

4th International Conference on Mathematics*
"An Istanbul Meeting for World Mathematicians"

ICOM 2020 Conference Proceedings Book ISBN: 978-605-67964-6-3 Editor Kenan Yıldırım *Online conference due to pandemic

4th INTERNATIONAL CONFERENCE ON MATHEMATICS

"An Istanbul Meeting for World Mathematicians"
27-30 October 2020, Istanbul, Turkey
This conference is dedicated to 67th birthday of Prof. M. Mursaleen

On Fourth Fundamental Form of the Translation Hypersurface

Erhan Güler¹, Ömer Kişi²

^{1,2}Faculty of Sciences, Department of Mathematics, Bartin University, Turkey E-mail(s): eguler@bartin.edu.tr okisi@bartin.edu.tr

Abstract

We examine the fourth fundamental form of the translation hypersurface in the four dimensional Euclidean space. We also discuss I, II, III and IV fundamental forms of a translation hypersurface.

1. Introduction

A translation surface is a surface that is generated by translations: for two space curves α , β with a common point P, the curve α is shifted such that point P is moving on β . Then the curve α generates a translation surface $\mathbf{x}(u, v) = \alpha(u) + \beta(v)$.

Translation surface examples: The *elliptic paraboloid* $z = x^2 + y^2$ can be generated by parabolas α : $(x,0,x^2)$ and β : $(0,y,y^2)$. *Right circular cylinder*: α is a circle (or another cross section) and β is a line. The *hyperbolic paraboloid* $z = x^2 - y^2$ can be generated by parabolas α : $(x,0,x^2)$ and β : $(0,y,-y^2)$.

A translation hypersurface (TH) in \mathbb{E}^4 is a hypersurface that is generated by translations: for three space curves α , β , γ with a common point P, the curve α is shifted such that point P is moving on β and γ , respectively. So, the curve α generates a translation hypersurface in \mathbb{E}^4 .

Parametrization of the translation hypersurface is given by

 $\mathbf{x}(u,v,w) = (u,0,0,f(u)) + (0,v,0,g(v)) + (0,0,w,h(w)) = \alpha(u) + \beta(v) + \gamma(w),$ where f(u),g(v),h(w) are differentiable functions for all $u,v,w \in I \subset \mathbb{R}$. More clear form of it as follows

$$\mathbf{x}(u, v, w) = (u, v, w, f(u) + g(v) + h(w)). \tag{1.1}$$

Arslan et al [1] studied translation surfaces in 4-dimensional Euclidean space. Chen, Sun, and Tang [2] introduced translation hypersurfaces with constant mean curvature (CMC) in (n + 1)-dimensional spaces. Dillen, Verstraelen, and Zafindratafa [3] worked a generalization of the translation surfaces of Scherk. Inoguchi, Lopez, and Munteanu [4] studied minimal translation surfaces in the Heisenberg group Nil₃. Lima, Santos, and Sousa [5] gave translation hypersurfaces with constant scalar curvature into the Euclidean space. Lima, Santos, and Sousa [6] considered generalized translation hypersurfaces in Euclidean space. Liu [7] introduced translation surfaces with CMC in 3-dimensional spaces. Lopez [8] studied minimal translation surfaces in hyperbolic space. Lopez and Moruz [9] obtained translation and homothetical surfaces with constant curvature in Euclidean space. Lopez and Munteanu [10] worked minimal translation surfaces in Sol₃. Moruz and Munteanu [11] considered hypersurfaces in the Euclidean space \mathbb{E}^4 defined as the sum of a curve and a surface whose mean curvature vanishes. Munteanu, Palmas, and Ruiz-Hernandez [12] studied minimal translation hypersurfaces in Euclidean space. Scherk [13] gave his classical minimal translation surface. Seo [14] worked translation hypersurfaces with constant curvature

ICOM 2020 ISTANBUL / TURKEY