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We employ the sinc-Galerkin method to obtain approximate solutions of space-fractional order partial differential equations
(FPDEs) with variable coefficients. The fractional derivatives are used in the Caputo sense.Themethod is applied to three different
problems and the obtained solutions are compared with the exact solutions of the problems. These comparisons demonstrate that
the sinc-Galerkin method is a very efficient tool in solving space-fractional partial differential equations.

1. Introduction

Fractional calculus, which might be considered as an exten-
sion of classical calculus, is as old as the classical calculus
and fractional differential equations have been often used
to describe many scientific phenomena in biomedical engi-
neering, image processing, earthquake engineering, signal
processing, physics, statistics, electrochemistry, and control
theory.

Because finding the exact or analytical solutions of frac-
tional order differential equations is not an easy task, several
different numerical solution techniques have been developed
for the approximate solutions of these types of equations.
Someof thewell-knownnumerical techniquesmight be listed
as generalized differential transform method [1, 2], finite dif-
ference method [3], Adomian decomposition method [4, 5],
homotopy perturbation method [6–8], Haar wavelet method
[9, 10], differential transform method [11–13], and Adams-
Bashforth-Moulton scheme [14]. A detailed and informative
study on fractional calculus can be found in [15]. Furthermore
a relatively new analytical method was presented in [16]
to solve time “The Time-Fractional Coupled-Korteweg-de-
Vries Equations” via homotopy decompositionmethod by the
same authors. The sinc methods were introduced in [17] and
expanded in [18] by Frank Stenger. Sinc functions were firstly

analyzed in [19, 20]. In [21], the sinc-Galerkinmethod is used
to approximate solutions of nonlinear differential equations
with homogeneous and nonhomogeneous boundary condi-
tions. In [22], the sinc-Galerkin method is applied to non-
linear fourth-order differential equations with nonhomo-
geneous and homogeneous boundary conditions. In the
paper at [23], the numerical solutions of Troesch’s problem
are obtained by the sinc-Galerkin method and the results
are compared with methods of Laplace, homotopy per-
turbation, splines, and perturbation. Reference [24] which
contains short abstract version of current paper has been
presented in an International Conference and Workshop on
Mathematical Analysis 2014, Malaysia. In [25], the authors
present a comparison between sinc-Galerkin method and
sinc-collocation method to obtain approximate solutions of
linear and nonlinear boundary value problems. Similarly,
the wavelet-Galerkin method and the sinc-Galerkin method
for solving nonhomogeneous heat equations are compared
in [26]. The paper [27] offers an application of the sinc-
Galerkinmethod for solving second-order singularDirichlet-
type boundary value problems. In [28], the sinc-Galerkin
method is used to approximate solutions of fractional order
ordinary differential equations in Caputo sense.

In this paper we propose a new solution technique
for approximate solution of space-fractional order partial
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differential equations (FPDEs) with variable coefficients and
boundary conditions by using the sinc-Galerkin method that
has almost not been employed for the space-fractional order
partial differential equations in the form

𝑢
𝑡𝑡

= 𝑎(𝑥)𝑢
𝑥𝑥

+ 𝑏 (𝑥)
𝐶

0
𝐷

𝛽

𝑥
𝑢 + 𝑐 (𝑥) 𝑢 + 𝑓 (𝑥, 𝑡) ,

0 < 𝛽 < 1

(1)

with boundary conditions
𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 1) = 0,

(2)

where 𝐶
0
𝐷
𝑥
is Caputo fractional derivative operator.

The paper is organized as follows. Section 2 presents basic
theorems of fractional calculus and sinc-Galerkin method.
In Section 3, we use the sinc-Galerkin method to obtain an
approximate solution of a general space-fractional partial
differential equation. In Section 4, we present three examples
in order to illustrate the effectiveness and accuracy of the
present method. The obtained results are compared with the
exact results.

2. Preliminaries

2.1. Fractional Calculus. In this section, we present the defini-
tions of the fractional Riemann-Liouville derivative and the
Caputo of fractional derivatives. By using these definitions,
we give the definition of the integration by parts of fractional
order.

Definition 1 (see [29]). Let 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → R be a func-
tion; 𝛼 is a positive real number, and 𝑛 is the integer. 𝛼, 𝑛
satisfy the inequality 𝑛 − 1 ≤ 𝛼 < 𝑛 and Γ the Euler gamma
function. Then,

(i) the left and right Riemann-Liouville fractional deriv-
atives of order 𝛼 with respect to 𝑥 of 𝑓(𝑥, 𝑡) function
are given as

𝑎
𝐷
𝛼

𝑥
𝑓 (𝑥, 𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥
𝑛
∫

𝑥

𝑎

(𝑥 − 𝑠)
𝑛−𝛼−1

𝑓 (𝑠, 𝑡) 𝑑𝑠,

(3)

𝑥
𝐷
𝛼

𝑏
𝑓 (𝑥, 𝑡) =

(−1)
𝑛

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥
𝑛
∫

𝑏

𝑥

(𝑠 − 𝑥)
𝑛−𝛼−1

𝑓 (𝑠, 𝑡) 𝑑𝑠,

(4)
respectively;

(ii) the left and right Caputo fractional derivatives of
order 𝛼 with respect to 𝑥 of 𝑓(𝑥, 𝑡) function are given
as

𝐶

𝑎
𝐷

𝛼

𝑥
𝑓 (𝑥, 𝑡) =

1

Γ (𝑛 − 𝛼)

∫

𝑥

𝑎

(𝑥 − 𝑠)
𝑛−𝛼−1 𝜕

𝑛
𝑓 (𝑠, 𝑡)

𝜕𝑠
𝑛

𝑑𝑠, (5)

𝐶

𝑥
𝐷

𝛼

𝑏
𝑓 (𝑥, 𝑡) =

1

Γ (𝑛 − 𝛼)

∫

𝑏

𝑥

(−1)
𝑛
(𝑠 − 𝑥)

𝑛−𝛼−1 𝜕
𝑛
𝑓 (𝑠, 𝑡)

𝜕𝑠
𝑛

𝑑𝑠,

(6)
respectively.

Now, we can write the definition of integration by parts of
fractional order by using the relations given in (3)–(6).

Definition 2. If 0 < 𝛼 < 1 and 𝑓 is a function such that
𝑓(𝑎, 𝑡) = 𝑓(𝑏, 𝑡) = 0, one can write

∫

𝑏

𝑎

𝑔 (𝑥, 𝑡)
𝐶

𝑎
𝐷

𝛼

𝑥
𝑓 (𝑥, 𝑡) 𝑑𝑥 = ∫

𝑏

𝑎

𝑓 (𝑥, 𝑡)
𝑥
𝐷
𝛼

𝑏
𝑔 (𝑥, 𝑡) 𝑑𝑥,

∫

𝑏

𝑎

𝑔 (𝑥, 𝑡)
𝐶

𝑥
𝐷

𝛼

𝑏
𝑓 (𝑥, 𝑡) 𝑑𝑥 = ∫

𝑏

𝑎

𝑓 (𝑥, 𝑡)
𝑎
𝐷
𝛼

𝑥
𝑔 (𝑥, 𝑡) 𝑑𝑥.

(7)

2.2. Properties of Sinc Basis Functions and Quadrature Inter-
polations. In this section, we recall notations and definitions
of the sinc function state some known results and derive some
useful formulas to be used in the next sections of the present
paper.

2.2.1. The Sinc Basis Functions

Definition 3 (see [30]). The function which defined all 𝑧 ∈ C

by

sinc (𝑧) =

{
{

{
{

{

sin (𝜋𝑧)

𝜋𝑧

, 𝑧 ̸= 0,

1, 𝑧 = 0

(8)

is called the sinc function.

Definition 4 (see [30]). Let 𝑓 be a function defined onR and
let ℎ > 0. Define the series

𝐶 (𝑓, ℎ) (𝑥) =

∞

∑

𝑘=−∞

𝑓 (𝑘ℎ) sinc(𝑥 − 𝑘ℎ

ℎ

) , (9)

where from (8) we have

𝑆 (𝑘, ℎ) (𝑥) = sinc(𝑥 − 𝑘ℎ

ℎ

)

=

{
{

{
{

{

sin (𝜋 ((𝑥 − 𝑘ℎ) /ℎ))

𝜋 ((𝑥 − 𝑘ℎ) /ℎ)

𝑥 ̸= 𝑘ℎ,

1, 𝑥 = 𝑘ℎ.

(10)

If the series in (9) converges, it is called theWhittaker cardinal
function of 𝑓. They are based on the infinite strip 𝐷

𝑠
in the

complex plane

𝐷
𝑠
≡ {𝑤 = 𝑢 + 𝑖V : |V| < 𝑑 ≤

𝜋

2

} . (11)

Generally, approximations can be constructed for infinite,
semi-infinite, and finite intervals. Define the function

𝑤 = 𝜙 (𝑧) = ln(

𝑧

1 − 𝑧

) (12)
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Figure 1: The domains 𝐷
𝐸
and 𝐷

𝑆
.

which is a conformal mapping from 𝐷
𝐸
, the eye-shaped

domain in the 𝑧-plane, onto the infinite strip 𝐷
𝑆
, where

𝐷
𝐸
= 𝑧 = {𝑥 + 𝑖𝑦 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

arg(

𝑧

1 − 𝑧

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝑑 ≤

𝜋

2

} . (13)

This is shown in Figure 1. For the sinc-Galerkin method, the
bases functions are derived from the composite translated
sinc functions

𝑆
𝑘
(𝑧) = 𝑆 (𝑘, ℎ) (𝑧) o𝜙 (𝑧) = sinc(

𝜙 (𝑧) − 𝑘ℎ

ℎ

) , (14)

where 𝑧 ∈ 𝐷
𝐸
. The function 𝑧 = 𝜙

−1
(𝑤) = 𝑒

𝑤
/(1 + 𝑒

𝑤
) is an

inverse mapping of𝑤 = 𝜙(𝑧). Wemay define the range of 𝜙−1
on the real line as

Γ = {𝜙
−1

(𝑢) ∈ 𝐷
𝐸
: −∞ < 𝑢 < ∞} (15)

evenly spaced nodes {𝑘ℎ}
∞

𝑘=−∞
on the real line. The image

which corresponds to these nodes is denoted by

𝑥
𝑘
= 𝜙

−1
(𝑘ℎ) =

𝑒
𝑘ℎ

1 + 𝑒
𝑘ℎ

. (16)

2.2.2. Sinc Function Interpolation and Quadrature

Definition 5 (see [21]). Let𝐷
𝐸
be a simply connected domain

in the complex plane 𝐶 and let 𝜕𝐷
𝐸
denote the boundary of

𝐷
𝐸
. Let 𝑎, 𝑏 be points on 𝜕𝐷

𝐸
and let 𝜙 be a conformal map

𝐷
𝐸
onto𝐷

𝑆
such that𝜙(𝑎) = −∞ and𝜙(𝑏) = ∞. If the inverse

map of 𝜙 is denoted by 𝜑, define

Γ = {𝜙
−1

(𝑢) ∈ 𝐷
𝐸
: −∞ < 𝑢 < ∞} , (17)

and 𝑧
𝑘
= 𝜑(𝑘ℎ), 𝑘 = ±1, ±2, . . ..

Definition 6 (see [21]). Let 𝐵(𝐷
𝐸
) be the class of functions 𝐹

that are analytic in 𝐷
𝐸
and satisfy

∫

𝜓(𝐿+𝑢)

|𝐹 (𝑧)| 𝑑𝑧 󳨀→ 0, as 𝑢 = ∓∞, (18)

in which

𝐿 = {𝑖𝑦 :
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
< 𝑑 ≤

𝜋

2

} , (19)

and those on the boundary of 𝐷
𝐸
satisfy

𝑇 (𝐹) = ∫

𝜕𝐷𝐸

|𝐹 (𝑧) 𝑑𝑧| < ∞. (20)

Theorem 7 (see [21]). Let Γ be (0, 1), 𝐹 ∈ 𝐵(𝐷
𝐸
); then, for ℎ >

0 sufficiently small,

∫

Γ

𝐹 (𝑧) 𝑑𝑧 − ℎ

∞

∑

𝑗=−∞

𝐹 (𝑧
𝑗
)

𝜙
󸀠
(𝑧
𝑗
)

=

𝑖

2

∫

𝜕𝐷

𝐹 (𝑧) 𝑘 (𝜙, ℎ) (𝑧)

sin (𝜋𝜙 (𝑧) /ℎ)

𝑑𝑧 ≡ 𝐼
𝐹
,

(21)

where
󵄨
󵄨
󵄨
󵄨
𝑘 (𝜙, ℎ)

󵄨
󵄨
󵄨
󵄨𝑧∈𝜕𝐷

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
[(𝑖𝜋𝜙(𝑧)/ℎ) sgn(𝐼𝑚𝜙(𝑧))]󵄨󵄨

󵄨
󵄨
󵄨𝑧∈𝜕𝐷

= 𝑒
−𝜋𝑑/ℎ

. (22)

For the sinc-Galerkinmethod, the infinite quadrature rulemust
be truncated to a finite sum.The following theorem indicates the
conditions under which an exponential convergence results.

Theorem8 (see [21]). If there exist positive constants 𝛼, 𝛽, and
𝐶 such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹 (𝑥)

𝜙
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶

{

{

{

𝑒
−𝛼|𝜙(𝑥)|

, 𝑥 ∈ 𝜓 ((−∞,∞))

𝑒
−𝛽|𝜙(𝑥)|

, 𝑥 ∈ 𝜓 ((0,∞)) ,

(23)

then the error bound for the quadrature rule (21) is
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Γ

𝐹 (𝑥) 𝑑𝑥 − ℎ

𝑁

∑

𝑗=−𝑀

𝐹 (𝑥
𝑗
)

𝜙
󸀠
(𝑥
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶(

𝑒
−𝛼𝑀ℎ

𝛼

+

𝑒
−𝛽𝑁ℎ

𝛽

) +
󵄨
󵄨
󵄨
󵄨
𝐼
𝐹

󵄨
󵄨
󵄨
󵄨
.

(24)

The infinite sum in (21) is truncated with the use of (23) to
arrive at inequality (24). Making the selections

ℎ = √
𝜋𝑑

𝛼𝑀

,

𝑁 ≡ ⟦

𝛼𝑀

𝛽

+ 1⟧ ,

(25)

where ⟦ ⋅ ⟧ is an integer part of the statement and 𝑀 is the
integer value which specifies the grid size, then

∫

Γ

𝐹 (𝑥) 𝑑𝑥 = ℎ

𝑁

∑

𝑗=−𝑀

𝐹 (𝑥
𝑗
)

𝜙
󸀠
(𝑥
𝑗
)

+ 𝑂(𝑒
−(𝜋𝛼𝑑𝑀)

1/2

) . (26)

We used these theorems to approximate the integrals that arise
in the formulation of the discrete systems corresponding to a
second-order boundary value problem.

3. The Sinc-Galerkin Method

Consider fractional boundary value problem

𝑢
𝑡𝑡

= 𝑎(𝑥)𝑢
𝑥𝑥

+ 𝑏 (𝑥)
𝐶

0
𝐷

𝛽

𝑥
𝑢 + 𝑐 (𝑥) 𝑢 + 𝑓 (𝑥, 𝑡) , 0 < 𝛽 < 1

(27)

with boundary conditions

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 1) = 0,

(28)
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where 𝐶

0
𝐷
𝑡
is Caputo fractional derivative operator. An

approximate solution for 𝑢(𝑥, 𝑡) is represented by the formula

𝑢
𝑚𝑥,𝑚𝑡

(𝑥, 𝑡) =

𝑁𝑡

∑

𝑗=−𝑀𝑡

𝑁𝑥

∑

𝑖=−𝑀𝑥

𝑢
𝑖𝑗
𝑆
𝑖𝑗
(𝑥, 𝑡) , (29)

where 𝑚
𝑥

= 𝑀
𝑥
+ 𝑁

𝑥
+ 1 and 𝑚

𝑡
= 𝑀

𝑡
+ 𝑁

𝑡
+ 1. The basis

functions {𝑆
𝑖𝑗
(𝑥, 𝑡)} are given by

𝑆
𝑖𝑗
(𝑥, 𝑡) = 𝑆

𝑖
(𝑥) 𝑆

𝑗
(𝑡) = [𝑆 (𝑖, ℎ

𝑥
) 𝑜𝜙 (𝑥)] [𝑆 (𝑗, ℎ

𝑡
) 𝑜𝛾 (𝑡)] ,

(30)

where

𝜙 (𝑥) = ln(

𝑥

1 − 𝑥

) ,

𝛾 (𝑡) = ln(

𝑡

1 − 𝑡

) .

(31)

The unknown coefficients 𝑢
𝑖𝑗
in (29) are determined by

orthogonalizing the residual with respect to the functions
{𝑆
𝑘𝑙
(𝑥, 𝑡)}, −𝑀

𝑥
≤ 𝑘 ≤ 𝑁

𝑥
, −𝑀

𝑡
≤ 𝑙 ≤ 𝑁

𝑡
. This yields the

discrete Galerkin system

⟨𝐿𝑢
𝑚𝑥,𝑚𝑡

− 𝑓 (𝑥, 𝑡) , 𝑆
𝑘𝑙
⟩ = 0,

−𝑀
𝑥
≤ 𝑘 ≤ 𝑁

𝑥
, −𝑀

𝑡
≤ 𝑙 ≤ 𝑁

𝑡
,

(32)

where inner product is defined by

⟨𝑓, 𝑔⟩ = ∬

1

0

𝑓 (𝑥, 𝑡) 𝑔 (𝑥, 𝑡)𝑊 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡, (33)

where 𝑊(𝑥) is weight function and it is convenient to take

𝑊(𝑥, 𝑡) = 𝑤 (𝑥) V (𝑡) = [

1

[𝜙
󸀠
(𝑥)]

(1/2)
] [𝛾

󸀠
(𝑡)]

−1/2

(34)

for the problem (27)-(28).

Lemma 9 (see [23]). Let 𝜙 be the conformal one-to-one map-
ping of the simply connected domain𝐷

𝐸
onto𝐷

𝑆
, given by (12).

Then

𝛿
(0)

𝑗𝑘
= [𝑆 (𝑗, ℎ) o𝜙 (𝑥)]

󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑘

= {

1, 𝑗 = 𝑘,

0, 𝑗 ̸= 𝑘,

𝛿
(1)

𝑗𝑘
= ℎ

𝑑

𝑑𝜙

[𝑆 (𝑗, ℎ) o𝜙 (𝑥)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑘

=

{
{

{
{

{

0, 𝑗 = 𝑘,

(−1)
𝑘−𝑗

𝑘 − 𝑗

, 𝑗 ̸= 𝑘,

𝛿
(2)

𝑗𝑘
= ℎ

2 𝑑
2

𝑑𝜙
2
[𝑆 (𝑗, ℎ) o𝜙 (𝑥)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑘

=

{
{
{
{

{
{
{
{

{

−

𝜋
2

3

, 𝑗 = 𝑘,

−2 (−1)
𝑘−𝑗

(𝑘 − 𝑗)
2

, 𝑗 ̸= 𝑘.

(35)

The following theorems which can easily be proven by using
Lemma 9 and definitions are used to solve (27).

Theorem 10 (see [31]). The following relations hold:

⟨𝑢
𝑡𝑡
, 𝑆
𝑘
𝑆
𝑙
⟩ ≅ ℎ

𝑡
ℎ
𝑥

𝑤 (𝑥
𝑘
)

𝜙
󸀠
(𝑥
𝑘
)

𝑁𝑡

∑

𝑗=−𝑀𝑡

2

∑

𝑖=0

𝑢 (𝑥
𝑘
, 𝑡
𝑗
)

𝛾
󸀠
(𝑡
𝑗
)

[

1

ℎ
𝑖

𝑡

𝛿
(𝑖)

𝑙𝑗
𝜂
𝑖
] ,

⟨𝑎(𝑥)𝑢
𝑥𝑥

, 𝑆
𝑘
𝑆
𝑙
⟩ ≅ ℎ

𝑥
ℎ
𝑡

V (𝑡
𝑙
)

𝛾
󸀠
(𝑡
𝑙
)

𝑁𝑥

∑

𝑖=−𝑀𝑥

2

∑

𝑗=0

𝑢 (𝑥
𝑖
, 𝑡
𝑙
)

𝜙
󸀠
(𝑥
𝑖
)

[

1

ℎ
𝑗

𝑥

𝛿
(𝑗)

𝑘𝑖
𝜌
𝑗
] ,

⟨𝑐 (𝑥) 𝑢, 𝑆
𝑘
𝑆
𝑙
⟩ ≅ ℎ

𝑡
ℎ
𝑥

𝑤 (𝑥
𝑘
) 𝑐 (𝑥

𝑘
) 𝑢 (𝑥

𝑘
, 𝑡
𝑙
) V (𝑡

𝑙
)

𝜙
󸀠
(𝑥
𝑘
) 𝛾
󸀠
(𝑡
𝑙
)

,

⟨𝑓 (𝑥, 𝑡) , 𝑆
𝑘
𝑆
𝑙
⟩ ≅ ℎ

𝑡
ℎ
𝑥

𝑤 (𝑥
𝑘
) 𝑓 (𝑥

𝑘
, 𝑡
𝑙
) V (𝑡

𝑙
)

𝜙
󸀠
(𝑥
𝑘
) 𝛾
󸀠
(𝑡
𝑙
)

,

(36)

where

𝜂
2
= (𝛾

󸀠
)

2

V,

𝜂
1
= 𝛾

󸀠󸀠V + 2V󸀠𝛾󸀠,

𝜂
0
= V󸀠󸀠,

𝜌
2
= (𝜙

󸀠
)

2

𝑎𝑤,

𝜌
1
= 𝜙

󸀠󸀠
𝑎𝑤 + 2𝜙

󸀠
(𝑎𝑤

󸀠
+ 𝑎

󸀠
𝑤) ,

𝜌
0
= 𝑎

󸀠󸀠
𝑤 + 2𝑎

󸀠
𝑤
󸀠
+ 𝑎𝑤

󸀠󸀠
.

(37)

Proof. See [31].

Theorem 11. For 0 < 𝛽 < 1, the following relations hold:

⟨𝑏 (𝑥)
𝐶

0
𝐷

𝛽

𝑥
𝑢, 𝑆

𝑘
𝑆
𝑙
⟩

≅

−ℎ
𝑥
ℎ
𝑡

Γ (1 − 𝛽)

V (𝑡
𝑙
)

𝛾
󸀠
(𝑡
𝑙
)

×

𝑁𝑥

∑

𝑖=−𝑀𝑥

𝑢 (𝑥
𝑖
, 𝑡
𝑙
)

𝜙
󸀠
(𝑥
𝑖
)

𝑑

𝑑𝑥

[ℎ
𝑃

𝑃

∑

𝑟=−𝑃

(𝑦
𝑟
− 𝑥)

−𝛽

𝑅 (𝑦
𝑟
)

𝜇
󸀠
(𝑦
𝑟
)

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑖

,

(38)

where 𝑅(𝑥) = 𝑏(𝑥)𝑆
𝑘
(𝑥)𝑤(𝑥), 𝜇(𝑠) = ln((𝑠 − 𝑥)/(1 − 𝑠)), and

ℎ
𝑃
= 𝜋/√𝑃.

Proof. The inner product with sinc basis elements of
𝑏(𝑥)

𝐶

0
𝐷

𝛽

𝑥
𝑢 is given by

⟨𝑏 (𝑥)
𝐶

0
𝐷

𝛽

𝑥
𝑢, 𝑆

𝑘
𝑆
𝑙
⟩

= ∬

1

0

𝑏 (𝑥)
𝐶

0
𝐷

𝛽

𝑥
𝑢 (𝑥, 𝑡) 𝑆

𝑘
(𝑥) 𝑆

𝑙
(𝑡) 𝑤 (𝑥) V (𝑡) 𝑑𝑥 𝑑𝑡.

(39)
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Using Definition 2, we can write

⟨𝑏 (𝑥)
𝐶

0
𝐷

𝛽

𝑥
𝑢, 𝑆

𝑘
𝑆
𝑙
⟩

= ∬

1

0

𝑏 (𝑥)
𝐶

0
𝐷

𝛽

𝑥
𝑢 (𝑥, 𝑡) 𝑆

𝑘
(𝑥) 𝑆

𝑙
(𝑡) 𝑤 (𝑥) V (𝑡) 𝑑𝑥 𝑑𝑡

= ∬

1

0

𝑢 (𝑥, 𝑡) 𝑆
𝑙
(𝑡) V (𝑡)

𝑥
𝐷

𝛽

1
(𝑏 (𝑥) 𝑆

𝑘
(𝑥) 𝑤 (𝑥)) 𝑑𝑥 𝑑𝑡,

(40)

where 𝑅(𝑥) = 𝑏(𝑥)𝑆
𝑘
(𝑥)𝑤(𝑥). By the definition of the Rie-

mann-Liouville fractional derivative, we have

𝑥
𝐷

𝛽

1
𝑅 (𝑥) = −

1

Γ (1 − 𝛽)

𝑑

𝑑𝑥

∫

1

𝑥

(𝑠 − 𝑥)
−𝛽

𝑅 (𝑠) 𝑑𝑠. (41)

We will use the sinc quadrature rule given with (26) to
compute it because the integral given in last equality is diver-
gent on the interval [𝑡, 1]. For this purpose, a conformal map
and its inverse image that denotes the sinc grid points are
given by

𝜇 (𝑠) = ln(

𝑠 − 𝑥

1 − 𝑠

) ,

𝑦
𝑟
= 𝜇

−1
(𝑟ℎ

𝑃
) =

𝑒
𝑟ℎ𝑃

+ 𝑥

1 + 𝑒
𝑟ℎ𝑃

,

(42)

respectively. Then, according to equality (26) we can write

−

1

Γ (1 − 𝛽)

𝑑

𝑑𝑥

∫

1

𝑥

(𝑠 − 𝑥)
−𝛽

𝑅 (𝑠) 𝑑𝑠

≅ −

1

Γ (1 − 𝛽)

𝑑

𝑑𝑥

[ℎ
𝑃

𝑃

∑

𝑟=−𝑃

(𝑦
𝑟
− 𝑥)

−𝛽

𝑅 (𝑦
𝑟
)

𝜇
󸀠
(𝑦
𝑟
)

] = 𝑁 (𝑥) ,

(43)

where ℎ
𝑃
= 𝜋/√𝑃. As a result, it can be written in the follow-

ing way:

⟨𝑏(𝑥)
𝐶

0
𝐷

𝛽

𝑥
𝑢, 𝑆

𝑘
𝑆
𝑙
⟩ ≅ ∬

1

0

𝑢 (𝑥, 𝑡) 𝑆
𝑙
(𝑡) V (𝑡)𝑁 (𝑥) 𝑑𝑥 𝑑𝑡.

(44)

Now, applying the sinc quadrature rule with respect to 𝑥 and
𝑡 in last integral, we obtain

∬

1

0

𝑢 (𝑥, 𝑡) 𝑆
𝑙
(𝑡) V (𝑡)𝑁 (𝑥) 𝑑𝑥 𝑑𝑡

≅ ℎ
𝑥
ℎ
𝑡

𝑁𝑥

∑

𝑖=𝑀𝑥

𝑁𝑡

∑

𝑛=−𝑀𝑡

𝑢 (𝑥
𝑖
, 𝑡
𝑛
) V (𝑡

𝑛
) 𝑆
𝑙
(𝑡
𝑛
)𝑁 (𝑥

𝑖
)

𝜙
󸀠
(𝑥
𝑖
) 𝛾
󸀠
(𝑡
𝑛
)

.

(45)

Consequently, using 𝑆
𝑙
(𝑡)|

𝑡=𝑡𝑛
= 𝛿

(0)

ln = 𝛿ln we obtain

⟨𝑏 (𝑥)
𝐶

0
𝐷

𝛽

𝑥
𝑢, 𝑆

𝑘
𝑆
𝑙
⟩

≅

−ℎ
𝑥
ℎ
𝑡

Γ (1 − 𝛽)

V (𝑡
𝑙
)

𝛾
󸀠
(𝑡
𝑙
)

×

𝑁𝑥

∑

𝑖=−𝑀𝑥

𝑢 (𝑥
𝑖
, 𝑡
𝑙
)

𝜙
󸀠
(𝑥
𝑖
)

𝑑

𝑑𝑥

[ℎ
𝑃

𝑃

∑

𝑟=−𝑃

(𝑦
𝑟
− 𝑥)

−𝛽

𝑅 (𝑦
𝑟
)

𝜇
󸀠
(𝑦
𝑟
)

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑖

.

(46)

This completes the proof.

Replacing each term of (32) with the approximation
defined inTheorems 10 and 11, replacing 𝑢(𝑥

𝑘
, 𝑡
𝑗
) by 𝑢

𝑘𝑗
, and

dividing by ℎ
𝑡
ℎ
𝑥
we obtain the following theorem.

Theorem 12. If the assumed approximate solution of the
boundary-value problem (27)-(28) is (29), then the discrete
sinc-Galerkin system for the determination of the unknown
coefficients {𝑢

𝑘𝑗
, −𝑀

𝑥
≤ 𝑘 ≤ 𝑁

𝑥
, −𝑀

𝑡
≤ 𝑗 ≤ 𝑁

𝑡
} is given

by

𝑤 (𝑥
𝑘
)

𝜙
󸀠
(𝑥
𝑘
)

𝑁𝑡

∑

𝑗=−𝑀𝑡

2

∑

𝑖=0

𝑢
𝑘𝑗

𝛾
󸀠
(𝑡
𝑗
)

[

1

ℎ
𝑖

𝑡

𝛿
(𝑖)

𝑙𝑗
𝜂
𝑖
]

=

V (𝑡
𝑙
)

𝛾
󸀠
(𝑡
𝑙
)

𝑁𝑥

∑

𝑖=−𝑀𝑥

2

∑

𝑗=0

𝑢
𝑖𝑙

𝜙
󸀠
(𝑥
𝑖
)

[

1

ℎ
𝑗

𝑥

𝛿
(𝑗)

𝑘𝑖
𝜌
𝑗
]

−

1

Γ (1 − 𝛽)

V (𝑡
𝑙
)

𝛾
󸀠
(𝑡
𝑙
)

×

𝑁𝑥

∑

𝑖=−𝑀𝑥

𝑢
𝑖𝑙

𝜙
󸀠
(𝑥
𝑖
)

𝑑

𝑑𝑥

[ℎ
𝑃

𝑃

∑

𝑟=−𝑃

(𝑦
𝑟
− 𝑥)

−𝛽

𝑅 (𝑦
𝑟
)

𝜇
󸀠
(𝑦
𝑟
)

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑖

+

𝑤 (𝑥
𝑘
) 𝑐 (𝑥

𝑘
) 𝑢
𝑘𝑙
V (𝑡

𝑙
)

𝜙
󸀠
(𝑥
𝑘
) 𝛾
󸀠
(𝑡
𝑙
)

+

𝑤 (𝑥
𝑘
) 𝑓 (𝑥

𝑘
, 𝑡
𝑙
) V (𝑡

𝑙
)

𝜙
󸀠
(𝑥
𝑘
) 𝛾
󸀠
(𝑡
𝑙
)

.

(47)

We introduce the following notations in order the write the
system above in a matrix-vector form. Let 𝐼

(𝑃)

𝑚𝑥
, 𝑃 = 0, 1, 2

be the 𝑚
𝑥

× 𝑚
𝑥
matrices 𝐼

(𝑃), with 𝑗𝑘th entry 𝛿
(𝑃)

𝑗𝑘
as given

by Lemma 9. Further, 𝐷(𝑔
𝑥
) is an 𝑚

𝑥
× 𝑚

𝑥
diagonal matrix

whose diagonal entries are

[𝑔 (𝑥
−𝑀𝑥

) , 𝑔 (𝑥
−𝑀𝑥+1

) , . . . , 𝑔 (𝑥
0
) , . . . , 𝑔 (𝑥

𝑁𝑥
)]

𝑇

. (48)
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The matrices 𝐼(𝑃)
𝑚𝑡

, 𝑃 = 0, 1, 2, and 𝐷(𝑔
𝑡
) are similarly defined

though of size 𝑚
𝑡
× 𝑚

𝑡
. Introducing this notation in (47) leads

to the matrix form

𝐷(

1

𝜙
󸀠
)𝐷 (𝑤)𝑈𝐷 (V) [

[

2

∑

𝑗=0

1

ℎ
𝑗

𝑡

𝐼
(𝑗)

𝑚𝑡
𝐷(

𝜂
𝑗

𝛾
󸀠V

)
]

]

𝑡

− [

2

∑

𝑖=0

1

ℎ
𝑖

𝑥

𝐼
(𝑖)

𝑚𝑥
𝐷(

𝜌
𝑖

(𝜙
󸀠
)

2

𝑤

)]𝐷(𝜙
󸀠
)𝐷 (𝑤)𝑈𝐷(

V
𝛾
󸀠
)

− [𝐵𝐷(

1

(𝜙
󸀠
)

2

𝑤

)]𝐷(𝜙
󸀠
)𝐷 (𝑤)𝑈𝐷(

V
𝛾
󸀠
)

− 𝐷(

𝑤

𝜙
󸀠
)𝐷 (𝑐)𝑈𝐷(

V
𝛾
󸀠
) = 𝐷(

𝑤

𝜙
󸀠
)𝐹𝐷(

V
𝛾
󸀠
) ,

(49)

where

𝐵 = −

1

Γ (1 − 𝛽)

𝑑

𝑑𝑥

[ℎ
𝑃

𝑃

∑

𝑟=−𝑃

(𝑦
𝑟
− 𝑥)

−𝛽

𝑅 (𝑦
𝑟
)

𝜇
󸀠
(𝑦
𝑟
)

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥𝑖

. (50)

Firstly multiplying this term with𝐷(𝜙
󸀠
) and secondly multiply-

ing it with 𝐷(𝛾
󸀠
) yield the equivalent system

Φ𝑋 + 𝑋Ψ = 𝐺, (51)

where
Φ = −𝐴1 − 𝐴2 − 𝐶,

Ψ = 𝐵1

(52)

for

𝐴1 = 𝐷(𝜙
󸀠
) [

2

∑

𝑖=0

1

ℎ
𝑖

𝑥

𝐼
(𝑖)

𝑚𝑥
𝐷(

𝜌
𝑖

(𝜙
󸀠
)

2

𝑤

)]𝐷(𝜙
󸀠
) ,

𝐴2 = 𝐷 (𝜙
󸀠
) [𝐵𝐷(

1

(𝜙
󸀠
)

2

𝑤

)]𝐷(𝜙
󸀠
) ,

𝐵1 =
[

[

2

∑

𝑗=0

1

ℎ
𝑗

𝑡

𝐼
(𝑗)

𝑚𝑡
𝐷(

𝜂
𝑗

𝛾
󸀠V

)
]

]

𝑡

𝐷(𝛾
󸀠
) ,

𝐶 = 𝐷 (𝑐) .

(53)

Furthermore,

𝐺 = 𝐷 (𝑤) 𝐹𝐷 (V) ,

𝑋 = 𝐷 (𝑤)𝑈𝐷 (V) .
(54)

Φ, Ψ, 𝑋, and 𝐺 have dimensions 𝑚
𝑥
× 𝑚

𝑥
, 𝑚

𝑡
× 𝑚

𝑡
, 𝑚

𝑥
× 𝑚

𝑡
,

and𝑚
𝑥
× 𝑚

𝑡
, respectively. At last, the𝑚

𝑥
× 𝑚

𝑡
matrices 𝑈 and

𝐹 have 𝑘𝑙th entries given by 𝑢
𝑘𝑙
and 𝑓(𝑥

𝑘
, 𝑡
𝑙
) = 𝑓(𝑒

𝑘ℎ
/(1 +

𝑒
𝑘ℎ

), 𝑒
𝑙ℎ
/(1 + 𝑒

𝑙ℎ
)), respectively.

To obtain the approximate solution equation (29), we need
to solve the system for 𝑈 which requires solving (51) for 𝑋.
Solution of (51) for 𝑋 is shown in [26].

4. Examples

In this section, the present method will be tested on three
different problems.

Example 1. Consider fractional boundary value problem

𝑢
𝑡𝑡

= 𝑢
𝑥𝑥

+
𝐶

0
𝐷

0.7

𝑥
𝑢 + 𝑓 (𝑥, 𝑡) ,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 1) = 0

(55)

which has the following exact solution:

𝑢 (𝑥, 𝑡) = 𝑥
2
(1 − 𝑥) 𝑡

3
(1 − 𝑡)

2 (56)

for

𝑓 (𝑥, 𝑡) = −2(1 − 𝑡)
2
𝑡
3
(1 − 𝑥) + 4(1 − 𝑡)

2
𝑡
3
𝑥

+ 6(1 − 𝑡)
2
𝑡 (1 − 𝑥) 𝑥

2
− 12 (1 − 𝑡) 𝑡

2

× (1 − 𝑥) 𝑥
2
+ 2𝑡

3
(1 − 𝑥) 𝑥

2
+ 0.334273

× (−1 + 𝑡)
2
𝑡
3
𝑥
1.3

(−5.12821 + 6.68896𝑥) .

(57)

Thenumerical solutionswhich are obtained by using the sinc-
Galerkin method (SGM) for this problem are presented in
Tables 1 and 2 for different values. Also, the graphs of exact
and approximate solutions for different values are presented
in Figures 2 and 3.

Example 2. Consider fractional boundary value problem

𝑢
𝑡𝑡

= 𝑒
𝑥
𝑢
𝑥𝑥

+ (𝑥
2
+ 1)

𝐶

0
𝐷

0.3

𝑥
𝑢 −

1

𝑥 + 1

𝑢 + 𝑓 (𝑥, 𝑡)

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0

𝑢 (𝑥, 0) = 𝑢 (𝑥, 1) = 0

(58)

which has the following exact solution:

𝑢 (𝑥, 𝑡) = 𝑥
2
(1 − 𝑥) sin (𝜋𝑡) (59)

for

𝑓 (𝑥, 𝑡)

= −𝜋
2
(1 − 𝑥) 𝑥

2 sin (𝜋𝑡) +

(1 − 𝑥) 𝑥
2 sin (𝜋𝑡)

1 + 𝑥

− 0.770383 (1 + 𝑥
2
) (1.68067𝑥

1.7
− 1.86741𝑥

2.7
)

× sin (𝜋𝑡) − 𝑒
𝑥
(2 (1 − 𝑥) sin (𝜋𝑡) − 4𝑥 sin (𝜋𝑡)) .

(60)

Thenumerical solutionswhich are obtained by using the sinc-
Galerkin method (SGM) for this problem are presented in
Tables 3 and 4. In addition, in Figures 4 and 5, the graphs
of exact and approximate solutions for different values are
presented.
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Example 3 (see [32]). Consider the fractional convection-dif-
fusion equation

𝜕
𝛾
𝑢 (𝑥, 𝑡)

𝜕𝑡
𝛾

= −𝑎 (𝑥)

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥
𝛼

+ 𝑏 (𝑥)

𝜕
𝛽
𝑢 (𝑥, 𝑡)

𝜕𝑥
𝛽

+ 𝑓 (𝑥, 𝑡)

0 < 𝛾 ≤ 2, 1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 1) = 0.

(61)

In particular, if 𝛾 = 2, 𝛼 = 2, 𝛽 = 0.35, 𝑎(𝑥) = Γ(2.35)Γ(2.65)

𝑥
0.35, 𝑏(𝑥) = Γ(0.7)Γ(1)𝑥

2.
The problem has the following exact solution:

𝑢 (𝑥, 𝑡) = (𝑥
1.7

− 𝑥
2
) sin (2𝜋𝑡) (62)

Table 1: Numerical results for 𝑃 = 3, 𝑀
𝑥

= 5, 𝑁
𝑥

= 5, 𝑀
𝑡
= 5,

𝑁
𝑡
= 3.

𝑡 𝑥 Exact sol. Num. sol. Error

0.03
0.3 0.00000160 0.000069824 0.000068223
0.6 0.00000365 0.000557026 0.000553368
0.9 0.00000205 0.000286490 0.000284433

0.06
0.3 0.00001202 −0.000160475 0.000172499
0.6 0.00002748 0.000688434 0.000660950
0.9 0.00001545 0.000405155 0.000389695

0.09
0.3 0.00003803 −0.000317899 0.000355931
0.6 0.00008693 0.000879725 0.000792795
0.9 0.00004889 0.000577303 0.000528404

Table 2: Numerical results for 𝑃 = 20, 𝑀
𝑥
= 40, 𝑁

𝑥
= 40, 𝑀

𝑡
= 40,

𝑁
𝑡
= 30.

𝑡 𝑥 Exact sol. Num. sol. Error

0.03
0.3 0.00000160 0.00000376 2.16753 ∗ 10

−6

0.6 0.00000365 0.00001237 8.71244 ∗ 10
−6

0.9 0.00000205 0.00000667 4.61338 ∗ 10
−6

0.06
0.3 0.00001202 0.00001645 4.43271 ∗ 10

−6

0.6 0.00002748 0.00004476 1.72861 ∗ 10
−5

0.9 0.00001545 0.00002455 9.09322 ∗ 10
−6

0.09
0.3 0.00003803 0.00004497 6.93846 ∗ 10

−6

0.6 0.00008693 0.00011262 2.56904 ∗ 10
−5

0.9 0.00004889 0.00006228 1.33882 ∗ 10
−5

for

𝑓 (𝑥, 𝑡) = (2𝜋𝑥
1.7

− 𝑥
2
) 𝑡
−1

𝐸
2,0

(−(2𝜋𝑡)
2
)

+ {Γ (2.7) (Γ (2.65) − Γ (1)) 𝑥
1.7

+ Γ (3) (Γ (0.7) − Γ (2.35)) 𝑥
2
} sin (2𝜋𝑡) .

(63)
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Table 3: Numerical results for 𝑃 = 3, 𝑀
𝑥

= 5, 𝑁
𝑥

= 5, 𝑀
𝑡
= 5,

𝑁
𝑡
= 3.

𝑡 𝑥 Exact sol. Num. sol. Error

0.03
0.3 0.0059288 0.0071562 0.00122741
0.6 0.0135516 0.0149881 0.00143653
0.9 0.0076227 0.0083725 0.00074978

0.06
0.3 0.0118050 0.0131991 0.00139409
0.6 0.0269829 0.0254147 0.00156823
0.9 0.0151779 0.0145261 0.00065176

0.09
0.3 0.0175764 0.0193179 0.00174151
0.6 0.0401747 0.0362484 0.00392631
0.9 0.0225983 0.0208906 0.00170767

Thenumerical solutionswhich are obtained by using the sinc-
Galerkin method (SGM) for this problem are presented in
Tables 5 and 6. In addition, in Figures 6 and 7, the graphs
of exact and approximate solutions for different values are
presented.

Table 4: Numerical results for 𝑃 = 20,𝑀
𝑥
= 40,𝑁

𝑥
= 40,𝑀

𝑡
= 40,

𝑁
𝑡
= 30.

𝑡 𝑥 Exact sol. Num. sol. Error

0.03
0.3 0.0059288 0.0059287 1.16151 ∗ 10

−7

0.6 0.0135516 0.0135515 1.41292 ∗ 10
−7

0.9 0.0076227 0.0076227 1.58382 ∗ 10
−8

0.06
0.3 0.0118050 0.0118048 2.68162 ∗ 10

−7

0.6 0.0269829 0.0269826 3.57381 ∗ 10
−7

0.9 0.0151779 0.0151778 7.75388 ∗ 10
−8

0.09
0.3 0.0175764 0.0175761 3.24333 ∗ 10

−7

0.6 0.0401747 0.0401744 3.45727 ∗ 10
−7

0.9 0.0225983 0.0225983 1.68470 ∗ 10
−8

Table 5: Numerical results for 𝑃 = 3, 𝑀
𝑥

= 5, 𝑁
𝑥

= 5, 𝑀
𝑡
= 5,

𝑁
𝑡
= 3.

𝑡 𝑥 Exact sol. Num. sol. Error

0.03
0.3 0.0073366 0.0043780 0.00295855
0.6 0.0111718 0.0092590 0.00191284
0.9 0.0048740 0.0045355 0.00033852

0.06
0.3 0.0144134 0.0107858 0.00362752
0.6 0.0219479 0.0228301 0.00088218
0.9 0.0095754 0.0110942 0.00151873

0.09
0.3 0.0209795 0.0167664 0.00421307
0.6 0.0319465 0.0354700 0.00352348
0.9 0.0139377 0.0172001 0.00326239

5. Conclusion

In this study, we use the sinc-Galerkin method to obtain
approximate solutions of boundary value problems for space-
fractional partial differential equations with variable coeffi-
cients. In order to illustrate the efficiency and accuracy of
the present method, the method is applied to three examples
in the literature and the obtained results are compared with
exact solutions. As a result, it is shown that sinc-Galerkin
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Table 6: Numerical results for 𝑃 = 20,𝑀
𝑥

= 40,𝑁
𝑥

= 40,𝑀
𝑡
=

40,𝑁
𝑡
= 30.

𝑡 𝑥 Exact sol. Num. sol. Error

0.03
0.3 0.0073366 0.0073365 6.80615 ∗ 10

−8

0.6 0.0111718 0.0111718 2.45596 ∗ 10
−8

0.9 0.0048740 0.0048740 1.74662 ∗ 10
−8

0.06
0.3 0.0144134 0.0144139 5.33686 ∗ 10

−7

0.6 0.0219479 0.0219489 9.67538 ∗ 10
−7

0.9 0.0095754 0.0095759 4.80610 ∗ 10
−7

0.09
0.3 0.0209795 0.0209786 8.62732 ∗ 10

−7

0.6 0.0319465 0.0319454 1.08969 ∗ 10
−6

0.9 0.0139377 0.0139373 3.85036 ∗ 10
−7

method is very effective and accurate for obtaining approxi-
mate solutions of space-fractional differential equations with
variable coefficients. In the future, we plan to extend the
present numerical solution technique to nonlinear space-
fractional partial differential equations.
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