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Abstract 

Geometers have been working the curve theory and the surface theory for hundreds of years. We see good works for the theories in the 
literature. In this work, we introduce cardiohelicoidal surface in the three dimensional Euclidean space ��. We indicate basic notions 
of Euclidean geometry. Then, stating a helicoidal surface, we obtain cardiohelicoidal surface, and calculate its Gauss map, the 
Gaussian curvature and the mean curvature. In the end, we find some corollaries of the Gaussian curvature and the mean curvature 
of the cardiohelicoidal surface in ��. 
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1. Introduction 

In this work, we introduce the cardiohelicoidal surface in Euclidean 3-space ��. See some books Forsyth [1], Gray et al. [2], 
Hacısalihoğlu [3,4], Nitsche [5], Spivak [6] for cardioid curve and helicoidal surface. 

We show some basic notions of three dimensional Euclidean geometry in this Section. We define helicoidal surface in Section 2. 
Finally, we give cardiohelicoidal surface, and compute its Gaussian curvature and the mean curvature in the last section. 

Throughout the paper, we identify a vector (a, b, c) with its transpose. We consider the first and second fundamental forms, matrix of 
the shape operator S, Gaussian curvature K, and the mean curvature H of surface M=M(�, �) in Euclidean 3-space. 

Let M be an isometric immersion of surface �� in ��. The inner product and the vector product of �⃗ = (��, ��, ��), �⃗ = (��, ��, ��) 
on �� are defined by as follows, respectively, 

 

x  y  x 1y1  x 2y2  x 3y3
 

 

and 

 

x  y  x 2y3  x 3y2 ,x 1y3  x 3y1 ,x 1y2  x2y1 .
 

 

For a surface M in the three dimensional Euclidean space, with the first and the second fundamental coefficients 

 

E  Mu  Mu , F  Mu  M v, G  M v  M v,

L  Muu  e, M  Muv  e, N  M vv  e,
 

 
we know 
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and 



det II  det
L M

M N
 LN  M2 ,

 
 

where 

 

e 
Mu  M v

Mu  M v
.

 
 
is the Gauss map. Computing 
 

I1 . II,
 

 
we get following shape operator matrix 
 

S  1
detI

GL  FM GM  FN

EM  FL EN  FM
.   #   

 
 

Hence, we have the following formulas of the Gaussian curvature and the mean curvature, respectively, 
 

K  detS  LN  M2

EG  F2
,

 
 

and 
 

H  1
2

trS  EN  GL  2FM
2EG  F2 

.

 
 

A surface M is flat if � = 0, and it is minimal if � = 0, identically. 

 

2. Helicoidal Surface 

We define the rotational surface and helicoidal surface in ��. For an open interval � ⊂ ℝ, let  � ∶ � ⟶  Π be a curve in a plane Π, and 
let ℓ be a straight line in Π. 

A rotational surface in �� is defined as a surface rotating a curve � around a line ℓ (these are called the profile curve and the axis, 
respectively). Suppose that when a profile curve � rotates around the axis ℓ, it simultaneously displaces parallel lines orthogonal to the 
axis ℓ, so that the speed of displacement is proportional to the speed of rotation. Then, resulting surface is called the helicoidal surface 
with axis ℓ and pitch  � ∈ ℝ�. 

We may suppose that ℓ is the line spanned by the vector (0,0,1)�. The orthogonal matrix is as follows 
 

Ov 

cosv  sinv 0

sinv cosv 0

0 0 1

, v  R.

 
 

The matrix � supplies following equations, simultaneously, 
 

�ℓ = ℓ,    ��� = ��� = ��, ���� = 1. 
 
When the axis of rotation is ℓ, there is an Euclidean transformation by which the axis is ℓ transformed to the ��-axis of 3-space. The 



profile curve is given by as follows 
 

�(�) = (�(�), 0, ℎ(�)). 
 

Here �(�), ℎ(�) ∶ � ⊂  ℝ ⟶  ℝ are differentiable functions for all � ∈ �. 

Therefore, a helicoidal surface which is spanned by the vector (0,0,1) with pitch �, is as follows 
 

�(�, �) = �(�)�(�) + ��ℓ�, 
 

where � ∈ �, � ∈ [0, 2�). 

More cleear form of the helicoidal surface is as follows 
 

Hu,v  fucosv, fu sinv, hu  bv .   #   
 

 

When � = 0, the surface is a rotational surface. 

 

3. Cardiohelicoidal Surface 

In ��, a cardiohelicoidal surface (see Figure 1) which is spanned by the vector (0,0,1) with pitch � ∈ ℝ�, (see Figure 2 for � = 0) is 
defined by as follows: 
 

Cu,v 

a1  cosucosucosv  a1  sinusinusinv

a1  cosucosusinv  a1  sinusinucosv

u  bv

,   #   

 
 
 

 
 
 

Figure 1. Left: Cardiohelicoidal surface, Right: Its top view 
 
 
where profile space curve is given by 
 

u  a1  cosucosu,a1  sinusinu,u,
 

 
� ∶ � ⊂  ℝ ⟶  ℝ is differentiable function for all � ∈ �, � ∈ ℝ, and � ∈ [0, 2�). 

 
 



 
 
 

Figure 2. Left: Cardiorotational surface, Right: Its top view 

 
 
Calculating the first differentials of ℭ(�, �) with respect to � and �, we have 
 

detI  A1 2  A2   A3 ,
 

 
where 
 

A1  2a2cosu  1cosu  1cosu  1cosu  sinu  1,   
 

A2  2a2bcosu  1cosu  1cosu  cosu  1sinu  1,  
 

A3  a4cos2ucosu  1cosu  1  

              

.
42cosu  12cosu  2cos2u  3cosu

64cosu  3cosu  2 sinu  13
 

                         4b2cosu  12cosu  1cosu  1  cosusinucosu.  
 
The Gauss map of the cardiohelicoidal surface is as follows 
 

eC  1

detI

e1

e2

e3

,   #   

 
 
where 
 

e1  2sinv  cosv sinucosu  cosucosv  sinusinvb   

  1  sinusinu sinv  cosu  1cosucosv  ,   
 

 e2  2cosv  sinvsinucosu  sinucosu  sinv cosub   

  sinu  1sinucosv  cosu  1cosusinv  ,   
 

 e3  a4cosu  11  cosu  1  3sinusinucosu.   
 



After long calculations, we obtain the Gaussian curvature of the cardiohelicoidal surface as follows 
 

K 
1    2   3 2  4   5

detI2
,

 
 
where �: = ����, �: = ����, 
 

 1  2CSC  14C5  3C4  9C3  4C2  8C  5   

   27C3  C2  8C  5C  12C  1C,   
 

 2  b2C2  2C  52C2  1C  1CS   

   b2C2  1C  122C  5C  1C,   
 

 3  16C6  6C5  36C4  52C3  C2  32C  10C  12

  

   213C5  4C4  22C3  13C2  11C  5C  1S,   
 

 4  b210C5  33C4  17C3  33C2  33C  1CS   

   20C6  94C4  71C3  62C2  71C  2C  10S  1,   
 

 5  b24C516C3  16C2  32C  33  3S  2   

   CS64C5  36C4  60C3  36C2  9C  6   

   C30C3  63C2  34C  2.  
 
And also we obtain the mean curvature as follows 
 

H 
1

  2
3  3

2  4
  5

2detI3/2
,

 
 
where �: = ����, �: = ����, 
 

 
1  2a28C  C2  7C3  5C2  1

 

  
 4C5  3C4  9C3  4C2  8C  5CC  1

 

  
 b23C  1C  1  4C2  3C  2SC,

 
 

 
2  2C  1C  S  CS  C3  1,

 
 

 
3  3CbC2  2  3bS  1  3CSbC  2,

 
 

 
4  a2220C  5C2  20C3  5C4  C6  6C  10S  1

 

  
 218C  8C3  C5  6CS  b26C  8C2  3C3  8C4  5

 

  
 3C2  1S,

 
 

 
5  a2b4C6  4C5  24C4  10C3  23C2  11C  5

 

  
 14C4  8C3  4C2  6C  5C  1SC  1

 

   b32S  2C2S  2C3  1.  



Corollary 1.  We assume ℭ ∶  M�  ⟶  �� be an immersion given by ℭ(�, �). So, M� is minimal iff 
 

1
  2

3  3
2  4

  5  0.  
 

Corollary 2.  We assume ℭ ∶  M�  ⟶  �� be an immersion given by ℭ(�, �). Hence, M� is flat iff 
 

1    2   3 2  4   5  0.  
 
Corollary 3.  We assume ℭ ∶  M�  ⟶  �� be an immersion given by ℭ(�, �). Therefore, M� has following Weingarten relation 
 

a3det I3/2  K  2 H  0,
 

 
where � and � are the numerator functions of � and �, respectively. 
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