Curvatures of the Factorable Hypersurface

Erhan Güler ${ }^{\text {* }}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Bartın University, 74100 Bartın, Turkey.

Author's contribution
The sole author designed, analysed, interpreted and prepared the manuscript.
Article Information
DOI: 10.9734/JAMCS/2020/v35i830315
Editor(s):
(1) Dr. Dragoş - Pătru Covei, The Bucharest University of Economic Studies, Romania.

Reviewers.
(1) Mohammed Nokhas Murad Kaki, Iraq.
(2) Saad M. A. Al-Momen, University of Baghdad, Iraq. Complete Peer review History: http://www.sdiarticle4.com/review-history/63294

Received: 12 September 2020

Original Research Article

Accepted: 18 November 2020
Published: 08 December 2020

Abstract

The curvatures $\mathfrak{C}_{\mathrm{i}=1,2,3}$ of a factorable hypersurface are introduced in the four-dimensional Euclidean space. It is also given some relations on $\mathfrak{C}_{\mathrm{i}}$ of the factorable hypersurface.

Keywords: Four-space; factorable hypersurface; fourth fundamental form.

1 Introduction

Surfaces and hypersurfaces have been studied by mathematicians for centuries. It can be seen some papers about factorable surfaces and factorable hypersurfaces in the literature such as [1-25].

A factorable hypersurface in \mathbb{E}^{4} can be parametrized by

$$
\begin{equation*}
\mathbf{x}(u, v, w)=(u, v, w, u v w) \tag{1.1}
\end{equation*}
$$

where $u, v, w \in I \subset \mathbb{R}$.
In this paper, the fourth fundamental form of the factorable hypersurface is obtained in the four-dimensional Euclidean space \mathbb{E}^{4}. Some notions of four-dimensional Euclidean geometry are shown. Moreover, the curvatures $\mathfrak{C}_{i=1,2,3}$ of the factorable hypersurface are obtained.

[^0]
2 Preliminaries

Characteristic polynomial of the shape operator \mathbf{S} is obtained by as follows

$$
\begin{equation*}
P_{\mathbf{S}}(\lambda)=0=\operatorname{det}\left(\mathbf{S}-\lambda I_{n}\right)=\sum_{k=0}^{n}(-1)^{k} s_{k} \lambda^{n-k} \tag{2.1}
\end{equation*}
$$

where I_{n} denotes the identity matrix of order n in \mathbb{E}^{n+1}. Then, curvature formulas are defined by as follows

$$
\binom{n}{i} \mathfrak{C}_{i}=s_{i}
$$

where $\binom{n}{0} \mathfrak{C}_{0}=s_{0}=1$ by definition. Therefore, k-th fundamental form of hypersurface M^{n} is given by

$$
\mathrm{I}\left(\mathbf{S}^{k-1}(X), Y\right)=\left\langle\mathbf{S}^{k-1}(X), Y\right\rangle
$$

Hence

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \mathfrak{C}_{i} \mathrm{I}\left(\mathbf{S}^{k-1}(X), Y\right)=0 \tag{2.2}
\end{equation*}
$$

is hold.
A vector ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) with its transpose are considered as identify in this work.
Let $\mathbf{M}=\mathbf{M}(u, v, w)$ be an isometric immersion of a hypersurface M^{3} in \mathbb{E}^{4}. The inner product of vectors $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ in \mathbb{E}^{4} is given by as follows:

$$
\langle\vec{x}, \vec{y}\rangle=\sum_{i=1}^{4} x_{i} y_{i} .
$$

Vector product $\vec{x} \times \vec{y} \times \vec{z}$ of $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \vec{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ in \mathbb{E}^{4} is defined by as follows:

$$
\vec{x} \times \vec{y} \times \vec{z}=\operatorname{det}\left(\begin{array}{l}
e_{1} e_{2} e_{3} e_{4} \\
x_{1} x_{2} x_{3} x_{4} \\
y_{1} y_{2} y_{3} y_{4} \\
z_{1} z_{2} z_{3} z_{4}
\end{array}\right)
$$

The Gauss map of a hypersurface \mathbf{M} is given by

$$
e=\frac{\mathbf{M}_{u} \times \mathbf{M}_{v} \times \mathbf{M}_{w}}{\left\|\mathbf{M}_{u} \times \mathbf{M}_{v} \times \mathbf{M}_{w}\right\|},
$$

where $\mathbf{M}_{u}=d \mathbf{M} / d u$. For a hypersurface \mathbf{M} in \mathbb{E}^{4}, following fundamental form matrices are holds:

$$
\mathrm{I}=\left(\begin{array}{lll}
E & F & A \\
F & G & B \\
A & B & C
\end{array}\right)
$$

$$
\begin{aligned}
& \mathrm{II}=\operatorname{det}\left(\begin{array}{ccc}
L & M & P \\
M & N & T \\
P & T & V
\end{array}\right), \\
& \mathrm{III}=\left(\begin{array}{lll}
X & Y & O \\
Y & Z & R \\
O & R & S
\end{array}\right),
\end{aligned}
$$

where the coefficients are given by

$$
\begin{array}{lllll}
E=\left\langle\mathbf{M}_{u}, \mathbf{M}_{u}\right\rangle, & F=\left\langle\mathbf{M}_{u}, \mathbf{M}_{v}\right\rangle, & G=\left\langle\mathbf{M}_{v}, \mathbf{M}_{v}\right\rangle, & A=\left\langle\mathbf{M}_{u}, \mathbf{M}_{w}\right\rangle, & B=\left\langle\mathbf{M}_{v}, \mathbf{M}_{w}\right\rangle, \quad C=\left\langle\mathbf{M}_{w}, \mathbf{M}_{w}\right\rangle, \\
L=\left\langle\mathbf{M}_{u u}, e\right\rangle, & M=\left\langle\mathbf{M}_{u v}, e\right\rangle, \quad N=\left\langle\mathbf{M}_{v v}, e\right\rangle, \quad P=\left\langle\mathbf{M}_{u w}, e\right\rangle, \quad T=\left\langle\mathbf{M}_{v w}, e\right\rangle, \quad V=\left\langle\mathbf{M}_{w w}, e\right\rangle, \\
X=\left\langle e_{u}, e_{u}\right\rangle, \quad Y=\left\langle e_{u}, e_{v}\right\rangle, \quad Z=\left\langle e_{v}, e_{v}\right\rangle, \quad O=\left\langle e_{u}, e_{w}\right\rangle, \quad R=\left\langle e_{v}, e_{\boldsymbol{w}}\right\rangle, \quad S=\left\langle e_{w}, e_{w}\right\rangle
\end{array}
$$

3 Curvatures

Next, the curvatures of a hypersurface $\mathbf{M}(u, v, w)$ will be obtained in \mathbb{E}^{4}. Using characteristic polynomial $P_{\mathbf{S}}(\lambda)=a \lambda^{3}+b \lambda^{2}+c \lambda+d=0$, the curvature formulas are computed: $\mathfrak{C}_{0}=1$ (by definition),

$$
\binom{3}{1} \mathfrak{C}_{1}=-\frac{b}{a},\binom{3}{2} \mathfrak{C}_{2}=\frac{c}{a},\binom{3}{3} \mathfrak{C}_{3}=-\frac{d}{a}
$$

Then, the following curvature formulas are hold:

3.1 Theorem

Any hypersurface M^{3} in \mathbb{E}^{4} has following curvature formulas, $\mathfrak{C}_{0}=1$ (by definition),

$$
\begin{align*}
& \mathfrak{c}_{1}=\frac{(E N+G L-2 F M) C+\left(E G-F^{2}\right) V-L B^{2}-N A^{2}-2(A P G-B P F-A T F+B T E-A B M)}{3\left[\left(E G-F^{2}\right) C-E B^{2}+2 F A B-G A^{2}\right]}, \tag{3.1}\\
& \mathfrak{C}_{2}=\frac{(E N+G L-2 F M) V+\left(L N-M^{2}\right) C-E T^{2}-G P^{2}-2(A P N-B P M-A T M+B T L-P T F)}{3\left[\left(E G-F^{2}\right) C-E B^{2}+2 F A B-G A^{2}\right]}, \tag{3.2}\\
& \mathfrak{C}_{3}=\frac{\left(L N-M^{2}\right) V-L T^{2}+2 M P T-N P^{2}}{\left(E G-F^{2}\right) C-E B^{2}+2 F A B-G A^{2}} . \tag{3.3}
\end{align*}
$$

Proof. Solving $\operatorname{det}\left(\mathbf{S}-\lambda I_{3}\right)=0$ with some calculations, the coefficients of polynomial $P_{\mathbf{S}}(\lambda)$ are found.

3.2 Theorem

For any hypersurface M^{3} in \mathbb{E}^{4}, curvatures are related by following formula

$$
\begin{equation*}
\mathfrak{C}_{0} I V-3 \mathfrak{C}_{1} I I I+3 \mathfrak{C}_{2} \mathrm{II}-\mathfrak{C}_{3} I=0 . \tag{3.4}
\end{equation*}
$$

4 Curvatures of factorable hypersurface

The curvatures of factorable hypersurface (1.1) will be computed in this section.

With the first differentials of (1.1) depends on u, v, w, the Gauss map of (1.1) is given by

$$
e=\frac{1}{(\operatorname{det} \mathrm{I})^{1 / 2}}\left(\begin{array}{cc}
v & w \tag{4.1}\\
u & w \\
u & v \\
-1
\end{array}\right)
$$

$\operatorname{det} \mathrm{I}=u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}+1$. The first and the second fundamental form matrices of (1.1) are found by as follows, respectively,

$$
\begin{aligned}
& \mathrm{I}=\left(\begin{array}{ccc}
v^{2} w^{2}+1 & u v w^{2} & u v^{2} w \\
u v w^{2} & u^{2} w^{2}+1 & u^{2} v w \\
u v^{2} w & u^{2} v w & u^{2} v^{2}+1
\end{array}\right), \\
& \mathrm{II}=\left(\begin{array}{ccc}
0 & -\frac{w}{(\operatorname{det} \mathrm{I})^{1 / 2}} & -\frac{v}{(\operatorname{det} \mathrm{I})^{1 / 2}} \\
-\frac{w}{(\operatorname{det} \mathrm{I})^{1 / 2}} & 0 & -\frac{u}{(\operatorname{det} \mathrm{I})^{1 / 2}} \\
-\frac{v}{(\operatorname{det} \mathrm{I})^{1 / 2}} & -\frac{u}{(\operatorname{det} \mathrm{I})^{1 / 2}} & 0
\end{array}\right) .
\end{aligned}
$$

Computing matrix $I^{-1} \cdot I I$, shape operator matrix of the factorable hypersurface (1.1) can be seen as follows

$$
\mathbf{S}=\left(\begin{array}{ccc}
\frac{u v w\left(v^{2}+w^{2}\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & -\frac{w\left(u^{2} w^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & -\frac{v\left(u^{2} v^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} \\
-\frac{w\left(v^{2} w^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & \frac{u v w\left(u^{2}+w^{2}\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & -\frac{u\left(u^{2} v^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} \\
-\frac{v\left(v^{2} w^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & -\frac{u\left(u^{2} w^{2}+1\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}} & \frac{u v w\left(u^{2}+v^{2}\right)}{(\operatorname{det} \mathrm{I})^{3 / 2}}
\end{array}\right) .
$$

4.1 Theorem

Factorable hypersurface (1.1) in \mathbb{E}^{4} has the following curvature formulas, $\mathfrak{C}_{0}=1$ (by definition),

$$
\begin{aligned}
& \mathfrak{c}_{1}=\frac{2 u v w\left(u^{2}+v^{2}+w^{2}\right)}{3\left(u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}+1\right)^{3 / 2}}, \\
& \mathfrak{c}_{2}=\frac{3 u^{2} v^{2} w^{2}-\left(u^{2}+v^{2}+w^{2}\right)}{3\left(u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}+1\right)^{2}}, \\
& \mathfrak{c}_{3}=-\frac{2 u v w}{\left(u^{2} v^{2}+u^{2} w^{2}+v^{2} w^{2}+1\right)^{5 / 2}} .
\end{aligned}
$$

Proof. Computing (3.1), (3.2), and (3.3) of (1.1), the curvatures is obtained.

4.2 Corollary

Factorable hypersurface (1.1) in \mathbb{E}^{4} has the following relations

$$
\frac{\left(\mathfrak{C}_{1}\right)^{2} \mathfrak{C}_{2}}{\left(\mathfrak{C}_{3}\right)^{2}}=\frac{\left(3 p^{2}-q\right) q^{2}}{9}
$$

Where

$$
p=u v w, \quad q=u^{2}+v^{2}+w^{2}
$$

Proof. Using Theorem 4.1, it is seen clearly.

4.3 Corollary

The factorable hypersurface (1.1) depends on \mathfrak{C}_{1} in \mathbb{E}^{4} can be written as follows

$$
\mathbf{x}(u, v, w)=\left(u, v, w, \frac{3 \mathfrak{C}_{1}(\operatorname{detI})^{3 / 2}}{q}\right)
$$

4.4 Corollary

The factorable hypersurface (1.1) depends on \mathfrak{C}_{2} in \mathbb{E}^{4} can be written as follows

$$
\mathbf{x}(u, v, w)=\left(u, v, w, \pm\left(\frac{3 \mathfrak{C}_{2}(\operatorname{detI})^{2}+q}{3}\right)^{1 / 2}\right)
$$

4.5 Corollary

The factorable hypersurface (1.1) depends on \mathfrak{C}_{3} in \mathbb{E}^{4} can be written as follows

$$
\mathbf{x}(u, v, w)=\left(u, v, w,-\frac{\mathfrak{C}_{3}(\operatorname{det} \mathrm{I})^{5 / 2}}{2}\right)
$$

5 Conclusion

Factorable hyper-surfaces have been studied by lots of authors for a long time. Results of the factorable hypersurface (1.1) are expanded by using its curvatures in \mathbb{E}^{4}. In addition, factorable hypersurface (1.1) are given by its curvatures $\mathfrak{C}_{1}, \mathfrak{C}_{2}$, and \mathfrak{C}_{3} of \mathbb{E}^{4} in this work.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Arslan K, Bayram B, Bulca B, Öztürk G. On translation surfaces in 4-dimensional Euclidean space. Acta Comm. Univ. Tartuensis Math. 2016;20(2):123-133.
[2] Aydın ME. Constant curvature factorable surfaces in 3-dimensional isotropic space. J. Korean Math. Soc. 2018;55(1):59-71.
[3] Aydın ME, Öğrenmiş AO. Linear Weingarten factorable surfaces in isotropic spaces. Stud. Univ. Babeş-Bolyai Math. 2017;62(2):261-268.
[4] Aydın ME, Külahcı M, Öğrenmiş AO. Non-zero constant curvature factorable surfaces in pseudoGalilean space, Comm. Korean Math. Soc. 2018;33(1):247-259.
[5] Aydın ME, Öğrenmiş AO, Ergüt M. Classification of factorable surfaces in the Pseudo-Galilean 3space. Glasnik Matematicki. 2015;50(70):441-451.
[6] Baba-Hamed C, Bekkar M, Zoubir H. Translation surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta \mathrm{r}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}$. Int. J. Math. Analysis. 2010;4(17):797-808.
[7] Bekkar M., Senoussi B. Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying $\Delta \mathrm{r}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}$. J. Geom. 2012;103(1):17-29.
[8] Bulca B, Arslan K, Bayram BK, Öztürk G. Spherical product surface in \mathbb{E}^{4}. Ann. St. Univ. Ovidius Constanta. 2012;20(1):41-54.
[9] Büyükkütük S, Öztürk G. Spacelike factorable surfaces in four-dimensional Minkowski space. Bull. Math. Anal. Appl. 2017;9(4):12-20.
[10] Dillen F, Verstraelen L, Zafindratafa G. A generalization of the translation surfaces of Scherk differential geometry in honor of Radu Rosca: Meeting on pure and applied differential geometry, Leuven, Belgium. 1989, KU Leuven, Department Wiskunde. 1991;107-109.
[11] Dillen F, Van de Woestyne I, Verstraelen L, Walrave JT. The surface of Scherk in \mathbb{E}^{3} : A special case in the class of minimal surfaces defined as the sum of two curves. Bull. Inst. Math. Acad. Sin. 1998;26:257-267.
[12] Inoguchi J, López R, Munteanu M. Minimal translation surfaces in the Heisenberg group Nil ${ }_{3}$. Geom Dedicata. 2012;161(1):221-231.
[13] Jiu L, Sun H. On minimal homothetical hypersurfaces. Colloq. Math. 2007;109(2):239-249.
[14] Liu H. Translation surfaces with dependent Gaussian and mean curvature in 3-dimensional spaces. J. Northeast Univ. Tech. 1993;14(1):88-93.
[15] Liu H. Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 1999;64:141-149.
[16] Lopez R. Moruz M. Translation and homothetical surfaces in Euclidean space with constant curvature. J. Korean Math. Soc. 2015;52(3):523-535.
[17] Meng H, Liu H. Factorable surfaces in 3-Minkowski space. Bull. Korean Math. Soc. 2009;46(1):155169.
[18] Moruz M, Munteanu M. Minimal translation hypersurfaces in \mathbb{E}^{4}.J. Math. Anal. Appl. 2016;439:798812.
[19] Munteanu M, Nistor AI. On the geometry of the second fundamental form of translation surfaces in \mathbb{E}^{3}. Houston J. Math. 2011;37:1087-1102.
[20] Munteanu M, Palmas O, Ruiz-Hernandez G. Minimal translation hypersurfaces in Euclidean space. Mediterr. J. Math. 2016;13:2659-2676.
[21] Scherk HF. Bemerkungen ber die Kleinste fläche innerhalb Gegebener Grenzen, J. R. Angew.Math. 1935;13:185-208.
[22] Turhan E, Altay G. Maximal and minimal surfaces of factorable surfaces in Heis 3_{3}. Int. J. Open Probl. Comput. Sci. Math. 2010;3(2):200-212.
[23] Van de Woestyne I. Minimal homothetical hypersurfaces of a semi-Euclidean space. Results Math. 1995;27(3-4):333-342.
[24] Yu Y, Liu H. The factorable minimal surfaces. Proceedings of the Eleventh International Workshop on Differential Geometry. Kyungpook Nat. Univ., Taegu. 2007;33-39.
[25] Zong P, Xiao L, Liu HL. Affine factorable surfaces in three-dimensional Euclidean space. (Chinese) Acta Math. Sinica (Chin. Ser.). 2015;58(2):329-336.
© 2020 Güler; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle4.com/review-history/63294

[^0]: *Corresponding author: E-mail: eguler@bartin.edu.tr;

