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3Department of Mathematics, Faculty of Science, Bartın University, Bartın, Turkey

Received: 18.12.2014 • Accepted/Published Online: 07.06.2015 • Printed: 30.11.2015

Abstract: The structure of pointwise slant submanifolds in an almost product Riemannian manifold is investigated

and the special proper pointwise slant surfaces of a locally product manifold are introduced. A relation involving the

squared mean curvature and the Gauss curvature of pointwise slant surface of a locally product manifold is proved. Two

examples of proper pointwise slant surfaces of a locally product manifold, one of which is special and the other one is

not special, are given.
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1. Introduction

A slant surface M of a Kaehlerian manifold is called special slant if, with respect to some suitable adapted

orthonormal frame {e1, e2, e3, e4} , the shape operator of the surface takes the following forms:

Ae3 =

(
cλ 0
0 λ

)
and Ae4 =

(
0 λ
λ 0

)
, (1.1)

where both c and λ are real numbers and {e1, e2} is an orthonormal basis on TpM . The special slant surfaces

were studied in complex space forms by Chen in [9] and [10]. He proved the following relation involving the

squared mean curvature ∥H(p)∥2 and the Gauss curvature K at a point p of proper slant surface M in a

complex space form M̃(4c):

∥H(p)∥2 ≥ 2K(p)− 2(1 + cos2 θ)c, (1.2)

where θ is the slant angle of the surface M . Furthermore, Chen showed that the equality case of (1.2) holds

at all points p ∈ M if and only if the surface is special slant with c = 3.

Later, the special slant surfaces were studied on complex projective spaces and complex hyperbolic spaces

in [11], on Kaehlerian manifolds in [13], on Lorentz surfaces in [15], on nonflat complex space forms in [18], on

Sasakian space forms in [24]. etc.

Besides these facts, geometric structures of the pointwise slant submanifolds in almost Hermitian man-

ifolds were first introduced by Chen and Gray in [17] as a generalization of the slant submanifolds of almost

∗Correspondence: mehmetgulbahar85@gmail.com
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Hermitian manifolds. Later, pointwise semislant submersions were studied in [23], warped product pointwise

slant submanifolds were investigated in [30], pointwise H -slant submanifolds in almost Hermitian manifolds were

studied in [28], and pointwise slant and pointwise semislant submanifolds in almost contact metric manifolds

were studied in [29]. For more details, we can also refer to [16].

This paper is organized as follows: in Section 2, some basic facts on submanifold theory are given.

In section 3, the basic concepts related to Riemannian product manifolds are mentioned. In Section 4, the

proper pointwise slant submanifolds of a locally product manifold are introduced and a useful orthonormal

basis for these submanifolds are given. The sectional curvature, the Ricci curvature and the scalar curvature

are computed in the proper pointwise slant submanifold of an almost constant curvature manifold. In Section 5,

an inequality involving the squared mean curvature and the Gauss curvature of a proper pointwise slant surface

of an almost constant curvature manifold is established. The special proper pointwise slant surfaces on these

submanifolds are introduced.

2. Preliminaries

Let M̃ be an m -dimensional Riemannian manifold equipped with a Riemannian metric g̃ and {e1, . . . , em} be

any orthonormal basis for TpM̃ . For a fixed i ∈ {1, . . . ,m} , the Ricci curvature of ei , denoted by R̃ic (ei), is

defined by

R̃ic (ei) =

m∑
j ̸=i

K̃ij (2.1)

and the scalar curvature at the point p ∈ M̃ , denoted by τ̃(p), is defined by

τ̃ (p) =
1

2

m∑
i ̸=j=1

K̃ij , (2.2)

where K̃ij denotes the sectional curvature of the plane section spanned by ei and ej .

Let (M, g) be an n-dimensional Riemannian submanifold of (M̃, g̃) with the induced metric tensor g

from the metric tensor g̃ . The Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + σ(X,Y ) and ∇̃XN = −ANX +∇⊥
XN (2.3)

for all X,Y ∈ Γ(TM) and N ∈ T⊥M , where ∇̃ , ∇ are the Riemannian connections of M̃ and M̃ , respectively,

while ∇⊥ is the normal connection of M in M̃ and T⊥M stands for the normal bundle of M . We denote the
inner product of both the metrics g and g̃ by ⟨, ⟩ . σ and AN are related by

⟨σ(X,Y ), N⟩ = ⟨ANX,Y ⟩ . (2.4)

The Gauss equation is given by

g (R(X,Y )Z,W ) = g̃(R̃(X,Y )Z,W ) + ⟨σ(X,W ), σ(Y, Z)⟩

− ⟨σ(X,Z), σ(Y,W )⟩ (2.5)

for all X,Y, Z,W ∈ Γ(TM), where R̃ and R are the Riemann curvature tensors of M̃ and M , respectively.
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Now let {e1, . . . , en} be an orthonormal basis of the tangent space TpM , and er belongs to an orthonor-

mal basis {en+1, . . . , em} of the normal space T⊥
p M . We put

σr
ij = ⟨σ (ei, ej) , er⟩ and ∥σ∥2 =

n∑
i,j=1

⟨σ (ei, ej) , σ (ei, ej)⟩ . (2.6)

In view of (2.5) and (2.6), we get

Kij = K̃ij +
m∑

r=n+1

(
σr
iiσ

r
jj − (σr

ij)
2
)
, (2.7)

where Kij and K̃ij denote the sectional curvature of the plane section spanned by ei and ej at p in the

submanifold M and in the ambient manifold M̃ , respectively. Here, Kij and K̃ij are said to be the “intrinsic”

and “extrinsic” sectional curvature of the plane Span {ei, ej} at p ∈ M .

The mean curvature vector H is given by H = 1
n trace(σ). If σ = 0 then the submanifold is called totally

geodesic in M̃ . If H = 0 then the submanifold is called minimal. If σ(X,Y ) = ⟨X,Y ⟩H for all X,Y ∈ Γ(TM),

then the submanifold is called totally umbilical [8].

3. Locally product manifolds

Let M̃ be an m-dimensional differentiable manifold and F be a (1, 1) type tensor on the tangent space of M̃

such that

F 2 = I, (3.1)

where I denotes the identity transformation. Then M̃ is called an almost product manifold. If we put

P =
1

2
(I + F ), Q =

1

2
(I − F ), (3.2)

then we have

P +Q = I, P 2 = P, Q2 = Q, PQ = QP = 0, F = P −Q. (3.3)

If an almost product manifold admits a Riemannian metric g̃ such that

g̃(FX,FY ) = g̃(X,Y ) (3.4)

for any vector fields X , Y on M̃ , then (M̃, g̃) is called an almost product Riemannian manifold [33].

Let (M, g) be an n-dimensional Riemannian submanifold of an almost product Riemannian (M̃, g̃).

Then we have

FX = fX + wX, (3.5)
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where fX is the tangential part of FX and wX is the normal part of FX for any vector field X tangent to

M . Similarly, we can write

FV = tV + sV, (3.6)

where tV is the tangential part of FV and sV is the normal part of FV for any vector field V normal to M .

From (3.4), it is easy to see that

g̃(FX, Y ) = g̃(X,FY ) (3.7)

for any X,Y ∈ Γ(TM).

Let us consider an m-dimensional manifold M̃ , which is covered by a system of coordinate neighborhoods(
xi
)
such that in any intersection of two coordinate neighborhoods

(
xi
)
and

(
xi′

)
, we have

xa′
= xa′

(xa) , xα′
= xα′

(xα) ,

with ∣∣∣∣∣∂xa′

∂xa

∣∣∣∣∣ ̸= 0,

∣∣∣∣∣∂xα′

∂xα

∣∣∣∣∣ ̸= 0,

where the indices a, b, c, d run over the range 1, . . . ,m1 , the indices α, β, γ, ν run over m1+1, . . . ,m1+m2 = m ,

and the indices i, j, k, h run over 1, . . . ,m . Such a system of coordinate neighborhoods is called a separating

coordinate system. We denote by M̃1 the system of subspaces defined by xα = constant, and by M̃2 the system

of subspaces defined by xa = constant. Then the manifold M̃ is locally product M̃1 × M̃2 of two manifolds.

Thus, M̃ is called a locally product manifold, which admits a locally product structure defined by the existence

of a separating coordinate system. A locally product manifold always admits a natural tensor field F of type

(1, 1) given by

F i
j =

(
δab 0
0 −δαβ

)
,

which satisfies F 2 = I .

In a locally product manifold M̃ , let a Riemannian metric

ds2 = gij (x) dx
idxj ,

which satisfies equality (3.4) for all vectors X and Y . Then M̃ is called a locally product Riemannian manifold.

If the metric of the manifold has the form

ds2 = g̃ab (x
c) dxadxb + g̃αβ (x

γ) dxαdxβ ,

then M̃ is called a locally decomposable Riemannian manifold. A locally product Riemannian manifold is a

locally decomposable manifold if and only if ∇̃F = 0, where ∇̃ is the Riemannian connection of M̃ [33].
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Let M̃ = M̃1 × M̃2 be a locally decomposable Riemannian manifold with dim(M̃ℓ) = mℓ > 2, ℓ = 1, 2.

Then both M̃1 and M̃2 are manifolds of constant curvatures c1 and c2 , respectively; that is,

R̃1
abcd = c1 (g̃adg̃bc − g̃acg̃bd) , R̃2

αβγν = c2 (g̃αν g̃βγ − g̃αγ g̃βν)

if and only if

R̃(X,Y, Z,W ) = a {(⟨X,W ⟩ ⟨Y, Z⟩ − ⟨X,Z⟩ ⟨Y,W ⟩)

+ (⟨X,FW ⟩ ⟨Y, FZ⟩ − ⟨X,FZ⟩ ⟨Y, FW ⟩)}

+b {(⟨X,FW ⟩ ⟨Y, Z⟩ − ⟨X,FZ⟩ ⟨Y,W ⟩) (3.8)

+ (⟨X,W ⟩ ⟨Y, FZ⟩ − ⟨X,Z⟩ ⟨Y, FW ⟩)}

for all X,Y, Z,W ∈ TM̃ , where R̃ , R̃1 , and R̃2 are Riemannian curvatures of M̃ , M̃1 , and M̃2 , respectively,

and

a =
1

4
(c1 + c2) , b =

1

4
(c1 − c2) .

A locally decomposable Riemannian manifold is called a manifold of almost constant curvature and

denoted by M̃ (a, b) if its curvature tensor R̃ is given by (3.8). For more details, we refer to [32, 33, 34, 35].

4. Proper slant submanifolds of locally product manifolds

In [8], Chen introduced slant submanifolds as a generalization of invariant and antiinvariant submanifolds of

almost Hermitian manifolds. On a submanifold M of an almost Hermitian manifold, for a vector 0 ̸= X ∈ TpM ,

the angle θ(X) between JX and the tangent space TpM is called the Wirtinger angle of X [14]. If the Wirtinger

angle is independent of p ∈ M and X ∈ TpM , then M is called a slant submanifold. On the other hand, slant

submanifolds of an almost product manifold were introduced by Sahin in [31] following Chen’s definition for a

Hermitian manifold.

Now we shall state the notions of the Wirtinger angle and the pointwise slant submanifold in an almost

product manifold following Chen’s [17] definition of pointwise slant submanifolds for a Hermitian manifold.

Definition 4.1 Let (M, g) be a submanifold of an almost product manifold. For any nonzero vector X ∈ TpM ,

the angle θ(X) between FX and TpM is called the Wirtinger angle of X . The Wirtinger angle gives rise to

a real-valued function θ : TM − {0} → R , called the Wirtinger function or slant function. The submanifold

(M, g) is called pointwise slant if, at each given point p ∈ M , the angle θ is independent of the choice of the

nonzero tangent vector X ∈ TpM .

We note that a pointwise slant submanifold of an almost product manifold is called slant, in the sense of [7] and

[8], if its Wirtinger function θ is globally constant. Moreover, F -invariant and F -antiinvariant submanifolds

introduced in [35] are pointwise slant submanifold with slant angle 0 and π
2 , respectively. A pointwise slant

submanifold of an almost product manifold is called a proper pointwise slant submanifold if it is neither F -

invariant nor F -antiinvariant.

In view of Lemma 3.1 in [3] and [31], the following lemma is given:
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Lemma 4.2 Let (M, g) be an n-dimensional pointwise slant submanifold of an m-dimensional almost product

Riemannian manifold (M̃, g̃) . Then we have

⟨fX, fY ⟩ = cos2 θ⟨X,Y ⟩ (4.1)

and

⟨wX,wY ⟩ = sin2 θ⟨X,Y ⟩ (4.2)

for any X,Y ∈ Γ(TM) .

Now we need the following existence theorem:

Theorem 4.3 Let (M, g) be an n-dimensional proper pointwise slant submanifold of an m-dimensional almost

product Riemannian manifold (M̃, g̃) . Then there exists an orthonormal basis {e1, ..., en} of TpM , p ∈ M such

that ⟨fea, eb⟩ = cos θ , and ⟨fea, ec⟩ = 0 for a, b, c ∈ {1, 2, ..., n} , b ̸= c and θ ∈ (0, π
2 ) .

Proof For n = 2, let {e1, e2} be an orthonormal basis of TpM , p ∈ M . For a unit vector Y in TpM , we can

write Y = a1e1 + a2e2 such that a21 + a22 = 1, a1, a2 ∈ R . Since M is a proper pointwise slant submanifold of

M̃ , we have

⟨fe1, Y ⟩ = a1⟨fe1, e1⟩+ a2⟨fe1, e2⟩ = cos θ, (4.3)

⟨fe2, Y ⟩ = a1⟨fe2, e1⟩+ a2⟨fe2, e2⟩ = cos θ (4.4)

and

⟨fY, Y ⟩ = ⟨a1fe1 + a2fe2, a1e1 + a2e2⟩

= a21⟨fe1, e1⟩+ a22⟨fe2, e2⟩+ 2a1a2⟨fe1, e2⟩ = cos θ. (4.5)

By using (4.3) and (4.4), respectively, we get

a21⟨fe1, e1⟩ = a1 cos θ − a1a2⟨fe1, e2⟩ (4.6)

and

a22⟨fe2, e2⟩ = a2 cos θ − a1a2⟨fe1, e2⟩. (4.7)

If we put (4.6) and (4.7) in (4.5), we have a1 + a2 = 1. Since a21 + a22 = 1, we obtain a1a2 = 0. In

other words, a1 = 0 or a2 = 0. This shows that we can choose ⟨fea, e1⟩ = cos θ for a fixed ea vector, a = 1 or

a = 2. Thus, we can write

fea = ⟨fea, e1⟩e1 + ⟨fea, e2⟩e2.

Then we have

⟨fea, fea⟩ = cos2 θ + ⟨fea, e2⟩2.

From Lemma 4.2, we obtain

cos2 θ = cos2 θ + ⟨fea, e2⟩2. (4.8)
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By using (4.8), it is clear that ⟨fea, e2⟩ = 0. If we choose ⟨fea, e2⟩ = cos θ then in a similar way, we find

⟨fea, e1⟩ = 0. Therefore, assertion of the theorem is true for n = 2.

For n = k , let {e1, e2, ..., ek} be an orthonormal basis of TpM , p ∈ M . For a unit vector Y in TpM ,

we can write Y =
k∑

i=1

aiei such that
k∑

i=1

a2i = 1, ai ∈ R , i ∈ {1, ..., k} . Since M is a proper pointwise slant

submanifold of M̃ , we have

⟨fei, Y ⟩ =
k∑
i,j

ai⟨fei, ej⟩ = cos θ, 1 ≤ i < j ≤ k (4.9)

and

⟨fY, Y ⟩ = cos θ. (4.10)

By using (4.9) and (4.10), we get

a2i ⟨fei, ei⟩ = ai cos θ −
k∑
i,j

aiaj⟨fei, ej⟩, 1 ≤ i < j ≤ k. (4.11)

If we put (4.11) in (4.10), we have a1 + a2 + ...+ ak = 1. Since a21 + a22 + ...+ a2k = 1, we obtain
k∑
i,j

aiaj = 0

for 1 ≤ i < j ≤ k . Thus, we can choose ⟨fea, eb⟩ = cos θ for fixed ea and eb vectors, a, b = {1, ..., k} . Thus,

we write

fea = ⟨fea, e1⟩e1 + ...+ ⟨fea, eb⟩eb + ...+ ⟨fea, ek⟩ek.

Then we have

⟨fea, fea⟩ = ⟨fea, e1⟩2 + ...+ ⟨fea, eb⟩2 + ...+ ⟨fea, ek⟩2.

From Lemma 4.2, it is clear that

cos2 θ = ⟨fea, e1⟩2 + ...+ cos2 θ + ...+ ⟨fea, ek⟩2, (4.12)

which shows that ⟨fea, ec⟩ = 0 for b ̸= c . Hence, the proof is complete. 2

In view of Theorem 3.5 in [31] and Theorem 4.3, we get the following:

Corollary 4.4 Let (M, g) be a proper pointwise θ -slant surface of an almost product Riemannian manifold

(M̃, g̃) such that {e1, e2} is an orthonormal basis of TpM . Then we have one of the following two statements

for all i ̸= j ∈ {1, 2} :

i) If g̃(Fei, ei) = cos θ then M is a product pointwise slant surface with g̃(Fei, ej) = 0 .

ii) If g̃(Fei, ej) = cos θ then M is a product pointwise slant surface with g̃(Fei, ei) = 0 if and only if each of

the ei is parallel.
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Lemma 4.5 Let (M, g) be a θ -slant submanifold of an m-dimensional locally product manifold (M̃, g̃) . Then

the following statements occur:

i) For any vectors X,Y tangent to M , we have

f2 = (cos2 θ)I and ⟨fX, Y ⟩ − ⟨X, fY ⟩ = 0, (4.13)

where I denotes the identity transformation.

ii) For any vectors X,Y tangent to M , we have

(∇Xf)Y = tσ(X,Y ) +AwY X. (4.14)

Hence, ∇f = 0 if and only if AwXY = AwY X .

iii) For any vectors X , Y tangent to M , we have

∇⊥
XwY − w∇XY = sσ(X,Y )− σ(X, fY ). (4.15)

Hence, ∇w = 0 if and only if AsξX = AξfX .

Proof Proof of (i) is clear from (3.7). Now we shall prove statements (ii) and (iii).

(∇Xf)Y = ∇XfY − f∇XY

= ∇̃XfY − σ(X, fY )− f∇XY

= ∇̃XFY − ∇̃XwY − σ(X, fY )− f∇XY

Since M̃ is a locally product manifold, we obtain

(∇Xf)Y = F ∇̃XY +AwY X −∇⊥
XwY − σ(X, fY )− f∇XY

= w∇XY + tσ(X,Y ) + sσ(X,Y ) +AwY X −∇⊥
XwY − σ(X, fY ).

Since (∇Xf)Y ∈ Γ(TM), we have (4.14) and (4.15).

Considering (4.14) and (4.15), it is clear that ∇f = 0 if and only if AwXY = AwY X and ∇w = 0 if

and only if AsξX = AξfX , respectively. 2

Corollary 4.6 Let (M, g) be a product submanifold of an m-dimensional locally product manifold (M̃, g̃) .

Then M is pointwise θ -slant if and only if AwXY = AwY X .

For simplicity, let us put

X∗ = (cscθ)wX

for any X ∈ Γ(TM) and define a symmetric bilinear TM -valued form on M by

α(X,Y ) = tσ(X,Y ).

Thus, we can write

Fα(X,Y ) = fα(X,Y ) + sin θα∗(X,Y ) (4.16)
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and

Fσ(X,Y ) = α(X,Y ) + β∗(X,Y ), (4.17)

where β is also a symmetric bilinear TM -valued form on M . From (4.16) and (4.17), we have

σ(X,Y ) = fα(X,Y ) + sin θα∗(X,Y ) + sin θβ(X,Y ) + fβ(X,Y )∗. (4.18)

Therefore, we have

β(X,Y ) = −(csc θ)fα(X,Y ) and σ(X,Y ) = (csc θ)α∗(X,Y ). (4.19)

Consequently, we obtain

σ(X,Y ) = (csc2 θ)(Fα(X,Y )− fα(X,Y )) (4.20)

and

R̃(X,Y, Z,W ) = (csc2 θ){⟨α(X,W ), α(Y,Z)⟩ − ⟨α(X,Z), α(Y,W )⟩}

+a {(⟨X,W ⟩ ⟨Y,Z⟩ − ⟨X,Z⟩ ⟨Y,W ⟩)

+ (⟨X, fW ⟩ ⟨Y, fZ⟩ − ⟨X, fZ⟩ ⟨Y, fW ⟩)} (4.21)

+b {(⟨X, fW ⟩ ⟨Y,Z⟩ − ⟨X, fZ⟩ ⟨Y,W ⟩)

+ (⟨X,W ⟩ ⟨Y, fZ⟩ − ⟨X,Z⟩ ⟨Y, fW ⟩)}

for any X,Y,W,Z ∈ Γ(TM).

We shall now need the following remarks for later use:

Remark 4.7 Suppose (M, g) is an n-dimensional submanifold of any Riemannian manifold (M̃, g̃) endowed

with any tensor field E of type (1, 1) . Let TpM (resp. T⊥
p M ) denote the tangent space (resp. the normal

space) to M at p ∈ M . For any X ∈ TpM , we decompose EX into tangential and normal parts given by

EX = fEX + wEX, fEX ∈ TpM, wEX ∈ T⊥
p M. (4.22)

The manifold M is said to be E -invariant [34](resp. E -antiinvariant [34]) if NE = 0 (resp. PE = 0). The

squared norm of fE at p ∈ M is given by

∥fE∥2 =

n∑
i,j=1

⟨fEei, ej⟩2 ,

where {e1, . . . , en} is any orthonormal basis of the tangent space TpM .

Remark 4.8 Since every linear form defines a pair of linear maps from the vector space to dual space of the

vector space, we can define a linear map α1 : TM → (TM⊥)∗ by

α1(X) = α(X, .)
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for any X ∈ Γ(TM) . The squared norms of α and α1 on X ∈ TM are given by

∥α∥2 =
n∑

i,j=1

⟨α(ei, ej), α(ei, ej)⟩ and ∥α1(X)∥2 =
n∑

j=1

⟨α(X, ej), α(X, ej)⟩, (4.23)

respectively.

Taking into consideration (4.21), Remark 4.7, and Remark 4.8, we give the following lemma:

Lemma 4.9 Let (M, g) be an n-dimensional proper pointwise θ -slant submanifold of an m-dimensional man-

ifold of almost constant curvature M̃ (a, b) . Let {e1, . . . , en} be an orthonormal basis of the tangent space TpM .

Then the sectional curvature Kij on a plane section of TpM spanned by ei and ej is given by

Kij = (csc2 θ){⟨α(ei, ei), α(ej , ej)⟩ − ⟨α(ei, ej), α(ei, ej)⟩}

+a
{
1 + ⟨ei, fF ei⟩ ⟨ej , fF ej⟩ − ⟨ei, fF ej⟩2

}
(4.24)

+ b {⟨ei, fF ei⟩+ ⟨ej , fF ej⟩} .

The Ricci curvature Ric (ei) of ei is given by

Ric (ei) = (csc2 θ){n⟨α(ei, ei), tH(p)⟩ − ∥α1(ei)∥2}

+a
{
(n− 1) + ⟨ei, fF ei⟩ trace (fF )− ∥fF ei∥2

}
(4.25)

+ b {(n− 2) ⟨ei, fF ei⟩+ trace (fF )} ,

The scalar curvature τ(p) at p ∈ M is given by

τ(p) = (csc2 θ){n2∥tH(p)∥2 − ∥α∥2}

+
a

2

{
(n− 1)n+ (trace (fF ))

2 − ∥fF ∥2
}

(4.26)

+ b(n− 1)trace (fF ) ,

where tH(p) is the tangential part of the vector FH(p) .

Theorem 4.10 Let (M, g) be an n-dimensional (n > 2) proper pointwise θ -slant submanifold of an m-

dimensional manifold of almost constant curvature M̃ (a, b) . Then we have the following inequalities:

i) For any unit vector X ∈ TpM ,

Ric (X) ≤ n(csc2 θ)⟨α(X,X), tH(p)⟩+ a
{
(n− 1) + ⟨X, fFX⟩ trace (fF )− ∥fFX∥2

}
+ b {(n− 2) ⟨X, fFX⟩+ trace (fF )} . (4.27)

The equality case of (4.27) holds for a unit vector X ∈ TpM if and only if

σ(X,Y ) = 0 (4.28)
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for any Y ∈ TpM .

ii)

τ(p) ≤ n2(csc2 θ)∥tH(p)∥2 + a

2

{
(n− 1)n+ (trace (fF ))

2 − ∥fF ∥2
}

+ b(n− 1)trace (fF ) . (4.29)

The equality case of (4.27) holds for the point p ∈ M if and only if p is a totally geodesic point.

Corollary 4.11 Let M be a proper pointwise θ -slant surface of a manifold of an m-dimensional almost

constant curvature M̃ (a, b) and {e1, e2} be an orthonormal basis of TpM . Then:

i) If each ei is not parallel for i ∈ {1, 2} , we have

K ≤ 4(csc2 θ)∥tH(p)∥2 + a(1 + cos2 θ) + 2b cos θ, (4.30)

where K is the Gaussian curvature of M , with the equality if and only if M is totally geodesic.

ii) If each ei is parallel for i ∈ {1, 2} , we have

K ≤ 4(csc2 θ)∥tH(p)∥2 − a sin2 θ, (4.31)

with the equality if and only if M is totally geodesic.

5. Special slant surfaces on almost constant curvature manifolds

First, we give the following theorem:

Theorem 5.1 Every pointwise θ -slant surface of an almost product Riemannian manifold M̃ with dim(M̃) = 3

is F -invariant.

Proof Suppose (M, g) is a pointwise slant surface of a 3-dimensional almost product Riemannian manifold.

From Theorem 4.3, there exists an orthonormal basis {e1, e2} of TpM such that

Fei = cos θej + sin θe3, for all i, j ∈ {1, 2}, (5.1)

where {e1, e2, e3} is orthonormal basis of TpM̃ . If we put (5.1) in (3.4) then we have

sin2 θ = 0, (5.2)

which shows that M is F -invariant. 2

Theorem 5.2 Let (M, g) be a product pointwise slant surface of a 4-dimensional almost constant curvature

manifold M̃(a, b) with the adapted orthonormal basis {e1, e2, e3, e4} . Then there are the following relations

involving the squared mean curvature and the Gaussian curvature of M .

i) If each ei is not parallel for any i ∈ {1, 2} then

∥H(p)∥2 ≥ 2K(p)− 2a(1 + cos2 θ)− 4b cos θ. (5.3)
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ii) If each ei is parallel for all i ∈ {1, 2} then

∥H(p)∥2 ≥ 2K(p)− 2a sin2 θ. (5.4)

iii) The equality sign of (5.3) or (5.4) is satisfied at a point p ∈ M if and only if the shape operators of M at

p take the following form:

Ae3 =

(
3λ 0
0 λ

)
and Ae4 =

(
0 λ
λ 0

)
, (5.5)

where λ is a real number.

Proof Since M is a pointwise proper slant product surface of M̃(a, b), according to Corollary 4.6, we have

⟨AwXY, Z⟩ = ⟨AwY X,Z⟩ (5.6)

for any vectors X,Y , and Z tangent to M .

Furthermore, from Theorem 4.3, we can choose an orthonormal basis {e1, e2} of TpM such that

ei = sec θ fej , ek = csc θ feℓ (5.7)

for any i, j ∈ {1, 2} and k, ℓ ∈ {3, 4} . From (5.6) and (5.7) we obtain

Ae3 =

(
λ1 λ2

λ2 λ3

)
and Ae4 =

(
λ2 λ3

λ3 λ4

)
, (5.8)

where λ1, λ2, λ3 , and λ4 are real numbers. Thus,

4∥H(p)∥2 = (λ1 + λ3)
2 + (λ2 + λ4)

2. (5.9)

If each ei is not parallel for any i ∈ {1, 2} then

K(p) = λ1λ3 − λ2
2 + λ2λ4 − λ2

3 + a(1 + cos2 θ) + 2b cos θ. (5.10)

From (5.9) and (5.10), we get

4∥H(p)∥2 − 8K(p) + 8a(1 + cos2 θ) + 16b cos θ = (λ1 − 3λ3)
2 + (λ2 − λ4)

2 ≥ 0, (5.11)

which shows the proof of statement (i).

If each ei is parallel for any i ∈ {1, 2} then we have

K(p) = λ1λ3 − λ2
2 + λ2λ4 − λ2

3 + a sin2 θ. (5.12)

Considering (5.9) and (5.12) we get

4∥H(p)∥2 − 8K(p) + 8a sin2 θ = (λ1 − 3λ3)
2 + (λ2 − λ4)

2 ≥ 0, (5.13)

which shows the proof of statement (ii). 2
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Remark 5.3 Suppose each of the orthonormal vectors ei of TpM is not parallel and the equality case of (5.3)

holds at the point p ∈ M in Theorem 5.2. If we choose another orthonormal basis {e′1, e′2} of TpM for which

each vector is parallel then it is obvious from the proof of Theorem 5.2 that the equality case of (5.4) also holds

for the point p ∈ M .

For these reasons, we can state the following definition:

Definition 5.4 A proper product pointwise slant surface of a 4-dimensional almost constant curvature manifold

is called special pointwise slant if the shape operator of the surface takes the following form with respect to some

adapted orthonormal frame {e1, e2, e3, e4} ,

Ae3 =

(
cλ 0
0 λ

)
and Ae4 =

(
0 λ
λ 0

)
, (5.14)

for any c and λ that are real numbers.

Theorem 5.5 Let M be a product pointwise slant surface of a 4-dimensional almost constant curvature

manifold M̃(a, b) . Then the following statements occur:

a. If M is totally geodesic then it is also special slant.

b. The surface M is minimal if and only if c = −1 .

c. If c = 1 then M preserves the Riemannian curvature tensor.

d. Let M is minimal then M preserves the Riemannian curvature tensor if and only if it is totally

geodesic.

e. The surface M has the best living way; that is, its energy density receives optimum value. (The notion

of “best living way was introduced by Chen in [12, 16], etc.)

Remark 5.6 The surface in Euclidean 4-space satisfying (5.14) for c = −1 caught the special attention of

geometers (see [19, 20], etc.) in many ways. Such a surface was named a minimal superconformal surface by

Milousheva in [27].

Let E 4 = E 2×E 2 be the 4-dimensional Euclidean space endowed with the Euclidean metric. Let F be

a product structure on E 4 by

F (X) = F (x1, x2, x3, x4) = (x2, x1, x4, x3) (5.15)

for any X ∈ E 4 .

Now we give the following proper pointwise slant surface examples with respect to the almost product

structure F given in (5.15).

Example 5.7 Consider in E 4 the submanifold given by

X(u, v) = (cosh v cosu, sinh v cosu, cosh v sinu, sinh v sinu) (5.16)

for v ∈ R− {0} and 0 < u < π
2 . Then we have

∂X

∂u
= (− cosh v sinu,− sinh v sinu, cosh v cosu, sinh v cosu),

∂X

∂v
= (sinh v cosu, cosh v cosu, sinh v sinu, cosh v sinu). (5.17)
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Thus, we have the following orthonormal basis of E 4 :

{e1 =
∂X
∂u

∥∂X
∂u ∥

=
1

sinh2 v + cosh2 v
(− cosh v sinu,− sinh v sinu, cosh v cosu, sinh v cosu),

e2 =
∂X
∂v

∥∂X
∂v ∥

=
1

sinh2 v + cosh2 v
(sinh v cosu, cosh v cosu, sinh v sinu, cosh v sinu),

e3 =
1

sinh2 v + cosh2 v
(− cosh v cosu, sinh v cosu,− cosh v sinu, sinh v sinu),

e4 =
1

sinh2 v + cosh2 v
(sinh v sinu, cosh v sinu,− sinh v cosu,− cosh v cosu)},

where the tangent space of the surface X(u, v) is spanned by e1 and e2 . Then the surface is a proper pointwise

slant surface with the Wirtinger function θ = arccos cosh v sinh v
sinh2 v+cosh2 v

.

Furthermore, the second derivatives of the surface X(u, v) are expressed as follows:

Xuu(u, v) = (− cosh v cosu,− sinh v cosu,− cosh v sinu,− sinh v sinu),

Xuv(u, v) = (− sinh v cosu,− cosh v sinu, sinh v cosu, cosh v cosu),

Xvv(u, v) = (cosh v cosu, sinh v cosu, cosh v sinu, sinh v sinu).

(5.18)

Thus, the components of the second fundamental form are

⟨σ(e1, e1), e3⟩ = ⟨Xuu, e3⟩ =
1

sinh2 v + cosh2 v
,

⟨σ(e1, e2), e3⟩ = ⟨Xuv, e3⟩ = 0,

⟨σ(e2, e2), e3⟩ = ⟨Xvv, e3⟩ = − 1

sinh2 v + cosh2 v

⟨σ(e1, e1), e4⟩ = ⟨Xuu, e3⟩ = 0,

⟨σ(e1, e2), e4⟩ = ⟨Xuv, e3⟩ = − 1

sinh2 v + cosh2 v
,

⟨σ(e2, e2), e3⟩ = ⟨Xvv, e3⟩ = 0,

which imply that the surface is a special pointwise slant surface.

The surface given in Example 5.7 is a tensor product surface of E 4 , which was defined in [25] and studied

in [1, 2, 6, 4, 5, 26], etc.

Example 5.8 Consider in E 4 = E 2 × E 2 the surface given by

X(u, v) = (cosu, cos v, sinu, sin v), u, v ∈ (0,
π

2
). (5.19)

The surface is a proper pointwise slant surface with the Wirtinger function θ = |u− v| , but it is not special.

We also note that the surfaces given in Example 5.7 and Example 5.8 are members of a larger family of

surfaces studied by Dursun and Turgay in [21, 22].
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