conformable calculus. These results are
extensions of some existing Gronwall, Volterra and Pachpatte type inequalities
in the previous studies.

Referances

[1] U. Katugampola, A new fractional derivative with classical properties,
ArXiv:1410.6535v2.
[2] T. Abdeljawad, On conformable fractional calculus, Journal of Computa-
tional and Applied Mathematics 279 (2015) 57{66.
[3] M.Z. Sarikaya, Gronwall type inequality for conformable fractional integrals,
2016, preprint.

Weighted Ostrowski, Chebyshev and Grüss
Type Inequalities for Conformable Fractional

Integrals
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In this presentation, we have obtained weighted versions of Ostrowski,
∼
Cebysev

and Grüss type inequalities for conformable fractional integrals. In accordance
with this purpose we have used Katugompola type conformable fractional inte-
grals. The present study confirms previous findings and contributes additional
evidence that provide the bounds for more general functions.
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Abstract

We consider discrete-time Leslie Model.We first determine its non-negative fixed
point. Later on, we study local stability of the fixed point and determine the
conditions on the parameters to show the existence of flip bifurcation by taking
the step-size as a bifucation parameter. Analytical results are also supported by
some numerical simulation. Moreover, using Center Manifold Theory, we show
the existence of flip bfurcation and its properties.



256

Applications of Hermite-Hadamard Inequalities
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Abstract

Hermite-Hadamard Inequality that is expressed in the following form

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ 1

2
(f (a) + f (b))

was proven by Hermite in [1] and then, ten years later, Hadamard rediscovered
in [2] (for the historical consideration see also [3]). Next, Hermite-Hadamard
Inequalities for different kinds of functions were examined in numerous article
[4,5].

B-convex functions were introduced and studied in [6]. B−1-convex functions
were defined and examined in [7]. Hermite-Hadamard Inequalities for B-convex
Functions and B−1-convex Functions were introduced in [8].

In this work, we give the applications of Hermite-Hadamard Inequalities for
B-convex functions and B−1-convex functions.

Keywords: Hermite-Hadamard Inequalities, B-convex functions, B−1-convex
functions.
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Abstract

In this paper, we introduce necessary definitions and related theorems on in-
tuitionistic fuzzy T-set theory. In existing crisp set theory, characteristic func-
tions, defined by two valued logic, can take values: zero and one only. In fuzzy
set theory, introduced by Zadeh (1965), membership functions can take any
value in closed unit interval . And, in intuitionistic fuzzy set theory, introduced
by K. T. Atanassov (1986), both membership functions and non-membership
functions can take suitable values in closed unit interval . But, we may ob-
serve that in those existing theories, we have to assign same membership value
unity to elements, even if belongingness of one element is more certain than
other to the subsets. In other words, certainly belongingness and more cer-
tainly belongingness of elements to subsets of universal sets are treated at par
in all these existing theories, including classical crisp set theory. Similarly, in
non-membership functions of intuitionistic fuzzy sets, zero is assigned as non-
membership values to elements, both not belonging and not belonging certainly
to subsets of universal sets. In order to overcome these limitations of existing
theories, in 2015, we proposed intuitionistic fuzzy T-set theory, in which real
numbers are suitably assigned to membership and non-membership functions.
In this paper, we further introduce necessary definitions and related theorems
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on intuitionistic fuzzy T-set theory. Those may be considered as generalizations
of existing definitions and theorems from existing fuzzy and/or intuitionistic
fuzzy set theory. In particular, we have generalized the concepts of extension
principle and alpha, beta cut under existing intuitionistic fuzzy environment to
T-intuitionistic fuzzy environment. Moreover, we have discussed some associ-
ated results under T-intuitionistic fuzzy environment. Finally, conclusions and
future research directions are drawn.

Keywords: Intuitionistic fuzzy sets, T (+)-characteristic functions, T (−)-
characteristic functions, intuitionistic Fuzzy T -sets, T -extension principle.
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Istanbul Ticaret University, Department of Mathematics, Sütlüce,
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Abstract

In the present paper, we introduce and study the notion I-double statistical
convergence and ideal λ-double statistical convergence of order α with respect
to the intuitionistic fuzzy n-normed space, briefly IFnNS, also we examine the
relationship between these classes.
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Abstract

In the last few decades, much significant development of integral inequalities
had been established. Recall the famous integral inequality of Feng Qi type [1,
2, 3]:

b∫
a

(f(t))
n+2

dt ≥

 b∫
a

f(t)dt

n+1

(0.0.8)

where f ∈ Cn (a, b) , f (i) ≥ 0, 0 ≤ i ≤ n, f (n) ≥ n!, n ∈ R.
In this study, we establish the generalized Qi-type inequality involving con-

formable fractional integrals.
Firstly we give a important integral inequality which is generalized Qi in-

equality. Finally, we obtain several inequalities related these inequalities using
the conformable fractional integral [4,5].

Keywords: Integral Inequalities, Special Functions, Fractional Calculus,
Conformable Fractional Integral.
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