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Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from 
UAV-based digital surface models
Asli Ozdarici-Ok a, Ali Ozgun Ok b, Mustafa Zeybek c and Ayhan Atesoglu d

aAcademy of Land Registry and Cadastre, Ankara Haci Bayram Veli University, Ankara, Turkey; bDepartment of Geomatics Engineering, 
Hacettepe University, Ankara, Turkey; cLand Registry and Cadastre, Selcuk University, Konya, Turkey; dDepartment of Forest Engineering, 
Bartin University, Bartin, Turkey

ABSTRACT
Stone Pine (Pinus pinea L.) is currently the pine species with the highest commercial value with 
edible seeds. In this respect, this study introduces a new methodology for extracting Stone Pine 
trees from Digital Surface Models (DSMs) generated through an Unmanned Aerial Vehicle 
(UAV) mission. We developed a novel enhanced probability map of local maxima that facilitates 
the computation of the orientation symmetry by means of new probabilistic local minima 
information. Four test sites are used to evaluate our automated framework within one of the 
most important Stone Pine forest areas in Antalya, Turkey. A Hand-held Mobile Laser Scanner 
(HMLS) was utilized to collect the reference point cloud dataset. Our findings confirm that the 
proposed methodology, which uses a single DSM as an input, secures overall pixel-based and 
object-based F1-scores of 88.3% and 97.7%, respectively. The overall median Euclidean distance 
revealed between the automatically extracted stem locations and the manually extracted ones 
is computed to be 36 cm (less than 4 pixels), demonstrating the effectiveness and robustness of 
the proposed methodology. Finally, the comparison with the state-of-the-art reveals that the 
outcomes of the proposed methodology outperform the results of six previous studies in this 
context.
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1. Introduction

Sustainable tree management focuses on maximiz
ing the use of tree resources globally, and various 
tree species provide socio-economic advantages. 
Stone Pine (Pinus pinea L.) is a specific coniferous 
evergreen type of tree wide-spreading, especially in 
the Mediterranean and Aegean regions (Mutke 
et al. 2012; Gonçalves and Pommerening 2012; 
Correia et al. 2018). Among the edible seed forests 
in the Mediterranean region, Stone Pine is cur
rently the pine species with the highest economic 
value, with edible seeds called “pine nuts”. Given 
the high economic value of these edible seeds, the 
Stone Pine stands out among other coniferous for
est tree species used for timber harvesting 
(Schneider, Calama, and Martin-Ducup 2020). 
This tree is very useful as an industrial product 
and also provides socio-economic benefits 
(Buyuksari et al. 2010; Calama et al. 2016; Eker 
and Laz 2018; Akyol and Örücü 2019). It also has 
potential as a crop in agroforestry systems in 
Mediterranean climates, where it has a high value 
and contributes more to local/national economies.

An issue of strategic importance is quickly and 
accurately determining physical tree characteristics 
(e.g. stem location, crown diameter, height, and 
canopy volume) (Michałowska and Rapiński 2021). 

The major focus of early automatic techniques for 
extracting trees from remotely sensed data was the 
use of radiometric information in high-resolution 2D 
images (e.g. Pouliot et al. 2002; Wang, Gong, and 
Biging 2004; Erikson and Olofsson 2005; Pu and 
Landry 2012). Despite the limited information avail
able in 2D images, methods solely devoted to the 
processing of images still represent a major field of 
tree extraction research (e.g. Jing et al. 2012; Hung, 
Bryson, and Sukkarieh 2012; Malek et al. 2014; 
Ozdarici-Ok 2015; Leckie, Walsworth, and Gougeon 
2016; Koc-San et al. 2018; Donmez et al. 2021), and 
receive increased attention due to the recent develop
ments in machine learning, especially in deep learning 
(e.g. Liu, Wang, and Wang 2019; Wu et al. 2020; Xi 
et al. 2021). Another large study topic includes experi
ments whose framework directly incorporates height 
information from Light Detection and Ranging 
(LiDAR) data (e.g. Leckie et al. 2003; Hirschmugl 
et al. 2007; Tooke et al. 2009; Zhen, Quackenbush, 
and Zhang 2016; Dong et al. 2020). LiDAR technology 
has been widely used in forestry research for many 
years (e.g. Michałowska, and Rapiński 2021; Liang 
et al. 2016; Shao et al. 2020; Campbell 2021). 
Research promoting either DSM or normalized DSM 
(nDSM) or a canopy-height model (CHM) is another 
comprehensive field involving height information. 
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Watershed segmentation and the marker-controlled 
watershed segmentation for processing DSM– 
nDSM–CHM data have been developed and attracted 
a lot of interest (e.g. Hyyppa et al. 2001; Wolf (Né 
Straub) and Heipke 2007; Kwak et al. 2007; Heinzel, 
Weinacker, and Koch 2011; Ene, Næsset, and 
Gobakken 2012; Wallace, Lucieer, and Watson 2014; 
Liu, Im, and Quackenbush 2015; Bulatov, Wayand, 
and Schilling 2016; Paris, Valduga, and Bruzzone 
2016; Panagiotidis et al. 2017). The collection of 
seeds (e.g. Hirschmugl et al. 2007), the selection of 
local maxima (e.g. Popescu and Wynne 2004; Kwak 
et al. 2007; Hirschmugl et al. 2007; Swetnam and Falk 
2014; Eysn et al. 2015; Dalponte et al. 2015a; Li et al. 
2016; Panagiotidis et al. 2017), or region growing (e.g. 
Hirschmugl et al. 2007; Zhen et al. 2015; Eysn et al. 
2015; Ramli and Tahar 2020) are traditional methods 
tested along with the segmentation techniques 
(Marques et al. 2019). Other preferred approaches in 
this field are based on image classification (e.g. 
Dalponte et al. 2014; Matsuki, Yokoya, and Iwasaki 
2015; Liu, Im, and Quackenbush 2015; Dalponte et al. 
2015b; Fassnacht et al. 2016). Supervised classification 
strategy for extracting trees primarily explores height 
information for better results, and up till now, discri
mination functions (Puttonen, Litkey, and Hyyppä 
2010), iterative granulometry-based mathematical 
morphology (Heinzel, Weinacker, and Koch 2011), 
random forests (e.g. Liu, Im, and Quackenbush 2015; 
Pádua et al. 2020; Modica et al. 2021), support vector 
machines (e.g. Matsuki, Yokoya, and Iwasaki 2015; 
Dalponte et al. 2014; Dalponte et al. 2015a; Modica 
et al. 2021), semi-global labeling (e.g. Bulatov, 
Wayand, and Schilling 2016), and rule-based methods 

(e.g. Modica et al. 2020) were evaluated. Besides, other 
approaches like wavelet analysis (e.g. Falkowski et al. 
2006), and orientation symmetry (Ok and Ozdarici- 
Ok 2017, 2018a, 2018b, 2020) were also proposed.

Unmanned aerial vehicles (UAVs) can now gen
erate highly accurate, detailed, and high-quality 
data. Because UAVs are usually cost-effective to 
operate, their usage in forestry is growing rapidly 
(Chong et al. 2017; Dainelli et al. 2021a, 2021b). 
This paper presents a novel methodology for the 
automated extraction of individual Stone Pine trees 
from UAV-based DSMs (Figure 1). First, we pre
sent an enhanced probability map of local maxima 
that uniquely handles the newly proposed local 
minima information. Next, this new probability 
map helps us to improve the orientation symmetry 
evidence used for the detection of regions that are 
likely to correspond to the Stone Pine trees. Finally, 
the crown boundaries and stems of individual 
Stone Pine trees are extracted using the Chan- 
Vese active contour model (Chan and Vese 2001) 
that independently processes each detected stem 
region.

Our main goal in this research is to propose a novel 
methodology for the automated extraction of Stone 
Pine trees. Within the framework, as a new contribu
tion, we develop a new enhanced probability map of 
local maxima that improves the calculation of the 
orientation symmetry used to detect the tree stem 
locations. Our presented results not only confirm 
that the proposed methodology utilizing a single 
DSM as input is promising and effective but also 
provide better results than the previous approaches 
tested in this context.

Figure 1. Proposed methodology for the automated extraction of individual Stone Pine trees.
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2. Related studies

So far, several researchers have particularly studied 
the automatic extraction of the Stone Pine trees. In 
the study conducted by Mei and Durrieu (2004), 
both a LiDAR-based elevation model and multispec
tral images were jointly used to delineate tree 
crowns of Pinus pinea in the southern part of 
France. Pirotti (2010) evaluated a kernel-based 
approach to extract Pinus pinea tree positions, and 
the corresponding height using correlation with 
CHM as a similarity measure in the north-eastern 
part of Italy. Awad, Jomaa, and Arab (2014) inves
tigated the changes in the Stone Pine cover for two 
different years in Mount Lebanon in which 
a hyperspectral image and a Landsat 7 image along 
with topographic maps were processed. Alonzo et al. 
(2016) tested hyperspectral imagery and waveform 
LiDAR data to map multiple urban forest species 
including Pinus pinea in downtown Santa Barbara, 
California. Guerra-Hernandez et al. (2016a) esti
mated individual Stone Pine tree parameters (loca
tion, tree height, and crown diameter) using DSM 
computed from a high-resolution UAV imagery in 
Portugal using two segmentation strategies (mixed- 
pixel and region-based). In another study, Guerra- 
Hernández et al. (2016b) estimated aboveground 
biomass components for three types of 
Mediterranean trees including Stone Pine using low- 
density airborne laser scanning data in southwest 
Spain with two different modeling approaches. 
Detection of growth changes in individual Stone 
Pine trees was conducted by Guerra-Hernández 

et al. (2017) using multi-temporal UAV-derived 
CHM and object-based image analysis in central 
Portugal. Awad (2018) collected field-based spectral 
signatures for Stone Pine forests to test and compare 
different multispectral and hyperspectral satellite 
images for classification in two different regions in 
Lebanon. Demir (2018) extracted individual Pinus 
pinea trees by analyzing elevation flows on the 
CHMs derived from overlapping UAV images in 
a test site in the southern part of Turkey. Blázquez- 
Casado et al. (2019) aimed to extract two different 
Stone Pine tree species (Pinus pinea L. and Pinus 
Pineaster Ait.) at a mature development level by 
low-density LiDAR and Pleiades satellite images in 
the northern part of Spain using a random forest 
model. Selim, Kalaycı, and Kılçık (2020) collected 
height information from UAV images with the assis
tance of spherical astronomy in the south of Turkey 
for different types of trees including Pinus pinea. In 
a recent work, Gülci et al. (2021) evaluated the 
performance of UAV-based measurements for tree 
attributes in timber volume estimation of Stone Pine 
trees in the north-western part of Turkey.

3. Study area and preparation of the dataset

Our area of interest is in the Turkish province of 
Antalya, near the town of Kumkoy in the Aksu district 
(Figure 2). The whole study area is approximately 10  
km2 of the protected pine forest centered at 30°57ʹ05ʹʹ 
E and 36°51ʹ59ʹʹ N. The study area is one of the most 
significant Stone Pine forest locations due to its rich 

Figure 2. Overview of the study area.
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and loamy soils and favorable climatic conditions 
(mean annual temperature of 29.1°C and mean annual 
precipitation of 1070 mm). The topography is rela
tively flat, with a mean height of 3 m above the mean 
sea level. Although Stone Pine is the most common 
type of tree in the region, the study area also has 
a variety of other species such as Red Pine, Bay tree, 
Aspen tree, and Wild Pear, albeit in small numbers.

An RGB camera (Sony A6000) with a focal length 
of 30.25 mm and having 24 MP (6000 × 4000 pixels) 
on board the BRAMOR ppX (GNSS PPK – Post 
Processing Kinematic) UAV platform was utilized to 
acquire the images. The UAV was used to undertake 
several overlapping scans, and the overlap ratios of the 
UAV images during image acquisition were config
ured to be high, with 80% forward and 60% side laps. 
The flight height of the mission was set to approxi
mately 400 m above the ground; thus, it provided 
images with a ground sampling distance of approxi
mately 5 cm.

The UAV mission began at 11:21 am local time on 
16 June 2020 and lasted exactly 40 min. A total of 1492 
images were collected during the mission. During 
imaging, the wind speed was around 18 km per hour, 
and stratus clouds produced a partial gray layer of 
cloud cover throughout the study area, causing peri
ods of light precipitation or drizzle (Figure 3). Besides, 
no GCPs were deployed on the ground before the 
mission, as the PPK method provides accuracy com
parable to GCPs (Zeybek 2021).

All images were processed using the Pix4D Mapper 
software (Pix4D 2017). Due to cloud cover, nearly 5% 
of the available 1492 images could not be processed, 
leaving 1419 images for further processing. After the 
bundle adjustment, only 0.08% relative difference 
between initial and optimized internal camera para
meters was computed. The 3D points were computed 
on multiple image scales (on images with half, quarter, 
and eighth image sizes), which is the case useful for 
computing 3D points in vegetation areas. More than 
283 million 3D points were automatically generated, 
equivalent to an average density of ≈17 points/m3. 
Thereafter, the DSM and the true-orthoimage of the 
study area with a GSD factor of 2 (9.96 cm) were 
generated. We also applied automatic noise and shar
pening filters, which corrected the elevation of points 
using the median elevation of surrounding points, and 
flattened only quasi-planar areas based on surface 
orientation.

Four representative test sites were chosen from the 
study area, each with varied planting characteristics 
(Figure 4). The test images were chosen to illustrate 
a variety of planting patterns of Stone Pine trees of 
various ages and characteristics.

4. Methodology

In this research, we propose a novel enhanced probability 
map of local maxima (PEnh

Lmax
) that uniquely combines the 

newly proposed local minima (Lmin) information with 

Figure 3. Orthomosaic of the study area, and sample images from the study area.
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the previously developed local maxima (Lmax) evidence 
in Ok and Ozdarici-Ok (2018b), which eventually sup
ports the calculation of the orientation symmetry used 
for the detection of the tree stem locations.

4.1. Enhancing probability map of local maxima

In this study, Lmax evidence (ELmax ) is collected based 
on a sequence of height thresholds (hi

max, where i = 1, 
2, ···, n): 

ELmax pð Þ ¼
Xn

i¼1
regionalmax

hmaxi

rec J; Ið Þ½ � (1) 

In Equation (1), p denotes a DSM pixel at image 
coordinates (row, column), n is the maximum number 
of height thresholds utilized, and the operator 
“regionalmax” symbolizes the regional maxima opera
tion (pixels connected and have a constant elevation that 
is greater than the elevation of their exterior boundary 
pixels) of the H-maxima transformation (Soille 1999) 
computed using the grayscale reconstruction: 

rec J; Ið Þ ¼ lim
d!1

ρ mð Þ
I Jð Þ

¼ limd!1 ρ 1ð Þ
I � ρ 1ð Þ

I � . . . � ρ 1ð Þ
I|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dtimes

Jð Þ (2) 

In Equations (1) and (2), � symbolizes the function 
composition, rec J; Ið Þ denotes the grayscale recon
struction J : DSM pð Þ � hi

max � I : DSM pð Þ
� �

which 
is obtained by a successive number of grayscale geo
desic dilation (d) operations until no change occurs 
(Vincent 1993). In Equation (2), ρ 1ð Þ

I Jð Þ denotes the 
elementary geodesic dilation of grayscale image J given 
I: ρ 1ð Þ

I Jð Þ ¼ min I; J � Dð Þ where � denotes the dila
tion operation, D is the flat square structuring element 
defining 8-neighborhood connectivity, and the opera
tor “min” returns the minimum value. In the last step, 
all ELmax values are scaled between 0 and 1 to generate 
a probability map, PLmax pð Þ ¼ ELmax pð Þ=max ELmax pð Þð Þ, 
in which brighter pixels indicate a higher probability 
of local maxima regions (Figure 5(b)).

To compute the Lmin evidence, similar to Equation 
(2), we also benefit from a successive number of grays
cale geodesic dilations (d) performed for the grayscale 
reconstruction. However, at this point, we use the 
complement of the input DSM 

J : 1 � DSM pð Þ � hj
min � I : 1 � DSM pð Þ

� �
as an 

input for the geodesic dilations. Thereafter, we pro
pose the new Lmin evidence (ELmin ) of a DSM: 

ELmin pð Þ ¼ max
1�j�m

I � rec J; Ið Þ

hj
min

 !

(3) 

Figure 4. Test sites selected from the study area (The red polygon in each test site presents the coverage of the reference data 
collected during fieldwork; the blue triangles represent the positions of GNSS receivers deployed for HMLS measurements).
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In Equation (3), hj
min denotes a sequence of height 

thresholds (j = 1, 2, ···, m) to be used in the grayscale 
reconstruction rec J; Ið Þ, and the operator “max” 
returns the maximum value after employing all pre
defined height thresholds (hj

min, where j = 1, 2, ···, m). 
In the last step, all ELmin values are scaled between 0 
and 1 to generate a probability map, 
PLmin pð Þ ¼ ELmin pð Þ=max ELmin pð Þð Þ, in which local 
minima regions are indicated with brighter pixels 
(Figure 5(c)).

Once the probability maps for local maxima (PLmax ) 
and local minima (PLmin ) are generated, we propose to 
combine them to generate an enhanced version of the 
local maxima probability map (LEnh

max): 

PEnh
Lmax

pð Þ ¼ PLmax pð Þ � 1 � PLmin pð Þð Þ
2 (4) 

In Equation (4), both PLmax and PLmin are already 
normalized between 0 and 1, therefore the output PEnh

Lmax 

provides a directly enhanced probability map of local 
maxima regions of a DSM (Figure 5(d)).

4.2. Combining orientation symmetry with 
enhanced local maxima

A radial symmetry transform based on orientation 
is specifically developed only to identify regions 
with near-circular characteristics in a DSM. 
Therefore, (i) the enhanced probability map of 
a DSM’s local maxima areas and (ii) orientation 
symmetry must be integrated to detect regions 
revealing both evidences.

The probability map of orientation symmetry 
(POS) combined with enhanced local maxima is com
puted based on a sequence of radius values (rk, where 
k = 1, 2, ···, K) defined in image space: 

POS pð Þ ¼
XK

k¼1

XS

s¼1

Ork pð Þð Þ
αs � PEnh

Lmax
pð Þ

max Ork pð Þð Þ
αsð Þ

" #

� Gσ pð Þ

 !

(5) 

In Equation (5), αs denotes a series of strictness para
meters of orientation symmetry (αs where s = 1, 2, ···, S), 
and Gσ is a 2D Gaussian kernel that is rotation invariant 
and has a fixed standard deviation (σ) applied via the 
convolution operation (*). The information about the 
center positions of circular objects in a DSM that fulfill 
a certain radius rk is provided in Ork , which is computed 
using an accumulation performed in image space: 

Ork prk pð Þ
� � newf g

¼ Ork prk pð Þ
� � oldf g

þ 1 (6) 

In Equation (6), the superscripts ({new} and {old}) 
denote an accumulation in image space for a radius rk. 
prk indicates the unit direction vector pointing 
a distance specified by radius rk from p, and it is 
computed by prk pð Þ ¼ pþ g!:rk þ c. Here, c is 
a constant vector in pixels (c = [0.5 0.5]), g! is the 
unit direction vector (= ori(p) / mag(p)) calculated 
using the magnitude, mag(p), and orientation, ori(p) 
components of the gradient (Farid and Simoncelli 
2004) of the input DSM. The operator ⌊.⌋ converts 
floating numbers to integers (i.e. the lowest preceding).

A pixel p in the probability map of orientation 
symmetry (POS) reveals very high probability values 
if that pixel in POS unveils both local maxima and 
orientation symmetry at the same time (Figure 6(b)). 
Therefore, we use Otsu’s multilevel thresholding cri
terion to automatically choose the optimal threshold 
value (i.e. POS> τotsu) to focus on regions that poten
tially represent the stems of trees. Based on Otsu’s 
objective criteria, we investigate how successful the 
thresholds are at separating the POS probability map 
into a number of classes (cq

otsuwhere q = 1, 2, ···, C). 
Thereafter, we examine the success of different num
ber of classes using the Otsu’s efficiency measure one 
by one, and set the threshold τotsu to the value with the 
maximum efficiency to generate a binary map in 
which isolated regions with a pixel value 1 belong to 
stem regions of trees, and a pixel value 0 is the back
ground (Figure 6(c)).

Figure 5. (a) DSM of test site #3. (b) Probability map of local maxima. (c) Probability map of local minima. (d) Enhanced probability 
map of local maxima. Notice how unnecessary local maxima information is suppressed in (d) compared to (b).
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4.3. Extraction of the boundaries and stems of 
trees

We extract the individual crown boundaries of the 
trees using the Chan-Vese active contour model 
(Chan and Vese 2001): 

argmin
B

λ1

ð

innerðBÞ
I � μ1

�
�

�
�2dpþ λ2

ð

outerðBÞ

�

I � μ2

�
�

�
�2dpþ ρBl þ υBa

� (7) 

where the input is the DSM I : DSM pð Þð Þ, B defines the 
boundary of a closed contour, and µ1 and µ2 are the 
averages of pixel values of the inner and outer boundaries 
of a closed contour, respectively. Bl and Ba represent the 
contour’s length and the area within the contour in 
image space, respectively, and the inner and outer 
terms in Equation (7) are weighted by the parameters 
λ1 and λ2, respectively. The amount of smoothness of the 
contour is controlled with the parameter ρ, and the 
contraction bias, υ, regulates the tendency of the contour 
to expand outwards or shrink inwards depending on the 
sign of the term, either positive or negative.

During the implementation, the sparse-field level- 
set method (Whitaker 1998) was utilized. We perform 
the evolution of the contour independently for each 
separated region, and the initialization of an active 
contour is automatically set from the shape of the 
region in which the evolution begins, limiting the 
evolution to a maximum number of iterations (τiter) 
if stability is not reached. Besides, image extents of 
each active contour to be processed are limited by 
generating influence regions (Ok and Ozdarici-Ok 
2018a) developed to automatically merge stem regions 
that are closely positioned in image space (< τdist), 

thus, resulting in a more accurate final representation 
of trees. Finally, individual stem locations of trees are 
determined by searching for the greatest value of POS 
within each crown boundary of trees (Figure 7).

5. Reference data and strategy for accuracy 
evaluation

The use of Hand-held Mobile Laser Scanner (HMLS) 
systems has become a popular technique in (medium 
and less closed) forest areas. A Simultaneous 
Localization and Mapping (SLAM)-technology- 
integrated hand-held LiDAR system was used to collect 
the reference point cloud dataset. Before field surveying, 
for each test site, a total of four GNSS multi-frequency 
receivers (Aschtech SP 80) are deployed as georeferen
cing stations for HMLS point clouds. Such measure
ments were carried out in certain regions within each 
test site with the lowest forest cover to successfully solve 
the initial-phase uncertainty in the measurement of 
GNSS. In this way, signal interruption during measure
ments has been minimized. All measurements were 
supported by the continuous observation coordinate 
system CORS-TR technique, and the coordinates of 
the georeferencing points in the instant centimeter 
level in the field environment were determined.

Hand-held laser scanning operations were carried 
out on 18 August 2020, with the Geo-SLAM ZEB 
HORIZON system (Geo-SLAM 2021). In field sur
veys, while georeferencing measurements were carried 
out by GNSS receivers, HMLS measurements were 
simultaneously conducted using the GEOSLAM ZEB- 
Horizon SLAM system. These measurements were 
made at normal walking speed without any planning 
but by returning to the starting point by performing 

Figure 6. (a) DSM of test site #3; (b) Probability map of orientation symmetry combined with enhanced local maxima; (c) Output 
binary map.

GEO-SPATIAL INFORMATION SCIENCE 7



certain intervals and overlap ratios, that is, by closing 
the loop. The absolute georeferencing process of the 
point clouds was carried out using the open-source 
CloudCompare software (CloudCompare 2021), and 
the total RMS values (X, Y, and Z) were computed to 
be in the range from 4 cm to 12 cm.

For each test site, the positions of the GNSS recei
vers deployed and the area covered by the fieldworks 
are illustrated in Figure 4. The collected and georefer
enced HMLS point clouds are shown in Figure 8.

2D boundaries of each Stone Pine tree were drawn 
manually by taking into account HMLS reference point 
clouds collected during the fieldwork. Afterward, these 
manually extracted reference boundaries of individual 
trees were utilized to evaluate the results of the auto
mated approach. Commonly preferred measures; pre
cision, recall, and F1-score, were used to assess the 
pixel-based performance of the proposed approach: 

Precision ¼
TP

TPþ FP
;Recall ¼

TP
TPþ FN

; F1 ¼
2:precision:recall
precisionþ recall

(8) 

where true positives are TPs, false positives are FPs, 
and false negatives are FNs. The amount of pixels 
allocated to each category is indicated by the operator 
||.||, and the F1-score indicates overall performance.

The object-based performance of the proposed 
methodology is also assessed using Equation (8) as 
well. If an output object has at least a 60% pixel overlap 
ratio with a Stone Pine tree in the reference data, it is 
labeled as TP (Ok and Ozdarici-Ok 2018a). If an out
put object does not match any of the Stone Pine trees 
in the reference data, it is classified as FP. If an output 
object matches a reference Stone Pine tree with 
a certain degree of overlap (i.e. less than 60%), we 
mark it as FN.

We also evaluate the 2D positional accuracy of stem 
locations detected automatically. Such positional 
accuracy assessment relies on a critical assumption: 
the greatest value of POS within each crown boundary 
of trees can be compared to the actual position of the 
stems. Even though trees with leaning or forked stems 
contradict this assumption, the Stone Pine is well 
known for its umbrella shape, which appears to give 
support to that assumption. For the assessment, all 
reference stem locations (i.e. a center of the stem of 
each Stone Pine tree) are manually extracted from the 
HMLS reference point clouds, and subsequently used 
to assess our automated results. To do so, we first 
normalize the height of each point w.r.t. terrain height 
computed using the ground extractor module of the 
3DReshaper software (Figure 9(b)). A distance-based 
segmentation step (Figure 9(c)) followed by the cylin
der fitting process (Figure 9(d)) using the least-squares 
estimation (Figure 9(e,f)) was applied to extract pre
cise stem locations. The Euclidean distances between 
the automatically extracted stem locations and the 
manually extracted ones are used to compute a set of 
measures (minimum, maximum, median, and the root 
mean square (RMS) distances) between the output and 
reference tree stems.

6. Results

The outcomes of the proposed tree extraction methodol
ogy are presented in this section. First, the parameters 
required to run our methodology are discussed. Next, 
numerical and visual findings are provided for the test 
images selected. Following that, our results are compared 
to the results of earlier works. Finally, the proposed 
framework’s shortcomings are discussed.

Figure 7. (a) DSM of test site #3; (b) Automatically extracted regions; (c) Stems of individual trees.
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6.1. Implementation and discussion of the 
user-defined parameters

MATLAB R2015 was used for the implementation of 
the proposed methodology. All tests were carried out 
using a laptop PC with a quad-core Intel i7 processor 
running at 2.40 GHz and 16 GB of RAM. We consid
erably benefit from built-in parallel processing in 
MATLAB during the implementation to effectively 
compute different parts of the methodology (e.g. all 
computations demanding a sequence of height thresh
olds, operating the active contour, etc.).

Our methodology, like any other object extraction 
process, needs the user to set several parameters 
(Table 1). The effect of each parameter on the perfor
mance measures (Precision, Recall, and F1-scores) was 
investigated in a series of experiments with scenarios 
for particular input parameters.

The first sequence of height thresholds, hi
max where 

i = 1, 2, ···, n, is required for the formation of 
a probability map of local maxima (PLmax ). For that 
parameter, we initiate the height sequence (h1

max) with 
the anticipated vertical accuracy of the input DSM (i.e. 
h1

max ¼ 10cm), and constructed a height sequence vec
tor with entries that are also increased by that value. 
The value of n was set to 8 (i.e. h8

max ¼ 80cm) since it 
slightly offered the optimum balance between preci
sion and recall measures (Figure 10(a,b)). The second 
sequence of height thresholds, hj

min where j = 1, 2, 
···, m, is required for the formation of a probability 
map of local minima (PLmin ). In this study, by taking 
into account the estimated height of trees above 
ground level, we launch a height sequence (h1

min) 
with a value of 1 m (i.e. h1

min ¼ 1m), and constructed 
a height sequence vector with entries that are also 

Figure 8. Georeferenced HMLS point clouds. (a) Test site #1; (b) Test site #2; (c) Test site #3; (d) Test site #4; (e) and (f) Sample 3D 
view of the HMLS point cloud and a detailed view of Stone Pine trees.
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increased by that value. The value of m was set to 10 
(i.e. h10

min ¼ 10m) since it offered the best balance for 
the pixel- and object-based measures (Figure 10(c,d)).

The third sequence of thresholds, rk where k = 1, 2, 
···, K, is required during the generation of the prob
ability map of orientation symmetry (POS). We trigger 
the accumulation based on a radius value favored for 
the detection of young Stone Pine trees (i.e. r1 = 50  
cm), and break it with a radius defined according to 
the crown size of the frequently observed Stone Pine 
trees (i.e. rK = 6 m). Note also that a few numbers of 
trees with very large crown sizes reaching radii values 
around 10 m also exist in our study area. However, 

thanks to our accumulation process running in image 
space with an increment of 1 pixel (thus K = 57), we 
can successfully detect even such Stone Pine trees with 
an extremely wide radius without the requirement of 
increasing the value up to 10 m (Figure 10(e,f)); hence, 
assisting in the speeding up of processing.

The fourth sequence of thresholds, αs where s = 1, 2, 
···, S, is necessary to focus successfully on radially 
symmetric objects. We activate the strictness value at 
2 (i.e. α1 = 2) as lower strictness values (e.g. α ≤ 3) put 
more emphasis on non-symmetric objects along with 
the radial symmetric ones. We stop the aggregation 
with a strictness value of 5 (i.e. α1 = 5), with an 

Figure 9. (a) a sample HMLS point cloud; (b) Detection of ground points; (c) segmented objects; (d) the output of cylinder fitting 
process; (e) and (f) Cylinder fitted to a single stem using least squares.

Table 1. Parameter settings of the proposed methodology (the operators :½ � and :½ � rounds a floating number to the lowest 
preceding and the largest succeeding integer value, respectively).

Methodology Section Parameter Value

Enhancing Probability Map of Local Maxima h1
max – h8

max 10 cm−80 cm
h1

min – h10
min 1 m−10 m

Combining Orientation Symmetry with Enhanced Local Maxima r1 = 50cm=GSD½ � 5 pixels
rK= 6m=GSD½ � 61 pixels
α1 – α4 2–5
σ 5 pixels
c1

otsu – c10
otsu 2–11

Extraction of the Boundaries of Trees λ1 – λ2 1–1
ρ 0.1
υ −0.7
τiter 200
τdist= 40cm=GSD½ � 5 pixels
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increment amount of 1 (thus S = 4) (Figure 10(g,h)). 
The isotropic Gaussian kernel evenly smooths the 
accumulation in image space for each pixel by taking 
into account its neighboring pixels, for which we pre
fer a sigma value fixed to 5 pixels. The fifth and last set 

of sequence of thresholds, cq
otsuwhere q = 1, 2, ···, C, is 

utilized to automatically set the threshold τotsu. We set 
C to 10, indicating that all distinctive class numbers 
(i.e. 2, 3, ···, 11) are tested for the automatic selection of 
the τotsu threshold.

Figure 10. Pixel-Based (left column) and object-based (right column) performances of the proposed methodology.
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Default values (i.e. 1) were selected for both the 
weighting parameters (λ1 and λ2) of the active contour 
model when extracting tree boundaries. We also fol
low the same parameter values for the rest of the other 
parameters of the active contour as meticulously eval
uated in Ok and Ozdarici-Ok (2018a). We adjusted the 
smoothness parameter ρ to 0.1, aiming for less 
smoothing at the tree crown borders, and therefore 
allowed for the collection of finer crown details. We 
preferred a negative signed value for the bias variable 
(i.e. υ) since an expansion during the evolution of the 
contour is required. The maximum number of itera
tions (τiter) was fixed at 200, which was found to be the 
threshold at which the results stabilized. Lastly, we 
merge the stem regions that are very closely positioned 
(i.e. 40 cm) in object space (Figure 10(i,j)).

Figure 4 shows the total pixels in terms of row and 
column numbers in each test image, and Table 2 presents 
the elapsed time necessary for each section. The entire 
processing of four-test images took around 8 min to 
complete. The computing time of the proposed metho
dology is primarily influenced by two parameters. The 
first parameter is the total number of pixels in the input 
DSM, and the second parameter is the number of regions 
identified contributing to the final processing section.

6.2. Result and discussion

6.2.1. Automated extraction
The numerical and visual findings for the test images 
are summarized in Table 3 and Figure 11, respectively. 
The results of the proposed methodology on three test 
images (#2-#4) appear to be robust. The pixel-based 
recall ratios estimated for these test sites are ≈95%, 
with precision ratios ranging from 82.4% to 85.3%. For 
test site #1, the worst pixel-based and object-based 
results are computed. These findings are due to two 
particular reasons: (i) some of the small trees do not 
support enough orientation symmetry and are, there
fore, overlooked (marked as FN), and (ii) some of the 
correctly identified trees do not exist in the reference 
data since they are not labeled as Stone Pine trees 
(labeled as FP). It is worth noting that automated 
extraction yielded an 82% pixel-based F1-score ratio 
even with such erroneous cases.

The overall object-based precision ratio is computed 
to be greater than 99%, indicating that a small number 
of objects, mostly in test site #1, are incorrectly labeled 
as Stone Pine trees. This is mainly due to the Red Pine 
trees that also exist on the site. The overall object-based 
recall ratio is also successful (i.e. 96.3%), with the main 
issue being some of the tree’s small crowns, which cause 
inconsistencies in accumulation during the orientation 
symmetry. Nevertheless, the overall object-based F1- 
score ratio is computed to be 97.7%, considering the 
outcomes of all four test sites.

We must point out that the gradient orientation of 
a DSM that involves a coarse GSD will be less exact 
than the orientation component obtained from a DSM 
that involves a high GSD. Therefore, as long as the 
GSD of input DSM is comparable to the one utilized in 
this research, we believe our automated approach can 
be applied to any other geographical location consist
ing of Stone Pine trees. In this context, our approach 
requires users to set several parameters; however, an 
important fact is that we use a series of thresholds for 
a set of parameters (i.e. height thresholds (hi

max, hj
min), 

radius (rk), strictness (αs) and Otsu’s (cq
otsu)), which 

provides more versatility than fixing a parameter to 
a particular threshold. Our sensitivity analysis carried 
out for different parameters proves that the results of 
our approach do not significantly affect from most of 
the parameters. However, the steepness of the terrain 
could be an important issue, as our approach was only 
tested in scenarios with relatively flat terrain. For the 
enhanced version of the local maxima probability 
map, which requires additional investigation in steep 
terrain, it might be possible that unexpected results 
could occur, and further consideration for critical 
parameters might be required.

6.2.2. 2D positional accuracy
The numerical and visual findings of the automati
cally extracted stem locations in terms of 2D posi
tional accuracies for all test images are summarized 
in Table 4 and Figure 12, respectively. We pro
duced one-to-one mapping between the automati
cally extracted stem locations and the manually 
extracted ones after assessing the overlapping infor
mation of objects in both datasets before the calcu
lation of the Euclidean distances. It is important to 
note that this process is mandatory because the 

Table 2. The elapsed time of each section of the proposed 
methodology.

Process

Elapsed 
Time 

min: sec

Enhancing Probability Map of Local Maxima 00:08 
(≈2%)

Combining Orientation Symmetry with Enhanced Local 
Maxima

00:36 
(≈8%)

Extraction of the Boundaries and Stems of Trees 06:38 
(≈90%)

Entire Processing 07:22 
(100%)

Table 3. Pixel- and object-based performance of the proposed 
methodology.

Test Site

Pixel-Based Performance 
(%)

Object-Based Performance 
(%)

Precision Recall F1-score Precision Recall F1-score

#1 77.1 86.2 81.4 96.7 87.4 91.8
#2 85.3 94.7 89.8 99.6 98.2 98.9
#3 83.1 95.7 89.0 100 99.6 99.8
#4 82.4 95.5 88.5 100 97.5 98.7
Overall 83.1 94.2 88.3 99.3 96.3 97.7

12 A. OZDARICI-OK ET AL.



Figure 11. Visual outcomes of the proposed methodology (The results of the test sites #1-#4 are provided from top to bottom, 
respectively; the input DSM, the extracted regions for trees, and the visual output of the accuracy assessment are given from left to 
right, respectively).

Table 4. 2D positional accuracy of automatically extracted stem locations.
Test 
Site

# of Stems in 
Reference

# of Stems Automatically 
Detected

# of Stems Automatically Selected for 
Comparison

Min. 
(m)

Max. 
(m)

Median 
(m)

RMSE 
(m)

#1 199 129 121 0.06 5.77 0.51 1.11
#2 285 219 217 0.06 5.26 0.32 0.86
#3 283 253 248 0.08 0.99 0.30 0.37
#4 197 174 171 0.05 3.09 0.40 0.52
Overall 964 775 757 0.05 5.77 0.36 0.72
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automated approaches are always prone to under- 
or over-segmenting the trees. Therefore, the auto
mated one-to-one mapping procedure automati
cally mapped 757 stems out of 964 existing in the 
reference data. According to the numerical findings 
in Table 4, the overall RMSE computed is 0.72 m in 
object space with a worst-case of 1.11 m for test site 
#1. For each test site, we see a few stem locations 
with relatively large Euclidean distances compared 
to the reference set; however, the overall median 
distance computed is just 36 cm in object space 
(less than 4 pixels), proving the success and robust
ness of the proposed methodology. Based on the 
graphical representation of errors (each vector ori
ginates from the reference stem position and 
extends according to the stem position extracted) 
provided in Figure 12, we observe almost no sys
tematic 2D positional errors.

We observed in test site #2 that the positional errors 
of stems extracted for relatively small-sized trees are 
significantly less than those extracted for relatively tall 
and old trees (Figure 12). This is due to the reason that 
such tall trees may involve several peaks within their 
crown boundaries and may support multiple orienta
tion symmetry information; thus, the probability of 
the precise identification of the true positions of their 
stems is reduced.

As well issued in recent years, multiple factors 
impact the quality of UAV-based outputs, point 
clouds, DSMs, orthomosaics, and so on (Tmušić 
et al. 2020). Besides, additional vegetation-related 
factors, e.g. vegetation leaf-off and leaf-on seasonal 
variation, may also influence the output accuracies 
(Tomaštík et al. 2019). Standardized UAV mission 
design parameters (e.g. flying altitude, Ground 
Sampling Distance (GSD), forward/side overlaps, 

Table 5. Pixel-Based comparison of the previous approaches and the proposed methodology (the best and second-best 
performances across approaches are illustrated in green and orange colors, respectively).

Test Site

Pixel-based Performance (%)

Popescu and Wynne (2004) Swetnam and Falk (2014) Dalponte et al. (2015b) Proposed Methodology

Pre. Rec. F1-s Pre. Rec. F1-s Pre. Rec. F1-s Pre. Rec. F1-s

#1 75.8 88.7 81.8 51.4 91.3 65.8 84.0 71.6 77.3 77.1 86.2 81.4

#2 79.1 96.7 87.0 77.2 83.2 80.3 82.9 91.5 87.0 85.3 94.7 89.8

#3 79.1 96.9 87.1 82.4 88.9 85.5 82.8 91.6 87.0 83.1 95.7 89.0

#4 78.0 97.4 86.6 85.8 86.0 85.9 81.0 94.8 87.3 82.4 95.5 88.5

Overall 78.5 96.0 86.4 75.7 86.4 80.3 82.5 89.9 86.1 83.1 94.2 88.3

Figure 12. Graphical representation of the error vectors (note the scale of error vectors shown).
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and in-flight calibration of sensor parameters) can 
be promoted without an extra effort to collect high- 
quality datasets. Nevertheless, the need for fieldwork 
before UAV flight for ground control setup limits 
the potential benefits of timely and effective map
ping. Based on our findings, we feel that a GCP-free 
framework using GNSS PPK for positioning appears 
to be successful. Nonetheless, our 2D positional 

accuracy is comparatively lower than previously 
reported PPK-related forest studies (e.g. Tomaštík 
et al. 2019). However, note that our result is not 
a direct performance assessment of a PPK-related 
study but an evaluation of stem locations automati
cally extracted after an end-to-end unsupervised 
object extraction framework. Therefore, our 2D 
positional performance eventually accumulates all 

Table 6. Object-Based comparison of the previous approaches and the proposed methodology (the best and second-best 
performances across approaches are illustrated in green and orange colors, respectively).

Test Site

Object-based Performance (%)

Popescu and Wynne (2004) Swetnam and Falk (2014) Dalponte et al. (2015b) Proposed Methodology

Pre. Rec. F1-s Pre. Rec. F1-s Pre. Rec. F1-s Pre. Rec. F1-s

#1 79.4 88.9 83.9 90.1 86.4 88.2 93.9 69.8 80.1 96.7 87.4 91.8

#2 83.1 100 90.8 83.0 83.9 83.4 95.9 97.5 96.7 99.6 98.2 98.9

#3 84.7 91.7 91.7 91.9 88.0 89.9 98.9 97.9 98.4 100 99.6 99.8

#4 96.6 100 98.3 91.5 87.8 89.6 100 99.5 99.7 100 97.5 98.7

Overall 85.3 97.7 91.1 88.7 86.4 87.5 97.4 92.3 94.8 99.3 96.3 97.7

Figure 13. Comparison with the previous studies (The results of the test sites #1-#4 are provided from top to bottom, respectively; 
the visual outputs of the approaches in Popescu and Wynne (2004), Swetnam and Falk (2014), Dalponte et al. (2015b), and ours are 
given from left to right, respectively; green, red, and blue colors represent TP, FP, and FN pixels, respectively).
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sources of uncertainties involved during the end-to- 
end evaluation (i.e. UAV mission design, PPK qual
ity, point cloud, and DSM generation, unsupervised 
framework, and reference data quality).

6.2.3. Comparison with other approaches
We compare our results against three state-of-the-art 
techniques to better understand the quality of our 
findings (Tables 5 and 6). It is worth noting that we 
used nDSMs of the test regions to meet the input 
criteria of those previously developed approaches, 
and in this study, nDSMs were successfully generated 
by using the approach in Pingel, Clarke, and McBride 
(2013). Except for the technique employed by 
Dalponte et al. (2015b), where we resampled the 
GSD of the nDSM to 0.5 m to achieve representative 
outputs, the GSD of the input nDSMs was precisely 
the same as the DSM used for our approach. We found 
that the default values produced the best outcomes for 
all techniques, and as an input set by the methods, we 
set the maximum radius of a tree to 10 m and the 
minimum treetop height to 1 m above ground if 
needed.

The comparative results in Tables 5 and 6 demon
strate that the proposed methodology can provide 
superior or comparable results in almost all of the test 

sites for this area. Notably, our sensitivity analysis 
(Figure 10) for various parameters demonstrates that 
the results of our approach are not significantly affected 
by the majority of parameters; however, we must 
emphasize that this issue must also be validated for 
different regions. When compared to the findings of 
the state-of-the-art techniques, the proposed method 
achieves overall improvements of nearly 2% and 3% 
for the pixel- and object-based evaluations, respectively. 
Among the test sites, 3 out of 4 F1-scores computed are 
found to better the results of previous studies. The recall 
ratios computed using Popescu and Wynne (2004) 
appeared to be the best for almost all test sites; however, 
this was achieved by sacrificing precision ratios that 
eventually resulted in a relatively large number of FPs, 
both for pixel- and object-based manner (Figure 13).

We also compare our findings to three previous 
methods that rely on orientation symmetry information 
(Tables 7 and 8). The study by Ok and Ozdarici-Ok 
(2018a) developed exclusively the orientation symmetry 
information used to extract individual trees. In Ok and 
Ozdarici-Ok (2017), post-processing of binary local 
maxima information to filter the outputs of a DSM’s 
orientation-based radial symmetry was proposed. Later, 
the study by Ok and Ozdarici-Ok (2018b) combined 
orientation symmetry and local maxima in 

Table 7. Pixel-Based comparison of the previous approaches based on orientation symmetry and the proposed methodology (the 
best and second-best performances across approaches are illustrated in green and orange colors, respectively).

Test Site

Pixel-based Performance (%)

Ok and Ozdarici-Ok
Proposed Methodology

(2018a) (2017) (2018b)

Pre. Rec. F1-s Pre. Rec. F1-s Pre. Rec. F1-s Pre. Rec. F1-s

#1 72.1 81.1 76.3 73.4 82.7 77.7 72.7 87.8 79.6 77.1 86.2 81.4

#2 82.6 90.6 86.4 82.4 91.6 86.8 81.1 92.6 86.4 85.3 94.7 89.8

#3 79.8 92.6 85.7 79.3 94.6 86.3 79.7 94.4 86.4 83.1 95.7 89.0

#4 82.0 89.4 85.5 81.3 93.1 86.8 81.7 92.1 86.6 82.4 95.5 88.5

Overall 80.4 89.8 84.8 80.2 91.8 85.6 79.7 92.5 85.6 83.1 94.2 88.3

Table 8. Object-Based comparison of the previous approaches based on orientation symmetry and the proposed methodology 
(the best and second-best performances across approaches are illustrated in green and orange colors, respectively).

Test Site

Object-based Performance (%)

Ok and Ozdarici-Ok
Proposed Methodology

(2018a) (2017) (2018b)

Pre. Rec. F1-s Pre. Rec. F1-s Pre. Rec. F1-s Pre. Rec. F1-s

#1 67.1 77.9 72.1 70.4 79.9 74.8 62.1 88.9 73.1 96.7 87.4 91.8

#2 62.0 94.0 74.8 62.6 95.8 75.7 59.0 96.5 73.2 99.6 98.2 98.9

#3 86.8 97.2 91.7 87.4 98.2 92.5 81.5 97.9 88.9 100 99.6 99.8

#4 79.6 94.9 86.6 80.2 94.4 86.7 78.4 93.9 85.5 100 97.5 98.7

Overall 72.8 91.8 81.2 73.9 92.9 82.4 68.9 94.8 79.8 99.3 96.3 97.7
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a probabilistic framework. Note that, for all those 
approaches, we used the default parameter settings 
except for the radii parameters (r1 and rK), which we 
set based on the radii values given in Table 1. Because of 
the innovative integration of orientation symmetry with 
the enhanced local maxima, the proposed framework 
fully outperforms previous approaches based on orien
tation symmetry, as shown in Tables 7 and 8. These 
results also highlight the use of new probabilistic local 
minima information in improving the computation of 
orientation symmetry.

7. Conclusions

A new methodology for extracting Stone Pine trees 
from UAV DSMs is introduced. In the first stage of the 
methodology, an enhanced probability map of local 
maxima handling the newly proposed local minima 
information uniquely is presented. Following that, 
a new probability map aiding to improve the evidence 
of orientation symmetry is utilized during the extrac
tion of regions belonging to Stone Pine trees. In the 
final stage, the Chan-Vese active contour model, 
which processed each region independently, is used 
to recover the crown boundaries and stem locations of 
individual Stone Pine trees.

Four test sites with distinct planting and distinct 
characteristics are preferred for evaluating the pro
posed methodology, with overall pixel-based and 
object-based F1-scores of 88.3% and 97.7%, respec
tively. Additionally, our findings are compared to six 
previously developed tree extraction approaches, and 
the proposed methodology’s effectiveness is dis
cussed. Additionally, the accuracy of automatically 
derived stem locations is compared to solid reference 
data collected during fieldwork in terms of 2D posi
tional accuracies. Several stem locations with large 
Euclidean distances are observed during the analysis 
when compared to the reference data; however, the 
overall median distance is computed to be 36 cm in 
the object space (less than 4 pixels), demonstrating 
the proposed methodology’s effectiveness and 
robustness.

In the future, we plan to adopt RGB images into our 
framework to further improve the borders of individual 
trees. In this sense, it would be interesting to develop 
a multi-source strategy that is capable of working with 
images having radiometric inconsistencies due to poor 
visibility. In this respect, we intend to expand our 
research to include popular learning-based techniques 
(e.g. deep learning) if a sufficiently large number of 
training datasets for Stone Pine trees can be collected. 
Besides, we will evaluate the effectiveness of our newly 
proposed methods in other regions with rugged land
scapes, preferably in other parts of the Mediterranean 
region. The ultimate objective of this research is to 

create a realistic 3D representation of Stone Pine 
trees; therefore, we are also interested in working with 
innovative point-cloud processing techniques that 
operate with the output of HMLS systems.
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