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Abstract 

The surface theory has been working by many mathematicians, and also geometers for hundreds of years. We meet nice papers and 
books for the theory in the literature. In this paper, we consider deltohelicoidal surface in Euclidean 3-space ��. We show some basic 
notions of three dimensional Euclidean geometry. Moreover, constructing a helicoidal surface, we define deltohelicoidal surface, and 
compute its Gauss map, the Gaussian curvature and the mean curvature. Finally, we reveal some results of the Gaussian curvature 
and the mean curvature of the deltohelicoidal surface in the three dimensional Euclidean space ��. 
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1. Introduction 

The surface theory has been worked by many geometers. We meet nice books for the theory in the literature, such as Eisenhart [1], 
Forsyth [2], Gray et al. [3], Hacısalihoğlu [4,5], Nitsche [6], Spivak [7]. 

In this paper, we consider the deltohelicoidal surface in Euclidean 3-space. In Section 2, we show some basic notions of three 
dimensional Euclidean geometry. We define helicoidal surface in Section 3. We give deltohelicoidal surface, and compute its Gaussian 
curvature and the mean curvature in the last section. 

 

2. Preliminaries 

We consider a vector (a, b, c) with its transpose (a, b, c)�, identially, in the rest of this work. We introduce the first and second 
fundamental forms, matrix of the shape operator S, Gaussian curvature K, and the mean curvature H of surface M=M(�, �) in the 
three dimensional Euclidean space ��. 

Let M be an isometric immersion of surface �� in ��. The vector product of �⃗ = (��, ��, ��) and  �⃗ = (��, ��, ��)  on �� is defined 
by 

 

x  y  det

e1 e2 e3

x 1 x 2 x 3

y1 y2 y3

.

 

 

For a surface M in ��, we have following results 

 

detI  det
E F

F G
 EG  F2 ,

 
 

and 

detII  det
L M

M N
 LN  M2 ,

 
 



where 

E  Mu  M u , F  Mu  M v, G  M v  M v,

L  M uu  e, M  M uv  e, N  M vv  e,
 

 
" ∙ " is Euclidean inner product, � is the Gauss map 
 

e 
M u  M v

Mu  M v
.

 
 

We compute 
 

I1 . II,
 

 
and then it gives shape operator matrix S as follows 
 

S  1
detI

GL  FM GM  FN

EM  FL EN  FM
.   #   

 
 

Therefore, we get the following the Gaussian and the mean curvature formulas, respectively, 
 

K  detS  LN  M2

EG  F2
,

 
 

and 
 

H  1
2

trS  EN  GL  2FM
2EG  F2 

.

 
 

A surface M is flat if � = 0, and it is minimal if � = 0, identically. 
 

3. Helicoidal Surface 

Next, we give the rotational surface and helicoidal surface in ��. For an open interval � ⊂ ℝ, let  � ∶ � ⟶  Π be a curve, and let ℓ be 
a line in Π. 

We define a rotational surface in �� as a surface rotating a profile curve � around an axis ℓ. While a profile curve rotates around the ℓ, 
it simultaneously displaces parallel lines orthogonal to the ℓ, so that the speed of displacement is proportional to the speed of rotation. 
Final surface is called the helicoidal surface with axis ℓ, and pitch  � ∈ ℝ�. 

We assume that ℓ is the line spanned by the vector (0,0,1)�. The orthogonal matrix which fixes the above vector is 
 

Zv 

cosv  sinv 0

sinv cosv 0

0 0 1

,   #   

 
 

where � ∈ ℝ. The matrix � can be found by solving the following equations, simultaneously, 
 

�ℓ = ℓ,    ��� = ��� = ��, ���� = 1. 
 
When the axis of rotation is ℓ, there is an Euclidean transformation by which the axis is ℓ transformed to the ��-axis of ��. Profile 
curve is  
 

�(�) = (�(�), 0, ℎ(�)), 



 
where �(�), ℎ(�) ∶ � ⊂  ℝ ⟶  ℝ are differentiable functions for all � ∈ �. 

So, a helicoidal surface spanned by the vector (0,0,1) with pitch �, is as follows 
 

�(�, �) = �(�)�(�) + ��ℓ�, 
 
where � ∈ �, � ∈ [0, 2�). 

Clearly, we write helicoidal surface as follows 
 

Hu,v 

fucosv

fusinv

hu  pv

.   #   

 

 

When � = 0, helicoidal surface is transform to a rotational surface. 

 

4. Deltohelicoidal Surface 

In ��, a deltohelicoidal surface (see Figure 1) which is spanned by the vector (0,0,1) with pitch � ∈ ℝ�, (see Figure 2 for � = 0) is 
defined by as follows: 
 

Du,v 

acos2u  v  2cosu  v

asin2u  v  2sinu  v

u  bv

,   #   

 
 
where parametrization of the profile space curve is given by 
 

u  2a cosu  acos2u, 2asinu  asin2u,u,
 

 
� ∶ � ⊂  ℝ ⟶  ℝ is differentiable function for all � ∈ �, �, � ∈ ℝ, and � ∈ [0, 2�). 
 
 

 
 
 

Figure 1. Left: Deltohelicoidal surface, Right: Its top view 
 



 
 

Figure 2. Left: Deltorotational surface, Right: Its top view 

 
 
Using the first differentials of �(u, v) with respect to � and �, we obtain the first quantities as follows 
 

E  8a2   2 ,

F  2a2  b ,

G  a24  1  b2 ,
 

 
and then, we get 
 

detI  4  1 2  4b   9  2b2 a2 ,
 

 
where 
 

  cosu  12cosu  12 ,  
 

  cosu  12cosu  12 .  
 

The Gauss map of surface is as follows 
 

eD  1

detI

e1

e2

e3

,   #   

 
 
where 
 

e1  2b1  2cosucosucosv  sinusinv  cosv  

            


2cos2ucosv  2sinusinv  cosvcosu

2sinusinv  cosv
 ,

 
 

e2  2b1  2cosucosusinv  sinucosv  sinv  

          


2cos2u sinv  2sinucosv  sinvcosu

2sinucosv  sinv
 ,

 
 

           e3  6a2cosu  11  2cosu.  



Finally, the mean curvature of the deltohelicoidal surface is as follows 
 

H 
1

  2
3  3

2  4
  5

2detI3/2
,

 
 

where 
 

           1  62cosu  12cosu  1   

                      a2 4cosu  12cosu  12  1  b2 sinu,  
 

           2  a 4cosu  12cosu  12  1 ,  
 

           3  6abcosu  12cosu  12 ,  
 

           4  2a24cos2u  3  

             . 204cos2u  3a  1cosu  4a  41cosu  

              2b248a  5cos2u  24a3  15cosu  

                82a  1b2  4a  5a2 ,  
 

        5  4bcosu  12cosu  12
 

                     . 4a24cos2u  3a  1cosu  5a2  4a3  b2 ,  
 
and the Gaussian curvature of the deltohelicoidal surface is as follows 
 

K 
1    2   3 2  4   5

detI2
,

 
 
where 
 

1  62cosu  12cosu  14  1sinu,  
 

2  12b2cosu  12cosu  1 sinu,  
 

3  182  12cosu  1cosu,  
 

4  36b2 ,  
 

5  72b22 .  
 
Corollary 1.  Let � ∶  M�  ⟶  �� be an immersion given by �(u, v). M� is minimal iff 
 

1
  2

3  3
2  4

  5  0.
 

 
Corollary 2.  Let � ∶  M�  ⟶  �� be an immersion given by �(u, v). M� is flat iff 
 

1
   2

  3
2  4

  5  0.
 

 



Corollary 3.  Let � ∶  M�  ⟶  �� be an immersion given by �(u, v). M� has Weingarten relation as follows 
 

0  a34  1 2  4b   9  2b2 
3/2

 1   2 3  3 2  4   5 K

 21    2   3 2  4   5 H.
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