New Trends in Mathematical Sciences

On \mathscr{I}_{σ} -convergence of folner sequence on amenable semigroups

Omer Kisi¹ and Burak Cakal²

¹Department of Mathematics, Faculty of Science, Bartin University, Bartin, Turkey ²Department of Mathematics, Bartin University, Bartin, Turkey

Received: 9 April 2018, Accepted: 23 May 2018 Published online: 4 July 2018.

Abstract: In this paper, the concepts of σ -uniform density of subsets A of the set \mathbb{N} of positive integers and corresponding \mathscr{I}_{σ} -convergence of functions defined on discrete countable amenable semigroups were introduced. Furthermore, for any Folner sequence inclusion relations between \mathscr{I}_{σ} -convergence and invariant convergence also \mathscr{I}_{σ} -convergence and $|V_{\sigma}|_{p}$ -convergence were given. We introduce the concept of \mathscr{I}_{σ} -statistical convergence and \mathscr{I}_{σ} -lacunary statistical convergence of functions defined on discrete countable amenable semigroups. In addition to these definitions, we give some inclusion theorems. Also, we make a new approach to the notions of $[V, \lambda]$ -summability, σ -convergence and λ -statistical convergence of Folner sequences by using ideals and introduce new notions, namely, \mathscr{I}_{σ} - $[V, \lambda]$ -summability, \mathscr{I}_{σ} - λ -statistical convergence and \mathscr{I}_{σ} - λ -statistical convergence of Folner sequences. We mainly examine the relation between these two methods as also the relation between \mathscr{I}_{σ} -statistical convergence and \mathscr{I}_{σ} - λ -statistical convergence of Folner sequences of Folner sequences introduced by the author recently.

Keywords: Folner sequence, amenable group, inferior, superior, I-convergence.

1 Introduction

Statistical convergence of sequences of points was introduced by Fast [5]. Schoenberg [27] established some basic properties of statistical convergence and also studied the concept as a summability method.

The natural density of a set K of positive integers is defined by

$$\delta(K) := \lim_{n \to \infty} \frac{1}{n} |\{k \le n : k \in K\}|,$$

where $|k \le n : k \in K|$ denotes the number of elements of *K* not exceeding *n*.

A number sequence $x = (x_k)$ is said to be statistically convergent to the number L if for every $\varepsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n}|\{k\leq n:|x_k-L|\geq\varepsilon\}|=0.$$

In this case we write $st - \lim x_k = L$. Statistical convergence is a natural generalization of ordinary convergence. If $\lim x_k = L$, then $st - \lim x_k = L$. The converse does not hold in general.

By a lacunary sequence we mean an increasing integer sequence $\theta = \{k_r\}$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$.