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Abstract: In this research, the numerical calculation for elastic and nonlinear strains of Fe metal and
FeC alloy under different pressures has been performed by the statistical moment method SMM
with Mie—Lennard–Jones potential (MLJ) and Embedded-Jones potential Atom Method (EAM). The
analysis reveals that an enhancement in the concentration (cC) from 0 to 5% causes a decrement in the
Young’s modulus (E) at room temperature (T = 300 K) for FeC. These calculated results are consistent
with the experimental results. In addition, the obtained stress-strain curves for Fe are in perfect
agreement with the experimental curves. Besides, increasing the cC for a continuous strain decreases
the stress, showing that adding C to Fe to form FeC steel will increase strength and hardness, but
decrease elasticity and hardness. The results obtained will be very useful not only for experimental
studies but also for theoretical studies of metals and their interstitial alloys.

Keywords: elastic deformation; interstitial alloys; metals; nonlinear deformation; statistical moment
method; stress-strain curve; Young modulus

1. Introduction

Today with the rapid development of science and technology, the role of computer
science, combined with research methods, is crucial to the success of new materials research.
Among the research methods, the Molecular Dynamics Simulation (MDS) method plays
the leading role because of its simplicity. This research method has been used since the
1950s, but it was only developed in 1980 based on the first IBM computer system, and the
theoretical models were perfected up to now thanks to the development of supercomputing
systems combined with new innovative algorithms, to globally optimize the physical-
chemical properties of materials, based on the theoretical models of solids [1]. Various
studies based on MDS have been reported in the literature [2,3], and scientists are always
interested in issues such as the stability of materials, or whether the selection of the pro-
posed parameters in the model is consistent with the experimental data. Furthermore, the
sensitive dependence of the model on the initial conditions, which can significantly affect
the results, needs to be considered [4]. Scientists have successfully studied the phase trans-
formation, electronic structure, and crystallization of Ni [5], Fe [6–11], Ni [12–14], Al [15,16],
Cu [17], and alloy [18,19], NiFe nanoparticles [20,21], NiCu [22–24], AlNi nanoparticles [25],
AgAu alloy [26], AuCu bulk [27,28], NiAu alloy [29], polymer [30], Fe2O3 [31,32], and
FeCoNi [33] using experimental and MDS methods. It is well known that metals and their
interstitial alloys have found various applications in a wide variety of technological and
industrial areas. Special interest is directed to the assessment of the elastic properties of
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metals and their interstitial alloys determined experimentally, analytically, and numerically
in various conditions [34–40]. The experimental stress-strain curves obtained for Fe were
reported across different studies [19,38–40]. From this point of view, there are many studies
concerning the dependence of the elastic properties of materials on factors such as pressure
(P) and temperature (T). There are several theoretical methods, based on various mathe-
matical models, used to investigate the thermodynamic and mechanical characteristics of
materials in the literature [41–43].

For example, the Full-Potential linear response Linear-Muffin-Tin Orbital (FP-LMTO)
method has been used to investigate the elastic deformation of a single metal Fe, where
the elastic moduli of body-centered cubic (BCC) Fe under temperature and pressure were
investigated by the First-Principles Quasiharmonic Lattice Dynamics (FP-QLD) method [8].

The elastic deformation of Fe and its alloys were evaluated in Resonance Ultrasound
Spectroscopy (RUS) experiments over a range form 3 K to 500 K [9], using pulse-echo
technique experiments in the range of components from zero to 10 at. pct. Elastic moduli E
and G nonlinearly depend on temperature for alloys as well as Fe in the range from 77 K to
473 K [10].

In recent studies, scientists have successfully investigated the elastic deformation
under pressure in BCC and face-centered cubic (FCC) interstitial alloys using the Statistical
Moment Method (SMM) [36,37,44,45]. In this study, the SMM was applied to perform
numerical calculations for nonlinear and elastic deformations of BCC-Fe and BCC-FeC
under pressure.

2. Theoretical Background

In the approximation of three coordination spheres, the cohesive energy u0 and the
k,γ1, γ2, γ alloy parameters for the interstitial atom B (in the face centers of the cubic unit
cell), the main metal atom A1 (in the body center of the cubic unit cell), and the main
metal atom A2 (in the vertices of the cubic unit cell) in the BCC interstitial alloy AB can be
expressed as [46,47]:
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where ϕAB corresponds to the interaction potential between the A and the B atoms.
r1X = r01X + y0X(T ), and r01X represents the Nearest Neighbor Distance (NND) between
the atom X (X = A, A1, A2, B) and other atoms at T and T = 0 K, respectively. r01X is
calculated from the minimum condition of the cohesive energy u0X, y0X(T ) and shows the

displacement of atom X from equilibrium position at T, ϕ(m)
AB ≡

∂mϕA(r i)
∂rm

i
, m = 1, 2, 3, 4, α,

β = x, y, z, α 6= β, ri represents the radii of the ith coordination sphere (i = 1, 2, 3), ni shows
the number of particles on this sphere, u0A, kA, γ1A, γ2A are the corresponding quantities
in the BCC pure metal A in the approximation of two coordination spheres [46].

The equations of state for the conditions (at T and P, and at 0 K and P, respectively)
can be expressed as [46]:
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Equation (17) allows us to determine the nearest neighbor distance (NND)
r1X(P, 0)(X = A, A1, A2, B), the parameters kX(P, 0),γ1X(P, 0),γ2X(P, 0),γX(P, 0) at P
and 0 K, and the displacement y0X(P, T) of atom X from the equilibrium position at T and
P [46]. This is the reason why we can calculate the NND r1X(P, T) and the mean NND
r1A(P, T) between two atoms A in AB alloy at T and P, based on the following formulas [47]:

r1B(P, T) = r1B(P, 0) + yA1
(P, T), r1A(P, T)= r1A(P, 0) + yA(P, T ),

r1A1(P, T) ≈ r1B(P, T),r1A2(P, T) = r1A2(P, 0) + yB(P, T ).
(18)

r1A(P, T) = r1A(P, 0) +y(P, T), r1A(P, 0) = (1− cB)r1A(P, 0) + cBr’1A(P, 0),r’1A(P, 0) =
√

3r1B(P, 0 ),

y(P, T) = (1− 7cB)yA(P, T) + cByB(P, T) + 2cByA1
(P, T) + 4cByA2

(P, T ),
(19)
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For the condition cA << cB, the Helmholtz Free Energy (HFE) of BCC interstitial alloy
AB is defined by the following expressions [47]:

ΨAB = N
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where ΨX= NψX gives the HFE of BCC materials consisting only atoms X and Sc is the
configurational entropy of the alloy AB.

The Young modulus, the bulk modulus, the shearing modulus and elastic constants
for the alloy AB have the form [47]:
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where ε is the strain of the alloy AB. The Poisson ratio of the alloy AB can be expressed
as [47]:

νAB = cAνA + cBνB ≈ νA, (27)

where νA, νB correspond to the Poisson ratios of materials A and B, respectively.
The NND r1X(P, 0) (X = B, A, A1, A2) in alloy at P and 0 K, at P and T after defor-

mation, can be expressed as [44]:
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The HFE of AB alloy after deformation can be expressed as [44]:
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where ΨF
X is the HFE of materials consisting of only A atoms with the structure bcc

after deformation.
The stress dependence on strain in non-linear deformation can be expressed as [44]:

σlAB = σoAB
ε
αAB
F

1 + εF
, (31)

where σoAB and αAB are constants depending on the nature of the alloy.
The density of deformation energy of alloy AB is defined by the following relation [44]:

fAB(ε) =
ΨF

AB
VF

AB
− ΨAB

VAB
= 1

N

(
ΨF

AB
vF

AB
− ΨAB

vAB

)
=

[
(1− 7cB)

(
ψF

A
vF

AB
− ψA

vAB

)
+cB

(
ψF

B
vF

AB
− ψB

vAB

)
+

+2cB

(
ψF

A1
vF

AB
− ψA1

vAB

)
+ 4cB

(
ψF

A2
vF

AB
− ψA2

vAB

)] (32)

or

fAB(ε ) = (1− 7cB)

{
ψA

(
1

vF
AB
− 1

vAB

)
+

2εrF
01A

vF
AB

(
∂ψF

A
∂rF

1A

)
T
+ ε2

2vF
AB

[(
∂2ψF

A
∂rF2

1A

)
T

(
2rF

01A

)2
+

(
∂ψF

A
∂rF

1A

)
T

2r01A

]}
+

+cB

{
ψB

(
1

vF
AB
− 1

vAB

)
+

2εrF
01B

vF
AB

(
∂ψF

B
∂rF

1B

)
T
+ ε2

2vF
AB

[(
∂2ψF

B
∂rF2

1B

)
T

(
2rF

01B

)2
+

(
∂ψF

B
∂rF

1B

)
T

2r01B

]}
+

+2cB

{
ψA1

(
1

vF
AB
− 1

vAB

)
+

2εrF
01A1

vF
AB

(
∂ψF

A1
∂rF

1A1

)
T
+ ε2

2vF
AB

[(
∂2ψF

A1
∂rF2

1A1

)
T

(
2rF

01A1

)2
+

(
∂ψF

A1
∂rF

1A1

)
T

2r01A1

]}
+

+4cB

{
ψA2

(
1

vF
AB
− 1

vAB

)
+

2εrF
01A2

vF
AB

(
∂ψF

A2
∂rF

1A2

)
T
+ ε2

2vF
AB

[(
∂2ψF

A2
∂rF2

1A2

)
T

(
2rF

01A2

)2
+

(
∂ψF

A2
∂rF

1A2

)
T

2r01A2

]}
.

(33)

Let us consider the relation between the density of deformation energy and the strain
as follows [44]:

fAB(ε) = CAB·σAB·ε (34)

where CAB represents the proportional factor. The maximum density of deformation energy
corresponds to the strain εF

AB and therefore we obtain the relation:

fAB(ε
F
AB

)
= fABmax = CABσABmaxε

F
AB. (35)

The maximum stress σABmax and the maximum real stress σ1Abmax are defined by [44]:
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F
AB

,σ1ABmax =
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1 + εF
AB

=
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F
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F
AB
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CAB is calculated from the stress σ0.2AB in the alloy, which is determined experimen-
tally [48] by the following expression [44]:

CAB =
fAB(ε0.2AB)

σ0.2ABε0.2AB
· (37)

The limit of elastic deformation of the alloy is defined by the following expression [44]:

EABεdh= σ0AB
ε
αAB
ABdh

1 + εAdh
· (38)

3. Numerical Calculations and Discussions for Fe and FeC

For FeC, we apply the Mie–Lennard–Jones (MLJ) potential [49]:

ϕ(r) =
D

n−m

[
m
( r0

r

)n
− n

( r0

r

)m]
, (39)
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where D represents the depth of potential well corresponding to the equilibrium distance
r0, m and n, is obtained empirically. Thus, the potential parameters for the Fe-C interaction
are described by the following expression [50]:

DFe−C =
√

DFe−FeDC−C, r0Fe−C =
√

r0Fe−Fer0C−C. (40)

mFe-C and nFe-C are found by fitting the theoretical result with the experimental data
for the E of FeC0.2% interstitial alloy at T = 300 K. The obtained MLJ potential parameters
for different interactions are listed in Table 1.

Table 1. The MLJ potential parameters for interactions of Fe-Fe, C-C and Fe-C.

Interaction D [eV] r0 [10−10 m] m N

Fe-Fe [49] 0.4005 2.4775 7 11.5
C-C [51] 8.43 1.545 3.73 2.21
Fe-C (proposal) 1.84 1.96 2.5 5.5

First, we assume the limit case when cC→ 0 . Figure 1 illustrates the impact of the
T on the E parameter at P = 0 for various methods and experimental studies. Note that
the experimental samples in studies published in ref. [36,37,47] are monocrystalline ones,
and the SMM calculations are applied to polycrystalline samples. Therefore, we use the
Voigt–Reuss–Hill (VRH) conversion rule [49] as follows, based on the following expressions:

E =
9KG

3K + G
, K =

C∗11 + 2C∗12
3

, G =
3(C∗11 −C∗12)

2 + 38(C∗11 −C∗12)C
∗
44 + 12C∗244

30(C∗11 −C∗12) + 40C∗44
. (41)
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Figure 1. E(T) for Fe at P = 0 was obtained using the SMM, LMTO-GGA [8], and from EXPT [9,10].

In this equation, the symbol * represents the elastic quantities of monocrystalline
material. As clearly noticed in Figure 1, a significant decrease in the E value occurred
as the T increased due to an increase in the NND and a decrease in the cohesive energy.
The curve E(T) obtained from the LMTO-GGA [8] describes very well the relationship E-T,
qualitatively. However, the estimated values of E are very high compared to the measured
values [9,10]. In contrast, all errors between the SMM calculations and the experimental
data [9,10] in the 0 K to 800 K range are below 10%. However, it can be concluded that the
rate of decrease of the E value relative to the T value calculated by the SMM is faster than
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the normal one. At T = 900 K, the value of E determined using the SMM is up to 14.4%
smaller than the experimental data [10]. Since the E values obtained using the SMM are
consistent with the experiments (EXPT) and other calculations, the obtained results of the
G, K, C11, C12, and C44 quantities are also in good agreement.

K, G, C11, C12 calculations for single Fe metal at different T and p values are illustrated
in Table 2 in comparison with other theoretical and experimental studies.

Table 2. C11(T,P), C12(T,P), K(T,P) and G(P) for Fe.

P [GPa] T [K] C11 [GPa] C12 [GPa] K [GPa] G [GPa]

LMTO-GGA [8]

0

250 297 148 198 100
EXPT [52] 300 266 140 169 78
EXPT [53] 300 223 127 159 84
SMM (this paper) 300 255 89 146 83

LMTO-GGA [8]

4.6

250 326 167 220 110
SMM (this paper) 250 288 101 163 93
CAL [54] 300 260 154 189 100
SMM (this paper) 300 283 99 160 92

LMTO-GGA [8]

9.8

250 360 188 245 120
SMM (this paper) 250 318 111 180 103
EXPT [53] 300 283 167 206 101
SMM (this paper) 300 313 110 178 102

The results displayed in Figure 1 show that Fe deforms nonlinearly over the temper-
ature (T) range of T = 3 K to T = 900 K and the K, G, C11, and C12 values are determined
at T = 250 K, 300 K (Table 2). The results obtained at T = 250 K, 300 K show that there are
differences in the values obtained for K, G, C11, and C12 compared with other research
methods. Finally, these deviation values are very small compared with the results obtained
by the experimental method [52–54], and the numerical calculation method [8], so they
are acceptable.

In Figure 2 and Table 3, the dependence of E on the concentration (cC) at different T
and p values is shown for FeC. An increment in the cC leads to a considerable decrease
in the E parameter due to the strong deformation of the crystal lattice. For example, at
T = 300 K, E decreases from 20.79 × 1010 to 18.67 × 1010 Pa with increases of cC from
0 to 5%. This result is in very good agreement with experimental studies [11] when all
errors are below 2%. When T increases, the curve E(cC) for FeC has a smaller slope. The
size correlation between interstices in crystalline lattice and the radii of interstitial atoms
determines the lattice deformation. It can be concluded that a higher T value determines a
stronger atomic vibration, wider interstice, and less lattice deformation. In fact, vacancies
are formulated at high T values and interstitial carbon atoms can occupy positions in
these vacancies.

Table 3. E(cC,P) [1010 Pa] for FeC at T = 300 K determined using the SMM.

P [GPa] cC = 0 cC = 0.2% cC = 0.4% cC = 0.6%

1 21.32 21.23 21.13 21.04
3 22.32 22.22 22.12 22.03
5 23.30 23.20 23.10 23.00
7 24.26 24.16 24.06 23.96

Figures 3 and 4, respectively show the relationship between E and T for FeC0.2% and
FeC0.4% calculated by SMM with the MLJ potential proposed in this paper and with the
Embedded-Atom Method (EAM) potential [47] and from experimental data [18]. Clearly,
using the parameters of MLJ potential in Table 1 requires extremely low calculation cost
but gives equally reliable results as the EAM potential [47]. Moreover, in the range of 73 to
700 K, all deviations between the SMM calculations and experiments [18] are below 5%.
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Especially in the range of 294 to 533 K, all errors are below 2%. At T = 866 K, the error only
is 13%.
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To determine the non-linear deformation of FeC, it is first necessary to consider the
intensity of the deformation energy f(ε). Figure 5 shows the dependence of f(ε) on the
deformation ε in the case. There is one maximum point (εp, fmax) in the graph f(ε). An
increase in the T causes a decrease in both εP and fmax.

Concretely, at T = 325 K we have εP = 6.2% corresponding to fmax = 16.9 GPa; at
T = 500 K we have εP = 5.2% corresponding to fmax = 14.33 GPa, and at T = 700 K we have
εP = 4.4% corresponding to fmax = 12.16 GPa. Knowing εP and fmax, the maximum value
of real stress σ1max can be determined when the non-linear deformation occurs. Note that
in our calculation steps, it is proposed that σ0.2 varies slowly with T and cC of interstitial
atoms, and σ0.2(cC, T) ≈ σ0.2(cC, 300 K), this is one of the reasons for deviations between
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SMM calculations and experiments. Numerical calculations will certainly have higher
accuracy if experimental data of σ0.2 in different conditions are available.
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Figure 5. Deformation and strain at T = 325, 500, and 700 K obtained using the SMM with Fe metal.

Table 4 indicates the elastic deformation limit for single Fe metal and FeC interstitial
alloy at T = 300 K, P = 0, and the maximum value of real stress.

Figure 6 shows the stress-strain relationship used by the SMM calculations. The
deformation process of FeC can be considered as two stages.
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Table 4. E (cC, P) [1010 Pa] for FeC at T = 300 K determined using the SMM.

P [GPa] cC = 0 cC = 0.2% cC = 0.4% cC = 0.6%

1 21.32 21.23 21.13 21.04
3 22.32 22.22 22.12 22.03
5 23.30 23.20 23.10 23.00
7 24.26 24.16 24.06 23.96
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Initially, the σ− ε dependence is linear when the strain is within the range (ε < 0.5%).
In this case, FeC is in the elastic deformation stage, which is still a reversible process.
However, when ε > 0.5% FeC is in the non-linear deformation stage, the σ− ε dependence
is defined as a complex curve. It is known that the non-linear deformation stage is an
irreversible process. In the limit case, the stress-strain curve obtained for single metal Fe in
the present study is quite consistent with the experimental curve reported in [19]. For a
constant strain ε, an increase of cC of interstitial atoms gives a rise to a decrease in stress
σ. Thus, adding C to Fe to form the steel will cause an enhancement in the strength and
hardness, but a decrement in the elasticity and toughness.

These results are in full agreement with the results in the joints of composites [55,56].
The results demonstrated in Figures 5 and 6 give good results about applying SMM to study
processes of non-linear deformation of metals and alloys. In order to enhance the reliability
of calculated results, it is also necessary to consider some important factors such as the rate
of deformation, the annealing time, etc. [39] in representing the stress—strain curve.

Based on the obtained results, there is a good agreement between our findings and
previous findings reported in theoretical and experimental studies.

4. Conclusions

In this research, the elastic and non-linear deformations quantities of alloy FeC were
calculated numerically from the obtained theoretical results by applying the MLJ potential
parameters for interactions Fe-Fe, C-C and Fe-C. The obtained results of elastic moduli
and constants for main metal Fe were in good accordance with the results derived in other
theoretical and experimental studies. At T = 300 K for the FeC interstitial alloy, the results
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of the analysis revealed that an increase in the cC from 0 to 5% gives rise to a decrease
in the E from 20.79 × 1010 to 18.67 × 1010 Pa. The dependence of E on T obtained for
FeC alloy with cC = 0.2 and 0.4% (obtained using the SMM with MLJ potential and EAM
potential) and the stress-strain curve obtained for single Fe were quite consistent with the
experimental studies. For a constant strain, increasing cC led to a decrease in stress. From
the results obtained, it can be also concluded that adding C to Fe to form the steel will
cause an enhancement in the strength and hardness, but a decrement in the elasticity and
toughness. The results obtained by using the SMM in this research are expected to be useful
for not only experimental but also theoretical studies on metals and their interstitial alloys.
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