

# Fundamental form IV and curvature formulas of the hypersphere

Erhan Güler<sup>1</sup>\*

#### **Abstract**

We study curvature formulas and the fourth fundamental form IV of hypersurfaces in the four dimensional Euclidean geometry  $\mathbb{E}^4$ . We calculate fourth fundamental form and curvatures for hypersurfaces, and also for hypersphere. Moreover, we give some relations of fundamentals forms, and curvatures of hypersphere.

#### Keywords

Euclidean spaces, four space, hypersurface, hypersphere, curvature, fourth fundamental form.

#### **AMS Subject Classification**

53B25, 53C40.

\*Corresponding author: 1 eguler@bartin.edu.tr; ORCID: https://orcid.org/0000-0003-3264-6239

Article History: Received 22 October 2020; Accepted 26 November 2020

©2020 MJM

#### **Contents**

| 1   | Introduction 2008                                    |
|-----|------------------------------------------------------|
| 1.1 | Hypersurfaces of Euclidean space 2008                |
| 1.2 | Hypersphere                                          |
| 2   | Curvatures and the Fourth Fundamental Form . 2010    |
| 3   | Fundamental Forms and Curvatures of Hypersphere 2010 |
|     | References                                           |

#### 1. Introduction

Surfaces and hypersurfaces have been studied by mathematicians for years such as [1]-[37].

In this paper, we consider fourth fundamental form  $IV = f_{ij}$ , and i-th curvature formulas  $\mathfrak{C}_i$  of hypersphere in the four dimensional Euclidean geometry  $\mathbb{E}^4$ . In Section 2, we give some basic notions of the four dimensional Euclidean geometry. Defining fourth fundamental form and i-th curvature for hypersurfaces, we calculate  $\mathfrak{C}_i$  and fourth fundamental form of hypersphere in Section 3.

Let  $\mathbb{E}^m$  denote the Euclidean m-space with the canonical Euclidean metric tensor given by  $\widetilde{g}=\langle\;,\;\rangle=\sum\limits_{i=1}^m dx_i^2,$  where  $(x_1,x_2,\ldots,x_m)$  is a rectangular coordinate system in  $\mathbb{E}^m$ . Consider an m-dimensional Riemannian submanifold of the space  $\mathbb{E}^m$ . We denote the Levi-Civita connections of  $\mathbb{E}^m$  and M by  $\widetilde{\nabla}$  and  $\nabla$ , respectively. We use letters X,Y,Z,W (resp.,  $\xi,\eta$ ) to

denote vectors fields tangent (resp., normal) to *M*. The Gauss and Weingarten formulas are given, respectively, by

$$\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y),$$
 (1.1)

$$\widetilde{\nabla}_X \xi = -A_{\xi}(X) + D_X \xi,$$
 (1.2)

where h,D and A are the second fundamental form, the normal connection and the shape operator of M, respectively. For each  $\xi \in T_p^\perp M$ , the shape operator  $A_\xi$  is a symmetric endomorphism of the tangent space  $T_p M$  at  $p \in M$ . The shape operator and the second fundamental form are related by

$$\langle h(X,Y),\xi\rangle = \langle A_{\xi}X,Y\rangle.$$

The Gauss and Codazzi equations are given, respectively, by

$$\langle R(X,Y,)Z,W\rangle = \begin{cases} \langle h(Y,Z),h(X,W)\rangle \\ -\langle h(X,Z),h(Y,W)\rangle \end{cases}, (1.3)$$
  
$$(\bar{\nabla}_X h)(Y,Z) = (\bar{\nabla}_Y h)(X,Z), (1.4)$$

where R,  $R^D$  are the curvature tensors associated with connections  $\nabla$  and D, respectively, and  $\bar{\nabla}h$  is defined by

$$(\bar{\nabla}_X h)(Y,Z) = D_X h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z).$$

#### 1.1 Hypersurfaces of Euclidean space

Now, let M be an oriented hypersurface in the Euclidean space  $\mathbb{E}^{n+1}$ , S its shape operator (i.e. Weingarten map) and x its position vector. We consider a local orthonormal frame field  $\{e_1, e_2, \dots, e_n\}$  of consisting of principal directions of M

<sup>&</sup>lt;sup>1</sup> Bartın University, Faculty of Sciences, Department of Mathematics 74100 Bartın, Turkey.

corresponding from the principal curvature  $k_i$  for i = 1, 2, ... n. Let the dual basis of this frame field be  $\{\theta_1, \theta_2, ..., \theta_n\}$ . Then the first structural equation of Cartan is

$$d\theta_i = \sum_{i=1}^n \theta_j \wedge \omega_{ij}, \quad i, j = 1, 2, \dots, n,$$
 (1.5)

where  $\omega_{ij}$  denotes the connection forms corresponding to the chosen frame field. We denote the Levi-Civita connection of M and  $\mathbb{E}^{n+1}$  by  $\nabla$  and  $\widetilde{\nabla}$ , respectively. Then, from the Codazzi equation (1.3), we have

$$e_i(k_j) = \omega_{ij}(e_j)(k_i - k_j), \qquad (1.6)$$

$$\omega_{ij}(e_l)(k_i - k_j) = \omega_{il}(e_j)(k_i - k_l)$$
 (1.7)

for distinct  $i, j, l = 1, 2, \dots, n$ .

We put  $s_j = \sigma_j(k_1, k_2, ..., k_n)$ , where  $\sigma_j$  is the j-th elementary symmetric function given by

$$\sigma_j(a_1, a_2, \dots, a_n) = \sum_{1 \le i_1 < i_2 < \dots, i_j \le n} a_{i_1} a_{i_2} \dots a_{i_j}.$$

We use following notation

$$r_i^j = \sigma_i(k_1, k_2, \dots, k_{i-1}, k_{i+1}, k_{i+2}, \dots, k_n).$$

By the definition, we have  $r_i^0 = 1$  and  $s_{n+1} = s_{n+2} = \cdots = 0$ . We call the function  $s_k$  as the k-th mean curvature of M. We would like to note that functions  $H = \frac{1}{n}s_1$  and  $K = s_n$  are called the mean curvature and Gauss-Kronecker curvature of M, respectively. In particular, M is said to be j-minimal if  $s_j \equiv 0$  on M.

In  $\mathbb{E}^{n+1}$ , to find the *i*-th curvature formulas  $\mathfrak{C}_i$  (Curvature formulas sometimes are shown as mean curvature  $H_i$ , or sometimes as Gaussian curvature  $K_i$  by different writers, such as [1] and [30]. We call it just *i*-th curvature  $\mathfrak{C}_i$  in this paper.), where i = 0,...,n, firstly, we use the characteristic polynomial of S:

$$P_{\mathbf{S}}(\lambda) = 0 = \det(\mathbf{S} - \lambda I_n) = \sum_{k=0}^{n} (-1)^k s_k \lambda^{n-k}, \quad (1.8)$$

where i = 0,...,n,  $I_n$  denotes the identity matrix of order n. Then, we get curvature formulas  $\binom{n}{i}\mathfrak{C}_i = s_i$ . That is,  $\binom{n}{0}\mathfrak{C}_0 = s_0 = 1$  (by definition),  $\binom{n}{1}\mathfrak{C}_1 = s_1,...,\binom{n}{n}\mathfrak{C}_n = s_n = K$ .

k-th fundamental form of M is defined by  $I\left(\mathbf{S}^{k-1}\left(X\right),Y\right)=\left\langle \mathbf{S}^{k-1}\left(X\right),Y\right\rangle$ . So, we get

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \mathfrak{C}_{i} I\left(\mathbf{S}^{n-i}(X), Y\right) = 0. \tag{1.9}$$

#### 1.2 Hypersphere

We will obtain a hypersphere in Euclidean 4-space. We would like to note that the definition of rotational hypersurfaces in Riemannian space forms were defined in [17]. A rotational hypersurface  $M \subset \mathbb{E}^{n+1}$  generated by a curve  $\mathscr C$  around an axis  $\mathscr C$  that does not meet  $\mathscr C$  is obtained by taking the orbit of

 $\mathscr{C}$  under those orthogonal transformations of  $\mathbb{E}^{n+1}$  that leaves  $\mathfrak{r}$  pointwise fixed (See [17, Remark 2.3]).

We shall identify a vector (a,b,c,d) with its transpose. Consider the case n=3, and let  $\mathscr C$  be the curve parametrized by

$$\gamma(w) = (r\cos w, 0, 0, r\sin w), \tag{1.10}$$

where  $r \in \mathbb{R} - \{0\}$ ,  $w \in [0, 2\pi]$ . If  $\mathfrak{r}$  is the  $x_4$ -axis, then an orthogonal transformations of  $\mathbb{E}^{n+1}$  that leaves  $\mathfrak{r}$  pointwise fixed has the form

$$\mathbf{O}(u,v) = \begin{pmatrix} \cos u \cos v & -\sin u & -\cos u \sin v & 0\\ \sin u \cos v & \cos u & -\sin u \sin v & 0\\ \sin v & 0 & \cos v & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

where  $u, v \in \mathbb{R}$ . Therefore, the parametrization of the hypersphere generated by a curve  $\mathscr{C}$  around an axis  $\mathfrak{r}$  is given by

$$\mathbf{x}(u, v, w) = \mathbf{O}(u, v)\gamma(w). \tag{1.11}$$

Let  $\mathbf{x} = \mathbf{x}(u, v, w)$  be an isometric immersion from  $M^3 \subset \mathbb{E}^3$  to  $\mathbb{E}^4$ . Triple vector product of  $\overrightarrow{x} = (x_1, x_2, x_3, x_4)$ ,  $\overrightarrow{y} = (y_1, y_2, y_3, y_4)$ ,  $\overrightarrow{z} = (z_1, z_2, z_3, z_4)$  of  $\mathbb{E}^4$  is given by

$$\overrightarrow{x} \times \overrightarrow{y} \times \overrightarrow{z} = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ z_1 & z_2 & z_3 & z_4 \end{pmatrix}.$$

For a hypersurface  $\mathbf{x}$  in  $\mathbb{E}^4$ , we get the fundamental form matrices

$$I = \begin{pmatrix} E & F & A \\ F & G & B \\ A & B & C \end{pmatrix}, II = \begin{pmatrix} L & M & P \\ M & N & T \\ P & T & V \end{pmatrix},$$

$$III = \begin{pmatrix} X & Y & O \\ Y & Z & S \\ O & S & U \end{pmatrix}.$$

Then we have

$$\det I = (EG - F^2)C - EB^2 + 2FAB - GA^2,$$

$$\det III = (LN - M^2)V - LT^2 + 2MPT - NP^2,$$

$$\det III = (XZ - Y^2)U - ZO^2 + 2OSY - XS^2,$$

where  $E = \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle$ ,  $F = \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle$ ,  $G = \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle$ ,  $A = \langle \mathbf{x}_{u}, \mathbf{x}_{w} \rangle$ ,  $B = \langle \mathbf{x}_{v}, \mathbf{x}_{w} \rangle$ ,  $C = \langle \mathbf{x}_{w}, \mathbf{x}_{w} \rangle$ ,  $L = \langle \mathbf{x}_{uu}, \mathbf{G} \rangle$ ,  $M = \langle \mathbf{x}_{uv}, \mathbf{G} \rangle$ ,  $N = \langle \mathbf{x}_{vv}, \mathbf{G} \rangle$ ,  $P = \langle \mathbf{x}_{uw}, \mathbf{G} \rangle$ ,  $T = \langle \mathbf{x}_{vw}, \mathbf{G} \rangle$ ,  $V = \langle \mathbf{x}_{ww}, \mathbf{G} \rangle$ ,  $X = \langle \mathbf{G}_{u}, \mathbf{G}_{u} \rangle$ ,  $Y = \langle \mathbf{G}_{u}, \mathbf{G}_{v} \rangle$ ,  $Z = \langle \mathbf{G}_{v}, \mathbf{G}_{v} \rangle$ ,  $Q = \langle \mathbf{G}_{u}, \mathbf{G}_{w} \rangle$ ,  $Q = \langle \mathbf{G}_{v}, \mathbf{G}_{w} \rangle$ .

$$\mathbf{G} = \frac{\mathbf{x}_u \times \mathbf{x}_v \times \mathbf{x}_w}{\|\mathbf{x}_u \times \mathbf{x}_v \times \mathbf{x}_w\|}$$
(1.12)

is unit normal (i.e. the Gauss map) of hypersurface  $\mathbf{x}$ . On the other side,  $I^{-1} \cdot II$  gives shape operator matrix  $\mathbf{S}$  of hypersurface  $\mathbf{x}$  in 4-space. See [24–26] for details.



## 2. Curvatures and the Fourth Fundamental Form

Using characteristic polynomial  $P_{\mathbf{S}}(\lambda) = a\lambda^3 + b\lambda^2 + c\lambda + d = 0$ , i.e.

$$P_{\mathbf{S}}(\lambda) = \det(\mathbf{S} - \lambda I_3) = 0,$$

we obtain curvature formulas  $\mathfrak{C}_0=1$  (by definition),  $\binom{3}{1}\mathfrak{C}_1=\binom{3}{1}H=-\frac{b}{a}$ ,  $\binom{3}{2}\mathfrak{C}_2=\frac{c}{a}$ ,  $\binom{3}{3}\mathfrak{C}_3=K=-\frac{d}{a}$ . Therefore, we get curvature folmulas depends on the coef-

Therefore, we get curvature folmulas depends on the coefficients of *I* and *II* fundamental forms in 4-space (It also can get depends on the coefficients of *II* and *III*, or *III* and *IV*):

**Theorem 1.** Any hypersurface  $\mathbf{x}$  in  $\mathbb{E}^4$  has following curvature formulas,  $\mathfrak{C}_0 = 1$  (by definition),

$$\mathfrak{C}_{1} = \begin{cases} (EN + GL - 2FM)C \\ + (EG - F^{2})V - LB^{2} - NA^{2} \\ -2(APG - BPF - ATF \\ + BTE - ABM) \end{cases}, (2.1)$$

$$\mathfrak{C}_{1} = \begin{cases} (EN + GL - 2FM)V \\ + (LN - M^{2})C - ET^{2} - GP^{2} \\ -2(APN - BPM - ATM \\ + BTL - PTF) \end{cases}$$

$$\mathfrak{C}_{2} = \frac{(LN - M^{2})V - LT^{2} + 2MPT - NP^{2}}{(EG - F^{2})C - EB^{2} + 2FAB - GA^{2}}. (2.2)$$

Proof. Solving  $\det(\mathbf{S} - \lambda I_3) = 0$  with some calculations, we get coefficients of polynomial  $P_{\mathbf{S}}(\lambda)$ .

**Corollary 1.** For any hypersurface  $\mathbf{x}$  in  $\mathbb{E}^4$ , the fourth fundamental form is related by

$$\mathfrak{C}_0 IV - 3\mathfrak{C}_1 III + 3\mathfrak{C}_2 II - \mathfrak{C}_3 I = 0. \tag{2.4}$$

Proof. Taking n = 3 in (1.9), it is clear.

**Definition 1.** With its shape operator **S** and the first fundamental form  $(g_{ij}) = I$  of any hypersurface **x** in 4-space, following relations holds:

- (a) the second fundamental form  $(h_{ij}) = II$  is given by  $II = I \cdot S$ ,
- (b) the third fundamental form  $(e_{ij}) = III$  is given by  $III = II \cdot S$ ,
- (c) the fourth fundamental form  $(f_{ij}) = IV$  is given by  $IV = III \cdot S$ .

**Corollary 2.** The fourth fundamental form of any hypersurface  $\mathbf{x}$  in  $\mathbb{E}^4$  is given by

$$IV = III \cdot I^{-1} \cdot II$$
.

Proof. From Definition 1, we see the result.

**Corollary 3.** For any hypersurface **x** in  $\mathbb{E}^4$ , we have

$$\det IV = \frac{\det II. \det III}{\det I}.$$

Proof. Computing the right side of  $IV = III \cdot I^{-1} \cdot II$ , it is seen, easily.

### 3. Fundamental Forms and Curvatures of Hypersphere

We consider hypersphere (1.11), that is

$$\mathbf{x}(u,v,w) = \begin{pmatrix} r\cos u\cos v\cos w \\ r\sin u\cos v\cos w \\ r\sin v\cos w \\ r\sin w \end{pmatrix}, \tag{3.1}$$

where  $r \in \mathbb{R} - \{0\}$  and  $u, v \in \mathbb{R}$ ,  $0 \le w \le 2\pi$ . Using the first differentials of hypersphere (3.1), we get the first quantities

$$I = \operatorname{diag}(r^2 \cos^2 v \cos^2 w, r^2 \cos^2 w, r^2). \tag{3.2}$$

The Gauss map of the hypersphere is

$$\mathbf{G} = \begin{pmatrix} \cos u \cos v \cos w \\ \sin u \cos v \cos w \\ \sin v \cos w \\ \sin w \end{pmatrix}. \tag{3.3}$$

Using the second differentials and G of hypersphere (3.1), we have the second quantities

$$II = \text{diag} \left( -r\cos^2 v \cos^2 w, -r\cos^2 w, -r \right).$$
 (3.4)

With the first differentials of (3.3), we find the third fundamental form matrix

$$III = \operatorname{diag}\left(\cos^2 v \cos^2 w, \cos^2 w, 1\right). \tag{3.5}$$

We calculate  $I^{-1}.II$ , then obtain shape operator matrix

$$\mathbf{S} = -\frac{1}{r}I_3,\tag{3.6}$$

where  $I_3 = \text{diag}(1,1,1)$ . Therefore, we have following theorem.

**Theorem 2.** Hypersphere (3.1) has following curvatures

$$\mathfrak{C}_1 = -\frac{1}{r}, \ \mathfrak{C}_2 = \frac{1}{r^2}, \ \mathfrak{C}_3 = -\frac{1}{r^3}.$$

Proof. Using (2.1),(2.2),(2.3), (3.2),(3.4),(3.5) of (3.1), we have curvatures.

Next, we see some results of the fourth fundamental form of (3.1).

**Corollary 4.** The fourth fundamental form matrix  $(f_{ij})$  of hypersphere (3.1) is as follows

$$IV = \operatorname{diag}\left(-\frac{1}{r}\cos^{2}v\cos^{2}w, -\frac{1}{r}\cos^{2}w, -\frac{1}{r}\right). \quad (3.7)$$

Proof. Using Corollary 2 with hypersphere (3.1), we find the fourth fundamental form matrix.

**Corollary 5.** *Hypersphere* (3.1) *has following relations* 

$$I = r^2 III$$
,  $II = -rIII$ ,  $IV = -\frac{1}{r}III$ .



#### References

- [1] Alias, L.J., Gürbüz, N.: An extension of Takashi theorem for the linearized operators of the highest order mean curvatures, Geom. Dedicata 121, 113–127 (2006).
- <sup>[2]</sup> Arslan, K., Bayram, B.K., Bulca, B., Kim, Y.H., Murathan, C., Öztürk, G.: Vranceanu surface in E<sup>4</sup> with pointwise 1-type Gauss map. Indian J. Pure Appl. Math. 42(1), 41−51 (2011).
- [3] Arslan, K., Milousheva, V.: Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space. Taiwanese J. Math. 20(2) 311–332 (2016).
- [4] Arvanitoyeorgos, A., Kaimakamis, G., Magid, M.: Lorentz hypersurfaces in  $\mathbb{E}^4_1$  satisfying  $\Delta H = \alpha H$ . Illinois J. Math. 53(2), 581–590 (2009).
- [5] Barros, M., Chen, B.Y.: Stationary 2-type surfaces in a hypersphere. J. Math. Soc. Japan 39(4), 627–648 (1987).
- [6] Barros, M., Garay, O.J.: 2-type surfaces in *S*<sup>3</sup>. Geom. Dedicata 24(3), 329–336 (1987).
- Bektaş, B.; Canfes, E.Ö; Dursun, U.: Classification of surfaces in a pseudo-sphere with 2-type pseudo-spherical Gauss map. Math. Nachr. 290(16), 2512–2523 (2017).
- [8] Chen, B.Y.: On submanifolds of finite type. Soochow J. Math. 9, 65–81 (1983).
- [9] Chen, B.Y.: Total mean curvature and submanifolds of finite type. World Scientific, Singapore (1984).
- [10] Chen, B.Y.: Finite type submanifolds and generalizations. University of Rome, 1985.
- [11] Chen, B.Y.: Finite type submanifolds in pseudo-Euclidean spaces and applications. Kodai Math. J. 8(3), 358–374 (1985).
- [12] Chen, B.Y., Piccinni, P.: Submanifolds with finite type Gauss map. Bull. Austral. Math. Soc. 35, 161–186 (1987).
- <sup>[13]</sup> Cheng, Q.M., Wan, Q.R.: Complete hypersurfaces of  $\mathbb{R}^4$  with constant mean curvature. Monatsh. Math. 118, 171–204 (1994).
- [14] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225, 195–204 (1977).
- [15] Choi, M., Kim, Y.H.: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 38, 753–761 (2001).
- [16] Dillen, F., Pas, J., Verstraelen, L.: On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 13, 10–21 (1990).
- [17] Do Carmo, M., Dajczer, M.: Rotation Hypersurfaces in Spaces of Constant Curvature. Trans. Amer. Math. Soc. 277, 685–709 (1983).
- [18] Dursun, U.: Hypersurfaces with pointwise 1-type Gauss map. Taiwanese J. Math. 11(5), 1407–1416 (2007).
- Dursun, U., Turgay, N.C.: Space-like surfaces in Minkowski space  $\mathbb{E}^4_1$  with pointwise 1-type Gauss map. Ukrainian Math. J. 71(1), 64–80 (2019).
- [20] Ferrandez, A., Garay, O.J., Lucas, P.: On a certain class of conformally at Euclidean hypersurfaces. In Global

- Analysis and Global Differential Geometry; Springer: Berlin, Germany 48–54 (1990).
- [21] Ganchev, G., Milousheva, V.: General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38, 883–895 (2014).
- [22] Garay, O.J.: On a certain class of finite type surfaces of revolution. Kodai Math. J. 11, 25–31 (1988).
- [23] Garay, O.: An extension of Takahashi's theorem. Geom. Dedicata 34, 105–112 (1990).
- [24] Güler, E., Hacısalihoğlu, H.H., Kim, Y.H.: The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry 10(9), 1–12 (2018).
- Güler, E., Magid, M., Yaylı, Y.: Laplace-Beltrami operator of a helicoidal hypersurface in four-space. J. Geom. Symm. Phys. 41, 77–95 (2016).
- [26] Güler, E., Turgay, N.C.: Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space. Mediterr. J. Math. 16(3), 1–16 (2019).
- [27] Hasanis, Th., Vlachos, Th.: Hypersurfaces in  $\mathbb{E}^4$  with harmonic mean curvature vector field. Math. Nachr. 172, 145–169 (1995).
- <sup>[28]</sup> Kim, D.S., Kim, J.R., Kim, Y.H.: Cheng-Yau operator and Gauss map of surfaces of revolution. Bull. Malays. Math. Sci. Soc. 39(4), 1319–1327 (2016).
- [29] Kim, Y.H., Turgay, N.C.: Surfaces in  $\mathbb{E}^4$  with  $L_1$ -pointwise 1-type Gauss map. Bull. Korean Math. Soc. 50(3), 935–949 (2013).
- [30] Kühnel, W.: Differential geometry. Curves-surfacesmanifolds. Third ed. Translated from the 2013 German ed. AMS, Providence, RI, 2015.
- [31] Levi-Civita, T.: Famiglie di superficie isoparametriche nellordinario spacio euclideo. Rend. Acad. Lincei 26, 355–362 (1937).
- [32] Moore, C.: Surfaces of rotation in a space of four dimensions. Ann. Math. 21, 81–93 (1919).
- [33] Moore, C.: Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26, 454–460 (1920).
- Senoussi, B., Bekkar, M.: Helicoidal surfaces with  $\Delta^J r = Ar$  in 3-dimensional Euclidean space. Stud. Univ. Babeş-Bolyai Math. 60(3), 437–448 (2015).
- Stamatakis, S., Zoubi, H.: Surfaces of revolution satisfying  $\Delta^{III}x = Ax$ . J. Geom. Graph. 14(2), 181–186 (2010).
- [36] Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18, 380–385 (1966).
- [37] Turgay, N.C.: Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space. J. Aust. Math. Soc. 99(3), 415–427 (2015).

\*\*\*\*\*\*\*\*
ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
\*\*\*\*\*\*\*\*

