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Fundamental form IV and curvature formulas of the
hypersphere
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Abstract
We study curvature formulas and the fourth fundamental form IV of hypersurfaces in the four dimensional
Euclidean geometry E4. We calculate fourth fundamental form and curvatures for hypersurfaces, and also for
hypersphere. Moreover, we give some relations of fundamentals forms, and curvatures of hypersphere.
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1. Introduction
Surfaces and hypersurfaces have been studied by mathe-

maticians for years such as [1]-[37].
In this paper, we consider fourth fundamental form IV =

fi j, and i-th curvature formulas Ci of hypersphere in the four
dimensional Euclidean geometry E4. In Section 2, we give
some basic notions of the four dimensional Euclidean geome-
try. Defining fourth fundamental form and i-th curvature for
hypersurfaces, we calculate Ci and fourth fundamental form
of hypersphere in Section 3.

Let Em denote the Euclidean m-space with the canonical

Euclidean metric tensor given by g̃ = 〈 , 〉 =
m
∑

i=1
dx2

i , where

(x1,x2, . . . ,xm) is a rectangular coordinate system in Em. Con-
sider an m-dimensional Riemannian submanifold of the space
Em. We denote the Levi-Civita connections of Em and M by ∇̃

and ∇, respectively. We use letters X ,Y,Z,W (resp., ξ ,η) to

denote vectors fields tangent (resp., normal) to M. The Gauss
and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY +h(X ,Y ), (1.1)

∇̃X ξ = −Aξ (X)+DX ξ , (1.2)

where h, D and A are the second fundamental form, the nor-
mal connection and the shape operator of M, respectively. For
each ξ ∈ T⊥p M, the shape operator Aξ is a symmetric endo-
morphism of the tangent space TpM at p ∈ M. The shape
operator and the second fundamental form are related by

〈h(X ,Y ),ξ 〉=
〈
Aξ X ,Y

〉
.

The Gauss and Codazzi equations are given, respectively, by

〈R(X ,Y,)Z,W 〉 =

{
〈h(Y,Z),h(X ,W )〉
−〈h(X ,Z),h(Y,W )〉

}
,(1.3)

(∇̄X h)(Y,Z) = (∇̄Y h)(X ,Z), (1.4)

where R, RD are the curvature tensors associated with connec-
tions ∇ and D, respectively, and ∇̄h is defined by

(∇̄X h)(Y,Z) = DX h(Y,Z)−h(∇XY,Z)−h(Y,∇X Z).

1.1 Hypersurfaces of Euclidean space
Now, let M be an oriented hypersurface in the Euclidean
space En+1, S its shape operator (i.e. Weingarten map) and
x its position vector. We consider a local orthonormal frame
field {e1,e2, . . . ,en} of consisting of principal directions of M
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corresponding from the principal curvature ki for i = 1,2, . . .n.
Let the dual basis of this frame field be {θ1,θ2, . . . ,θn}. Then
the first structural equation of Cartan is

dθi =
n

∑
i=1

θ j ∧ωi j, i, j = 1,2, . . . ,n, (1.5)

where ωi j denotes the connection forms corresponding to the
chosen frame field. We denote the Levi-Civita connection
of M and En+1 by ∇ and ∇̃, respectively. Then, from the
Codazzi equation (1.3), we have

ei(k j) = ωi j(e j)(ki− k j), (1.6)
ωi j(el)(ki− k j) = ωil(e j)(ki− kl) (1.7)

for distinct i, j, l = 1,2, . . . ,n.
We put s j = σ j(k1,k2, . . . ,kn), where σ j is the j-th ele-

mentary symmetric function given by

σ j(a1,a2, . . . ,an) = ∑
1≤i1<i2<...,i j≤n

ai1ai2 . . .ai j .

We use following notation

r j
i = σ j(k1,k2, . . . ,ki−1,ki+1,ki+2, . . . ,kn).

By the definition, we have r0
i = 1 and sn+1 = sn+2 = · · ·= 0.

We call the function sk as the k-th mean curvature of M. We
would like to note that functions H = 1

n s1 and K = sn are
called the mean curvature and Gauss-Kronecker curvature of
M, respectively. In particular, M is said to be j-minimal if
s j ≡ 0 on M.

In En+1, to find the i-th curvature formulas Ci (Curvature
formulas sometimes are shown as mean curvature Hi, or some-
times as Gaussian curvature Ki by different writers, such as
[1] and [30]. We call it just i-th curvature Ci in this paper.),
where i = 0, ..,n, firstly, we use the characteristic polynomial
of S:

PS(λ ) = 0 = det(S−λ In) =
n

∑
k=0

(−1)k skλ
n−k, (1.8)

where i = 0, ..,n, In denotes the identity matrix of order n.
Then, we get curvature formulas

(n
i

)
Ci = si,. That is,

(n
0

)
C0 =

s0 = 1 (by definition),
(n

1

)
C1 = s1, . . . ,

(n
n

)
Cn = sn = K.

k-th fundamental form of M is defined by I
(
Sk−1 (X) ,Y

)
=〈

Sk−1 (X) ,Y
〉
. So, we get

n

∑
i=0

(−1)i
(

n
i

)
CiI
(
Sn−i (X) ,Y

)
= 0. (1.9)

1.2 Hypersphere
We will obtain a hypersphere in Euclidean 4-space. We would
like to note that the definition of rotational hypersurfaces in
Riemannian space forms were defined in [17]. A rotational
hypersurface M ⊂ En+1 generated by a curve C around an
axis C that does not meet C is obtained by taking the orbit of

C under those orthogonal transformations of En+1 that leaves
r pointwise fixed (See [17, Remark 2.3]).

We shall identify a vector (a,b,c,d) with its transpose.
Consider the case n = 3, and let C be the curve parametrized
by

γ(w) = (r cosw,0,0,r sinw) , (1.10)

where r ∈ R−{0}, w ∈ [0,2π] . If r is the x4-axis, then an
orthogonal transformations of En+1 that leaves r pointwise
fixed has the form

O(u,v) =


cosucosv −sinu −cosusinv 0
sinucosv cosu −sinusinv 0

sinv 0 cosv 0
0 0 0 1

 .

where u,v ∈ R. Therefore, the parametrization of the hyper-
sphere generated by a curve C around an axis r is given by

x(u,v,w) = O(u,v)γ(w). (1.11)

Let x = x(u,v,w) be an isometric immersion from M3 ⊂
E3 to E4. Triple vector product of −→x = (x1,x2,x3,x4),

−→y =
(y1,y2,y3,y4),

−→z = (z1,z2,z3,z4) of E4 is given by

−→x ×−→y ×−→z =


e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

 .

For a hypersurface x in E4, we get the fundamental form
matrices

I=

 E F A
F G B
A B C

 , II=

 L M P
M N T
P T V

 ,

III=

 X Y O
Y Z S
O S U

 .

Then we have

det I = (EG−F2)C−EB2 +2FAB−GA2,

det II =
(
LN−M2)V −LT 2 +2MPT −NP2,

det III =
(
XZ−Y 2)U−ZO2 +2OSY −XS2,

where E = 〈xu,xu〉 , F = 〈xu,xv〉 , G = 〈xv,xv〉 , A = 〈xu,xw〉 ,
B = 〈xv,xw〉 ,C = 〈xw,xw〉 , L = 〈xuu,G〉 , M = 〈xuv,G〉 , N =
〈xvv,G〉 , P = 〈xuw,G〉 , T = 〈xvw,G〉 , V = 〈xww,G〉 , X =
〈Gu,Gu〉 , Y = 〈Gu,Gv〉 , Z = 〈Gv,Gv〉 , O = 〈Gu,Gw〉 , S =
〈Gv,Gw〉 , U = 〈Gw,Gw〉 . Here,

G =
xu×xv×xw

‖xu×xv×xw‖
(1.12)

is unit normal (i.e. the Gauss map) of hypersurface x. On the
other side, I−1·II gives shape operator matrix S of hypersur-
face x in 4-space. See [24–26] for details.

2009
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2. Curvatures and the Fourth
Fundamental Form

Using characteristic polynomial PS(λ ) = aλ 3 + bλ 2 +
cλ +d = 0, i.e.

PS(λ ) = det(S−λ I3) = 0,

we obtain curvature formulas C0 = 1 (by definition),
(3

1

)
C1 =(3

1

)
H =− b

a ,
(3

2

)
C2 =

c
a ,
(3

3

)
C3 = K =− d

a .
Therefore, we get curvature folmulas depends on the coef-

ficients of I and II fundamental forms in 4-space (It also can
get depends on the coefficients of II and III, or III and IV ):

Theorem 1. Any hypersurface x in E4 has following cur-
vature formulas, C0 = 1 (by definition),

C1 =


(EN +GL−2FM)C

+(EG−F2)V −LB2−NA2

−2(APG−BPF−AT F
+BT E−ABM)


3 [(EG−F2)C−EB2 +2FAB−GA2]

, (2.1)

C2 =


(EN +GL−2FM)V

+
(
LN−M2

)
C−ET 2−GP2

−2(APN−BPM−AT M
+BT L−PT F)


3 [(EG−F2)C−EB2 +2FAB−GA2]

, (2.2)

C3 =

(
LN−M2

)
V −LT 2 +2MPT −NP2

(EG−F2)C−EB2 +2FAB−GA2 . (2.3)

Proof. Solving det(S−λ I3) = 0 with some calculations, we
get coefficients of polynomial PS(λ ).

Corollary 1. For any hypersurface x in E4, the fourth
fundamental form is related by

C0IV −3C1III +3C2II−C3I = 0. (2.4)

Proof. Taking n = 3 in (1.9), it is clear.
Definition 1. With its shape operator S and the first

fundamental form (gi j) = I of any hypersurface x in 4-space,
following relations holds:

(a) the second fundamental form (hi j) = II is given by
II = I·S,

(b) the third fundamental form (ei j) = III is given by
III = II·S,

(c) the fourth fundamental form ( fi j) = IV is given by
IV = III· S.

Corollary 2. The fourth fundamental form of any hyper-
surface x in E4 is given by

IV = III·I−1·II.

Proof. From Definition 1, we see the result.
Corollary 3. For any hypersurface x in E4, we have

det IV =
det II.det III

det I
.

Proof. Computing the right side of IV = III·I−1·II, it is
seen, easily.

3. Fundamental Forms and Curvatures of
Hypersphere

We consider hypersphere (1.11), that is

x(u,v,w) =


r cosucosvcosw
r sinucosvcosw

r sinvcosw
r sinw

 , (3.1)

where r ∈ R−{0} and u,v ∈ R, 0≤ w≤ 2π. Using the first
differentials of hypersphere (3.1), we get the first quantities

I = diag
(
r2 cos2 vcos2 w,r2 cos2 w,r2) . (3.2)

The Gauss map of the hypersphere is

G =


cosucosvcosw
sinucosvcosw

sinvcosw
sinw

 . (3.3)

Using the second differentials and G of hypersphere (3.1), we
have the second quantities

II = diag
(
−r cos2 vcos2 w,−r cos2 w,−r

)
. (3.4)

With the first differentials of (3.3), we find the third funda-
mental form matrix

III = diag
(
cos2 vcos2 w,cos2 w,1

)
. (3.5)

We calculate I−1.II, then obtain shape operator matrix

S =−1
r

I3, (3.6)

where I3 =diag(1,1,1). Therefore, we have following theo-
rem.

Theorem 2. Hypersphere (3.1) has following curvatures

C1 =−
1
r
, C2 =

1
r2 , C3 =−

1
r3 .

Proof. Using (2.1),(2.2),(2.3), (3.2) ,(3.4) ,(3.5) of (3.1) ,
we have curvatures.

Next, we see some results of the fourth fundamental form
of (3.1) .

Corollary 4. The fourth fundamental form matrix ( fi j) of
hypersphere (3.1) is as follows

IV = diag
(
−1

r
cos2 vcos2 w,−1

r
cos2 w,−1

r

)
. (3.7)

Proof. Using Corollary 2 with hypersphere (3.1), we find
the fourth fundamental form matrix.

Corollary 5. Hypersphere (3.1) has following relations

I = r2III, II =−rIII, IV =−1
r

III.

2010
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