

4th International Conference on Mathematics*
"An Istanbul Meeting for World Mathematicians"

ICOM 2020 Conference Proceedings Book ISBN: 978-605-67964-6-3 Editor Kenan Yıldırım *Online conference due to pandemic

> ICOM 2020 ISTANBUL / TURKEY

4th INTERNATIONAL CONFERENCE ON MATHEMATICS

"An Istanbul Meeting for World Mathematicians" 27-30 October, Istanbul, Turkey This conference is dedicated to 67th birthday of Prof. M. Mursaleen

Curvatures of the Translation Hypersurface in 4-Space

Erhan Güler¹, Ömer Kişi²

1,2Faculty of Sciences, Department of Mathematics, Bartın University, Turkey E-mail(s): eguler@bartin.edu.tr okisi@bartin.edu.tr

Abstract

We study curvatures $\mathfrak{C}_{i=1,2,3}$ of translation hypersurface in the four dimensional Euclidean space. We also give some relations on \mathfrak{C}_i of translation hypersurface.

1. Introduction

We see some nice papers about translation surfaces (TS) and translation hypersurfaces (TH) in the literature such as [1-17].

Arslan et al [1] worked TS in 4-dimensional Euclidean space; Chen, Sun, and Tang [2] studied TH with constant mean curvature (CMC) in (n + 1)-dimensional spaces; Dillen, Verstraelen, and Zafindratafa [3] focused a generalization of the TS of Scherk; Inoguchi, Lopez, and Munteanu [4] gave minimal TS in the Heisenberg group Nil₃; Lima, Santos, and Sousa [5] introduced TH with constant scalar curvature into the Euclidean space; Lima, Santos, and Sousa [6] studied generalized TH in Euclidean space; Liu [7] considered TS with CMC in 3-dimensional spaces; Lopez [8] worked minimal TS in hyperbolic space; Lopez and Moruz [9] studied translation and homothetical surfaces with constant curvature in Euclidean space; Lopez and Munteanu [10] worked minimal TS in Sol₃; Moruz and Munteanu [11] obtained hypersurfaces in the Euclidean space \mathbb{E}^4 defined as the sum of a curve and a surface whose mean curvature vanishes; Munteanu, Palmas, and Ruiz-Hernandez [12] worked minimal TH in Euclidean space; Scherk [13] found his classical minimal TS; Seo studied [14] TH with constant curvature in space forms; Verstraelen, Walrave, and Yaprak [15] studied on the minimal TS in \mathbb{E}^n ; Yang and Fu [16] considered affine TS in affine space; Yoon [17] focused the Gauss map of TS in Minkowski 3-space.

A translation surface in \mathbb{E}^3 is a surface generated by translations. For two space curves α , β with a common point P, the curve α is shifted such that point P is moving on β . Then the curve α generates a TS

$$\mathbf{x}(u, v) = \alpha(u) + \beta(v)$$
.

A translation hypersurface in the four dimensional Euclidean space \mathbb{E}^4 is a hypersurface generated by translations: for three space curves α , β , γ with a common point P, the curve α is shifted such that point P is moving on β and γ , respectively. Then, the curve α generates a TH in \mathbb{E}^4 . TH is parametrized by

$$\mathbf{x}(u, v, w) = (u, v, w, f(u) + g(v) + h(w)). \tag{1.1}$$

where f(u), g(v), h(w) are differentiable functions for all $u, v, w \in I \subset \mathbb{R}$. More clear form of it as follows

In this work, we obtain curvatures of hypersurfaces in \mathbb{E}^4 . We present basic elements of the four dimensional Euclidean geometry. Moreover, we compute curvatures $\mathfrak{C}_{i=1,2,3}$ of TH.

ICOM 2020 ISTANBUL / TURKEY