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ABSTRACT
In this study, a new one-parameter discrete distribution obtained by
compounding the Poisson and xgamma distributions is proposed.
Some statistical properties of the new distribution are obtained
including moments and probability and moment generating func-
tions. Two methods are used for the estimation of the unknown
parameter: the maximum likelihood method and the method of
moments. Additionally, the count regression model and integer-
valued autoregressive process of the proposed distribution are intro-
duced. Some possible applications of the introduced models are
considered and discussed.
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1. Introduction

The Poisson distribution is the most common choice for modeling count data sets. The
weakness of the Poisson distribution is that it cannot model overdispersed data sets. When
the variance is higher than themean, overdispersion occurs. To provide alternative models
for overdispersed count data sets, some researchers have introduced mixed-Poisson distri-
butions such as Shoukri et al. [31], Shmueli et al. [30], Rodríguez-Avi et al. [24],Mahmoudi
and Zakerzadeh [21], Lord andGeedipally [19], Déniz [11], Cheng et al. [10], Sáez-Castillo
and Conde-Sánchez [25], Zamani et al. [34], Gencturk and Yigiter [13], Bhati et al. [7],
Imoto et al. [15], Wongrin and Bodhisuwan [33] and Altun [3,4] among others. In recent
years, some researchers have shown great interest in modeling of an integer-valued autore-
gressive process. Time series of counts come into view in some scientific fields such as
medical, sport and actuarial sciences. The monthly deaths from lung cancer, the monthly
number of insurance policy and a yearly number of injured sportsman can be given as
examples. McKenzie [22,23] and Al-Osh and Alzaid [1] introduced a stochastic model for
the integer-valued time series data sets, known as first-order non-negative integer-valued
autoregressive with Poisson innovations, shortly INARP(1). As widely documented, time
series of counts display overdispersion. In this case, Poisson distribution cannot be useful
any longer for INAR(1) process. Researchers have proposed different INAR(1) processes
with flexible innovation distributions to overcome the overdispersion problem. Someof the
important researches on overdispersed INAR(1) process can be cited as follows: INAR(1)
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process with geometric innovations by Jazi et al. [16], INAR(1) process with Poisson–Bilal
innovations by Altun [5], INAR(1) process with three-parameter discrete Lindley innova-
tions by Eliwa et al. [12], INAR(1) with Poisson–Lindley innovations by Lívio et al. [18],
INAR(1) process with Katz family innovations by Kim and Lee [17], INAR(1) process with
generalized Poisson and double Poisson innovations by Bourguignon et al. [9], INAR(1)
process with geometric marginals by Borges et al. [8] and INAR(1) process with Skellam
innovations by Andersson and Karlis [6]. Besides these important researches, Altun [4]
introduced a new two-parameter discrete distribution and investigated its performance in
INAR(1) process based on the binomial thinning.

We define a new discrete distribution to provide an opportunity in modeling the
overdispersed count data sets. For that purpose, a new mixed-Poisson distribution, called
Poisson–xgamma(PX) distribution is introduced. The important statistical properties of
the PX distribution are derived. The advantages of the proposed distribution are that
its probability mass and cumulative distribution functions have simple form and prob-
ability and moment generating functions have explicit expressions. The novelty of the
presented study can be summarized as follows: (i) a new one-parameter discrete dis-
tribution is introduced with its statistical properties in explicit forms; (ii) the proposed
distribution is applied as distribution of the innovations of the INAR(1) process to
model over-dispersed time series of counts; (iii) a new regression model for discrete
response variable is introduced as an alternative to the negative-binomial (NB) regression
model.

It is possible to obtain several mixed-Poisson distributions by compounding the Poisson
distribution with other distributions. However, it is a key point to use an appropriate dis-
tribution to introduce a flexible distribution in its shape and also a simple distribution in
its statistical properties. The reason for the use of xgamma distribution as a compounding
distribution of the Poisson is the simple form of the xgamma distribution which is impor-
tant to derive the statistical properties of the PX distribution and estimate the unknown
model parameter of the PX distribution. The new distribution has simple mathematical
forms for its probability mass function (pmf) and cumulative distribution function (cdf)
and can be used to model overdispersed count data sets which are widely seen in real-
life data modeling. The negative-binomial distribution is the first choice by researchers to
model the overdispersed count data sets because of its software support. However, when
the data sets exhibit larger skewness and kurtosis than theNB distribution couldmodel, we
need more flexible count distributions. The PX distribution exhibits better modeling abil-
ity than negative binomial distribution with less parameter and complexity. Additionally,
the computational codes of the developed models are available in Section 5 to reproduce
the results given in this study and make the proposed models accessible and applicable by
the researchers and practitioners studying in this field.

The rest of the paper is organized as follows. In Section 2, a new one-parameter dis-
crete distribution is introduced and some of its statistical properties are investigated. In
Section 3, we estimate the model parameter via maximum likelihood and method of
moments. In Section 4, the finite sample performances of the maximum likelihood and
method of moments estimation methods are compared for the PX distribution via a simu-
lation study. Section 5 deals with a regressionmodel and three real data sets are analyzed in
Section 5 to prove empirically the usefulness of the proposedmodels against some existing
models. Section 6 offers some concluding remarks.
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2. The Poisson–xgamma distribution

We now introduce a new discrete distribution by compounding the Poisson and xgamma
distributions. Let the random variable X follows the well-known Poisson distribution with
a mean parameter λ > 0. The probability mass function (pmf) of X is

P (x; λ) = λxe−λ

x!
, x = 0, 1, 2, . . .

The mean and variance of the Poisson distribution are E(X) = λ and Var(X) = λ, respec-
tively. So, its dispersion index is DI(X) = Var(X)/E(X) = 1. So, the Poisson distribution
does not provide any opportunity to model the overdispersion, especially observed in real-
life data sets. The xgamma distribution was introduced by Sen et al. [28] following the
idea of the Lindley distribution. The probability density function (pdf) of the xgamma
distribution takes the form

f (x; θ) = θ2

1 + θ

(
1 + θ

2
x2
)
e−θx, x > 0, (1)

where θ > 0 is the shape parameter. As seen from (1), the xgammadistribution is amixture
of two distributions: the exponential distribution with the parameter θ and the gamma
distribution Gamma(3, θ). Its cumulative distribution function (cdf) is

F (x) = 1 − 1 + θ + θx + θ2x2
2

θ + 1
e−θx, x ≥ 0.

Now, we introduce the PX distribution by compounding the Poisson with xgamma
distribution.

Proposition 1: Let a random variable X (for given λ > 0) have the Poisson distribution
with parameter λ. We assume that the parameter λ is a random variable having the xgamma
distribution with parameter θ > 0. Then, the unconditional distribution of X has the form

P (X = x; θ) = θ2[2(1 + θ)2 + θ (x + 2) (x + 1)]
2(1 + θ)x+4 , x = 0, 1, 2, . . . , (2)

Proof: The random variable X has the Poisson distribution for a given fixed parameter λ.
On the other hand, if the parameter λ follows the xgamma distribution with parameter
θ > 0, the unconditional probability of the random variable X is given by

P(X = x; θ) =
∫ ∞

0
P(X = x|λ)f (λ; θ)dλ

= θ2

x!(1 + θ)

∫ ∞

0

(
λx + θ

2
λx+2

)
e−λ(1+θ)dλ

= θ2[2(1 + θ)2 + θ (x + 2) (x + 1)]
2(1 + θ)x+4 . �
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Henceforth, we assume that the random variable X with pmf (2) has the Pois-
son–xgamma (PX for short) distribution with parameter θ > 0, say X ∼ PX(θ). The cdf
of X is

F(x; θ) = P (X ≤ x) = 1 − x2θ2 + 5xθ2 + 2xθ + 2θ3 + 10θ2 + 8θ + 2
2(θ + 1)x+4 .

The pmf of the PX distribution has interesting shapes which are given by the following
theorem.

Proposition 2: The pmf of the PX distribution with parameter θ > 0 has the following
shapes:

(i) If 4 − 4θ − 15θ2 − 8θ3 < 0, then the pmf is a decreasing function for all x ≥ 0;
(ii) If 4 − 4θ − 15θ2 − 8θ3 > 0 and 1 − 3θ − θ2 < 0, then the pmf decreases for x < x1

or x > x2 and increases for x1 < x < x2. This means that a random variable X has two
modes at 0 and integer number close to x2 and the minimum at integer number close to
x1;

(iii) If 4 − 4θ − 15θ2 − 8θ3 > 0 and 1 − 3θ − θ2 > 0, then the pmf is a unimodal func-
tion with the mode at integer close to x2. The numbers x1 < x2 are the solutions of the
equation

−θx2 + (2 − 3θ)x + 2(1 − 3θ − θ2) = 0.

Proof: For deriving the shapes of the pmf, we consider

P(X = x + 1; θ)
P(X = x; θ)

− 1 = θ[−θx2 + (2 − 3θ)x + 2(1 − 3θ − θ2)]
(1 + θ)[2(1 + θ)2 + θ(x + 2)(x + 1)]

.

So, the behavior depends on the sign of the function ψ(x) = −θx2 + (2 − 3θ)x + 2(1 −
3θ − θ2). If 4 − 4θ − 15θ2 − 8θ3 < 0, then equationψ(x) = 0 does not have real roots, so
we obtain that it is negative for all values x ≥ 0. This implies thatP(X = x + 1; θ) < P(X =
x; θ), which means that the pmf is a decreasing function for all x ≥ 0. If 4 − 4θ − 15θ2 −
8θ3 > 0, then equationψ(x) = 0 has two roots, say x1 < x2. Now, if 1 − 3θ − θ2 < 0, then
both roots x1 and x2 are positive. Thus we obtain that P(X = x + 1; θ) < P(X = x; θ) for
x < x1 or x > x2, and that P(X = x + 1; θ) > P(X = x; θ) for x1 < x < x2. In the third
case, we have that only one root x2 is positive which implies that the pmf is a unimodal
function. �

Remark 1: From the previous proposition, we obtain that the pmf is a decreasing function
for θ > 0.3733, a unimodal function for θ ∈ (0, 0.3027), and a decreasing-increasing-
decreasing function for θ ∈ (0.3027, 0.3733).

Some possible shapes of the PX distribution are displayed in Figure 1, which indi-
cate that this distribution can be a good choice for modeling extremely right skewed and
symmetric data sets.
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Figure 1. The pmf plots of the PX distribution.

Proposition 3: Let a random variable X follows the PX distribution with parameter θ > 0.
Then, the probability generating function (pgf) of X is

G(s; θ) = θ2(1 + θ)−1
[

1
1 + θ − s

+ θ

(1 + θ − s)3

]
. (3)

Proof: First, note that the xgammadistribution has themoment generating function (mgf)
given by �(t) ≡ E(etX) = θ2[θ+(θ−t)2]

(1+θ)(θ−t)3 . Since a random variable X for given λ has the
Poisson distribution with this parameter, the probability generating function of X reads as

G(s; θ) = E[E(sX|λ)] = E(eλ(s−1)) = �(s − 1)

= θ2(1 + θ)−1
[

1
1 + θ − s

+ θ

(1 + θ − s)3

]
.

�
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Remark 2: Based on the previous proposition, we obtain an interesting conclusion. The
pgf (3) can be rewritten as

G(s; θ) = θ

1 + θ

θ

1 + θ − s
+ 1

1 + θ

(
θ

1 + θ − s

)3
.

This means that the PX distribution can be represented as a mixture of the geometric
distribution with mean 1/θ and the negative binomial distribution with mean 3/θ and
variance 3(1 + θ)/θ2. We will use later this remark to simulate observations from the PX
distribution.

The mgf of X follows from the previous proposition by setting s = et

M(t; θ) = θ2(1 + θ)−1

[
1

1 + θ − et
+ θ(

1 + θ − et
)3
]
. (4)

Now, we consider the hazard failure rate (hrf) r(x) of X defined as r(x) = P(X=x;θ)
1−F(x) . The

following proposition gives the expression of the hrf for the PX distribution.

Proposition 4: If a random variable X has the PX distribution with a parameter θ > 0, then
its hrf is given by

r(x; θ) = 2θ2(1 + θ)2 + θ3(x + 2)(x + 1)
θ2x2 + (5θ2 + 2θ)x + 2θ3 + 10θ2 + 8θ + 2

, x = 0, 1, 2, . . .

It is an increasing function for θ ∈
(
0, 1+

√
5

2

)
and a decreasing-increasing function for θ >

1+√
5

2 . For both cases, r(x) → θ when x → ∞.

Proof: The expression for the hrf r(x) just follows from its definition. Let us consider
now its behavior. In this sense, we derive r(x + 1)− r(x) = N(x)/D(x), where N(x) =
2θ3(1 + θ)[θx2 + (5θ + 2)x − 2θ2 + 2θ + 2] and D(x) = [θ2x2 + (5θ2 + 2θ)x + 2θ3 +
10θ2 + 8θ + 2][θ2x2 + (7θ2 + 2θ)x + 2θ3 + 16θ2 + 10θ + 2].

Thus the behavior depends on the nature of the function h(x) = θx2 + (5θ + 2)x −
2θ2 + 2θ + 2. If θ < 1+√

5
2 , then the function h has two negative roots, which means that

it is positive for all x ≥ 0. Thus, r(x + 1) > r(x) for all x ≥ 0, so the hazard rate failure
function increases for non-negative integers. If θ > 1+√

5
2 , then the function h has only

one positive root x1 = −5θ−2+√
8θ3+17θ2+12θ+4

2θ . It is negative for 0 ≤ x < x1 and positive
for x > x1, which implies that the function r is decreasing for 0 ≤ x < x1 and increasing
for x > x1. �

Remark 3: The previous proposition provides the identifiability of the PX distribution
with respect to its parameter θ . In fact, if we assume that P(X = x; θ1) = P(X = x; θ2) for
all x ≥ 0 and θ1 
= θ2, we obtain that the hrfs r(x; θ1) and r(x; θ2) are equal. Letting that
x → ∞ in both hrfs, we obtain that θ1 and θ2 are equal, which is not possible. Then, the
PX distribution is identifiable with respect to its parameter θ .
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Proposition 5: Let a random variable X follows the PX distribution with parameter θ > 0.
Then, the factorial moments of X are

μ[r] = [(r + 2)(r + 1)+ 2θ]r!
2 (1 + θ) θ r

.

Proof: The proof just follows from the fact that the PX distribution is a mixture of the
geometric and negative binomial distributions and their corresponding pgfs. �

Using the above result, the first four non-central moments of X can be expressed as

E (X) = θ + 3
θ (θ + 1)

, E
(
X2) = θ2 + 5θ + 12

θ2 (θ + 1)
,

E
(
X3) = θ3 + 9θ2 + 42θ + 60

θ3 (θ + 1)
, E

(
X4) = (θ + 6)

(
θ3 + 11θ2 + 54θ + 60

)
θ4 (θ + 1.0)

.

Then, the variance of X is

Var (X) = θ3 + 5θ2 + 11θ + 3
θ2(1 + θ)2

and the dispersion index follows as

DI(X) = 1 + θ2 + 8θ + 3
θ(1 + θ)(3 + θ)

. (5)

Equation (5) is always greater than 1 since θ > 0. So, the PX distribution can be consid-
ered to model overdispersed count data sets. Using the non-central moments of the PX
distribution, the skewness and kurtosis of X are obtained and given as follows:

S = θ5 + 8θ4 + 36θ3 + 66θ2 + 27θ + 6√
(θ3 + 5θ2 + 11θ + 3)3

,

K = θ7 + 16θ6 + 124θ5 + 489θ4 + 881θ3 + 714θ2 + 306θ + 45
(θ3 + 5θ2 + 11θ + 3)2

,

Figure 2 provides the plots of the mean, variance, skewness and kurtosis of the PX dis-
tribution. We note that the mean and variance decrease and the skewness and kurtosis
increase when the parameter θ increases.

Further, we obtain an approximation for the density of the sample average
X = ∑n

i=1 Xi/n of n independent and identically distributed (iid) random variables
X1, . . . ,Xn having pmf (1) (see Tahir et al., [32]). We adopt the notation K(j)(t; θ) =
∂ j log[M(t; θ)/∂tj] (for j ≥ 0) for the derivatives of the cumulant generating function (cgf)
determined from (4). Clearly, K(t; θ) = K(0)(t; θ) is the cgf of X.

The density function of X can be written using the Fourier inversion integral as

fX(x; θ , τ) = 1
2π

∫ π

−π
exp

[
− i t x + nK(i t/n; θ)

]
,

where i = √−1. This equation is suitable for Daniels’ saddle-point approximation. Setting
z = it/n, the saddle-point of K(z; θ)− z x is K ′(ẑ; θ) = x, which has an explicit solution
for ẑ = ẑ(x) easily found inMathematica orMaple.



1942 E. ALTUN ET AL.

Figure 2. The plots of the statistical measures of the PX distribution.

Then, the approximate density of X has the form

fX(x; θ) �
[

n
2π K(2)(ẑ; θ)

]1/2
exp

{
n
[
K(ẑ; θ)− ẑ x

]}
.

The approximation for fXn
(x; θ) provides a good approximation in practice.

It is much more frequent in statistical applications to compute probabilities associated
to X. By integrating the last equation, we can write the cdf of X as

FX(x; θ) �
∫ x

0

[
n

2π K(2)(w; θ)

]1/2
exp

{
n
[
K(w; θ)− t w

]}
dw,

where t = t(w) is determined such that K ′(t; θ) = w.
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By transforming variables K(2)(t; θ) dt = dw in order to integrating with respect to the
saddle-point variable t instead of w, we obtain

FX(x; θ) �
∫ t(x)

0

[
nK(2)(t; θ)

2π

]1/2
exp

{
n
[
K(t; θ)− t K ′(t; θ)

]}
dt,

where t = t(x) is found by solving K ′(t; θ) = x. This integral for FX(x; θ) is much easier
to compute than the previous one since it includes explicitly the saddle-point function in
the integrand. Based on this integral, Lugannani and Rice [20] derived the saddle-point
approximation for the cdf of X as

FX(x; θ) � � [r(x)] + φ [r(x)]
[

1
r(x)

− 1
u(x)

]
, (6)

where�(·) and φ(·) are the cdf and pdf of the standard normal distribution,

r(x) = sgn[t(x)] {2n [x t(x)− KX(t(x); θ)]}1/2

and

u(x) = t(x) [nK(2)(t(x); θ)]1/2 .

Equation (6) provides highly accurate results for the probabilities associated with the
sample average of iid PX random variables.

2.1. Comparison of Poisson–xgamma and Poisson–Lindley distributions

The Poisson–Lindley (PL) distribution, proposed by Sankaran [26], is the well-known one-
parameter mixed-Poisson distribution. Here, PX and PL distributions are compared with
respect to the values of skewness, kurtosis and dispersion index. The required formula for
the skewness, kurtosis and dispersion index values of the PL distribution can be found in
Ghitany and Al-Mutairi [14].

Figure 3 displays the skewness, kurtosis and dispersion index values of the PX and PL
distributions. It is clear that the both of the distributions have similar behaviors in terms of
these quantities. However, the PX distribution has wider range of skewness, kurtosis and
dispersion index than those of PL distribution.When the underlying data set displays high
overdispersion, say DI>3.5, the PX distribution could be more appropriate distribution
than the PL distribution.

3. Estimation

In this section, we consider the estimation of the unknown parameter θ by two methods:
the maximum likelihood (ML) method and the method of moments (MM).
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Figure 3. The comparison of the skewness, kurtosis and dispersion index of the PX and PL distributions.

3.1. Maximum likelihood estimation

Let X1 . . . ,Xn be a random sample from the PX distribution with parameter θ . The log-
likelihood function for θ can be expressed as

l(θ) = 2n log θ +
n∑

i=1
log[2(1 + θ)2 + θ(Xi + 2)(Xi + 1)]

− n log 2 − log(1 + θ)

(
4n +

n∑
i=1

Xi

)
. (7)

By differentiating (7) with respect to θ gives

∂ l(θ)
∂θ

= 2n
θ

+
n∑

i=1

4(1 + θ)+ (Xi + 2)(Xi + 1)
2(1 + θ)2 + θ(Xi + 2)(Xi + 1)

− 4n +∑n
i=1 Xi

1 + θ
. (8)

The ML estimate of θ , say θ̂ML, is the solution of the equation ∂ l
∂θ

= 0. This equation con-
tains a non-linear function, and because of that theME estimate does not have closed form.
Therefore, this equation requires to be solved using numerical methods in platforms such
as R, MATLAB or others.

A question that arises here is that ML estimate exists at all. The answer on this question
is positive and it can be obtained as follows. First, note that (8) can be rewritten as

∂ l(θ)
∂θ

= 3n
θ

+ 2(θ2 − 1)
θ

n∑
i=1

1
2(1 + θ)2 + θ(Xi + 2)(Xi + 1)

− 4n +∑n
i=1 Xi

1 + θ
.

Based on the fact that θ2 − 1 < (1 + θ)2 and 2(1 + θ)2[2(1 + θ)2 + θ(Xi + 2)(Xi +
1)]−1 < 1, we have

∂ l(θ)
∂θ

<
4n − θ

∑n
i=1 Xn

θ(1 + θ)
.

Thus ∂ l
∂θ
< 0 when θ > 4

Xn
and since limθ→0

∂ l
∂θ

= ∞, it follows that there is at least one

ML estimate belonging to the interval (0, 4X−1
n ). The ML estimator of θ , θ̂ , is consistent
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and asymptotically normal with
√
n(θ̂MLE − θ) → N(0,I (θ)−1) where I (θ) is

I (θ) = E
(

− ∂2

∂θ2
ln f (x; θ)

)
.

So the variance estimator of θ̂ can be obtained as Var(θ̂ ) ≈ I(θ̂ )−1 where I(θ̂) =
−
(
∂2

∂θ2

)∣∣∣
θ=θ̂

. The second partial derivative of (7) is

∂2


∂θ2
= −2n

θ2
+ 4n +∑n

i=1 Xi

(θ + 1)2
−

n∑
i=1

(
4θ + X2

i + 3Xi + 6
)2(

2(1 + θ)2 + θ (Xi + 2) (Xi + 1)
)2

+
n∑
i=1

4
2(1 + θ)2 + θ (Xi + 2) (Xi + 1)

.

The asymptotic 100(1 − p)% confidence intervals (CIs) for the parameter θ is

θ̂ ± zp/2I
(
θ̂
)−1/2

where zp/2 is the upper p/2 quantile of the standard normal distribution.

3.2. Method ofmoments

The second method for estimating the parameter θ is the MM. In this case, the estimate of
θ can be obtained from

Xn = θ + 3
θ (θ + 1)

. (9)

Solving (9) with respect to θ , we find

θ̂MM =
√
X2
n + 10Xn + 1 − Xn + 1

2Xn
, Xn 
= 0.

The following theorem shows the behavior of θ̂MM .

Theorem 1: The estimator θ̂MM is positively biased.

Proof: To prove this property, we will follow technique used in Ghitany and Al-
Mutairi [14]. We define the function g(t) = (

√
t2 + 10t + 1 − t + 1)/(2t) for t>0. First,

we have θ̂MM = g(Xn) and g((θ + 3)/(θ(θ + 1))) = θ . Since

g′′(t) = 5t3 + 39t2 + 15t +
√
(t2 + 10t + 1)3

t3
√
(t2 + 10t + 1)3

> 0,

the function g(t) is strictly convex. Using the Jensen’s inequality E(g(Xn)) > g(E(Xn)) and
the above results, we obtain that E(θ̂MM) > θ . �
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4. Simulation studies

Simulation studies are important tools to explore the differences between the several meth-
ods based on the pre-determined settings. Here, two simulation studies are presented. First
one is to see the asymptotic efficiencies of the estimatedmethods, presented in Section 3. In
the second simulation, we compare the Poisson, NB and PX distributions under different
scenarios to explore the differences between these distributions.

4.1. Comparison ofMLE andMMmethods

This section deals with the finite sample performances of ML and MM estimators of
the parameter θ of PX distribution. First, we describe how to generate the random vari-
ables from PX(θ). Since the xgamma distribution is the special mixture of exponential
and gamma distributions, the below algorithm is used to generate random variables from
PX(θ).

Algorithm 1
(1) Set the parameter θ
(2) Generate ui from U (0, 1) distribution
(3) If Ui ≤ θ

θ+1 generate λi ∼ Exp (θ), otherwise, generate λi ∼ Gamma (3, θ)
(4) Generate Yi ∼ Poisson (λi)
(5) Repeat steps 2, 3 and 4 n times

The simulation results are obtained by R software. The simulation study is carried out
with N = 10, 000 replications for θ = (0.35, 0.50, 2) and n = (20, 50, 100, 200, 500). The
following measures are calculated to assess the simulation results:

Bias =
N∑
j=1

θ̂j − θ

N
, MRE =

N∑
j=1

θ̂j

/
θ

N
and MSE =

N∑
j=1

(
θ̂j − θ

)2
N

.

The simulation results are reported in Table 1. We expect to see that estimated biases and
MSEs should be near the zero for sufficiently high sample sizes. Also, the estimated MREs
should be near the one.When we analyze the results in Table 1, it is seen that the estimated
biases and MSEs approach the zero when the sample size increases for the MLE method.
The estimated MREs are also near the intended value, one. These results confirm the con-
sistency property of the MLE method. The similar results are also obtained for the MM
method. Therefore, we could conclude that MM and ML estimators are equally efficient.
The MM and MLE methods work well for estimating the parameter θ .

4.2. Comparison of Poisson, NB and PXmodels

In this section, we compare the Poisson, NB and PX models via simulation study. We
generate the random variables from the contaminated process, given as αPoisson(θ)+
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Table 1. Estimated biases, MSEs and MREs of θ based on the MLE and MM estimation methods.

Bias MSE MRE

Parameters Sample size MLE MM MLE MM MLE MM

θ = 0.35 20 1.0119 0.9642 0.3927 0.3909 1.0289 1.0276
50 0.4261 0.4144 0.1429 0.1438 1.0122 1.0118
100 0.2010 0.1912 0.0656 0.0657 1.0057 1.0055
200 0.1257 0.1208 0.0344 0.0345 1.0036 1.0035
500 0.1063 0.1049 0.0126 0.0128 1.0030 1.0030

θ = 0.50 20 1.4769 1.4365 0.8816 0.8824 1.0295 1.0287
50 0.4986 0.4781 0.3077 0.3065 1.0100 1.0096
100 0.1668 0.1599 0.1580 0.1580 1.0033 1.0032
200 0.1779 0.1765 0.0696 0.0697 1.0036 1.0035
500 0.0773 0.0761 0.0291 0.0291 1.0015 1.0015

θ = 2 20 12.2859 12.5570 41.3636 41.5663 1.0614 1.0628
50 5.6770 5.8009 12.9938 13.0658 1.0284 1.0290
100 4.3709 4.3996 6.3636 6.3806 1.0219 1.0220
200 1.7794 1.8451 2.7720 2.7842 1.0089 1.0092
500 0.0938 0.1110 1.0109 1.0107 1.0005 1.0006

* The results of the biases and MSEs are multiplied by 100.

(1 − α)NB(r, p) where α ∈ (0, 1). Two scenarios are studied. These are given below.

Scenario I → 0.90 Poisson (0.5)+ (1 − 0.90)NB (2, 0.5)

Scenario II → 0.80 Poisson (2)+ (1 − 0.80)NB (0.5, 0.5)

The contaminated process is used to generate overdispersion in the generated data. For
reach generated data, we calculate the rootmean square errors (RMSEs) andmean absolute
errors (MAEs). The formulate for the RMSEs and MAE are given, respectively, by

RMSE =
√√√√ n∑

i=1

(
ŷi − yi

)2
n

MAE =
∑n

i=1
∣∣ŷi − yi

∣∣
n

where ŷi and yi are the fitted and observed frequencies, respectively. The simulation repli-
cation is determined as N = 10, 000. The used sample sizes are n = 30, 50, 100 and 500.
Themeans of the RMSEs andMAEs for each fitted distributions are reported in Table 2. As
expected, when the sample size increases, the estimated RMSEs andMAEs decrease for all
distributions. However, the PX distribution has the lowest values of the RMSEs andMAEs
for both scenarios and all sample sizes. Therefore, we conclude that the PX distribution
provides better results than the Poisson and NB distributions under the used simulation
scenario.

5. PX regressionmodel

It is well known fact that the Poisson and negative binomial regression models are the
common choices for modeling the discrete dependent variable with covariates. Here, an
alternativemodel to these count regressionmodels is introduced based on the PX distribu-
tion. Considering the re-parametrization θ = (2μ)−1(

√
μ2 + 10μ+ 1 − μ+ 1), the PX
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Table 2. Simulation results of the Poisson, NB and PX models.

Scenario I Scenario II

Metrics Models n = 30 n = 50 n = 100 n = 500 n = 30 n = 50 n = 100 n = 500

RMSE Poisson 4.9784 4.0784 3.3573 2.5686 5.3242 4.5289 3.8425 3.0295
MAE 4.3115 3.3607 2.6413 1.7857 4.4925 3.6610 2.9881 2.0987
RMSE NB 2.8591 2.0254 1.5437 0.8975 2.9244 2.2828 1.7378 0.9854
MAE 1.8481 1.4421 1.1301 0.5704 2.1146 1.7110 1.2802 0.6342
RMSE PX 2.6828 2.0028 1.4849 0.7866 2.8558 2.2642 1.6732 0.8576
MAE 1.8159 1.4193 1.0855 0.4827 2.0474 1.6635 1.2348 0.5409

The results are multiplied by 100.

density can be expressed in terms of the mean E(Y) = μ > 0 as

P
(
Y = y;μ

) =

⎡⎢⎢⎢⎣
2
{
(2μ)−1

(√
μ2 + 10μ+ 1 − μ+ 1

)}2(
1 + (2μ)−1

(√
μ2 + 10μ+ 1 − μ+ 1

))2
+(2μ)−1

(√
μ2 + 10μ+ 1 − μ+ 1

) (
y + 2

) (
y + 1

)
⎤⎥⎥⎥⎦

×
[
2
(
1 + (2μ)−1

(√
μ2 + 10μ+ 1 − μ+ 1

))y+4
]−1

, y = 0, 1, . . . .

(10)

The explanatory variables are related to the ith mean by the log-link function, namely

μi = E(Yi) = exp
(
xxxTi βββ

)
, i = 1, . . . , n, (11)

where xxxTi = (xi1, . . . , xik) is the vector of explanatory variables and βββ = (β0,β1, . . . ,βk)T

is the unknown vector of regression coefficients. The log-likelihood function expressed in
terms of the means of the observations takes the form


 (βββ) =
n∑

i=1
log

⎡⎢⎢⎢⎢⎢⎢⎢⎣
2
{
(2μi)

−1
(√

μ2
i + 10μi + 1 − μi + 1

)}2
×
(
1 +

{
(2μi)

−1
(√

μ2
i + 10μi + 1 − μi + 1

)})2

+
{
(2μ)−1

(√
μ2
i + 10μi + 1 − μi + 1

)}3 (
yi + 2

) (
yi + 1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
n∑

i=1

(
yi + 4

)
log
[
2
(
1 +

{
(2μi)

−1
(√

μ2
i + 10μi + 1 − μi + 1

)})]
, (12)

where μi is a function of βββ thorough (11). The unknown parameter vector, βββ , can be
determined by maximizing (12) with the nlm function of the R software. The asymptotic
distribution of (β̂ββ − βββ) is multivariate normal with zero mean and variance–covariance
matrix, K(βββ)−1. Here, K(βββ) is Fisher information matrix. It is possible to replace the
Fisher information with observed information matrix whose elements can be numerically
calculated by using the hessian function of the R software. The inverse of the observed
information matrix is used to obtain the asymptotic standard errors of β̂ββ .
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Table 3. MLEs, observed and fitted values and χ2 values.

Expected frequencies

The number of
chromatid
aberrations

Observed
frequencies Poisson PL NB GPL PX

0 268 231.36 257.02 270.34 269.24 259.42
1 87 126.67 93.39 78.53 78.70 90.36
2 26 34.67 32.76 29.79 30.86 32.49
3 9 6.33 11.21 12.18 12.55 11.61
4 4 0.87 3.77 5.16 5.13 4.06
5 2 0.09 1.25 2.23 2.09 1.38
6 1 0.01 0.41 0.98 0.85 0.46
7 3 0.00 0.13 0.43 0.35 0.15
Total 400 400 400 400 400 400

Estimates
λ 0.547 (0.109) – – 1.576 (0.259) –
θ – 2.379 (0.169) – 0.473 (0.159) 2.803 (0.188)
r – – 0.619 (0.126) – –
p – – 0.531 (0.056) – –

χ2 39.146 6.283 2.410 2.940 4.862
df 2 3 2 2 3
p-value < 0.001 0.098 0.299 0.229 0.182

̂ −439.514 −399.857 −403.455 −400.553 −398.041
AIC 881.027 801.714 810.910 805.106 798.081
BIC 881.629 802.316 812.114 813.089 798.683

6. Some illustrative examples

Three real data sets are analyzed to prove empirically the usefulness of the proposedmodels
defined under the PX distribution. The developed computational codes are accessible in
https://github.com/emrahaltun/PX-paper-computational-codes.

6.1. Chromatid aberrations

We consider the data set from Shanker and Fesshaye [29] related to the number of chro-
matid aberrations (0.2 g chinon 1, 24 hours). Shanker and Fesshaye [29] used the Poisson
and PL distributions to model the data set. Since the data set displays overdispersion, we
believe that the PX distribution could be more appropriate choice than the PL distribu-
tion. We compare the performance of the PX distribution on this data set with Poisson,
PL, generalized Poisson–Lindley (GPL) and NB distributions. The MLEs and their stan-
dard errors (SEs), maximized 
̂, χ2 test and corresponding p-values, Akaike Information
Criteria (AIC) and Bayesian Information Criteria (BIC) are reported in Table 3 for the fit-
ted distributions. The computational results are obtained using the R software. The lower
values of these criteria indicate the better fitted model to the data.

Table 3 lists the estimated parameters of the fitted distributions andmodel selection cri-
teria such as AIC, BIC, estimated χ2 value and its p-value. The standard errors (SEs) of
the estimated parameters are given in parentheses. To calculate the χ2 value, the expected
frequencies less than 5 are merged for both observed and expected frequencies. The χ2

test statistic and corresponding p-value indicate that the PX, PL, GPL and NB distribu-
tions provide adequate fit to the current data, except the Poisson distribution. However,

https://github.com/emrahaltun/PX-paper-computational-codes
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Figure 4. The estimated pmfs of the fitted distributions.

Figure 5. The estimated cdfs and PP plots of the fitted distributions.

the PX distribution has the lowest values of the AIC and BIC statistics. Therefore, the PX
distribution provides better fits than Poisson, PL, GPL and NB distributions to these data.

Figures 4 and 5 display the estimated pmfs, cdfs and probability–probability (PP) plots
of the fitted distributions. As seen from these figures, the Poisson distribution has under-
estimation problem for the zeros in the current data. The representation of the probability
of zeros is inadequate in the Poisson distribution. However, the probability of zeros is
sufficiently represented in the NB, PL, GPL and PX distributions.

6.2. Length of hospital stay

In this section, we compare the PX regressionmodel with the Poisson, PL, NB and Poisson-
transmuted exponential (PTE), introduced by Bhati et al. [7], regression models by means
of the AZPRO data. The detail information on the PL regression can be found in Altun [2].
The data set is given in the COUNT package of the R software. The data come from the
1991Arizona cardiovascular patient files. Besides, Altun [5] used the same data to compare
the different count data models. The length of the hospital stay of patients yi is modeled
by the following covariates: cardiovascular procedure (x1i)(1 = CABG, 0 = PTCA), sex
(x2i)(1 = male, 0 = female), type of admission (x3i)(1 = urgent, 0 = elective) and age
x4i(1 = age > 75, 0 = age ≤ 75). The systematic components of the regression models is
defined by

μi = exp (β0 + β1x1i + β2x2i + β3x3i + β4x4i) .
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Figure 6. The distribution of length of stay of patients.

Figure 6 displays the distribution of the length of stay data. The mean and variance of
the response variable are 8.831 and 47.973, respectively, which provides a clear evidence
for overdispersion.

The models are compared based on the minimized negative log-likelihoods, AIC and
BIC values. The obtained results such as parameter estimates and information criteria are
given in Table 4. These results show that the PX regression model is the best choice for the
current data since its AIC and BIC are lower than other models. So, we conclude that PX
model provides reasonable results in case of overdispersion.

Using the parameter estimates of the PX model, we obtain the following results. The
lengths of stay increase when the individuals receive CABG procedure, have urgency
admission, and are older than 75. The average length of stay in hospital is longer for women
than for man patients.

6.3. Weekly number of syphilis cases

The proposed distribution can be very helpful for modeling the integer-valued time series
data. We consider the PX distribution for the distribution of the innovations of a classical
integer-valued autoregressive model of the first order (INAR(1)) given by

Xt = α ◦ Xt−1 + εt , t ∈ Z,
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Table 4. The results of fitted count regression models.

Poisson NB PL PTE PX

Covariates Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value

β0 1.4558 < 0.001 1.0780 < 0.001 1.4122 < 0.001 1.4778 < 0.001 1.3996 < 0.001
(0.0158) (0.0298) (0.0372) (0.0441) (0.0349)

β1 −0.9606 < 0.001 1.0866 < 0.001 0.9844 < 0.001 0.9363 < 0.001 0.9721 < 0.001
(0.0122) (0.0243) (0.0291) (0.0356) (0.0270)

β2 −0.1240 < 0.001 0.0724 0.003 −0.1265 < 0.001 −0.2150 < 0.001 −0.1269 < 0.001
(0.0118) (0.0249) (0.0304) (0.0368) (0.0280)

β3 0.3266 < 0.001 0.5319 < 0.001 0.1193 < 0.001 0.0568 0.156 0.1201 < 0.001
(0.0121) (0.0249) (0.0323) (0.0400) (0.0298)

β4 0.1224 < 0.001 0.3161 < 0.001 0.3837 < 0.001 0.4360 < 0.001 0.3732 < 0.001
(0.0124) (0.0273) (0.0302) (0.0357) (0.0280)


 −11189.9 −10578.9 −10625.6 −11176.4 −10569.8
AIC 22389.8 21169.8 21261.18 22364.8 21149.6
BIC 22420.7 21206.9 21292.11 22401.91 21180.6

where 0 ≤ α < 1 and {εt}t∈Z represent the innovations which is a sequence of iid integer-
valued random variables having the PX distribution with parameter θ > 0. The innova-
tions εt are independent of Xt−k for all k ≥ 1 and all counting series incorporated in the
binomial thinning α ◦ Xt . The binomial thinning operator is defined as

α ◦ Xt−1 =
Xt−1∑
j=1

Wj,

where {Wj}j≥1 is a sequence of iid Bernoulli random variables with probability of success
α. For α ∈ [0, 1), the INAR(1) process is stationary (see Al-Osh and Alzaid [1] for more
details).

As mentioned before, we consider the PX distribution as the distribution of the innova-
tions {εt}. Thus let {εt}t∈Z be a sequence of iid random variables having the PX distribution
given by (1). The process with these innovations is called as the INARPX(1) process.
Some of its properties are obtained as follows. The one-step transition probability of the
INARPX(1) model is given by

Pr (Xt = k|Xt−1 = l) =
min(k,l)∑
i=0

(
l
i

)
αi(1 − α)l−i

× θ2[2(1 + θ)2 + θ (k − i + 2) (k − i + 1)]
2(1 + θ)k−i+4 . (13)

The mean and variance of the INARPX(1) process are, respectively, given by

μX = θ + 3
θ (θ + 1) (1 − α)

,

σ 2
X = αθ (θ + 1) (θ + 3)+ θ3 + 5θ2 + 11θ + 3

θ2(1 + θ)2
(
1 − α2

) .
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Figure 7. The ACF and PACF plots of the weekly number of syphilis cases.

The dispersion index of the INARPX(1) process is

DIX = 1 + 3 + θ(8 + θ)

θ(1 + θ)(3 + θ)(1 + α)
,

which indicates overdispersion.
The model parameters, α and θ , have to be estimated from the observations of the pro-

cess, X1, . . . ,XT . Many simulations have been performed by some authors which support
the use of the conditional maximum likelihood (CML) method to estimate the parameters
of the INAR(1) process (see Bourguignon et al., [9] and Lívio et al. [18]). Therefore, we con-
sider the CMLmethod to obtain the parameters of the INARPX(1)model. The conditional
log-likelihood function for this model takes the form



(
p, θ
) =

T∑
t=2

log [Pr (Xt = k|Xt−1 = l)], (14)
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Table 5. The CML estimators of the fitted INAR(1) processes withmodel selection criteria for the weekly
number of syphilis cases.

Model Parameters Estimate SE AIC BIC μx σ 2
x DIx

INARPX(1) α 0.214 0.037 1605.189 1611.874 24.571 189.348 7.706
θ 0.142 0.009

INARPL(1) α 0.249 0.037 1630.809 1637.493 24.736 226.287 9.148
θ 0.103 0.007

INARP(1) α 0.148 0.026 2016.540 2023.220 24.720 24.720 1.000
λ 21.063 0.709

Empirical 24.630 105.680 4.290

where Pr(Xt = k|Xt−1 = l) is given by (13). Since it is not possible to obtain explicit forms
of the CML estimators of the parameters of the INARPX(1) process, direct maximization
of (14) by using a statistical software, such as R, S-Plus, Matlab, is needed to obtain the
CML estimators of (α, θ). The standard errors of the estimated parameters are obtained by
means of observed information matrix evaluated at (̂α, θ̂ ).

We provide an application to real data to prove empirically the usefulness of the
INARPX(1) (INAR PX) model in case of overdispersion as compared to the INARP(1)
(INAR Poisson) and INARPL(1) (INAR Poisson–Lindley) models. The one-step transla-
tion probabilities for these models can be found in Altun [4]. The data used refers to the
weekly number of syphilis cases in the United States from 2007 to 2010 in New York. The
data set can be found in ZIM package of the R software.

First, we investigate the possible overdispersion in the data used by means of a hypoth-
esis test introduced by Schweer and Weiß [27]. We calculate the mean, variance and
dispersion index. These are 24.631, 105.676 and 4.290, respectively. Then, we perform a
hypothesis test of Schweer andWeiß. The obtained p-value is 0<0.001which indicates that
the data display overdispersion. In this case, it is clear that the more flexible distribution
than the Poisson is needed to model the overdispersion in the data.

Figure 7 displays the times series plot, sample autocorrelation function (ACF) and par-
tial ACF (PACF) of the weekly number of syphilis cases. There is a clear cut-off after the
first lag at the ACF plot which indicates that AR(1) model can be suitable for the data.

The information on the fitted INAR(1) processes such as estimated parameters, AIC and
BIC values are given in Table 5. It is obvious that the INARPX(1) ismore appropriatemodel
than other competitive model for the data since its AIC and BIC values are the lowest.

7. Conclusion

We introduce a new one-parameter discrete distribution called the PX distribution. Some
statistical properties of the new distribution are studied comprehensively. A new regression
model for non-negative discrete response variable is defined and applied to a real data
set. Additionally, INAR(1) process with PX innovations are introduced. Empirical findings
show that the PX distribution provides acceptable results for the over-dispersed data sets.
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