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Abstract 
 

The curvatures  ℭ���,�,� of a factorable hypersurface are introduced in the four-dimensional Euclidean 
space. It is also given some relations on ℭ� of the factorable hypersurface. 
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1 Introduction 
 
Surfaces and hypersurfaces have been studied by mathematicians for centuries. It can be seen some papers 
about factorable surfaces and factorable hypersurfaces in the literature such as [1–25]. 
 
A factorable hypersurface in �� can be parametrized by 
 

�(�,�,�)= (�,�,�,���),                                                                                                                        (1.1) 
 
where �,�,� ∈ � ⊂ ℝ . 
 
In this paper, the fourth fundamental form of the factorable hypersurface is obtained in the four-dimensional 
Euclidean space �� . Some notions of four-dimensional Euclidean geometry are shown. Moreover, the 
curvatures ℭ���,�,� of the factorable hypersurface are obtained. 
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2 Preliminaries 
 
Characteristic polynomial of the shape operator � is obtained by as follows 
 

��(�)= 0 = det(� − ���)= � (− 1)�
�

���

���
���,                                                                                   (2.1) 

 
where ��  denotes the identity matrix of order � in ����. Then, curvature formulas are defined by as follows 
 

�
�
�
� ℭ� = ��, 

 

where �
�
0
�ℭ� = �� = 1 by definition. Therefore, �-th fundamental form of hypersurface ��  is given by  

 
I(����(�),�)= 〈����(�),�〉. 

 
Hence  
 

� (−1)�
�

���

�
�
�
�ℭ� I(�

���(�),�)= 0                                                                                                         (2.2) 

 
is hold.  
 
A vector (a,b,c,d) with its transpose are considered as identify in this work. 
 
Let � = �(�,�,�) be an isometric immersion of a hypersurface �� in ��. The inner product of vectors 
�⃗ = (��,��,��,��) and �⃗ = (��,��,��,��) in �� is given by as follows: 
 

〈�⃗,�⃗〉 = � ����

�

���

. 

 
Vector product �⃗ × �⃗ × �⃗ of �⃗ = (��,��,��,��), �⃗ = (��,��,��,��), �⃗ = (��,��,��,��) in �� is defined by 
as follows: 
 

�⃗ × �⃗ × �⃗ = det�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�. 

 
The Gauss map of a hypersurface � is given by 
 

� =
�� ×�� ×��

‖�� ×�� ×��‖
, 

 
where �� = ��/��. For a hypersurface � in ��, following fundamental form matrices are holds: 
 

I = �
� � �
� � �
� � �

�, 
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II = det�
� � �
� � �
� � �

�, 

 

III = �
� � �
� � �
� � �

�, 

 
where the coefficients are given by 
 

 � = 〈��,��〉,   � = 〈��,��〉,   � = 〈��,��〉,   � = 〈��,��〉,   � = 〈��,��〉,   � = 〈��,��〉, 
 
 � = 〈���,�〉,    � = 〈���,�〉,    � = 〈���,�〉,      � = 〈���,�〉,     � = 〈���,�〉,    � = 〈���,�〉, 
 
� = 〈��,��〉,      � = 〈��,��〉,       � = 〈��,��〉,       � = 〈��,��〉,       � = 〈��,��〉,       � = 〈��,��〉. 

 

3 Curvatures 
 
Next, the curvatures of a hypersurface �(�,�,�) will be obtained in ��. Using characteristic polynomial 
��(�)= ��� + ��� + ��+ � = 0, the curvature formulas are computed: ℭ� = 1 (by definition), 
 

�
3
1
�ℭ� = −

�

�
,   �

3
2
�ℭ� =

�

�
,   �

3
3
�ℭ� = −

�

�
. 

 
Then, the following curvature formulas are hold: 
 

3.1 Theorem  
 
Any hypersurface �� in �� has following curvature formulas, ℭ� = 1 (by definition), 
 

ℭ� =
(�� + �� − 2��)� + (�� − ��)� − ��� − ��� − 2(��� − ��� − ��� + ��� − ���)

3[(�� − ��)� − ��� + 2��� − ���]
, 

(3.1) 
 

ℭ� =
(�� +�� − 2��)� + (�� − ��)� − ��� − ��� − 2(��� − ��� − ��� + ��� − ���)

3[(�� − ��)� − ��� + 2��� − ���]
,  

(3.2) 
 

ℭ� =
(�� − ��)� − ��� + 2��� − ���

(�� − ��)� − ��� + 2��� − ���
.                                                                                           (3.3) 

 
Proof. Solving det(� − ���)= 0 with some calculations, the coefficients of polynomial ��(�) are found. 
 

3.2 Theorem 
 
For any hypersurface �� in ��, curvatures are related by following formula 
 

ℭ��� − 3ℭ���� + 3ℭ�II − ℭ�� = 0.                                                                                                           (3.4) 
 

4 Curvatures of factorable hypersurface 
 
The curvatures of factorable hypersurface (1.1) will be computed in this section. 
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With the first differentials of (1.1) depends on �,�,�, the Gauss map of (1.1) is given by 
 

� =
1

(detI)�/�
�

� �
� �
� �
− 1

�.                                                                                                                                  (4.1) 

 
detI = ���� + ���� + ���� + 1. The first and the second fundamental form matrices of (1.1) are found 
by as follows, respectively, 
 

I = �
���� + 1 ���� ����
���� ���� + 1 ����
���� ���� ���� + 1

�,    

 

II =

⎝

⎜
⎜
⎛

0 −
�

(detI)�/�
−

�

(detI)�/�

−
�

(detI)�/�
0 −

�

(detI)�/�

−
�

(detI)�/�
−

�

(detI)�/�
0

⎠

⎟
⎟
⎞
. 

 
Computing matrix ��� ∙ ��, shape operator matrix of the factorable hypersurface (1.1) can be seen as follows 
 

� =

⎝

⎜
⎜
⎜
⎛

���(��+��)

(detI)�/�
−
�(���� + 1)

(detI)�/�
−
�(���� + 1)

(detI)�/�

−
�(���� + 1)

(detI)�/�
���(��+��)

(detI)�/�
−
�(���� + 1)

(detI)�/�

−
�(���� + 1)

(detI)�/�
−
�(���� + 1)

(detI)�/�
���(��+��)

(detI)�/� ⎠

⎟
⎟
⎟
⎞

. 

 

4.1 Theorem 
 
Factorable hypersurface (1.1) in �� has the following curvature formulas, ℭ� = 1 (by definition), 
 

ℭ� =  
2���(�² + �² +�²)

3(�²�² + �²�² + �²�² + 1)�/�
, 

 

ℭ� =
3�²�²�² − (�² + �² +�²)

3(�²�² + �²�² + �²�² + 1)�
, 

 

ℭ� = −
2���

(�²�² + �²�² + �²�² + 1)�/�
∙ 

 
Proof. Computing (3.1), (3.2), and (3.3) of (1.1), the curvatures is obtained. 
 

4.2 Corollary 
 
Factorable hypersurface (1.1) in �� has the following relations 
 

 
(ℭ�)

�ℭ�
(ℭ�)

�
=  

(3�² − �)��

9
∙ 
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Where 
 

� = ���,   � = �� + �� + ��. 
 
Proof. Using Theorem 4.1, it is seen clearly. 
 

4.3 Corollary 
 
The factorable hypersurface (1.1) depends on ℭ� in �� can be written as follows 
 

�(�,�,�)= ��,�,�,
3ℭ�(detI)

�/�

�
�. 

 

4.4 Corollary 
 
The factorable hypersurface (1.1) depends on ℭ� in �� can be written as follows 
 

�(�,�,�)= ��,�,�,±�
3ℭ�(detI)

� + �

3
�

�/�

�. 

 

4.5 Corollary 
 
The factorable hypersurface (1.1) depends on ℭ� in �� can be written as follows 
 

�(�,�,�)= ��,�,�,−
ℭ�(detI)

�/�

2
�. 

 

5 Conclusion 
 
Factorable hyper-surfaces have been studied by lots of authors for a long time. Results of the factorable 
hypersurface (1.1) are expanded by using its curvatures in ��. In addition, factorable hypersurface (1.1) are 
given by its curvatures ℭ�,ℭ�, and ℭ� of �� in this work. 
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