
Full depth CNN classifier for handwritten
and license plate characters recognition
Mohammed Salemdeeb1 and Sarp Ertürk2

1 Department of Electrical-Electronics Engineering, Bartin University, Bartin, Turkey
2 Department of Electronics & Communication Eng., Kocaeli University, Izmit, Kocaeli, Turkey

ABSTRACT
Character recognition is an important research field of interest for many
applications. In recent years, deep learning has made breakthroughs in image
classification, especially for character recognition. However, convolutional neural
networks (CNN) still deliver state-of-the-art results in this area. Motivated by the
success of CNNs, this paper proposes a simple novel full depth stacked CNN
architecture for Latin and Arabic handwritten alphanumeric characters that is also
utilized for license plate (LP) characters recognition. The proposed architecture is
constructed by four convolutional layers, two max-pooling layers, and one fully
connected layer. This architecture is low-complex, fast, reliable and achieves very
promising classification accuracy that may move the field forward in terms of low
complexity, high accuracy and full feature extraction. The proposed approach is
tested on four benchmarks for handwritten character datasets, Fashion-MNIST
dataset, public LP character datasets and a newly introduced real LP isolated
character dataset. The proposed approach tests report an error of only 0.28% for
MNIST, 0.34% for MAHDB, 1.45% for AHCD, 3.81% for AIA9K, 5.00% for Fashion-
MNIST, 0.26% for Saudi license plate character and 0.97% for Latin license plate
characters datasets. The license plate characters include license plates from Turkey
(TR), Europe (EU), USA, United Arab Emirates (UAE) and Kingdom of Saudi
Arabia (KSA).

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning
Keywords Convolutional neural nework, Character recognition, License plate character
recognition, Arabic license plate character recognition, Arabic character recognition, Handwritten
character recognition, Deep learning, Image classififcation

INTRODUCTION
Character recognition (CR) plays a key role in many applications and motivates R&D in
the field for accurate and fast classification solutions. CR has been widely investigated in
many languages using different proposed methods. In the last years, researchers widely
used CNN as deep learning classifiers and achieved good results on handwritten
Alphanumeric in many languages (Lecun et al., 1998; Abdleazeem & El-Sherif, 2008;
El-Sawy, Loey & EL-Bakry, 2017), character recognition in real-world images (Netzer et al.,
2011), document scanning, optical character recognition (OCR) and automatic license
plate character recognition (ALPR) (Comelli et al., 1995). Searching for text information in
images is a time-consuming process that largely benefits of CR. The connectivity of letters
makes classification a challenge, particular for the Arabic language (Eltay, Zidouri &
Ahmad, 2020). Therefore, isolated character datasets get more interest in research.

How to cite this article Salemdeeb M, Ertürk S. 2021. Full depth CNN classifier for handwritten and license plate characters recognition.
PeerJ Comput. Sci. 7:e576 DOI 10.7717/peerj-cs.576

Submitted 27 October 2020
Accepted 12 May 2021
Published 18 June 2021

Corresponding author
Mohammed Salemdeeb,
msalemdeeb@bartin.edu.tr

Academic editor
Kc Santosh

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.576

Copyright
2021 Salemdeeb and Ertürk

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.576
mailto:msalemdeeb@�bartin.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.576
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

MNIST is a handwritten digits dataset introduced by Lecun et al. (1998) and used to test
supervised machine learning algorithms. The best accuracy obtained by stacked CNN
architectures, until before two years, is a test error rate of 0.35% in Cireşan et al. (2010),
where large deep CNN of nine layers with an elastic distortion applied to the input
images. Narrowing the gap to human performance, a new architecture of five committees
of seven deep CNNs with six width normalization and elastic distortion was trained
and tested in Ciresan et al. (2011) and reported an error rate of 0.27%, where the main
CNN is seven stacked layers. In Ciregan, Meier & Schmidhuber (2012), a near-human
performance error rate of 0.23% was achieved, where several techniques were combined in
a novel way to build a multi-column deep neural network (MCDNN) inspired by
micro-columns of neurons in cerebral cortex compared to the number of layers found
between retina and visual cortex of macaque monkeys.

Recently, Moradi, Berangi & Minaei (2019) developed a new CNN architecture with
orthogonal feature maps based on Residual modules of ResNet (He et al., 2016) and
Inception modules of GoogleNet (Szegedy et al., 2015), with 534,474 learnable parameters
which are equal to SqeezeNet (Iandola et al., 2016) learnable parameters, and thus the
model reported an error of 0.28%. However, a CNN architecture for small size input
images of 20 × 20 pixels was proposed in Le & Nguyen (2019). In addition, a multimodal
deep learning architecture was proposed in Kowsari et al. (2018), where deep neural
networks (DNN), CNN and recurrent neural networks (RNN) were used in one
architecture design achieving an error of 0.18%. A plain CNN with stochastic optimization
method was proposed in Assiri (2019), this method applied regular Dropout layers after
each pooling and fully connected (FC) layers, this 15 stacked layers approach obtained an
error of 0.17% by 13.21M parameters. Hirata & Takahashi (2020) proposed an
architecture with one base CNN and multiple FC sub-networks, this 28 spars layers
architecture with 28.67M parameters obtained an error of 0.16%. Byerly, Kalganova &
Dear (2020) presented a CNN design with additional branches after certain convolutions,
and from each branch, they transformed each of the final filters into a pair of homogeneous
vector capsules, this 21 spars layers obtained an error of 0.16%.

While MNIST was well studied in the literature, there were only a few works on Arabic
handwritten character recognition (Abdleazeem & El-Sherif, 2008). The large Arabic
Handwritten Digits (AHDBase) has been introduced in El-Sherif & Abdelazeem (2007).
Abdleazeem & El-Sherif (2008) modified AHDBase to be MADBase and evaluated 54
different classifier/features combinations and reported a classification error of 0.52%
utilizing radial basis function (RBF) and support vector machine (SVM). Also, they
discussed the problem of Arabic zero, which is just a dot and smaller than other digits.
They solved the problem by introducing a size-sensitive feature which is the ratio of the
digit bounding box area to the average bounding box area of all digits in AHDBase’s
training set. In the same context,Mudhsh & Almodfer (2017) obtained a validation error of
0.34% on the MADBase dataset by using an Alphanumeric VGG network inspired by the
VGGNet (Simonyan & Zisserman, 2015) with dropout regularization and data
augmentation but the error performance does not hold on the test set.

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 2/22

http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

Torki et al. (2014) introduced AIA9K dataset and reported a classification error of 5.72%
on the test set by using window-based descriptors with some common classifiers such as
logistic regression, linear SVM, nonlinear SVM and artificial neural networks (ANN)
classifiers. Younis (2017) tested a CNN architecture and obtained an error of 5.2%, he
proposed a stacked CNN of three convolution layers followed by batch normalization,
rectified linear units (ReLU) activation, dropout and two FC layers.

The AHCD dataset was introduced by El-Sawy, Loey & EL-Bakry (2017), they reported a
classification error of 5.1% using a stacked CNN of two convolution layers, two pooling
layers and two FC layers. Najadat, Alshboul & Alabed (2019) obtained a classification
error of 2.8% by using a series CNN of four convolution layers activated by ReLU,
two pooling layers and three FC layers. The state-of-the-art result for this dataset is a
classification error of 1.58% obtained by Sousa (2018), it was achieved by ensemble
averaging of four CNNs, two inspired by VGG16 and two written from scratch, with batch
normalization and dropout regularization, to form 12 layers architecture called VGG12.

For benchmarking machine learning algorithms on tiny grayscale images other than
Alphanumeric characters, Xiao, Rasul & Vollgraf (2017) introduced the Fashion-MNIST
dataset to serve as a direct replacement for the original MNIST dataset and reported a
classification test error of 10.3% using SVM. This dataset gained the attention of many
researchers to test their approaches and better error of 3.65% was achieved by Zhong et al.
(2017) in which a random erasing augmentation was used with wide residual networks
(WRN) (Zagoruyko & Komodakis, 2016). The state-of-the-art performance for Fashion-
MNIST is an error of 2.34% reported in Zeng et al. (2018) using a deep collaborative
weight-based classification method based on VGG16. Recently, a modelling and
optimization based method was used (Chou et al., 2019) to optimize the parameters
for a multi-layer (16 layer) CNN reporting an error of 8.32% and 0.57% for Fashion-
MNIST and MNIST respectively.

ALPR is a group of techniques that use CR modules to recognize vehicle’s LP number.
Sometimes, it is also referred to as license plate detection and recognition (LPDR). ALPR is
used in many real-life applications (Du et al., 2013) like electronic toll collection, traffic
control, security, etc. The main challenges of detection and recognition of license plates are
the variations in the plate types, environments, languages and fonts. Both CNN and
traditional approaches are used to solve vehicle license plates recognition problems.
Traditional approaches involve computer vision, image processing and pattern recognition
algorithms for features such as color, edge and morphology (Xie et al., 2018). A typical
ALPR system consists of three modules, plate detection, character segmentation and
CR modules (Chang et al., 2004). This research focuses on CR techniques and compared
them with the proposed CR approach. CR modules need an off-line training phase to
train a classifier on each isolated character using a set of manually cropped character
images (Bulan et al., 2017). Excessive operational time, cost and efforts must be considered
when manual cropping of character images are needed to be collected and labeled for
training and testing, and to overcome this, artificially generated synthetic license plates
were proposed (Bulan, Kozitsky & Burry, 2015).

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 3/22

http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

Additionally, very little research was done on multi-language LP character recognition,
the reason is mostly due to the lack of multi-language LP datasets. Some recent researches
were interested in introducing a global ALPR system. Asif et al. (2017) studied only LP
detection module using a histogram-based approach, and a private dataset was used,
which comprised of LPs from Hungary, America, Serbia, Pakistan, Italy, China, and
UAE (Asif et al., 2017). VGG and LSTM were proposed for CR module in Dorbe et al.
(2018) and the measured CR module accuracy was 96.7% where the test was done on LPs
from Russia, Poland, Latvia, Belarus, Estonia, Germany, Lithuania, Finland and Sweden.
Also, tiny YOLOv3 was used as a unified CR module for LPs from Greece, USA, Croatia,
Taiwan, and South Korea (Henry, Ahn & Lee, 2020). Furthermore, several proposed
methods interested in multi-language LPCR testing CR modules on each LP country’s
dataset separately, without accumulating the characters into one dataset (Li, Wang & Shen,
2019; Yépez, Castro-Zunti & Ko, 2019; Asif et al., 2019). In addition, Selmi et al. (2020)
proposed a mask R-CNN detector for character segmentation and recognition concerning
Arabic and English LP characters from Tunisia and USA. Park, Yoon & Park (2019)
concerned USA and Korean LPs describing the problem as multi-style detection. CNN
shrinkage-based architecture was studied in Salemdeeb & Erturk (2020), utilizing the
maximum number of convolutional layers that can be added. Salemdeeb & Erturk (2020)
studied the LP detection and country classification problem for multinational and
multi-language LPs from Turkey, Europe, USA, UAE and KSA, without studying CR
problem. These researches studied LPs from 23 different countries where most of them use
Latin characters to write the LP number, and totally five languages were concerned
(English, Taiwanese, Korean, Chinese and Arabic). In Taiwan, Korea, China, UAE, Tunisia
and KSA, the LP number is written using Latin characters, but the city information is
coded using characters from that the country’s language.

In this paper, Arabic and Latin isolated characters are targeted to be recognized using a
proposed full depth CNN (FDCNN) architecture in which the regions of interest are
USA, EU and Middle East. To verify the performance of the proposed FDCNN, some
isolated handwritten Arabic and Latin characters benchmarks such as MNIST, MADbase,
AHCD, AIA9K datasets are also tested. Also, a new dataset named LP Arabic and
Latin isolated characters (LPALIC) is introduced and tested. In addition, the recent
FashionMNIST dataset is also tested to generalize the full depth feature extraction
approach performance on tiny grayscale images. The proposed FDCNN approach
closes the gap between software and hardware implementation since it provides low
complexity and high performance. All the trained models and the LPALIC dataset
(https://www.kaggle.com/dataset/b4697afbddab933081344d1bed3f7907f0b2b2522f637
adf15a5fcea67af2145) are made publicly available online for research community and
future tests.

The rest of this paper is organized as follows; “Datasets” introduces the structure of
datasets used in this paper and also the new LPALIC dataset. In “Proposed Approach”, the
proposed approach is described in details. “Experimental Results and Discussion” presents
a series of experimental results and discussions. Finally, “Conclusion” summarizes the
main points of the entire work as a conclusion.

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 4/22

https://www.kaggle.com/dataset/b4697afbddab933081344d1bed3f7907f0b2b2522f637adf15a5fcea67af2145
https://www.kaggle.com/dataset/b4697afbddab933081344d1bed3f7907f0b2b2522f637adf15a5fcea67af2145
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

DATASETS
Datasets available in the literature
MNIST is a low-complexity data collection of handwritten digits to test supervised
machine learning algorithms introduced by Lecun et al. (1998). It has grayscale images of
size 28 × 28 pixels with 60,000 training digits and 10,000 test digits written by different
persons. The digits are white and have black background, normalized to 20 × 20 pixels
preserving the aspect ratio, and then centered at the center of mass of the 28 × 28 pixels
grayscale images. The official site for the dataset and results are availabe by LeCun
(http://yann.lecun.com/exdb/mnist/).

In MADbase, 700 Arabic native writers wrote ten digits 10 times and the images were
collected as 70,000 binary images; 60,000 for training and 10,000 for testing, so that writers
of training set and test set are exclusive. This dataset (http://datacenter.aucegypt.edu/
shazeem) has the same format as MNIST to make veracity for comparisons between digits
(used in Arabic and English languages) recognition approaches. Table 1 shows example
digits of printed Latin, Arabic and handwritten Arabic characters used for numbers as
declared in ISO/IEC 8859-6:1999.

AHCD dataset (https://www.kaggle.com/mloey1/ahcd1) consists of 13,440 training
images and 3,360 test images for 28 Arabic handwritten letters (classes) of size 32 × 32
pixels grayscale images. In AI9IK (http://www.eng.alexu.edu.eg/~mehussein/AIA9k/index.
html) dataset, 62 female and 45 male Arabic native writers aged between 18 to 25 years
old at the Faculty of Engineering at Alexandria University-Egypt were invited to write
all the rabic letters three times to gather 8,988 letters of which 8,737 32 × 32 grayscale letter
images were accepted after a verification process by eliminating cropping errors, writer
mistakes and unclear letters. FasionMNIST dataset (github.com/zalandoresearch/fashion-
mnist) has images of 70,000 unique products taken by professional photographers.
The thumbnails (51 × 73) were then converted to 28 × 28 grayscale images by the
conversion pipeline declared in Xiao, Rasul & Vollgraf (2017). It is composed of 60,000
training images and 10,000 test images of 10 class labels.

Table 2 gives a brief review on some publicly available related LP datasets for LPDR
problem. The Zemris dataset is also called English LP in some references (Panahi &
Gholampour, 2017).

Novel license plate characters dataset
This research introduces a new multi-language LP chatacters dataset, involving both
Latin and Arabic characters from LP images used in Turkey, USA, UAE, KSA and EU
(Croatia, Greece, Czech, France, Germany, Serbia, Netherlands and Belgium). It is called

Table 1 Printed and handwritten digits.

Printed Latin Characters 0 1 2 3 4 5 6 7 8 9

Printed Arabic Characters

Handwritten

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 5/22

http://yann.lecun.com/exdb/mnist/
http://datacenter.aucegypt.edu/shazeem
http://datacenter.aucegypt.edu/shazeem
https://www.kaggle.com/mloey1/ahcd1
http://www.eng.alexu.edu.eg/~mehussein/AIA9k/index.html
http://www.eng.alexu.edu.eg/~mehussein/AIA9k/index.html
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

LPALIC datase. In addition, some characters cropped from Brazil, India and other
countries were added for just training to give features diversity. Furthermore, Some
characters were collected from some public LP datasets, LP websites and our own camera
pictures in Turkey taken in different weather conditions, places, blurring, distances, tilts
and illuminations. These characters are real LP manually cropped characters without
any filtering. For uniformity a size of 28 × 28 pixels of grayscale images was utilized.

The manually cropped characters were fed into the following conversion pipeline
inspired from FashionMNIST (Xiao, Rasul & Vollgraf, 2017) which is similar to MNIST
(Lecun et al., 1998),

1. Resizing the longest edge of the image to 24 to save the aspect ratio.

2. Converting the image to 8-bit grayscale pixels image.

3. Negating the intensities of the image to get white character with black background.

4. Computing the center of mass of the pixels.

5. Translating the image to put center of mass at the center of the 28 × 28 grayscale image.

Some samples of the LPALIC dataset is visualized in Fig. 1 for Latin characters and in
Fig. 2 for Arabic characters.

Characters “0” and “O” are in the same class label so Latin characters have 35 (10 digits
and 25 letters) class labels and Arabic characters have 27 (10 digits and 17 letters) class
labels as LP as used in KSA. Table 3 illustrates the total number of Arabic and Latin
characters included in LPALIC dataset.

The Latin characters were collected from 11 countries (LPs have different background
and font colors) while the Arabic characters were collected from only KSA (LPs have
white background and black character). Choosing those countries is related to the
availability of those LPs for public use.

PROPOSED APPROACH
Stacked CNN architecture is simple, where each layer has a single input and a single
output. For small size images, the key efficient simple deep learning architecture was
LeNet-5 (Lecun et al., 1998), it consists of three convolutional, two pooling and one FC
(Dense) layer. It was used and developed for the models in Cireşan et al. (2010) and in the

Table 2 A review of publicly available ALPR datasets.

Dataset Approach Number of images Accuracy (%) Classifier Character set Purpose

Zemris Kraupner (2003) 510 86.2 SVM No LPDR

UCSD Dlagnekov (2005) 405 89.5 OCR No LPDR

Snapshots Martinsky (2007) 97 85 MLP No LPDR

ARG Fernández et al. (2011) 730 95.8 SVM No LPDR

SSIG Gonçalves, Menotti & Schwartz (2016) 2,000 95.8 SVM-OCR Yes LPDR

ReId Špaňhel et al. (2017) 77 k 96.5 CNN No LPR

UFPR Laroca et al. (2018) 4,500 78.33 CR-NET Yes LPDR

CCPD Xu et al. (2018) 250 k 95.2 RPnet Yes LPDR

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 6/22

http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

main column of MCDNN in Ciregan, Meier & Schmidhuber (2012). Most of recent
architectures are sparse structure of CNN such as models in GoogleNet (Szegedy et al.,
2015), ResNet (He et al., 2016) and DensNet (Huang et al., 2017).

Proposed architecture
The core of the proposed model is the convolution block which is a convolutional layer
followed by a batch normalization (BN) layer (Ioffe & Szegedy, 2015) and a non-linear
activation ReLU layer (Krizhevsky, Sutskever & Hinton, 2012). This block is called standard
convolutional layer in (Howard et al., 2017). The proposed convolutional layers have
kernels of size 5 × 5 with a single stride. This kernel size showed a good feature extraction
capability in LeNet-5 (Lecun et al., 1998) for small images as it covers 3.2% of the input
image in every stride. However, the recent trends are to replace 5 × 5 with 2 layers of 3 × 3
kernels as in InceptionV3 (Szegedy et al., 2016). Figure 3 shows the architecture design of
the proposed model.

Figure 1 Samples of Latin characters in the LPALIC dataset.
Full-size DOI: 10.7717/peerj-cs.576/fig-1

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 7/22

http://dx.doi.org/10.7717/peerj-cs.576/fig-1
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

Table 3 LPALIC dataset number of cropped characters per country.

Country TR EU USA UAE Others KSA

Used characters Latin Latin Latin Latin & Arabic Latin Arabic

Number of characters 60,000 32,776 7,384 3,003 17,613 50,000

Total characters 120,776 50,000

Figure 2 Samples of Arabic characters in the LPALIC dataset.
Full-size DOI: 10.7717/peerj-cs.576/fig-2

Figure 3 Proposed FDCNN model architecture. Full-size DOI: 10.7717/peerj-cs.576/fig-3

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 8/22

http://dx.doi.org/10.7717/peerj-cs.576/fig-2
http://dx.doi.org/10.7717/peerj-cs.576/fig-3
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

BN layer was recently introduced by Ioffe & Szegedy (2015). It normalizes the input by
subtracting the mean of batch and dividing by the batch standard deviation then it scales
and shifts the normalized input by learnable scale and shift, it reduces covariance shift,
reduces overfitting, enables higher learning rates, regularizes the model and fulfills some of
the same goals as Dropout layers. The first designers used BN layer in InceptionV3 are
Szegedy et al. (2016).

For a mini-batch B = {x1, x2, . . ., xm} of size m, the mean μB and variance r2B of B is
computed and each input image in the mini-batch is normalized according to Eq. (1).

x̂i ¼ ðxiÞ � lBffiffiffiffiffiffiffiffiffiffiffiffiffi
r2B þ e

p (1)

where ε is a constant, x̂i is the i
th normalized image scaled by learnable scale parameter γ

and shifted by learnable shift parameter β producing the ith normalized output image yi
(Ioffe & Szegedy, 2015).

yi ¼ BNc;b; ðxiÞ ¼ cx̂i þ b (2)

Motivated by LeNet-5 convolution kernel 5 × 5, BN used in InceptionV3 and ReLU in
Alexnet, the proposed model convolution block is built as in Fig. 4.

The size of output feature map (FM) of each convolution block has lower size than the
input feature map if no additional padding is applied. Eq. (3) describes the relation
between input and output FM sizes (Goodfellow, Bengio & Courville, 2016).

Wy ¼ Wx �Wk þ 2P
Ws

þ 1 (3)

where Wy is the width of the output, Wx is the width of the input, Wk is the width of
the kernel, Ws is the width of the stride kernel and P is the number of padding pixels.
For the height H, Eq. (3) can be used by replacing W with H. This reduction is called
the shrinkage of convolution and it limits the number of convolutional layers that the
network can include (Goodfellow, Bengio & Courville, 2016). The feature map shrinks
from borders to the center as convolutional layers as added. Eventually, feature maps drop
to 1 × 1 × channels (single neuron per channel) at which no more convolutional layers can
be added. This is the concept of full depth used for designing the proposed architecture,
Fig. 5 describes the full depth idea in FDCNN, where width and height shrink by 4
according to Eq. (3). In Fig. 5, each feature map is shrunk to a single value and this means
that the features are convoluted into a single value resulting low number of parameters and
high accuracy.

Figure 4 Proposed model convolution blocks. Full-size DOI: 10.7717/peerj-cs.576/fig-4

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 9/22

http://dx.doi.org/10.7717/peerj-cs.576/fig-4
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

The proposed FDCNN model composed basically of two stacked convolutional stages
and one FC layer for 28 × 28 input images. Every stage has two convolution blocks and one
max-pooling layer. It has a single input and a single output in all of its layers. Figure 3
shows the FDCNN architecture.

Parameter selection
In the proposed architecture, there are some parameters have to be selected, these
parameters are kernel sizes of convolution, pooling layers kerenl sizes, the number of filters

Figure 5 Full Depth concept of FDCNN. Full-size DOI: 10.7717/peerj-cs.576/fig-5

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 10/22

http://dx.doi.org/10.7717/peerj-cs.576/fig-5
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

(channels) in convolution layers and strides. The kernel sizes are selected to be 5 × 5 for
convolutional layers and 2 × 2 for pooling layers as described in architecture design in the
previous Proposed Architecture section.

In literature, the trend for selecting the number of filters is to increase the number of
filters as deep as the network goes (Krizhevsky, Sutskever & Hinton, 2012; Szegedy et al.,
2015; Simonyan & Zisserman, 2015; He et al., 2016). Generally, the first convolutional
layers learn simple features while deeper layers learn more abstract features. Selecting
optimal parameters is based on heuristics or grid searches (Bengio, 2012). The rule of
thumb to design a network from scratch is to start with 8–64 filters per layer and double
the number of filters after each pooling layer (Simonyan & Zisserman, 2015) or after
each convolutional layer (He et al., 2016). Recently, a new method was proposed to select
the number of filters (Garg, Panda & Roy, 2018), an optimization of network structure in
terms of both the number of layers and the number of filters per layer was done using
principal component analysis on trained network with a single shot of analysis. A 9X
reduction in the number of operations and up to 3X reduction in the number of
parameters with less than 1% drop in accuracy is achieved upon training on the same task.
In context, a modeling and optimization method (MAOM) was proposed in Chou et al.
(2019) to optimize CNN parameters by integrating uniform experimental design (UED)
and multiple regression (MR), but the rule of thumb for doubling the number of filters was
also applied.

One of the contributions of this research is to select the number of channels that
achieves full depth. Number of filters may also be called the number of kernels, number of
layer channels or layers width. The number of filters is selected to be as the same as the
number of shrinking pixels in each layer from bottom to the top. Table 4 shows the
shrinkage of the proposed model. From the fact that the network goes more deeper the
following selection is made:

� The width of 4th convolutional layer is 208 (the 1st layer shrinkage).

� The width of 3rd is 176 (the the 2nd layer shrinkage).

� The max-pooling will make a loss of half in FM dimensions so the next layers shrinkage
pixels will be doubled.

� The width of 2nd is 128 (the double of the 3rd layer shrinkage).

� The width of 1nd is 64 (the double of the 4th layer shrinkage).

Table 4 Shrinkage process in 28 × 28 architecture.

Layer Shrinking pixels Width

Conv1 282 − 242 = 208 64

Conv2 242 − 202 = 176 128

Max-Pooling 1 — 128

Conv3 102 − 62 = 64 176

Conv4 62 − 22 = 32 208

Max-Pooling 2 — 208

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 11/22

http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

The same parameter selection method can be applied to 32 × 32 input architecture as
described in Table 5 to reach full depth features (single value feature) as shown in Fig. 5B.

Table 6 shows the number of learnable parameters and feature memory usage for
the proposed model. Memory usage is multiplied by 4 as each pixel is stored as 4-byte
single float number. For 32 × 32 input images just another convolutional block can be
added before the first convolution block in FDCNN and the width of last convolutional
layer will be 322 − 282 = 240 to get full depth of shrinkage. This layer of course affects the
total number of model parameters and FM memory usage to be 2.94 M and 2.51 MB
respectively.

In general, DNNs give weights for all input features (neurons) to produce the output
neurons, but this needs a huge number of parameters. Instead, CNNs convolve the
adjacent neurons by the convolution kernel size to produce the output neurons. In the
literature, the state-of-the-art architectures had high number of learnable parameters at the
last FC layers. For example, VGG16 has totally 136 M parameters, and after the last
pooling layer the first FC layer has 102 M parameters, which means more than 75% of the

Table 5 Shrinkage process in 32 × 32 architecture.

Layer Shrinking pixels Width

Conv1 322 − 282 = 240 64

Conv2 282 − 242 = 208 128

Conv3 242 − 202 = 176 176

Max-pooling 1 — 176

Conv4 102 − 62 = 64 208

Conv5 62 − 22 = 32 240

Max-pooling 2 — 240

Table 6 Proposed model’s memory usage and learnable parameters.

Layer Features memory Learnable parameters

Input 28 × 28 × 1 3,136 0 0

Conv1 24 × 24 × 64 147,456 (5 × 5) × 64 + 64 = 1,664

BN+ReLU 24 × 24 × 64 × 2 294,912 4 × 64 = 256

Conv2 20 × 20 × 128 204,800 5 × 5 × 64 × 128 + 128 = 204,928

BN+ReLU 20 × 20 × 128 × 2 409,600 4 × 128 = 512

Max-pooling1 10 × 10 × 128 51,200 0 0

Conv3 6 × 6 × 176 25,344 5 × 5 × 128 × 176 + 176 = 563,376

BN+ReLU 6 × 6 × 176 × 2 50,688 4 × 176 = 704

Conv4 2 × 2 × 208 3,328 5 × 5 × 176 × 208 + 208 = 915,408

BN+ReLU 2 × 2 × 208 × 2 6,656 4 × 208 = 832

Max-pooling2 1 × 1 × 208 832 0 0

FC 1 × 1 × 10 40 208 × 10 + 10 = 2,090

Total memory 1,197,992 byte Total parameters 1,689,770

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 12/22

http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

architecture parameters (just in one layer). AlexNet has totally 62 M parameters, and the
first FC layer has 37.75 M parameters, which means more than 60% of the architecture
parameters. In (Hirata & Takahashi, 2020), the proposed architecture has 28.68 M
parameters, and the first FC layer has 3.68 M parameters after majority voting from ten
divisions. But, by using the full depth concept to reduce FM to 1 × 1 size after the last
pooling layer, FDCNN has just 2,090 parameters from totally 1.6 M parameters as seen in
Table 6. The full depth concept of reducing the feature maps size to one neuron has
decreased the total number of learnable parameters which make FDCNN simple and fast.

Training process
Deep learning training algorithms were well explained in Goodfellow, Bengio & Courville
(2016). The proposed model is trained using stochastic gradient descent with momentum
(SGDM) with custom parameters chosen after many trails. initial learning rate (LR) of
0.025, mini-batch size equals to the number of training instances divided by number of
batches needed to complete one epoch, LR drop factor by half every 2 epochs, 10 epochs,
0.95 momentum and the training set is shuffled every epoch. However, those training
parameters are not used for all datasets since the number of images is not constant in all of
them.

After getting the first results, The model parameters are tuned by training again on
ADAMwith larger mini-batch size and very small LR started by 1 × 10−5, then multiplying
the batch size by 2 and LR by 1/2 every 10 epochs as long as the test error has
improvement.

EXPERIMENTAL RESULTS AND DISCUSSION
All of training and testing are made on MATLAB2018 platform with GeForce 1,060 (6 GB
shared memory GPU). The main goal of this research is to design a CNN to recognize
multi-language characters of license plates but to generalize and verify the designed
architecture several tests on handwritten character recognition benchmarks are done
(verification process). The proposed approach showed very promising results. Table 7
summarizes the results obtained on MNIST dataset.

Table 7 Test results of FDCNN on MNIST.

Architecture Type Number of layers Error (%)

Cireşan et al. (2010) Stacked 15 0.35

Ciresan et al. (2011) Sparse 35 0.27

Ciregan, Meier & Schmidhuber (2012) Sparse 245 0.23

Moradi, Berangi & Minaei (2019) Sparse 70 0.28

Kowsari et al. (2018) Sparse — 0.18

Assiri (2019) Stacked 15 0.17

Hirata & Takahashi (2020) Sparse 28 0.16

Byerly, Kalganova & Dear (2020) Sparse 21 0.16

Proposed Stacked 12 0.28

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 13/22

http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

It is clear that stacked CNN has not outperformed the error of 0.35% in the literature for
MNIST but the approach used in (Assiri, 2019) obtained 0.17%. The proposed FDCNN
performance approximately reached close to the performance of five committees CNN of
(Ciresan et al., 2011). FDCNN do as the same performance as (Moradi, Berangi & Minaei,
2019) which it is a sparse design that uses Residual blocks and Inception blocks as
described in the literature. However, the architecture in (Assiri, 2019) has 15 layers with
13.12 M parameters, the results were obtained utilizing data augmentations, different
training processes and Dropout layers before and after each pooling layer with different
settings. FDCNN has less parameters and layers and showed good results on MNIST.

On the other hand, the proposed approach is tested on MADbase, AHCD and
AI9IK datasets for Arabic character recognition benchmarks to verify FDCNN and to
generalize using it in Arabic ALPR systems. Table 8 describes the classification error
regarding the stat-of-the-art on such datasets.

As seen in Table 8, for MADbase dataset, most of the tested approaches were based
on VGG architecture. Alphanumeric VGG (Mudhsh & Almodfer, 2017) reported a
validation error of 0.34% that did not hold on the test set while FDCNN obtained 0.15%
validation error and 0.34% test error. The proposed approach outperformed Arabic
character recognition benchmarks state-of-the-arts for both digits and letters used in

Table 8 Arabic character recognition benchmarks state-of-the-art and proposed approach test errors.

Dataset Architecture Type Layers Parameters Error

MADbase
28 × 28

RBF SVM
Abdleazeem & El-Sherif (2008)

Linear — — 0.52%

LeNet5
El-Sawy, EL-Bakry & Loey (2017)

Stacked 7 51 K 12%

Alphanumeric VGG
Mudhsh & Almodfer (2017)

Stacked 17 2.1 M 0.34% validation

VGG12 REGU
Sousa (2018)

Average of 4 stacked CNN 66 18.56 M 0.48%

Proposed Stacked 12 1.69 M 0.34%

AHCD
32 × 32

CNN
El-Sawy, Loey & EL-Bakry (2017)

Stacked 7 1.8 M 5.1%

CNN
Younis (2017)

Stacked 6 200 K 2.4%

VGG12 REGU
Sousa (2018)

Average of 4 stacked CNN 66 18.56 M 1.58%

CNN
Najadat, Alshboul & Alabed (2019)

Stacked 10 Not mentioned 2.8%

Proposed Stacked 13 2.94 M 1.39%

AI9IK
32 × 32

RBF SVM
Torki et al. (2014)

Linear — — 5.72%

CNN
Younis (2017)

Stacked 6 200 K 5.2%

Proposed Stacked 13 2.94 M 3.27%

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 14/22

http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

Arabic language with less number of layers and learnable parameters. It has succeed this
verification process on these datasets too.

In Table 8, input layer is included in the determination of the number layers (Lecun
et al., 1998) for all architectures and ReLU layer is not considered as a layer but BN is
considered as a layer. Sousa (2018) considered convolution, pooling and FC layers when
the number of layers was declared but four trained CNNs were used with softmax
averaging, this is why the number of layers and learnable parameters are high. Najadat,
Alshboul & Alabed (2019) did not declare the most of network parameters like kernel size
in every convolution layer and they changed many parameters to enhance the model. In
Younis (2017), 28 × 28 input images were used and no pooling layers were included.

On the other hand, and in the same verification process, the proposed approach is tested
on FashionMNIST benchmark too to generalize using it over grayscale tiny images. As
shown in Table 9, the proposed approach outperformed the stacked CNN architectures
and reached near DENSER network in Assunção et al. (2018) and EnsNet in Hirata &
Takahashi (2020) with less layers and parameters but with a good performance. It can be
said that FDCNN has a very good verification performance on FashionMNIST dataset.
FDCNN outperformed (Byerly, Kalganova & Dear, 2020) results on Fashion-MNIST
benchmark while (Byerly, Kalganova & Dear, 2020) outperformed FDCNN on MNIST.

Furthermore, FDCNN is tested also on Arabic LP characters from KSA. It could
classify the test set with error of 0.46%. It outperformed the the recognition error results of
1.78% in Khaled, Rached & Hasan (2010). FDCNN has successfully verified on KSA Arabic
LP characters dataset.

In this research and for more verification, FDCNN performance is also tested on
both common publicly available LP benchmark characters and the new LPALIC dataset.
Table 10 shows the promising results on LP benchmarks. FDCNN outperformed the stat-
of-art results on common LP datasets for isolated character recognition problem. For
Zemris and ReId datasets the proposed FDCNN was trained on LPALIC dataset and tested
on all characters in both test sets. It is clear that FDCNN has efficiently verified on
common LP benchmarks.

For more analysis, another test is made on the introduced LPALIC dataset to analyze
the recognition error on characters per country. Table 11 describes the results. As seen in

Table 9 Test results of FDCNN on FashionMNIST.

Architecture Type Layers Parameters Error (%)

SVM (Xiao, Rasul & Vollgraf, 2017) Linear — — 10.3

DENSER (Assunção et al., 2018) Sparse — — 4.7

WRN (Zhong et al., 2017) Sparse 28 36.5 M 3.65

VGG16 (Zeng et al., 2018) Sparse 16 138 M 2.34

CNN (Chou et al., 2019) Stacked 16 0.44 M 8.32

BRCNN (Byerly, Kalganova & Dear, 2020) Sparse 16 1.51 M 6.34

EnsNet (Hirata & Takahashi, 2020) Sparse 28 28.67 M 4.7

Proposed Stacked 12 1.69 M 5.00

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 15/22

http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

Table 11, the highest error is in classifying USA LP characters because it has more
colors, drawings and shapes other than characters and also there is a small number of
instances in the characters dataset. However, a very high recognition accuracy is achieved
on Turkey and EU since they have the same standard and style for LPs. In Turkey, 10 digits
and 23 letter is used since letters like Q, W and X are not valid in Turkish language.
Additionally, FDCNN could classify Arabic LP characters with very low error. UAE
characters set has a small number of cropped characters that is why it is tested just by
FDCNN trained on other countries character sets.

To make robust tests, the characters were split manually and randomly as seen in
Table 11. In manual split, the most difficult characters were put in the test set and the
others in the training set while in random split 80% were split for training and the rest of
them for testing. As described in Table 3, the number of characters per country is not

Table 10 Recognition error of proposed architecture on LP benchmarks datasets.

Architecture Dataset Layers Parameters Error (%)

SVM (Panahi & Gholampour, 2017) Zemris — — 3

LCR-Alexnet (Meng et al., 2018) 12 >2.33 M 2.7

Proposed 12 1.69 M 0.979

OCR (Dlagnekov, 2005) UCSD — — 10.5

Proposed 12 1.69 M 1.51

MLP (Martinsky, 2007) Snapshots — — 15

Proposed 12 1.69 M 0.42

CNN (Špaňhel et al., 2017) ReID 12 17 M 3.5

DenseNet169 (Zhu et al., 2019) 169 >15.3 M 6.35

Proposed 12 1.69 M 1.09

CNN (Laroca et al., 2018) ssUFPR 26 43.1 M 35.1

Proposed trained just on UFPR 12 1.69 M 4.29

Proposed trained on LPALIC 12 1.69 M 2.03

Line processing algorithm
(Khaled, Rached & Hasan, 2010)

KSA — — 1.78

Proposed 12 1.69 M 0.46

FDCNN LPALIC 12 1.69 M 0.97

Table 11 Test recognition error per country characters with different training instances.

Characters set Number of
instances
Train/test

Manual
split

Trained
on other
countries

Random 80/20%
split average
error (%)

Random 70/10/20%
split average
error (%)

TR 48,748/11,755 2.67% 1.82% 0.97 0.99

EU 23,299/9,477 2.30% 1.07% 1.03 0.80

USA 5,960/1,424 10.88% 3.51% 1.96 1.79

UAE 1,279/1,724 — 1.51% 0.9 1.08

All Latin characters 96,899/24,380 2.08% — 0.97 1.06

KSA 46,981/3,018 0.43% — 0.26 0.30

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 16/22

http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

equal, which resulted various recognition accuracies in Table 11. Since the number of
UAE characters is not large enough to train FDCNN, Latin characters from other countries
were used for training but the test was done only on UAE test set. FDCNN could learn
features that give good average accuracy. In fact, the Latin characters in LPALIC have
various background and foreground colors which make the classification more challenging
than Arabic characters set, but FDCNN shows a promising recognition results on both and
also on handwritten characters as well.

In the manual split in Table 11, the country’s characters training and testing sets
were used to train and test FDCNN. In trained on other countries, the FDCNNwas trained
on both the country’s characters training set and other countries characters but tested only
on that country’s test set. In the random 80/20 split, the country’s characters were split
randomly into training and testing sets, and FDCNN was trained on both the split
country’s characters training set and other countries characters but tested only on that split
country’s test set, a lot of random split tests were done and the average errors were reported
in the table.

Furthermore, in Table 11, validation sets were also used to guarantee in a sufficiently
clear way that the results were not optimized specifically for those test sets. 70% of the
dataset is randomly split for training, 10% for validation and 20% for testing. The training
hyperparameters were optimized on a validation set, and the best parameters for the
validation set were then be used to calculate the error on the test set. Those different
test analyses were done to validate and evaluate the results and reduce the overfitting
problem. In fact, the Latin characters in LPALIC have various background and foreground
colors which make the classification more challenging than Arabic characters set, but
FDCNN shows a promising recognition results on both and also on handwritten
characters as well.

CONCLUSION
This research focused on deep learning technique of CNNs to recognize multi-language LP
characters for both Latin and Arabic characters used in vehicle LPs. A new approach is
proposed, analyzed and tested on Latin and Arabic CR benchmarks for both LP and
handwritten characters recognition. The proposed approach consists of proposing
FDCNN architecture, FDCNN parameter selection and training process. The proposed full
depth and width selection ideas are very efficient in extracting features from tiny grayscale
images. The complexity of FDCNN is also analyzed in terms of number of learnable
parameters and feature maps memory usage.The full depth concept of reducing the feature
maps size to one neuron has decreased the total number of learnable parameters while
achieving very good results. Implementation of FDCNN approach is simple and can be
used in real time applications worked on small devices like mobiles, tablets and some
embedded systems. Very promising results were achieved on some common benchmarks
like MNIST, FashionMNIST, MADbase, AIA9K, AHCD, Zemris, ReId, UFPR and the
newly introduced LPALIC dataset. FDCNN performance is verified and compared to the
state-of-the-art results in the literature. A new real LPs cropped characters dataset is also
introduced. It is the largest dataset for LP characters in Turkey and KSA. More tests can be

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 17/22

http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

done on FDCNN for future work to be the core of CNN processor. Also, more experiments
can be conducted to hybrid FDCNNwith some common blocks like residual and inception
blocks. Additionally, the proposed full depth approach may be applied to other stacked
CNNs like Alexnet and VGG networks.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Mohammed Salemdeeb conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Sarp Ertürk analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The trained models, codes, tests and datasets are available at Kaggle: SalemDeeb, M.
(2020). “Multi-Language LP Character Recognition

Full Depth Convolutional Neural Network”. Kaggle. Dataset. https://www.kaggle.com/
dataset/b4697afbddab933081344d1bed3f7907f0b2b2522f637adf15a5fcea67af2145.

All the files can be accessed using MATLAB.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.576#supplemental-information.

REFERENCES
Abdleazeem S, El-Sherif E. 2008. Arabic handwritten digit recognition. International Journal of

Document Analysis and Recognition 11(3):127–141 DOI 10.1007/s10032-008-0073-5.

Asif MR, Chun Q, Hussain S, Fareed MS, Khan S. 2017. Multinational vehicle license plate
detection in complex backgrounds. Journal of Visual Communication and Image Representation
46(1):176–186 DOI 10.1016/j.jvcir.2017.03.020.

Asif MR, Qi C, Wang T, Fareed MS, Raza SA. 2019. License plate detection for multi-national
vehicles: an illumination invariant approach in multi-lane environment. Computers & Electrical
Engineering 78(8):132–147 DOI 10.1016/j.compeleceng.2019.07.012.

Assiri YS. 2019. Stochastic optimization of plain convolutional neural networks with
simple methods. In: 15th International Conference on Machine Learning and Data Mining,
MLDM. Vol. 2. New York: ibai-Publishing, 833–844.

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 18/22

https://www.kaggle.com/dataset/b4697afbddab933081344d1bed3f7907f0b2b2522f637adf15a5fcea67af2145
https://www.kaggle.com/dataset/b4697afbddab933081344d1bed3f7907f0b2b2522f637adf15a5fcea67af2145
http://dx.doi.org/10.7717/peerj-cs.576#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.576#supplemental-information
http://dx.doi.org/10.1007/s10032-008-0073-5
http://dx.doi.org/10.1016/j.jvcir.2017.03.020
http://dx.doi.org/10.1016/j.compeleceng.2019.07.012
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

Assunção F, Lourenço N, Machado P, Ribeiro B. 2018. DENSER: deep evolutionary network
structured representation. arXiv. Available at http://arxiv.org/abs/1801.01563.

Bengio Y. 2012. Practical recommendations for gradient-based training of deep architectures. Berlin
Heidelberg, Berlin, Heidelberg: Springer, 437–478.

Bulan O, Kozitsky V, Burry A. 2015. Towards annotation free license plate recognition. In: IEEE
18th International Conference on Intelligent Transportation Systems. 1495–1499.

Bulan O, Kozitsky V, Ramesh P, Shreve M. 2017. Segmentation- and annotation-free license plate
recognition with deep localization and failure identification. IEEE Transactions on Intelligent
Transportation Systems 18(9):2351–2363 DOI 10.1109/TITS.2016.2639020.

Byerly A, Kalganova T, Dear I. 2020. A branching and merging convolutional network with
homogeneous filter capsules. arXiv. Available at http://arxiv.org/abs/2001.09136.

Chang S-L, Chen L-S, Chung Y-C, Chen S-W. 2004. Automatic license plate recognition. IEEE
Transactions on Intelligent Transportation Systems 5(1):42–53 DOI 10.1109/TITS.2004.825086.

Chou F, Tsai Y, Chen Y, Tsai J, Kuo C. 2019. Optimizing parameters of multi-layer convolutional
neural network by modeling and optimization method. IEEE Access 7:68316–68330
DOI 10.1109/ACCESS.2019.2918563.

Ciregan D, Meier U, Schmidhuber J. 2012. Multi-column deep neural networks for image
classification. In: IEEE Conference on Computer Vision and Pattern Recognition. 3642–3649.

Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. 2011. Convolutional neural network
committees for handwritten character classification. In: International Conference on Document
Analysis and Recognition. 1135–1139.

Cireşan DC, Meier U, Gambardella LM, Schmidhuber J. 2010. Deep, big, simple neural nets for
handwritten digit recognition. Neural Computation 22(12):3207–3220
DOI 10.1162/NECO_a_00052.

Comelli P, Ferragina P, Granieri MN, Stabile F. 1995. Optical recognition of motor vehicle
license plates. IEEE Transactions on Vehicular Technology 44(4):790–799
DOI 10.1109/25.467963.

Dlagnekov L. 2005. Video-based car surveillance: license plate, make, and model recognition.
Master’s thesis, University of California, San Diego.

Dorbe N, Jaundalders A, Kadikis R, Nesenbergs K. 2018. FCN and LSTM based computer vision
system for recognition of vehicle type, license plate number, and registration country. Automatic
Control and Computer Sciences 52(2):146–154 DOI 10.3103/S0146411618020104.

Du S, Ibrahim M, Shehata M, Badawy W. 2013. Automatic license plate recognition (ALPR): a
state-of-the-art review. IEEE Transactions on Circuits and Systems for Video Technology
23(2):311–325 DOI 10.1109/TCSVT.2012.2203741.

El-Sawy A, EL-Bakry H, Loey M. 2017. CNN for handwritten arabic digits recognition based on
lenet-5. In: Hassanien AE, Shaalan K, Gaber T, Azar AT, Tolba MF, eds. International
Conference on Advanced Intelligent Systems and Informatics. Berlin: Springer International
Publishing, 566–575.

El-Sawy A, Loey M, EL-Bakry H. 2017. Arabic handwritten characters recognition using
convolutional neural network. WSEAS Transactions on Computer Reseach 5:11–19.

El-Sherif EA, Abdelazeem S. 2007. A two-stage system for arabic handwritten digit recognition
tested on a new large database. In: Artificial Intelligence and Pattern Recognition.

Eltay M, Zidouri A, Ahmad I. 2020. Exploring deep learning approaches to recognize handwritten
arabic texts. IEEE Access 8:89882–89898 DOI 10.1109/ACCESS.2020.2994248.

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 19/22

http://arxiv.org/abs/1801.01563
http://dx.doi.org/10.1109/TITS.2016.2639020
http://arxiv.org/abs/2001.09136
http://dx.doi.org/10.1109/TITS.2004.825086
http://dx.doi.org/10.1109/ACCESS.2019.2918563
http://dx.doi.org/10.1162/NECO_a_00052
http://dx.doi.org/10.1109/25.467963
http://dx.doi.org/10.3103/S0146411618020104
http://dx.doi.org/10.1109/TCSVT.2012.2203741
http://dx.doi.org/10.1109/ACCESS.2020.2994248
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

Fernández F, Negri P, Mejail M, Jacobo J. 2011. A multi-style license plate recognition system
based on tree of shapes for character segmentation. In: San Martin C, Kim S-W, eds. Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applications. Berlin Heidelberg:
Springer, 443–450.

Garg I, Panda P, Roy K. 2018. A low effort approach to structured CNN design using PCA. arXiv.
Available at http://arxiv.org/abs/1812.06224.

Gonçalves GR, Menotti D, Schwartz WR. 2016. License plate recognition based on temporal
redundancy. In: IEEE International Conference on Intelligent Transportation Systems (ITSC).
Piscataway: IEEE, 2577–2582.

Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Cambridge: MIT Press.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 770–778.

Henry C, Ahn SY, Lee S. 2020.Multinational license plate recognition using generalized character
sequence detection. IEEE Access 8:35185–35199 DOI 10.1109/ACCESS.2020.2974973.

Hirata D, Takahashi N. 2020. Ensemble learning in cnn augmented with fully connected
subnetworks. arXiv. Available at http://arxiv.org/abs/2003.08562.

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H.
2017. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv.
Available at http://arxiv.org/abs/1704.04861.

Huang G, Liu Z, Van der Maaten L, Weinberger KQ. 2017. Densely connected convolutional
networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:
IEEE, 2261–2269.

Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K. 2016. Squeezenet: alexnet-
level accuracy with 50x fewer parameters and 1mb model size. arXiv. Available at http://arxiv.
org/abs/1602.07360.

Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: Proceedings of the 32nd International Conference on International
Conference on Machine Learning, volume 37 of ICML’15. 448–456.

Khaled MA, Rached NZ, Hasan RO. 2010. Pixel density: recognizing characters in saudi license
plates. In: 10th International Conference on Intelligent Systems Design and Applications.
308–313.

Kowsari K, Heidarysafa M, Brown DE, Meimandi KJ, Barnes LE. 2018. Rmdl: Random
multimodel deep learning for classification. In: Proceedings of the 2nd International Conference
on Information System and Data Mining, ICISDM ’18. New York: ACM, 19–28.

Kraupner K. 2003. Using multilayer perceptron to recognize numeric-alphanumeric characters on
license plates. Bsc. eng. thesis, University of Zagreb, Croatia.

Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional
neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, eds. Advances in Neural
Information Processing Systems. Vol. 25. New York: Curran Associates, Inc, 1097–1105.

Laroca R, Severo E, Zanlorensi LA, Oliveira LS, Gonçalves GR, Schwartz WR, Menotti D. 2018.
A robust real-time automatic license plate recognition based on the YOLO detector. In:
International Joint Conference on Neural Networks (IJCNN). 1–10.

Le NQK, Nguyen V-N. 2019. SNARE-CNN: a 2D convolutional neural network architecture to
identify snare proteins from high-throughput sequencing data. PeerJ Computer Science
5(17):e177 DOI 10.7717/peerj-cs.177.

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 20/22

http://arxiv.org/abs/1812.06224
http://dx.doi.org/10.1109/ACCESS.2020.2974973
http://arxiv.org/abs/2003.08562
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://dx.doi.org/10.7717/peerj-cs.177
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

Lecun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11):2278–2324 DOI 10.1109/5.726791.

Li H, Wang P, Shen C. 2019. Toward end-to-end car license plate detection and recognition with
deep neural networks. IEEE Transactions on Intelligent Transportation Systems 20(3):1126–1136
DOI 10.1109/TITS.2018.2847291.

Martinsky O. 2007. Algorithmic and mathematical principles of automatic number plate
recognition systems. B.sc. eng. thesis, Brno University of Technology, Croatia.

Meng A, Yang W, Xu Z, Huang H, Huang L, Ying C. 2018. A robust and efficient method for
license plate recognition. In: 24th International Conference on Pattern Recognition (ICPR).
1713–1718.

Moradi R, Berangi R, Minaei B. 2019. OrthoMaps: an efficient convolutional neural network with
orthogonal feature maps for tiny image classification. IET Image Processing 13(12):2067–2076
DOI 10.1049/iet-ipr.2018.6620.

Mudhsh M, Almodfer R. 2017. Arabic handwritten alphanumeric character recognition using very
deep neural network. Information: An International Interdisciplinary Journal 8(3):105.

Najadat HM, Alshboul AA, Alabed AF. 2019. Arabic handwritten characters recognition using
convolutional neural network. In: IEEE 10th International Conference on Information and
Communication Systems (ICICS). Piscataway: IEEE, 147–151.

Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY. 2011. Reading digits in natural images
with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised
Feature Learning 2011.

Panahi R, Gholampour I. 2017. Accurate detection and recognition of dirty vehicle plate numbers
for high-speed applications. IEEE Transactions on Intelligent Transportation Systems
18(4):767–779 DOI 10.1109/TITS.2016.2586520.

Park S, Yoon H, Park S. 2019. Multi-style license plate recognition system using k-nearest
neighbors. KSII Transactions on Internet and Information Systems 13(5):2509–2528.

Salemdeeb M, Erturk S. 2020. Multi-national and multi-language license plate detection using
convolutional neural networks. Engineering, Technology Applied Science Research
10(4):5979–5985 DOI 10.48084/etasr.3573.

Selmi Z, Halima MB, Pal U, Alimi MA. 2020. DELP-DAR system for license plate detection and
recognition. Pattern Recognition Letters 129:213–223 DOI 10.1016/j.patrec.2019.11.007.

Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image
recognition. In: International Conference on Learning Representations.

Sousa IPD. 2018. Convolutional ensembles for arabic handwritten character and digit recognition.
PeerJ Computer Science 4(3):e167V DOI 10.7717/peerj-cs.167.

Špaňhel J, Sochor J, Juránek R, Herout A, Maršík L, Zemčík P. 2017. Holistic recognition of low
quality license plates by cnn using track annotated data. In: 14th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE, 1–6.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich
A. 2015. Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Piscataway: IEEE, 1–9.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2016. Rethinking the inception architecture
for computer vision. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Piscataway: IEEE.

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 21/22

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TITS.2018.2847291
http://dx.doi.org/10.1049/iet-ipr.2018.6620
http://dx.doi.org/10.1109/TITS.2016.2586520
http://dx.doi.org/10.48084/etasr.3573
http://dx.doi.org/10.1016/j.patrec.2019.11.007
http://dx.doi.org/10.7717/peerj-cs.167
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

Torki M, Hussein ME, Elsallamy A, Fayyaz M, Yaser S. 2014. Window-based descriptors for
arabic handwritten alphabet recognition: a comparative study on a novel dataset. arXiv.
Available at http://arxiv.org/abs/1411.3519.

Xiao H, Rasul K, Vollgraf R. 2017. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv. Available at http://arxiv.org/abs/1708.07747.

Xie L, Ahmad T, Jin L, Liu Y, Zhang S. 2018. A new CNN-based method for multi-directional car
license plate detection. IEEE Transactions on Intelligent Transportation Systems 19(2):507–517
DOI 10.1109/TITS.2017.2784093.

Xu Z, Yang W, Meng A, Lu N, Huang H. 2018. Towards end-to-end license plate detection and
recognition: a large dataset and baseline. In: Proceedings of the European Conference on
Computer Vision (ECCV). 255–271.

Younis K. 2017. Arabic handwritten character recognition based on deep convolutional neural
networks. Jordanian Journal of Computers and Information Technology 3(3):186–200
DOI 10.5455/jjcit.71-1498142206.

Yépez J, Castro-Zunti RD, Ko S. 2019. Deep learning-based embedded license plate localisation
system. IET Intelligent Transport Systems 13(10):1569–1578 DOI 10.1049/iet-its.2019.0082.

Zagoruyko S, Komodakis N. 2016.Wide residual networks. In: Proceedings of the British Machine
Vision Conference (BMVC). York: BMVA Press, 87.1–87.12.

Zeng S, Zhang B, Zhang Y, Gou J. 2018. Collaboratively weighting deep and classic representation
via l2 regularization for image classification. In: Proceedings of the 10th Asian Conference on
Machine Learning. 95:502–517.

Zhong Z, Zheng L, Kang G, Li S, Yang Y. 2017. Random erasing data augmentation. arXiv.
Available at http://arxiv.org/abs/1708.04896.

Zhu L, Wang S, Li C, Yang Z. 2019. License plate recognition in urban road based on vehicle
tracking and result integration. Journal of Intelligent Systems 29(1):1587–1597.

Salemdeeb and Ertürk (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.576 22/22

http://arxiv.org/abs/1411.3519
http://arxiv.org/abs/1708.07747
http://dx.doi.org/10.1109/TITS.2017.2784093
http://dx.doi.org/10.5455/jjcit.71-1498142206
http://dx.doi.org/10.1049/iet-its.2019.0082
http://arxiv.org/abs/1708.04896
http://dx.doi.org/10.7717/peerj-cs.576
https://peerj.com/computer-science/

	Full depth CNN classifier for handwritten and license plate characters recognition
	Introduction
	Datasets
	Proposed approach
	Experimental results and discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

