A Study on the Fourth Fundamental Form of the Factorable Hypersurface

Erhan Güler ${ }^{\text {1* }}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Bartın University, 74100, Bartın, Turkey.

Author's contribution

The sole author designed, analysed, interpreted and prepared the manuscript.
Article Information

DOI: 10.9734/ARJOM/2020/v16i1130239
Editor(s):
(1) Dr. Sheng Zhang, Bohai University, China.

Reviewers:
(1) Francisco Bulnes Iinamei, TESCHA, Mexico.
(2) Anamika Rai, K. S. Saket P. G. College Ayodhya, India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/63293

Original Research Article
Received: 20 September 2020
Accepted: 26 November 2020
Published: 04 December 2020

Abstract

We study the fourth fundamental form of the factorable hypersurface in the four dimensional Euclidean space \mathbb{E}^{4}. We obtain I, II, III, and IV fundamental forms of a factorable hypersurface.

Keywords: Four dimensional space; factorable hypersurface; fourth fundamental form.

1. Introduction

Surfaces and hypersurfaces have been studied by the mathematicians for centuries. We see some papers about factorable surfaces and factorable hypersurfaces such as [1-25].

A factorable hypersurface in \mathbb{E}^{4} can be parametrized by:

$$
\begin{equation*}
\mathbf{x}(u, v, w)=(u, v, w, u v w) \tag{1.1}
\end{equation*}
$$

where $u, v, w \in I \subset \mathbb{R}$.

[^0]In this work, we introduce the fourth fundamental form of the factorable hypersurface in the four dimensional Euclidean space \mathbb{E}^{4}. We give basic notions of four dimensional Euclidean geometry. Moreover, we give fundamental forms I, II, III, and IV of factorable hypersurface.

2 Preliminaries

We give characteristic polynomial of shape operator \mathbf{S} as follows:

$$
\begin{equation*}
P_{\mathbf{S}}(\lambda)=0=\operatorname{det}\left(\mathbf{S}-\lambda I_{n}\right)=\sum_{k=0}^{n}(-1)^{k} s_{k} \lambda^{n-k} \tag{2.1}
\end{equation*}
$$

where I_{n} denotes the identity matrix of order n in \mathbb{E}^{n+1}. Then, we have curvature formulas

$$
\binom{n}{i} \mathfrak{C}_{i}=s_{i}
$$

where $\binom{n}{0} \mathfrak{C}_{0}=s_{0}=1$ by definition. Therefore, k-th fundamental form of hypersurface M^{n} is given by

$$
\mathrm{I}\left(\mathbf{S}^{k-1}(X), Y\right)=\left\langle\mathbf{S}^{k-1}(X), Y\right\rangle
$$

So, we obtain

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \mathfrak{C}_{i} \mathrm{I}\left(\mathbf{S}^{k-1}(X), Y\right)=0 \tag{2.2}
\end{equation*}
$$

We identify a vector ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) with its transpose in this paper.
Let $\mathbf{M}=\mathbf{M}(u, v, w)$ be an isometric immersion of a hypersurface M^{3} in \mathbb{E}^{4}. Inner product of vectors $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ in \mathbb{E}^{4} is given by as follows:

$$
\langle\vec{x}, \vec{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}
$$

Vector product $\vec{x} \times \vec{y} \times \vec{z}$ of $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \vec{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ in \mathbb{E}^{4} is given by as follows:

$$
\vec{x} \times \vec{y} \times \vec{z}=\operatorname{det}\left(\begin{array}{l}
e_{1} e_{2} e_{3} e_{4} \\
x_{1} x_{2} x_{3} x_{4} \\
y_{1} y_{2} y_{3} y_{4} \\
z_{1} z_{2} z_{3} z_{4}
\end{array}\right)
$$

The Gauss map of a hypersurface \mathbf{M} is defined by

$$
e=\frac{\mathbf{M}_{u} \times \mathbf{M}_{v} \times \mathbf{M}_{w}}{\left\|\mathbf{M}_{u} \times \mathbf{M}_{v} \times \mathbf{M}_{w}\right\|}
$$

where $\mathbf{M}_{u}=d \mathbf{M} / d u$. For a hypersurface \mathbf{M} in \mathbb{E}^{4}, we get following fundamental form matrices

$$
\mathrm{I}=\left(\begin{array}{lll}
E & F & A \\
F & G & B \\
A & B & C
\end{array}\right)
$$

$$
\begin{aligned}
\mathrm{II} & =\left(\begin{array}{ccc}
L & M & P \\
M & N & T \\
P & T & V
\end{array}\right), \\
\mathrm{III} & =\left(\begin{array}{lll}
X & Y & O \\
Y & Z & R \\
O & R & S
\end{array}\right) .
\end{aligned}
$$

Here, the coefficients of I, II, III are defined by

$$
\begin{aligned}
& E=\left\langle\mathbf{M}_{u}, \mathbf{M}_{u}\right\rangle, \quad F=\left\langle\mathbf{M}_{u}, \mathbf{M}_{v}\right\rangle, \quad G=\left\langle\mathbf{M}_{v}, \mathbf{M}_{v}\right\rangle, \quad A=\left\langle\mathbf{M}_{u}, \mathbf{M}_{w}\right\rangle, \quad B=\left\langle\mathbf{M}_{v}, \mathbf{M}_{w}\right\rangle, \quad C=\left\langle\mathbf{M}_{w}, \mathbf{M}_{w}\right\rangle, \\
& L=\left\langle\mathbf{M}_{u u}, e\right\rangle, \quad M=\left\langle\mathbf{M}_{u v}, e\right\rangle, \quad N=\left\langle\mathbf{M}_{v v}, e\right\rangle, \quad P=\left\langle\mathbf{M}_{u w}, e\right\rangle, \quad T=\left\langle\mathbf{M}_{v w}, e\right\rangle, \quad V=\left\langle\mathbf{M}_{w w}, e\right\rangle, \\
& X=\left\langle e_{u}, e_{u}\right\rangle, \quad Y=\left\langle e_{u}, e_{v}\right\rangle, \quad Z=\left\langle e_{v}, e_{v}\right\rangle, \quad O=\left\langle e_{u}, e_{w}\right\rangle, \quad R=\left\langle e_{v}, e_{w}\right\rangle, \quad S=\left\langle e_{w}, e_{w}\right\rangle,
\end{aligned}
$$

and e is the Gauss map.

3 The Fourth Fundamental Form

We, next, find the fourth fundamental form matrix for a hypersurface $\mathbf{M}(u, v, w)$ in \mathbb{E}^{4}. By using characteristic polynomial $P_{\mathbf{S}}(\lambda)=a \lambda^{3}+b \lambda^{2}+c \lambda+d=0$, we have curvature formulas: $\mathfrak{C}_{0}=1$ (by definition),

$$
\mathfrak{C}_{1}=-\frac{b}{\binom{3}{1} a}, \quad \mathfrak{C}_{2}=\frac{c}{\binom{3}{2} a}, \quad \mathfrak{C}_{3}=-\frac{d}{\binom{3}{3} a}
$$

Theorem 3.1.

For any hypersurface M^{3} in \mathbb{E}^{4}, the fourth fundamental form is related by

$$
\begin{equation*}
\mathrm{IV}=3 \mathfrak{C}_{1} \mathrm{III}-3 \mathfrak{C}_{2} \mathrm{II}+\mathfrak{C}_{3} \mathrm{I} \tag{3.1}
\end{equation*}
$$

Proof. By using $n=3$ in (2.2) with some computing, we get the fourth fundamental form matrix

Theorem 3.2.

For any hypersurface M^{3} in \mathbb{E}^{4}, we get following

$$
\mathrm{IV}=\mathrm{III} \cdot \mathbf{S}
$$

Proof. Using I, II, III, IV, and \mathbf{S} of (1.1), we get the result.

4 The Fourth Fundamental Form of a Factorable Hypersurface

Next, we obtain the fourth fundamental form of a factorable hypersurface (1.1).
Using the first differentials of (1.1) depends on u, v, w, we have the Gauss map of (1.1):

$$
e=\frac{1}{(\operatorname{det} \mathrm{I})^{1 / 2}}\left(\begin{array}{cc}
v & w \tag{4.1}\\
u & w \\
u & v \\
-1
\end{array}\right)
$$

where $\operatorname{det} \mathrm{I}=u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}+1$. We find the first and the second fundamental form matrices of (1.1), respectively,

$$
\begin{aligned}
& \mathrm{I}=\left(\begin{array}{ccc}
v^{2} w^{2}+1 & u v w^{2} & u v^{2} w \\
u v w^{2} & u^{2} w^{2}+1 & u^{2} v w \\
u v^{2} w & u^{2} v w & u^{2} v^{2}+1
\end{array}\right) \\
& \mathrm{II}=\left(\begin{array}{ccc}
0 & -\frac{w}{(\operatorname{det} \mathrm{I})^{1 / 2}} & -\frac{v}{(\operatorname{det} \mathrm{I})^{1 / 2}} \\
-\frac{w}{(\operatorname{det} \mathrm{I})^{1 / 2}} & 0 & -\frac{u}{(\operatorname{det} \mathrm{I})^{1 / 2}} \\
-\frac{v}{(\operatorname{det} \mathrm{I})^{1 / 2}} & -\frac{u}{(\operatorname{det} \mathrm{I})^{1 / 2}} & 0
\end{array}\right) .
\end{aligned}
$$

Computing $\mathrm{I}^{-1} \cdot \mathrm{II}$, factorable hypersurface (1.1) in \mathbb{E}^{4} has following shape operator matrix:

$$
\mathbf{S}=\left(\begin{array}{ccc}
\frac{u v w\left(v^{2}+w^{2}\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & -\frac{w\left(u^{2} w^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & -\frac{v\left(u^{2} v^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} \\
-\frac{w\left(v^{2} w^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & \frac{u v w\left(u^{2}+w^{2}\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & -\frac{u\left(u^{2} v^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} \\
-\frac{v\left(v^{2} w^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & -\frac{u\left(u^{2} w^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & \frac{u v w\left(u^{2}+v^{2}\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}}
\end{array}\right) .
$$

Therefore, we get the third fundamental form matrix using (4.1) of (1.1):

$$
\text { III }=\left(\begin{array}{ccc}
\frac{\left(v^{2}+w^{2}\right)\left(v^{2} w^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{2}} & -\frac{u v\left(w^{4}-1\right)}{(\operatorname{det} \mathrm{I})^{2}} & -\frac{u w\left(v^{4}-1\right)}{(\operatorname{det~I})^{2}} \\
-\frac{u v\left(w^{4}-1\right)}{(\operatorname{det} \mathrm{I})^{2}} & \frac{\left(u^{2}+w^{2}\right)\left(u^{2} w^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{2}} & -\frac{v w\left(u^{4}-1\right)}{(\operatorname{det~I})^{2}} \\
-\frac{u w\left(v^{4}-1\right)}{(\operatorname{det} \mathrm{I})^{2}} & -\frac{v w\left(u^{4}-1\right)}{(\operatorname{det} \mathrm{I})^{2}} & \frac{\left(u^{2}+v^{2}\right)\left(u^{2} v^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{2}}
\end{array}\right) .
$$

Then, using Theorem 3.2 on (1.1), we get the fourth quantities of (1.1), i.e. symmetric matrix, as follows

$$
\mathrm{IV}=\frac{1}{(\operatorname{det} \mathrm{I})^{7 / 2}}\left(\begin{array}{lll}
\alpha & \beta & \gamma \\
\beta & \delta & \varepsilon \\
\gamma & \varepsilon & \eta
\end{array}\right)
$$

where

$$
\begin{aligned}
& \alpha=2 u v w\left(v^{2} w^{2}+1\right)\left(v^{2} w^{2}+v^{4}+w^{4}-1\right) \\
& \beta=-w\left(-u^{2} v^{4}-u^{4} v^{2}+u^{2} w^{4}+u^{4} w^{2}+v^{2} w^{4}+v^{4} w^{2}+u^{2}+v^{2}+w^{2}+2 u^{2} v^{2} w^{6}\right. \\
& \left.\quad+u^{2} v^{4} w^{4}+u^{4} v^{2} w^{4}-u^{4} v^{4} w^{2}\right) \\
& \gamma=-v\left(u^{2} v^{4}+u^{4} v^{2}-u^{2} w^{4}-u^{4} w^{2}+v^{2} w^{4}+v^{4} w^{2}+u^{2}+v^{2}+w^{2}+u^{2} v^{4} w^{4}+2 u^{2} v^{6} w^{2}\right. \\
& \left.\quad-u^{4} v^{2} w^{4}+u^{4} v^{4} w^{2}\right), \\
& \delta=2 u v w\left(u^{2} w^{2}+1\right)\left(u^{2} w^{2}+u^{4}+w^{4}-1\right), \\
& \begin{aligned}
\varepsilon= & -u\left(u^{2} v^{4}+u^{4} v^{2}+u^{2} w^{4}+u^{4} w^{2}-v^{2} w^{4}-v^{4} w^{2}+u^{2}+v^{2}+w^{2}-u^{2} v^{4} w^{4}+u^{4} v^{2} w^{4}\right. \\
& \left.+u^{4} v^{4} w^{2}+2 u^{6} v^{2} w^{2}\right)
\end{aligned}
\end{aligned}
$$

$$
\eta=2 u v w\left(u^{2} v^{2}+1\right)\left(u^{2} v^{2}+u^{4}+v^{4}-1\right) .
$$

Corollary 4.1.

A factorable hypersurface (1.1) in \mathbb{E}^{4} has following relations

$$
\frac{(\operatorname{detII})(\operatorname{detIII})^{2}}{(\operatorname{detI})(\operatorname{detIV})^{2}}=\operatorname{det} \mathbf{S}=\mathfrak{C}_{3}=\left(\frac{2 u v w}{\left(u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}+1\right)^{2}}\right)^{2}
$$

Proof. Using I, II, III, IV, and S of (1.1), it is clear.

Corollary 4.2.

A factorable hypersurface (1.1) in \mathbb{E}^{4} is written by as follows

$$
\mathbf{x}(u, v, w)=\left(u, v, w,-2(\operatorname{det} I V)^{13 / 6}(\operatorname{detI})^{1 / 3}\right)
$$

Proof. Using I, IV of (1.1), it is clear.

Corollary 4.3.

A factorable hypersurface (1.1) in \mathbb{E}^{4} is given by as follows

$$
\mathbf{x}(u, v, w)=\left(u, v, w, \frac{(\operatorname{detI})^{2}\left(\mathfrak{C}_{3}\right)^{1 / 2}}{2}\right)
$$

Proof. Using Corollary 4.1, it is clear.

5 Conclusion

Factorable hyper-surfaces have been studied by some authors for years. Results of the factorable hypersurface (1.1) are extended by its fourth quantities in four-space. Moreover, factorable hypersurface (1.1) are given by its quantities I, II, III, IV, and \mathfrak{C}_{3} in this paper.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Arslan K, Bayram B, Bulca B, Öztürk G. On translation surfaces in 4-dimensional Euclidean space. Acta Comm. Univ. Tartuensis Math. 2016;20(2):123-133.
[2] Aydın ME. Constant curvature factorable surfaces in 3-dimensional isotropic space. J. Korean Math. Soc. 2018;55(1):59-71.
[3] Aydın ME, Öğrenmiş AO. Linear Weingarten factorable surfaces in isotropic spaces. Stud. Univ. Babeş-Bolyai Math. 2017;62(2):261-268.
[4] Aydın ME, Külahcı M, Öğrenmiş AO. Non-zero constant curvature factorable surfaces in pseudoGalilean space, Comm. Korean Math. Soc. 2018;33(1):247-259.
[5] Aydın ME, Öğrenmiş AO, Ergüt M. Classification of factorable surfaces in the Pseudo-Galilean 3space. Glasnik Matematicki. 2015;50(70):441-451.
[6] Baba-Hamed C, Bekkar M, Zoubir H. Translation surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta r_{i}=\lambda_{\mathbf{i}} \mathrm{r}_{\mathrm{i}}$. Int. J. Math. Analysis. 2010;4(17):797-808.
[7] Bekkar M, Senoussi B. Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying $\Delta \mathrm{r}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}$. J. Geom. 2012;103(1):17-29.
[8] Bulca B, Arslan K, Bayram BK, Öztürk G. Spherical product surface in \mathbb{E}^{4}. Ann. St. Univ. Ovidius Constanta. 2012;20(1):41-54.
[9] Büyükkütük S, Öztürk G. Spacelike factorable surfaces in four-dimensional Minkowski space. Bull. Math. Anal. Appl. 2017;9(4):12-20.
[10] Dillen F, Verstraelen L, Zafindratafa G. A generalization of the translation surfaces of Scherk differential geometry in honor of Radu Rosca: Meeting on pure and applied differential geometry, Leuven, Belgium. 1989, KU Leuven, Department Wiskunde. 1991;107-109.
[11] Dillen F, Van de Woestyne I, Verstraelen L, Walrave JT. The surface of Scherk in \mathbb{E}^{3} : A special case in the class of minimal surfaces defined as the sum of two curves. Bull. Inst. Math. Acad. Sin. 1998;26:257-267.
[12] Inoguchi J, López R, Munteanu M. Minimal translation surfaces in the Heisenberg group Nil . Geom Dedicata. 2012;161(1):221-231.
[13] Jiu L, Sun H. On minimal homothetical hypersurfaces. Colloq. Math. 2007;109(2):239-249.
[14] Liu H. Translation surfaces with dependent Gaussian and mean curvature in 3-dimensional spaces. J. Northeast Univ. Tech. 1993;14(1):88-93.
[15] Liu H. Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 1999;64: 141-149.
[16] Lopez R, Moruz M. Translation and homothetical surfaces in Euclidean space with constant curvature. J. Korean Math. Soc. 2015;52(3):523-535.
[17] Meng H, Liu H. Factorable surfaces in 3-Minkowski space. Bull. Korean Math. Soc. 2009;46(1):155169.
[18] Moruz M, Munteanu M. Minimal translation hypersurfaces in \mathbb{E}^{4}. J. Math. Anal. Appl. 2016;439:798-812.
[19] Munteanu M., Nistor A.I. On the geometry of the second fundamental form of translation surfaces in \mathbb{E}^{3}. Houston J. Math. 37, (2011) 1087-1102.
[20] Munteanu M., Palmas O., Ruiz-Hernandez G. Minimal translation hypersurfaces in Euclidean space. Mediterr. J. Math. 13, (2016) 2659-2676.
[21] Scherk H.F. Bemerkungen ber die Kleinste fläche innerhalb Gegebener Grenzen, J. R. Angew.Math., 13, (1835) 185-208.
[22] Turhan E, Altay G. Maximal and minimal surfaces of factorable surfaces in Heis 3_{3}. Int. J. Open Probl. Comput. Sci. Math. 2010;3(2):200-212.
[23] Van de Woestyne I. Minimal homothetical hypersurfaces of a semi-Euclidean space. Results Math. 1995;27(3-4):333-342.
[24] Yu Y, Liu H. The factorable minimal surfaces. Proceedings of the Eleventh International Workshop on Differential Geometry. Kyungpook Nat. Univ., Taegu. 2007;33-39.
[25] Zong P, Xiao L, Liu HL. Affine factorable surfaces in three-dimensional Euclidean space. (Chinese) Acta Math. Sinica (Chin. Ser.). 2015;58(2):329-336.
© 2020 Güler; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle4.com/review-history/63293

[^0]: *Corresponding author: E-mail: eguler@bartin.edu.tr;

