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Abstract—We extend the variational multiscale proper
orthogonal decomposition reduced order modeling (VM-
SPOD) to flows governed by double diffusive convection.
We present stability and convergence analyses for it, and
give results for numerical tests on a benchmark problem
which show it is an effective approach.

Index Terms—variational multiscale, proper orthogo-
nal decomposition, double-diffusive, reduced order mod-
els.

I. INTRODUCTION

We consider the Darcy-Brinkman equations with
double diffusive convection, the dimensionless form
of which is given as:

ut − 2ν∇ · Du+ (u · ∇)u +Da−1u

+∇p = (βTT + βCC) g in (0, τ ]× Ω,

∇ · u = 0 in (0, τ ]× Ω,

u = 0 in (0, τ ]× ∂Ω,

Tt + u · ∇T = γ∆T in (0, τ ]× ∂Ω,

Ct + u · ∇C = Dc∆C in (0, τ ]× ∂Ω,

T, C = 0 on ΓD,

∇T · n = ∇C · n = 0 on ΓN ,

u(0,x) = u0, T (0,x) = T0, C(0,x) = C0 in Ω,
(1)

where u(t,x), p(t,x), T (t,x), C(t,x) are the fluid
velocity, the pressure, the temperature, and the con-
centration fields, respectively. Let Ω ⊂ Rd, d ∈ {2, 3}
be a confined porous enclosure with polygonal bound-
ary ∂Ω and ΓN be a regular open subset of the
boundary and ΓD = ∂Ω \ ΓN . The initial veloc-
ity, temperature and concentration fields are given as
u0, T0, C0. The parameters in (1) are the kinematic
viscosity ν > 0, inversely proportional to Re, the
thermal diffusivity γ > 0, the velocity deformation
tensor Du = (∇u + ∇uT )/2, the mass diffusivity
Dc > 0, the Darcy number Da, and the gravitational
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acceleration vector g. The solutal and the thermal
expansion coefficients are βC , and βT , respectively.
The dimensionless parameters are the Prandtl number
Pr, the Darcy number Da, the buoyancy ratio N ,
the Lewis number Le, the Schmidt number Sc, and
the thermal and solutal Grashof numbers GrT and
GrC , respectively. Here H is the cavity height, k the
permeability, and ∆T and ∆C are the temperature and
the concentration differences, respectively.

Double diffusive convection drives a flow with two
potentials that have different diffusion rates. A com-
mon example occurs in oceanography, where temper-
ature and salt concentration gradients and diffusivity
drive the flow of salt water. The physical model uses
that momentum is forced by both heat and mass
transfer, and a Darcy term accounts for the porous
boundary. Since simulation of the double-diffusive
system (1) can be very expensive as in all multiphysics
flow problems, practitioners need efficient methods to
approximate solutions. One efficient method is reduced
order modeling (ROM) using proper orthogonal de-
composition (POD). This method is highly efficient
and has been found to be successful for many different
types of flow problems. In particular, recent work with
POD-ROM has shown that the approach can work well
on multiphysics flow problems such as the Boussinesq
system for fluids driven by a single potential, and also
for magnetohydrodynamics flow [1], [2], [3]. Hence
it is a natural and important next step to extend this
methodology to flows governed by the system (1),
as such tools will prove useful in the coming years
as simulations of ocean water flows become more
prevalent.

However, in turbulent flows POD does not work
well. In this case, a stabilization method is required.
The combining of POD with the VMS method has
been successful to solve this challenge. VMS aims
to model unresolved scales by adding an artificial
viscosity to only resolved small-scales. Hence, the
oscillations in small scales can be removed. In POD,
basis functions are ordered with respect to their kinetic
energy content. Hence the hierarchy of small and
large scales is presented naturally. Thus, the POD and
VMS is particularly suitable. Using VMS in POD was
pioneered in [4], [5], [6], [7], and their studies showed
this could increase numerical accuracy.



This work is arranged as follows. Section 2 presents
the continuous variational formulation of the dou-
ble diffusive Darcy-Brinkman system (1) and its dis-
cretization, and here the VMSPOD variational formu-
lation is defined. Section 3 is devoted to the numerical
analysis of the VMSPOD formulation. Finally, Section
4 concludes the work with a summary.

II. FULL ORDER MODEL FOR THE DOUBLE
DIFFUSIVE DARCY-BRINKMAN SYSTEM

Throughout the work standard notations for Sobolev
spaces and their norms will be used. The norm in
(Hk(Ω))d is denoted by ‖·‖k and the norms in
Lebesgue spaces (Lp(Ω))d, 1 ≤ p < ∞, p 6= 2 by
‖·‖Lp . The space L2(Ω) is equipped with the norm
and inner product ‖·‖ and (·, ·), respectively, and for
these we drop the subscripts. The continuous velocity,
pressure, temperature and concentration spaces are
denoted by

X := (H1
0(Ω))d, Q := L2

0(Ω),

W := {S ∈ H1(Ω) : S = 0 on ΓD},
Ψ := {Φ ∈ H1(Ω) : Φ = 0 on ΓD},

and the divergence free space given as

V := {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q}.

We denote the dual space of X by H−1 with norm

‖f‖−1 = sup
v∈X

|(f ,v)|
‖∇v‖

.

The variational formulation of (1) reads as follows:
Find u : (0, τ ] → X, p : (0, τ ] → Q, T : [0, τ ] → W
and C : [0, τ ]→ Ψ satisfying

(ut,v) + 2ν(Du,Dv) + b1(u,u,v) + (Da−1u,v)

−(p,∇ · v) = βT (gT,v) + βC(gC,v),
(2)

(Tt, S) + b2(u, T, S) + γ(∇T,∇S) = 0,
(3)

(Ct, φ) + b3(u, C,Φ) +Dc(∇C,∇φ) = 0,
(4)

for all (v, q, S,Φ) ∈ (X,Q,W,Ψ), where

b1(u,v,w) :=
1

2
(((u · ∇)v,w)− ((u · ∇)w,v)) ,

b2(u, T, S) :=
1

2
(((u · ∇)T, S)− ((u · ∇)S, T )) ,

b3(u, C,Φ) :=
1

2
(((u · ∇)C,Φ)− ((u · ∇)Φ, C)) ,

represent the skew-symmetric forms of the convective
terms.

We consider a conforming finite element method for
(2)-(4), with spaces Xh ⊂ X, Qh ⊂ Q, Wh ⊂ W
and Ψh ⊂ Ψ. We also assume that the pair (Xh, Qh)

satisfies the discrete inf-sup condition. It will also be
assumed for simplicity that the finite element spaces
Xh, Wh, Ψh are composed of piecewise polynomials
of degree at most m and Qh is composed of piecewise
polynomials of degree at most m − 1. In addition,
we assume that the spaces satisfy the interpolation
approximation properties. The discretely divergence
free space for (Xh, Qh) pairs is given by

Vh = {vh ∈ Xh : (∇ · vh, qh) = 0,∀qh ∈ Qh}. (5)

The inf-sup condition implies that the space Vh is
a closed subspace of Xh and the formulation above
involving Xh and Qh is equivalent to the following
Vh formulation: Find (uh, Th, Ch) ∈ (Vh,Wh,Ψh)
satisfying

(uh,t,vh) + 2ν(Duh,Dvh) + b1(uh,uh,vh)

+(Da−1uh,vh) = βT (gTh,vh)

+βC(gCh,vh),
(6)

(Th,t, Sh) + b2(uh, Th, Sh) + γ(∇Th,∇Sh) = 0,
(7)

(Ch,t,Φh) + b3(uh, Ch,Φh) +Dc(∇Ch,∇Φh) = 0,
(8)

for all (vh, Sh,Φh) ∈ (Vh,Wh, ψh).
The goal of the POD is to find low dimensional

bases for velocity, temperature, concentration by solv-
ing the minimization problems. The solution of the
problem is obtained by using the method of snapshots.
We note that all eigenvalues are sorted in descending
order. Thus, the basis functions {ψi}

r1
i=1, {φi}r2i=1 and

{ηi}r3i=1 correspond to the first r1, r2 and r3 largest
eigenvalues {λi}r1i=1, {µi}r2i=1, {ξi}r3i=1 of the velocity,
the temperature, the concentration, respectively. For
simplicity, we will denote POD-ROM spaces using just
r instead of r1, r2 and r3. However, in the analysis,
we are careful to distinguish that these parameters can
be chosen independently.

Let Xr, Wr and Ψr be the POD-ROM spaces
spanned by POD basis functions:

Xr = span{ψ1,ψ2, . . . ,ψr1}, (9)
Wr = span{φ1, φ2, . . . , φr2}, (10)
Ψr = span{η1, η2, . . . , ηr3}. (11)

Note that by construction Xr ⊂ Vh ⊂ X, Wr ⊂
Wh ⊂W and Ψr ⊂ Ψh ⊂ Ψ.

Now, we state the POD-Galerkin (POD-G) formu-
lation of the Darcy-Brinkman double diffusive system.
Given

g ∈ L2(0, k;H−1(Ω)) and u0 ∈ (L2(Ω))d,

T0, C0 ∈ L2(Ω),



Find (ur, Tr, Cr) ∈ (Xr,Wr,Ψr) satisfying

(ur,t,vr) + 2ν(Dur,Dvr) + b1(ur,ur,vr)

+ (Da−1ur,vr) = βT (gTr,vr) + βC(gCr,vr),
(12)

(Tr,t, Sr) + b2(ur, Tr, Sr) + γ(∇Tr,∇Sr) = 0,
(13)

(Cr,t,Φr) + b3(ur, Cr,Φr) +Dc(∇Cr,∇Φr) = 0,
(14)

for all (vr, Sr,Φr) ∈ (Xr,Wr,Ψr).
For simplicity, we equip this system (12)-(14) with a

backward Euler temporal discretization. We consider
adding the decoupled VMS-ROM stabilization from
[7], where in effect additional viscosity gets added
to the smaller R velocity modes in a post-processing
step. Specifically, we post-process un+1

r by solving the
algorithm:

Algorithm II.1. The post-processing VMS-POD ap-
proximation for double diffusive system (1) given as:
Step 1: Find (wn+1

r , Tn+1
r , Cn+1

r ) ∈ (Xr,Wr,Ψr)
satisfying

(
wn+1

r − un
r

∆t
,vr) + 2ν(Dwn+1

r ,Dvr)

+b1(wn+1
r ,wn+1

r ,vr) + (Da−1wn+1
r ,vr)

= βT (gTn+1
r ,vr) + βC(gCn+1

r ,vr), (15)

(
Tn+1
r − Tn

r

∆t
, Sr) + b2(wn+1

r , Tn+1
r , Sr)

+γ(∇Tn+1
r ,∇Sr) = 0, (16)

(
Cn+1

r − Cn
r

∆t
,Φr) + b3(wn+1

r , Cn+1
r ,Φr)

+Dc(∇Cn+1
r ,∇Φr) = 0, (17)

for all (vr, Sr,Φr) ∈ (Xr,Wr,Ψr).
Step 2: Find un+1

r ∈ Xr, ∀vr ∈ Xr:(
un+1
r −wn+1

r

∆t
,vr

)
=

(
νT (I − PR)∇ (un+1

r + wn+1
r )

2
, (I − PR)∇vr

)
,

(18)

where PR is the L2 projection into XR, which is the
subset of Xr that is the span of the first R (< r)
velocity modes.

A. Projection Error

This subsection starts with the estimations for the
L2 projection error. In order to prove an error estimate
for the error between the true solution and the POD
solution of the double diffusive Darcy-Brinkman sys-
tem, we first recall the main estimates for projections.
For the error assessment, we use the L2 projections

of ur, Tr and Cr, respectively. The L2 projection
operators Pu,r : L2 → Xr, PT,r : L2 → Wr,
PC,r : L2 → Ψr are defined by

(u− Pu,ru,ψr) = 0, ∀ψr ∈ Xr

(T − PT,rT, φr) = 0, ∀φr ∈Wr

(C − PC,rC, ηr) = 0, ∀ηr ∈ Ψr

(19)

III. NUMERICAL ANALYSIS OF DOUBLE DIFFUSIVE
DARCY-BRINKMAN SYSTEM

This section is devoted to a derivation of the a priori
error estimation of (15)-(18). We first give the stability
of the solutions of (15)-(18).

Lemma III.1. (Stability) The post-processed VMS-
POD approximation (15)-(18) is unconditionally stable
in the following sense: for any ∆t > 0,

‖uM
r ‖2+

M−1∑
n=0

[
2νT ∆t

∥∥∥∥(I − PR)∇ (wn+1
r + un+1

r )

2

∥∥∥∥2
+‖wn+1

r − un
r ‖2+ν∆t‖∇wn+1

r ‖2+Da−1∆t‖wn+1
r ‖2

]
≤ ‖u0‖2+C∗‖g‖2∞(β2

T γ
−1‖T0‖2+β2

CD
−1
c ‖C0‖2).

(20)

‖TM
r ‖2+

M−1∑
n=0

2∆tγ‖∇Tn
r ‖2≤ ‖T0‖2,

(21)

‖CM
r ‖2+

M−1∑
n=0

2∆tDc‖∇Cn
r ‖2≤ ‖C0‖2,

(22)

where C∗ = min{ν−1, Da}.

The optimal asymptotic error estimation requires the
following regularity assumptions for the true solution:

u ∈ L∞(0, k;Hm+1(Ω))

utt ∈ L2(0, T ;H1(Ω))

T, C ∈ L∞(0, k;Hm+1(Ω))

Ttt, Ctt ∈ L2(0, T ;H1(Ω))

p ∈ L∞(0, k;Hm(Ω)) (23)

We define the discrete norms for vn ∈ Hp(Ω), n =
0, 1, 2, ...,M as the following:

|||v|||∞,p := max
0≤n≤M

‖vn‖p,

|||v|||m,p := (∆t

M∑
n=0

‖vn‖mp )
1/m

.

Theorem III.1. (Error Estimation) Suppose regularity
assumptions holds. Then for the sufficiently small ∆t,



the error satisfies

‖uM − uM
r ‖2+‖TM − TM

r ‖2+‖CM − CM
r ‖2

≤ K

(
1 + h2m + (∆t)2 + (1 + ‖Su,r‖2

+‖Su,R‖2+‖ST,r‖2+‖SC,r‖2)h2m+2

+

d∑
i=r1+1

(‖ψi‖21+1)λi +

d∑
i=r2+1

(‖φi‖21+1)µi

+

d∑
i=r3+1

(‖ηi‖21+1)ξi +

d∑
i=R+1

‖ψi‖21λi
)
. (24)

IV. NUMERICAL STUDIES

In this section we present results of numerical tests
using the POD-ROM studied above. In the following
tests, we fix ∆t = 0.0025, T = 1.

A. Test 1:

In this test, to create POD basis, 4000 snapshots is
used in the time interval [0, 1]. We construct the cor-
relation matrix by using these snapshots. The largest
eigenvalues of the correlation matrix are illustrated in
Figure 1. We see that the eigenvalues show a rapid

Fig. 1: The largest eigenvalues for the velocity, tem-
perature and concentration for different Ra

decrease for Ra = 104, Ra = 105, and a slow
decrease for Ra = 106. Captured energy for velocity
(Eu), temperature (ET ), concentration (EC) can be
defined as

Eu =

∑r
j=1 λj∑M
j=1 λj

× 100, ET =

∑r
j=1 µj∑M
j=1 µj

× 100,

EC =

∑r
j=1 ξj∑M
j=1 ξj

× 100.

Process time and percent of captured energy with re-
spect to the different POD modes number for velocity,

temperature and concentration are shown in Table I-
II. DNS process time is 80000 seconds even using a
super computer. As seen in the tables, process time is

TABLE I: Percent of captured energy for velocity,
temperature and concentration with Ra = 105 varying
r

r Eu ET EC CPU(s)
4 98.0576 99.1554 99.3996 35.260284
8 99.8173 99.8942 99.9304 68.713127

12 99.9781 99.9845 99.9852 64.741996
16 99.9939 99.9966 99.9955 71.881944
20 99.9985 99.9992 99.9985 78.383086

TABLE II: Percent of captured energy for velocity,
temperature and concentration with Ra = 106 varying
r

r Eu ET EC CPU(s)
8 93.0866 97.6547 97.4737 896.318716
16 97.4949 99.1031 98.9494 837.966706
24 98.9831 99.5758 99.4581 833.658012
32 99.4980 99.7838 99.6876 903.636491
40 99.7096 99.8793 99.8065 974.256394

reduced with POD method. In this way, computational
cost decrease remarkably. In addition, when we select
POD modes number r = 12 for Ra = 104 and r = 20
for Ra = 105, these capture %99.999 of the system’s
kinetic energy. On the other hand, for Ra = 106,
it needs more modes to capture a large part of the
system’s energy.Thus a stabilization method is needed
to obtain good numerical results for this test.

B. Test 2:

In this test, we check the accuracy of the method for
different Ra. The variation of L2 error with respect to
time are shown for Ra = 104 and Ra = 105 in Figure
2 for Ra = 106 in Figure 3.

As seen in the figure 2-3, the L2 error and the H1

error become close to zero as the time increase. It
gives that our solution matches DNS for Ra = 104

and Ra = 105. However, the POD method does not
work well for large Ra. Hence, we need a stabilization
method for Ra = 106. When we used VMS type
stabilization method results match DNS.

V. CONCLUSIONS

We proposed a modular regularization with VMS-
POD for double diffusive system. We proved stability
and convergence results for the VMSPOD scheme,
and gave results of several numerical tests. Our tests
showed POD gives very good results for Rayleigh
numbers Ra = 104, 105 without VMS-type stabiliza-
tion, which were accurately simulated with r = 10



Fig. 2: The L2 error in the velocity, temperature and
concentration for Ra = 104 and Ra = 105.

Fig. 3: The L2 error in the velocity, temperature and
concentration for Ra = 106.

and r = 20, respectively. For higher Ra, POD did not
perform well without stabilization, but adding VMS-
type stabilization, the approach gave good qualitative
results.
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