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1. Introduction

Let G be a discrete countable amenable semigroup with identity in which both right and left cancelation laws
hold, and w(G) and m(G) denote the spaces of all real valued functions and all bounded real functions f on
G respectively. m(G) is a Banach space with the supremum norm || f]|.. = sup{|f(¢)| : ¢ € G}. Nomika [17]
showed that, if G is countable amenable group, there exists a sequence {S,} of finite subsets of G such that (i)

G = Uz, Sn, (i) S C Syt m=1,2,3, ., (i) limy oo B850l — 1 lim, ., 8505 — 1 forall g € G. Here
|A| denotes the number of elements in the finite set A. Any sequence of finite subsets of G satisfying (i), (i)
and (iif) is called a Folner sequence for G.

The sequence S, = {0,1,2,....,n — 1} is a familiar Folner sequence giving rise to the classical Cesaro method of
summability.

The concept of summability in amenable semigroups was introduced in [14], [15]. In [3], Douglass extended
the notion of arithmetic mean to amenable semigroups and obtained a characterization for almost convergence
in amenable semigroups.

In [16], the notions of convergence and statistical convergence, statistical limit point and statistical cluster point
to functions on discrete countable amenable semigroups were introduced.

Fast [5] presented an interesting generalization of the usual sequential limit which he called statistical conver-
gence for number sequences.

After studies about statistical convergence, Kostyrko, Macaj and Wilczyiiski defined .# -convergence in a metric
space by using the notion of an ideal of the set of positive integers.(see [10]) Later, it was further studied
by Saldt, Tripathy and Ziman ([12], [13]) and many others. .%-convergence is a generalization of statistical
convergence.

We recall the concept of asymptotic and logarithmic density of a set A C N (see [19] pp. 71, 95-96). Let

ACN. Putd,(A) = %Zzzl xa (k) and &, (A) = pl—n Yio XAT(k) tor n € N, where p, = Y7 _, % The numbers
d(A) =limsup, ...d,(A) and d (A) =liminf,.d, (A) are called the lower and upper asymptotic density of
A, respectively. Similarly, the numbers & (A) = liminf,, .. 5, (A) and & (A) = limsup, .. 8, (A) are called the
lower and upper logarithmic density of A, respectively. If d (A) = d (A) (8 (A) = 8 (A)), then d (A) = d (A) is
called the asymptotic density of A (6 (4) = d (A) is called the logarithmic density of A, respectively). It is well
known that for each A C N, d (A) < 8 (A) < 8§ (A) <d(A).

Denote by .#;, .7 the class of all A with d (A) =0(8(A) = 0, respectively). Then .#; and .#g are non-trivial
admissible ideals, .#;-convergence concides with the statistical convergence and .#5-convergence is said to be
logarithmic statistical convergence.
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Recently, Das, Savas and Ghosal [2] introduced new notions, namely . -statistical convergence and .#-lacunary
statistical convergence by using ideal.

In [8], he extended the concepts of statistical limit superior and inferior (as introduced by Fridy and Orhan) to
#-limit superior and inferior and give some . -analogue of properties of statistical limit superior and inferior
for a sequence of real numbers.

The purpose of this study is to extend the notions of .#-convergence, .# -limit superior and .#-limit inferior,
# -cluster point and .#-limit point to functions defined on discrete countable amenable semigroups. Also, in
this paper, we make a new approach to the notions of [V, A]-summability and A-statistical convergence by using
ideals and introduce new notions, namely, .#-[V, A]-summability and .# - A-statistical convergence to functions
defined on discrete countable amenable semigroups. For the particular case when the amenable semigroup is
the additive positive integers, our definition and theorems yield the results of [8], [10], [14].

2. Definitions and Notations

Definition 2.1 ([16]) Let G be a discrete countable amenable semigroup with identity in which both right and
left cancelation laws hold. f € w(G) is said to be convergent to s, for any Folner sequence {S,} for G, if for
each & > 0 there exists kg € N such that | f (g) —s| < & for all m > ky and g € G\S,,.

Definition 2.2 ([16]) Let G be a discrete countable amenable semigroup with identity in which both right and
left cancelation laws hold. f € w(G) is said to be a Cauchy sequence for any Folner sequence {S,} for G, if for
each € > 0 there exists ko € N such that | f(g) — f(h)| < € for all m > kg and g € G\S},.
Definition 2.3 ([16]) Let G be a discrete countable amenable semigroup with identity in which both right and
left cancelation laws hold. f € w(G) is said to be strongly summable to s, for any Folner sequence {S,} for G,
if

lim — |f (g

L~ lS"‘ gg
where |S,| denotes the cardinality of the set S,,.
The upper and lower Folner densities of a a set S C G are defined by

= 1
0(S) = limsup—[{g € S, : g€ 5}
n—>ee ‘Sn
and
8(S) = lim inf —

H—o0

Hg€Sn:g€ S}

| n\
respectively 8 (S) = & (S), then
6(S)=1lim— |{geS,: g5}

n—oo |S |

is called Folner density of §. Take G=N, §,, = {0,1 ,n— 1} and S be the set of positive integers with
leading digit 1 in the decimal expanslon The set S has no Folnel density with respect to the Folner sequence
{8,}. since & (S) = &, §(S) = 2. To facililate this idea we introduce the following notion: If f is function
such that f (g) satlsﬁes property P for all g expect a set of Folner density zero, we say that f (g) satisfies P for
"almost all g", and abbreviate this by "a.a.g".

Definition 2.4 ([16]) Let G be a discrete countable amenable semigroup with identity in which both right and
left cancelation laws hold. f € w(G) is said to be statistically convergent to s, for any Folner sequence {S, } for
G, if forevery € >0

hm mHgESn- ‘f( )7S‘|}‘ -

The set of all statistically convergent functions will be denoted by S(G).

Definition 2.5 ([16]) Let G be a discrete countable amenable semigroup with identity in which both right and
left cancelation laws hold. f € w(G) is said to be statistical Cauchy function for any Folner sequence {5, } for
G, if for every € > 0 and I > 0, then there exists an m € G\S; such that

1
fim e (g € 8,2 17 () £ ()| > €} = 0.
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3. Main Results

Definition 3.1 Let G be a discrete countable amenable semigroup with identity in which both right and left
cancelation laws hold. f € w(G) is said to be .#-convergent to s for any Folner sequence {S,} for G, if for
every € > 0;

{geSn:lf(g) —slze}e .7,
i.e., [f(g) —s| < €a.a.g. The setof all .7 -convergent sequences will be denoted by .7 (G).

In this section, we study the concepts of .#-limit superior and .#-limit inferior for a Folner sequence, give the
relationship between them, and prove some basic properties of these concepts.
For any Folner sequence {S,} for G and for f € w(G) let By denote the set,

Bp:={bcR:{gcS,:f(g) >b} ¢ .7}

and similarly,
Ap={acR:{gecS,:flg)<a}l ¢ 7}
We begin with a definition.

Definition 3.2 If f € w(G), then the .7 -limit superior of f € w(G), for any Folner sequence {S,} for G, is

given by
supBy, ifBy#0,

,ﬁ-limsupfi{ ~oo, ifBy=0

Similarly, the .#-limit inferior for any Folner sequence {8, } for G is given by

infAr, ifA;#0,

& -liminf f : { A =0
&, f—

It is easy to see that for any f € w(G) and for any Folner sequence {S, } for G, .Z-liminf f < . — limsup f.

Definition 3.3 The function f € w(G) is said to be .#-bounded for any Folner sequence {S,} for G, if there is
a number M such that
{ges:|f(g)[>M}e s

Note that .#-boundedness implies that .#-limsup f and .#-liminf f are finite. The following theorem can be
proved by a straightforward least upper bound argument.

Theorem 3.4 For any Folner sequence {S,} for G, if L = .Z-limsup f is finite, then for each € >0

{geSu:fg>u-€t¢ Iand {geS,:f(g)>u+ele.s. (1.1
Conversely, if (1.1) holds for every € > 0 then gt = . —limsup f.

Proof. Let € > 0. Since t+¢& >t =sup{f:supBy¢ .7}, the number [t + € is not in {f :supBs ¢ .# }
and {g€S,:f(g)>u+e} €. Further f — & < i and there exists #/ € R such that g — & < < p,
/' c{f:supBs¢ .7} Hence {gcS,:f(g)>1'}¢ .7 andalso {gcS,:f(g)>u—e}¢.7. Consequently
(1.1) holds.

On the other hand, suppose that the number g fulfils (1.1) for every € > 0. Then, if € > 0, we have L+ € ¢
{f :supBy ¢ /} and .# —limsup f < i+ €. Since this holds for every € > 0, we have .# — limsup f < u.
The first condition in (1.1) implies .# —limsup f > u — € for each &£ > 0, so we have .# —limsup f > L.
Inequalities . — limsup f < p and .# —limsup f > p imply y = .# —limsup f. O

The dual statement for .#-limsup f is as follows.
Theorem 3.5 For any Folner sequence {S,} for G, if A = % -liminf f is finite, then for each € >0

{g€8S: fle)<A+etgd Fand {g€S,:fg)<A—g}e s (2.1
Conversely, if (2.1) holds for every € > 0 then A = . -liminf f.
Proof. 'The proof of this theorem is similar to proof of the theorem 1. O
Theorem 3.6 For any Folner sequence {S,} for G,

S —liminf f < . — limsup f.
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Proof. First consider the case in which .#-limsup f = —eo. Hence we have By = 0, so for every b in K,
{g€8,:f(g)>b} € 7 whichimpliesthat {g € S, : f(g) <b}€.Z# (F)soforeveryaininR, {ge 8, : f(g) <a} ¢
#. Hence .#-liminf f = —co.

The case in which .#-limsup f = 40 needs no proof, so we next assume that p := .#-limsup f is
finite and A := #-liminf /. Given € > 0 we show that  + ¢ € Ay, so that A < u+e€. By theorem 1,
{g €8, f(g) > u+e} €7 because i = supBy. This implies {g € S,,: f(g) <p+ %5} € F(F). Since

{sesvr@<ntsfcises:ro<ntel

and .Z (.#) is a filter on N,
{geSu:flgy<ntele F(SH).
This implies
{geSu:flg)<u+er ¢ s.

Hence [1 + &€ € Ay. By the definition A := .#-liminf f, so we conclude that 4 < 1 + £; and since £ is arbitrary
this proves that A < y. O

Theorem 3.7 For any Folner sequence {S,} for G, % -bounded function f is % -convergent if and only if
S-limsup f = #-liminf f.

Proof. For any Folner sequence {S,,} for G, let A := .#-liminf f and u := .# —limsup f. First assume that
S-limf=sande>0. Then {g€S,:|f(g)—s|>¢e} e I, sothat{g €S, : f(g) > s+ €} €. whichimplies
that g <. We also have {g € S, : f(g) <s— €} ¢ .#, which yields that s < A. Therefore ¢ < A. Combining
this with Theorem 3 we conclude that g = A.

Now assume that for any Folner sequence {S,} for G, .#-limsup f = .#-liminf /. If € > 0, then (1.1) and
(2.1) imply that

{geSn 1 f(g) >s+£} 4

2
and e
{gES,,:f(g)<s7§}E.f.
Hence, for any Folner sequence {S, } for G, .#-lim f = . O

Definition 3.8 Let G be a discrete countable amenable semigroup with identity in which both right and left
cancelation laws hold. f € w(G) is said to be .#-Cauchy function for any Folner sequence {S,} for G if, for
each € > 0 and ! > 0, then there exists an m € G/S; such that

{geSuclf(g)—f(m) et s

ie.,

fle)—f(m)| <eaag.

Theorem 3.9 The following statements are equivalent:

(i) f € w(G) is .7 -convergent function
(i) f € w(G) is .#-Cauchy function.

Proof. (i) = (ii) To prove that (i) implies (ii) we assume that .#-lim f (¢) =s. Let € > 0. Then |f (g) —s| < §
a.a.g and, if g is chosen so that |f (gg) —s| < § a.a.g, then we have
€

=€
2

(&)= £ (0)] < If () =s| +1f (g0) 5| < 5 +

a.a.g. Hence f is .#-Cauchy function.
(ii) = (i) Next {g € S, : | f(g) — f(m)| < €} € .F (.#) holds for all £ > 0. Then the set

Ce={s€Su:flg)elf(m) —¢ f(m)+e]} e F(S)
for all € > 0. Denote J; = [f (m) — €, f (m) +£].
Fixan € > 0. Then Cy € .% () and C§ € F (.F). Hence C,NC% € .7 (). This implies

J=JeNJ5 #0,
{geSu: fg) €T} e F(S),
diam (J) < +diam (J¢).

(diam(J) denotes the lenght of the interval J.) This way, by induction, we can construct the sequence of (closed)
intervals J, = Iy 2 I) 2 ... 2 I, 2 ... with the property diam(I,) < %diam(ln, 1) (n="2,3,...). Then there exists

as € ) I, and it is routine work to verify .#-lim f (g) = s. O
neN
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4. .#-Limit Points and .# -Cluster points

In [10] Koystrkro introduced the concepts of .# limit point and .# cluster point. In this section we extend
these concepts of .# limit point and .# cluster point to the functions defined on discrete countable amenable
semigroups. If f € w(G) and H C G, we write Ry (G) to denote the range of f € w(G). If Ry (H) is a subset of

R (G) and lim,,_,.. ‘ng”‘ =0 then Ry (H) is called a subset of Folner density zero for any Folner sequence
{Sn} for G, or a thin subset. On the other hand R (H) is a nonthin subset of Ry (G) if lim,_ % # 0.

Definition 4.1 The number s is a .# limit point for an f € w(G), for any Folner sequence {S, } for G, provided
that there is nonthin subset of Ry (G) that f .#-converges to s in it.

Definition 4.2 The number ¢ is a .# cluster point for an f € w(G), for any Folner sequence {S,} for G,
provided that for each € > O theset {g € S, : |f(g) —¢| <€} ¢ .7.

For f € w(G), let Ly(G), .# (Af(G)), .# (T's (G)) denote the sets of all ordinary limit points, .# limit points
and .7 cluster points of f, respectively. It is clear that .7 (A¢(G)) € .9 (T'f(G)) C L#(G).

Theorem 4.3 Let f ¢ w(G) be % -bounded for any Folner sequence {S,} for G and let .% (T's (G)) be the set
of all .F cluster points of f, for any Folner sequence {S,,} for G. Then

S -limsup f = max .# (I's(G)).

Proof. Put #-limsup f = u. Suppose pt’ > pi. First we show that ¢’ is notin .# (I'r (G)). We have

w=supS, S={r:{geS,:f(g) >t} ¢ .7}. (7.1)

Choose € > 0 such that g < g’ —e < u’. Then g’ — € ¢ S and

{gESn:f(g)>u/—£}Ef.

It follows from the definition of .# cluster point for an f € w(G) that i’ ¢ .7 (I'f(G)).
We show it € .# (T (G)). Let 17 > 0. Tt follows from (7.1) that there is a fo € R such that g — 1 < 1o < fi,
g € S. Hence

{ge8:flg)>n}t¢.7. (7.2)
Simultaneously, since p + 127- ¢ S, we have
. n . /
{eesiir@>n+T}es (7.2)
It follows from (7.2) and (7.2') {g € Sn: f(g) € (U —n,u+ M)} ¢ 7 and p € Z (T (G)). O

Remark 4.4 Tt can be shown for a .#-bounded sequence {S,} for G the equality
S-liminf f =min.# (Tf(G)) .

Example 4.5 Take G =7, H = {0,+1,+3,4+5,+7, ...}, S, = [-n,n] and define f as follows:
[0, ifgeH,
flg) = { I, ifgd¢ G\H.
Then Ly (G) = {0,1} and .¥ (A4(G)) = {0}.

5. Relationship between .7; and .¥5-Convergence and Cesaro summability

Recall that the Folner sequence {S,} for G is said to be strongly (C,1)-summable to s if and only if
lim,, e ﬁ ZS' |f (g) —S| =0.
8Edn

If the Folner sequence {S,} for G is bounded, then .#;-lim f = s implies (C, 1)-lim f (g) = s. The converse
is obviously not true. (e.g. {S,} = {0,1,0,1,...}). However f € m(G) is bounded, the .¥;-convergence to
some number is equivalent to strongly Cesaro-summability to the same number. But, for .#5-convergence the
situation is different.

Proposition 5.1 Let f € w(G) be ¥ -bounded for any Folner sequence {S,} for G such that .Fg-lim f =0 and
(C,1)-lim f does not exist.
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Proof. Put S = |J S, where S, = {n"2 T +27...,n"2+1} forn € N, n>2. If S(k) = d (S) for k € N,
n=2

then

_ S I’l"zle n112+1 o n112
d(s) > Jl_r}; sup e > nlﬂgosup T L.
— n
Hence d (S) = 1. Simultaneously Y % =Inn+y+0 (%) where 7 is an Euler constant, we have ¥ + =
k=1 JESK
Inn+0 ( L ) for all n € N, n > 2. From this by a simple calculation we get
n'
¥ Ink
o(l
= . kgln ro) . nlnn+O(1)
6(S) < lim ——— < lim =0.
n—yoo st L ) n—soo (I/L2 - 1) Inn+ O (1)
Yy -
j=t’
So we have 8 (S) = 0 and consequently d (S) = 0. So d (S) does not exist.
Define f as follows:
[0, ifgeG\S,
e ‘{ [, ifges.
Since 6 (S) = 0 we have Z5-lim /' = 0. But (C, 1)-lim f (g) does not exist. O

6. Conclusion

The convergence of [olner sequences on amenable semigroups has been recently studied by several authors. In
this study, we extend concepts of statistical limit superior and inferior (as introduced by Nuray and Rhoades) to
#-limit superior and inferior and give some .# -analogue of properties of statistical limit superior and inferior
for folner seqeunces on amenable semigroup. We investigate some properties of the new concepts. So, we have
extended some well-known results.
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