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ABSTRACT
In this paper, we introduce a new regression model, called Lomax
regression model, as an alternative to the gamma regression model.
The maximum-likelihood method is used to estimate the unknown
parameters of the proposed model, and the finite sample perfor-
mance of the maximum-likelihood estimation method is evaluated
by means of the Monte-Carlo simulation study. The randomized
quantile residuals are used to check the adequacyof the fittedmodel.
The insurancedata are analyzed todemonstrate theusefulness of the
proposed regression model against the gamma regression model.
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1. Introduction

The heavy-tailed distributions play an important role in modeling the finance, insurance
and actuarial data sets. The normal distribution is inadequate in many insurance applica-
tions since the empirical distribution of insurance loss is asymmetric and has thick tails.
Additionally, the empirical distribution of losses exhibits right skewness and excess kur-
tosis as well as non-negative values which means that the normal distribution cannot be
used in this case. In statistic literature, many statistical distributions are available to model
the insurance data (see [10]). The modeling of the tail distribution of insurance losses is
an important issue in actuarial risk modeling, because the losses are located at the tail of
the underlying loss distribution. Therefore, misspecification of the loss distribution yields
the over-estimation or under-estimation of the real insurance loss. The predictions related
to the rare events are only possible with a flexible distribution which enables us to model
the empirical tail distribution of the losses accurately. The commonly used distributions
in modeling the insurance loss data are the Weibull, log-gamma, Burr and the general-
ized Pareto (GP) distributions. Ahn et al. [1] used the log phase-type (logPH) distribution
to model the Danish fire insurance data and compared the logPH distribution with GP
distribution.

The gamma regression is a widely used model in modeling the right-skewed response
variable (see [8]). Assuming that the response variable follows a gamma distribution,
Cepeda-Cuervo [6] introduced the gamma regression model with joint modeling of
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the mean and shape parameters. Cepeda-Cuervo et al. [5] introduced a new diagnostic
tool to analyze the residuals of the gamma regression model. The weighted-exponential
(WE) regression model, an alternative model to the gamma regression, was proposed by
Altun [2]. The empirical results of [2] have shown that the WE regression model has
worked better than the gamma regression model for the cabinet durations data set. In the
literature, there are no many alternative regression models to the gamma regressionmodel
in modeling the right-skewed response variable.

The purpose of the presented study is to develop a new statistical model to model
the insurance loss data with much more accuracy than the gamma regression model.
To achieve this purpose, a new regression model for the right-skewed response vari-
able is introduced through the Lomax distribution based on the generalized linear model
framework. Lomax [12] introduced the Lomax distribution, known as Pareto Type II dis-
tribution, which is widely used in economics, actuarial science and queueing theory. In
recent years, the Lomax distribution has increased its popularity. The researchers have
shown great interest to introduce new extensions of Lomax distribution such asMcDonald
Lomax [11], power Lomax [13] and double Lomax distributions [3]. These studies aim to
increase the flexibility of Lomax distribution by adding extra (one or more) parameters.
The proposed Lomax regression model gives an opportunity to simultaneously modeling
themean and shape parameters, as in the gamma regressionmodel. The parameter estima-
tion problem of the Lomax regression model is addressed with the maximum likelihood
estimation (MLE) method. The performance of the MLEs of the Lomax regression model
is discussed with a simulation study. The importance of the Lomax regression model in
insurance loss modeling is illustrated with an application on a real data set. Two types of
residuals are used to check the accuracy of the Lomax regression model.

The remaining parts of the presented paper are organized as follows: in Section 2,
re-parametrized Lomax distribution and its regression model is presented. The residual
analysis and parameter estimation of the Lomax regression model are also addressed in
this section and an extensive simulation study. Section 3 is devoted to the empirical results
of the study. The concluding remarks are given in Section 4.

2. The Lomax distribution and its regressionmodel

Assume thatY is a randomvariable following a Lomaxdistribution. The probability density
function (pdf) of Y is

f
(
y;α, λ

) = α

λ

[
1 + y

λ

]−(α+1)
, y ≥ 0, (1)

where α > 0 is the shape parameter and λ > 0 is the scale parameter. The corresponding
cumulative distribution function (cdf) to (1) is

F
(
y;α, λ

) = 1 −
[
1 + y

λ

]−α

. (2)

The mean and variance of the Lomax distribution are given, respectively, by

E (X) = λ

α − 1
, (3)



JOURNAL OF APPLIED STATISTICS 2517

Var (X) = λ2α

(α − 1)2 (α − 2)
. (4)

Note that the mean and variance are only valid for α > 1 and α > 2, respectively. The
suitable re-parametrization of the Lomax distribution is important to introduce the Lomax
regression model.

Proposition 2.1. Let λ = μ(α − 1), then the pdf of Y is

f
(
y;μ,α

) = α

μ (α − 1)

[
1 + y

μ (α − 1)

]−(α+1)
, y ≥ 0, (5)

where μ > 0 and α > 1. The parameter μ controls the location of the distribution and α

treats as a shape parameter. Hereafter, (5) is denoted as Y ∼ L(μ,α). In this representation,
the mean and variance of Y are

E (Y|μ,α) = μ (6)

and

Var (Y) = αμ2/(α − 2). (7)

As seen from (7), the variance of the Lomax distribution is valid only if α > 2. The variance
of Y increases once the parameter α decreases. Here, we refer the inverse of the parameter α,
say α−1, as a dispersion parameter.

The pdf plots of the re-parametrized Lomax distribution are displayed in Figure 1. As
seen from these figures, the re-parametrized Lomax distribution is extremely right-skewed
and the skewness decreases when the parameter α increase for the fixed values of μ.

The flexibility of the Lomax distribution is comparedwith the gammadistribution based
on the skewness and kurtosis measures. Figure 2 displays the skewness and kurtosis values
of the re-parametrized Lomax and re-parametrized gamma distribution (see [5] for re-
parametrized gamma distribution). As seen from Figure 2, the ranges of the skewness and
kurtosis measures of the Lomax distribution are wider than those of the gamma distribu-
tion. Therefore, the Lomax distribution is more preferable than the gamma distribution for

Figure 1. The pdf plots of the re-parametrized Lomax distribution.
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Figure 2. The skewness and kurtosis plots of the Gamma (left) and Lomax (right) distributions.

the extremely right-skewed and leptokurtic data sets. Note that the skewness and kurtosis
measures of the Lomax distribution are valid only if α > 3 and α > 4, respectively.

Assume thatwe have a randomsample, y1, y2, . . . , yn, fromL(μi,α) by unknownparam-
eters μi and α. The Lomax regression model is introduced by using the appropriate link
function, given by

g (μi) = xxxTi βββ , (8)

where μi, i = 1, 2, 3, . . . , n, is the mean of the Lomax distribution, βββ = (β0,β1, . . . ,βk)
T

is the regression parameters, k is the number of the independent variables and xxxi =
(xi1, xi2, . . . , xik)T represents the covariates. In (8), g(·) : (0,∞) �→ � is a link function
which an increasing and twice differentiable function. The appropriate choice of link func-
tion is based on the domain of the random variable Y. Here, since the random variable
Y is defined on �+, the log-link function, log(μi) = xxxTi βββ , is suitable for this regression
model. As seen in (7), the Lomax regression model has a heteroscedastic structure since
its variance is a function of its mean. The variance of the response variable, yi, is

Var
(
yi
) = αμ2

i
(α − 2)

= αg−1(xxxTi βββ)2
(α − 2)

. (9)

Using the re-parametrized pdf of the Lomax, given in (5), the log-likelihood function of
the Lomax regression model is

� (τττ ) =
n∑
i=1

ln
(

α

μi (α − 1)

)
− (α + 1)

n∑
i=1

ln
(
1 + yi

μi (α − 1)

)
, (10)

whereμi = exp(xxxTi βββ). The dispersion parameter may not be constant for all observations.
In this case, the shape parameter of the Lomax regression model can be modeled with an
appropriate link function. In this case, this model is called as variable dispersion Lomax
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regression model which is defined as

g1 (μi) = xxxTi βββ ,
g2 (αi) = zzzTi γγγ ,

(11)

where βββ = (β0,β1, . . . ,βk)
T and γγγ = (γ0, γ1, . . . , γh)T are the vectors of regression

parameters andxxxi = (xi1, xi2, . . . , xik)T andzzzi = (zi1, zi2, . . . , zih)T are the vector of covari-
ates. The log-likelihood function of the above regression structure can be simply written
by replacing the α with αi in (12).

2.1. Estimation

TheMLEmethod is used to estimate the dispersion parameter, α, of the Lomax regression
model as well as regression parameters, βββ = (β0,β1, . . . ,βk)

T . Assume that the random
sample y1, y2, . . . , yn comes from the Lomax distribution with unknown parameters, μi
and αi. Using this random sample, the variable dispersion Lomax regressionmodel has the
following log-likelihood function

� (τττ) =
n∑
i=1

ln
(

αi

μi (αi − 1)

)
− (αi + 1)

n∑
i=1

ln
(
1 + yi

μi (αi − 1)

)
, (12)

where τττ = (βββ ,γγγ ) andμi and αi are in (11). The partial derivatives of (12) according to the
unknown regression parameters, we have the following likelihood equations

∂�

∂βββ
=

n∑
i=1

(
xxxiyi exp (−xxxiβββ)

1 + (
yi exp (−xxxiβββ)

)/(
exp (zzziγγγ ) − 1

) − xxxi

)
, (13)

∂�

∂γγγ
=

n∑
i=1

zzziyi exp (zzziγγγ − xxxiβββ)[
1 + (

yi exp (−xxxiβββ)
)/(

exp (zzziγγγ ) − 1
)] (

exp (zzziγγγ ) − 1
)

−
n∑

i=1
zzzi exp (zzziγγγ ) ln

(
1 + yi exp (−xxxiβββ)

exp (zzziγγγ ) − 1

)

+
n∑

i=1
exp (zzziγγγ − 1) exp

(
xxxiβββ − yizzzi

)
×
(
zzzi exp (zzziγγγ − xxxiβββ)

exp (zzziγγγ ) − 1
− zzzi exp

(
2zzziyi − xxxiβββ

)(
exp (zzziγγγ ) − 1

)2
)
. (14)

The MLE of the unknown parameter vector, τττ , can be obtained by simultaneous solution
of the likelihood equations for zero, ∂�

∂βββ
= 0, ∂�

∂γγγ
= 0. However, it is not possible since the

likelihood equations contain non-linear functions. In this case, the direct maximization
of the log-likelihood function should be done by means of statistical software such as R,
Matlab or S-PLUS. Here, we use the optim function of the R software to implement the
Nelder–Mead optimization algorithm. Considering the regularity conditions of the MLE
method, the asymptotic distribution of (̂τττ − τττ) follows a (k + h)-variate normal distribu-
tion with zero mean and variance–covariance matrix K(τττ )−1. The expected information
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matrix can be replaced with (k + h) × (k + h) observed information matrix which is used
to obtain the asymptotic standard errors of the MLEs evaluated at τ̂ττ . The fdHess function
of R software is used to compute the observed information matrix.

2.2. Simulation

Now, we discuss the performance of the MLE method for estimating the parameters of
the Lomax regression. We follow the results in [5] for the simulation study. The sim-
ulation replication is determined as N = 1000. Four different sample sizes are used,
n = 20, 50, 250, 500 and 1000. The below regression structures are used:

μi = β0 + β1xi1

and

αi = exp(γ0 + γ1zi1),

where the covariates are generated from the standard uniform distribution. The true val-
ues of the regression parameters are determined as β0 = 2,β1 = 2, γ0 = 0.5 and γ1 = 0.5.
The response variable yi is generated by using the generated μi and αi parameters. The
optim function is used to implement the Nelder–Mead optimization algorithm to obtain
the parameter estimates of the Lomax regression model for each generated data set.

The simulation results are reported in Table 1. The simulation results are interpreted
based on the estimated biases, averages of the estimates (AEs) and mean square errors
(MSEs). The biases andMSEs should be near the zero, and the AEs should be near the true
parameter values for large sample sizes. When the results given in Table 1 are examined,
we conclude that the estimated biases and MSEs are near the zero for all sample sizes. As
expected, the AEs are also stable for all sample sizes and near the true parameter values.
These results verify that the MLEs of the parameters of the Lomax regression model are
asymptotically unbiased and consistent.

Table 1. The simulation results of the Lomax regression model.

Sample size Parameters β0 β1 γ0 γ1

n = 20 AE 2.0145 1.8798 0.8511 0.7249
Bias 0.0145 −0.1202 0.3511 0.2249
MSE 0.4431 0.8655 0.5751 0.8121

n = 50 AE 2.0498 2.0717 0.7409 0.4147
Bias 0.0498 0.0717 0.2409 −0.0853
MSE 0.2755 0.6525 0.5842 0.7308

n = 250 AE 1.9787 2.0521 0.6289 0.4106
Bias −0.0213 0.0521 0.1289 −0.0894
MSE 0.1056 0.2888 0.1779 0.5747

n = 500 AE 1.9859 2.0332 0.5639 0.4510
Bias −0.0141 0.0332 0.0639 −0.0490
MSE 0.0623 0.1425 0.0715 0.2233

n = 1000 AE 1.9948 2.0149 0.5370 0.4624
Bias −0.0052 0.0149 0.0370 −0.0376
MSE 0.0295 0.0745 0.0329 0.1213
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2.3. Residuals analysis

Here, we use two residuals to check the accuracy of the fitted Lomax regression model.
These are randomized quantile residuals by Dunn and Smyth [9] and Cox–Snell residuals
by Cox and Snell [7].

2.3.1. Cox–Snell residual
Cox–Snell residuals are given by (see [7])

êi = − ln
[
1 − F

(
yi
∣∣ β̂̂β̂β iγ̂̂γ̂γ i

)]
, i = 1, 2, . . . , n, (15)

where F(·) is the cdf of the re-parametrized Lomax distribution. The Cox–Snell residuals
follow an exponential distribution one scale parameter once the fitted model is valid for
the data used.

2.3.2. Randomized quantile residual
The randomized quantile residuals are given by (see [9])

r̂i = 	−1 (ûi) , (16)

where ûi = F(yi|β̂̂β̂β iγ̂̂γ̂γ i). Assume that the fitted model is valid for data used. In this case, the
distribution of the randomized quantile residuals should be N(0, 1). The normality of the
randomized quantile residuals can be checked by graphically using the quantile-quantile
or probability-probability (PP) plots.

3. Empirical study

In this section, we use the data set reported inCASdatasets package of R software. The data
set consists of 12,513 individuals for which we have the driver age, the vehicle age, and the
exposure. Exposure represents the level of risk for an individual. The insurance companies
calculate the insurance premiums based on the individual’s exposure value. Therefore, the
accurate modeling of the exposure is important to compute the more realistic insurance
premium. The goal is to model the exposure (y) with vehicle age (VA) (x1) and driver age
(DA) (x2) variables. The gamma,WE and Lomax regressionmodels are used to model this
data set. The Gammareg package of [4] is used to obtain the unknown parameters of the
gamma regression model. After obtaining the estimated values of the parameters of the
gamma regression, we use these estimates as an initial parameter vector for the Lomax and
WE regression models in estimation steps. The log-link function is used for both location
and dispersion parameters. The below regression model is fitted by the gamma, WE and
Lomax regression models for the used data:

log (μi) = β0 + β1VAi + β2DAi,
log (αi) = γ1DAi.

(17)

The estimated parameters and its standard errors, corresponding p-values as well as
goodness-of-fit statistics are reported in Table 2. All the estimated parameters are found
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Table 2. The estimated parameters and corresponding standard errors (SE) of the fitted regression
models.

Gamma WE Lomax

Parameters Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value

β0 6.103 0.044 < 0.001 6.154 0.059 < 0.001 5.805 0.059 < 0.001
β1 −0.083 0.002 < 0.001 −0.081 0.002 < 0.001 −0.062 0.002 < 0.001
β2 −0.018 0.001 < 0.001 −0.019 0.001 < 0.001 −0.014 0.001 < 0.001
γ1 −0.007 < 0.001 < 0.001 0.631 < 0.001 < 0.001 0.012 0.000 < 0.001
−� 67,347.130 67,958.000 65,866.000
AIC 134,702.260 135,924.000 131,740.000
BIC 134,731.998 135,953.738 135,934.869

statistically significant at any significance level for all fitted regression models. Accord-
ing to the estimated values of the parameters, we conclude that when the vehicle age and
driver age increase, the exposure of the individual decreases. Moreover, when the driver’s
age increases, the variance of the exposure decreases.

To decide the best-fitted model for the used data set, we calculate the −� AIC and BIC
statistics. The Lomax regressionmodel has lower values of these statistics than those of the
gamma andWE regressionmodels. So, we conclude that the Lomax regressionmodel pro-
vides better modeling ability than the gamma andWE regressionmodels for the used data.
To check the accuracy of the fitted Lomax regression model, we compute the randomized
quantile andCox–Snell residuals. Asmentioned before, when the fitted regressionmodel is
suitable for the data set, the randomized quantile residuals should be normally distributed
with zeromean and unit variance. Also, Cox–Snell residuals should be distributed as expo-
nential distributions with one scale parameter. The PP plots of the randomize quantile
residuals are displayed in Figure 3 for all fitted regression models. From these figures, it
is clear that the Lomax regression model is more appropriate than the gamma and WE
regression models for used data since the plotted points are far from the diagonal line for
the gamma andWE regression models. The quantile-quantile (QQ) plots of the Cox–Snell

Figure 3. The PP plots of randomized quantile residuals: gamma (left), WE (middle) and Lomax regres-
sion models (right).
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Figure 4. The QQ plots of Cox–Snell residuals: gamma (left), WE (middle) and Lomax regressionmodels
(right).

residuals are displayed in Figure 4. From these figures, it is clear that the Cox–Snell residu-
als of the Lomax regressionmodel aremore near the diagonal line than those of the gamma
and WE regression models.

One can prefer to fit theWE regressionmodel without using the estimated parameters of
the gamma regression model as an initial parameter vector. In this case, we suggest using a
generalized simulated annealing optimization algorithmwhich can be implemented by the
GenSA package of R software. This package is very useful to find a suitable initial param-
eter vector for iterative optimization algorithms. The obtained initial parameter vector by
the GenSA package is τ = (4.509,−0.041,−0.031, 0.015). Using it as an initial parame-
ter vector in the Nelder–Mead algorithm, the estimated parameter values of the Lomax
regression model are the same with the values reported in Table 2.

4. Conclusion

In this paper, a new regression model, called the Lomax regression model, is introduced as
an alternative to gammaWE regression models. The maximum-likelihood method is dis-
cussed to estimate the unknown parameters of the proposed model via the Monte-Carlo
simulation study. The randomized quantile and Cox–Snell residuals are used to check the
accuracy of the fitted models. The insurance data set is analyzed to prove the applicabil-
ity and importance of the Lomax regression model over the gamma and WE regression
models. Empirical findings reveal that the Lomax regression model could be very attrac-
tive in modeling the extremely right-skewed response variable. We believe that the Lomax
regression model will attract attention in other fields of science.
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