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1. Introduction

Since 1938, the year of its publication, Ostrowski inequality [22] has attracted attention of many
researchers. This inequality has become a cornerstone in mathematics owing to abundance of its
application in numeric integration methods, some particular means and many other fields. Especially
in the last 25 years, many authors have investigated refinements, counterparts and generalizations of
Ostrowki inequality. They also established new results connected to Ostrowski inequality under
various assumptions of the functions. For instance, Dragomir et al. pointed out some generalizations
of Ostrowski inequality and applied them to some special means and numerical integration in [11].
What’s more, it is presented an original result for twice differentiable functions by Cerone et al. in [8].
In [10], Dragomir and Barnett also found an inequality different from result given in [8] by using
mappings whose second derivatives are limited. Sarikaya and Set proved new inequalities for
mappings whose second derivative are the element of L1, Lp and L∞ by using a new Montgomery
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type identity in [23]. As well as the cases when first and second derivatives are required, there are
problems in which higher-order derivatives are required. Therefore, many researchers worked on
inequalities involving higher-order differentiable functions. For example, Cerone et al. deduced
Ostrowski type results by using functions whose higher-order derivatives are bounded in [9].
Furthermore, in [1, 19, 25, 28], authors established generalized Ostrowski type and related inequalities
for higher-order differentiable functions on Lp and L∞. Recently, perturbed integral inequalities have
become a widely used generalization method. Dragomir deduced novel perturbed type inequalities for
absolutely continuous mappings in [12, 13], and some other researchers obtained similar inequalities
to Dragomir’s results for twice differentiable functions in [7, 15]. Morever, Erden and Sarikaya
provided some perturbed results for functions whose higher-order derivatives have different properties
such as convex, bounded, bounded variation and Lipschitzian in [16, 17].

Another method of generalizing inequalities is to use three or five-step kernels. A large number of
companion of these recent inequalities, based on quadratic kernel function with three and five
sections, for various functions are established. As an example, the authors yielded certain companions
of Ostrowski type for bounded variation mappings in [5, 6]. In addition, some mathematicians
examined three companion versions of perturbed inequalities under the diverse assumptions of the
mappings in [14, 24]. By means of the quadratic kernel function with three pieces, some companions
of Perturbes conclusions of Ostrowski type for the case when f ′′ ∈ L1, f ′′ ∈ L2 and f ′′′ ∈ L2 are
derived by Liu et al. in [20]. Afterwards, Qayyum et al. generalized these inequalities for five-step
quadratic kernel and gave some applications for quadrature rules and CDF of a random variable
in [26]. Moreover in [27] they extended similar companions of Ostrowski type to higher-order
differentiable functions for the case when f (n+1) ∈ L1, f (n) ∈ L2 and f (n+1) ∈ L2.

In 1938, Ostrowski in [22] presented, in the following theorem, his famous integral inequality,
known as Ostrowski inequality.

Theorem 1. Suppose that ψ :
[
α, β

]
→ R is a differentiable mapping on (α, β) whose derivative

ψ′ : (α, β)→ R is bounded on (α, β) , i.e. ‖ψ′‖∞ := sups∈(α,β) |ψ
′(s)| < ∞. Then, we have the inequality∣∣∣∣∣∣∣∣∣ψ(y) −

1
β − α

β∫
α

ψ(s)ds

∣∣∣∣∣∣∣∣∣ ≤
1
4

+

(
y − a+b

2

)2

(β − α)2

 (b − a) ‖ψ′‖∞ , (1.1)

for all y ∈
[
α, β

]
. The constant 1

4 is the best possible.

Dragomir in [12] provided the following identity to obtain new perturbed inequalities for absolutely
continuous mappings.

Theorem 2. Assume that ψ :
[
α, β

]
→ C is an absolutely continuous on

[
α, β

]
and y ∈

[
α, β

]
. Then,

for any γ1(y) and γ2(y) complex numbers, we have

1
β − α

y∫
a

(s − a)
[
ψ′(s) − γ1(y)

]
ds +

1
β − α

b∫
y

(s − b)
[
ψ′(s) − γ2(y)

]
ds

=ψ(y) +
1

2 (β − α)

[
(b − y) γ2(y) − (y − a)2 γ1(y)

]
−

1
β − α

b∫
a

ψ(s)ds
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where the integrals presented in the left side of the above expression are evaluated in the Lebesgue
sense.

In [16], Erden obtained the following equality to prove some perturbed inequalities of Ostrowski
type for higher degree differentiable mappings.

Lemma 1. Supposing that ψ :
[
α, β

]
→ C is an n−time differentiable function on (α, β) and y ∈

[
α, β

]
.

Then, for any γ1(y) and γ2(y) complex numbers, one has the identity
y∫

α

(s − α)n

n!

[
ψ(n)(s) − γ1(y)

]
ds +

β∫
y

(s − β)n

n!

[
ψ(n)(s) − γ2(y)

]
ds

=

n−1∑
k=0

(−1)n+1 (β − y)k+1 + (−1)n+1−k (y − α)k+1

(k + 1)!
ψ(k) (y)

− γ1(y)
(y − α)n+1

(n + 1)!
− (−1)n γ2(y)

(β − y)n+1

(n + 1)!
+ (−1)n

β∫
α

ψ(s)ds,

(1.2)

where the integrals given in the left side of (1.2) are calculated in the Lebesgue sense.

An equality for higher-order differentiable mappings are first developed in this work. Afterwards,
new perturbed inequalities for function whose higher-order derivatives are absolutely continuous are
established, and sufficiency of the newly obtained composite quadrature rules is observed. Finally,
some applications for exponential and logarithmic functions are given. At this point is worth to
remark that recently a class of “absolutely continuous functions” of n variables was introduced by J.
Maly (see [21]) and subsequently modified by some mathematicians like S. Hencl (see [18]) and D.
Bongiorno (see [2]–[4]). Therefore, an interesting open problem could be to establish new perturbed
inequalities by these new classes of absolutely continuous functions.

2. An identity for high degree differentiable functions

In this section, it is obtained an equality for n−times differentiable functions. This identity and its
particular cases will be used to prove our main results.

Lemma 2. Assume that ψ : [a, b] → R is an n−times differentiable function such that (n-1)-th
derivative of ψ is absolutely continuous on [a, b] , for n ∈ N. Then, for any µ j(x), j = 1, 2, 3 real
numbers and all x ∈

[
a, a+b

2

]
, we have the identity

x∫
a

(t − a)n

n!

[
ψ(n)(t) − µ1(x)

]
dt +

a+b−x∫
x

1
n!

(
t −

a + b
2

)n [
ψ(n)(t) − µ2(x)

]
dt

+

b∫
a+b−x

(t − b)n

n!

[
ψ(n)(t) − µ3(x)

]
dt

=S (ψ : n, x) − R(n, x) + (−1)n

b∫
a

ψ(t)dt

(2.1)
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where S (ψ : n, x) and R(n, x) are defined by

S (ψ : n, x)

=
n−1∑
k=0

(−1)n+1[ψ(k)(a+b−x)+(−1)kψ(k)(x)]
(k+1)!

[
(x − a)k+1 + (−1)k

(
a+b

2 − x
)k+1

] (2.2)

and
R(n, x)

=
[
µ1(x) + (−1)n µ3(x)

] (x−a)n+1

(n+1)! +
[
1 + (−1)n] µ2(x)

(n+1)!

(
a+b

2 − x
)n+1

.

Proof. Applying the integration by parts n times to the integrals in the left of (2.1) for Lebesgue formula
and then arranging the results by using fundamental analysis operations, we can readily write the
equality (2.1). �

Now, we give particular cases of (2.1) in the following Corollary.

Corollary 1. Under the assumptions of Lemma 2 with µ j(x) = µ j, j = 1, 2, 3
i) if we take x = a+b

2 , then we have

a+b
2∫

a

(t − a)n

n!

[
ψ(n)(t) − µ1

]
dt + +

b∫
a+b

2

(t − b)n

n!

[
ψ(n)(t) − µ3

]
dt

=

n−1∑
k=0

(−1)n+1
[
1 + (−1)k

]
(b − a)k+1

(k + 1)!2k+1 ψ(k)
(
a + b

2

)

−
[
λ1 + (−1)n µ3

] (b − a)n+1

2n+1 (n + 1)!
+ (−1)n

b∫
a

ψ(t)dt

which also is a special case of identity (1.2).
ii) if we choose x = 3a+b

4 , then we get

3a+b
4∫

a

(t − a)n

n!

[
ψ(n)(t) − µ1

]
dt +

a+3b
4∫

3a+b
4

1
n!

(
t −

a + b
2

)n [
ψ(n)(t) − µ2

]
dt

+

b∫
a+3b

4

(t − b)n

n!

[
ψ(n)(t) − µ3

]
dt

=

n−1∑
k=0

(−1)n+1
[
1 + (−1)k

]
(b − a)k+1

(k + 1)!4k+1

[
µ(k)

(
a + 3b

4

)
+ (−1)k ψ(k)

(
3a + b

4

)]

−
(b − a)n+1

4n+1 (n + 1)!
{[
µ1 + (−1)n µ3

]
+

[
1 + (−1)n] µ2

}
+ (−1)n

b∫
a

ψ(t)dt.
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In addition to these results, it can be obtained main equality established by Dragomir in [14] if n = 1
is taken in (2.1). Also, should we choose n = 2 in the identity (2.1), we have the equality that is proved
by Sarikaya et al. in [24]. So, it can be easily deduced great numbers of inequalities which is derived
from our main results obtained by using the equality (2.1).

3. Inequalities for absolutely continuous derivatives

It is examined the case when ψ(n+1) ∈ L∞ [a, b] in the following Theorem.

Theorem 3. Assuming that ψ : [a, b] → R is an n−times differentiable function such that n-th
derivative of ψ is absolutely continuous on [a, b] , for n ∈ N. If the (n + 1) .th derivative ψ(n+1) is
bounded on (a, b) , then, for any x ∈

[
a, a+b

2

]
, one possesses∣∣∣∣∣∣∣S (ψ : n, x) −

[
1 + (−1)n]
(n + 1)!

(x − a)n+1 +

(
a + b

2
− x

)n+1ψ(n)(x)

+ (−1)n

b∫
a

ψ(t)dt

∣∣∣∣∣∣∣∣
≤

(x − a)n+2

(n + 2)!

∥∥∥ψ(n+1)
∥∥∥

[a,x],∞
+

2
(n + 1)!

(
a + b

2
− x

)n+2 ∥∥∥ψ(n+1)
∥∥∥

[x,b],∞

+ .

[
(b − a) (x − a)n+1

(n + 1)!
−

2n + 3
(n + 2)!

(x − a)n+2
] ∥∥∥ψ(n+1)

∥∥∥
[x,b],∞

(3.1)

where S (ψ : n, x) is defined as in (2.2).

Proof. Writing ψ(n)(x) instead of µ1(x), µ2(x), µ3(x) in (2.1) and later taking modulus in both sides of
the equality (2.1), we have the inequality∣∣∣∣∣∣∣S (ψ : n, x) −

[
1 + (−1)n]
(n + 1)!

(x − a)n+1 +

(
a + b

2
− x

)n+1ψ(n)(x)

+ (−1)n

b∫
a

ψ(t)dt

∣∣∣∣∣∣∣∣
≤

x∫
a

(t − a)n

n!

∣∣∣ψ(n)(t) − ψ(n)(x)
∣∣∣ dt +

a+b−x∫
x

1
n!

∣∣∣∣∣t − a + b
2

∣∣∣∣∣n ∣∣∣ψ(n)(t) − ψ(n)(x)
∣∣∣ dt

+

b∫
a+b−x

(b − t)n

n!

∣∣∣ψ(n)(t) − ψ(n)(x)
∣∣∣ dt.

(3.2)

Due to the fact that ∣∣∣ψ(n)(t) − ψ(n)(x)
∣∣∣ =

∣∣∣∣∣∣∣∣
t∫

x

ψ(n+1)(ξ)dξ

∣∣∣∣∣∣∣∣ ,
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it follows that
x∫

a

(t − a)n

n!

x∫
t

∣∣∣ψ(n+1)(ξ)
∣∣∣ dξdt ≤

x∫
a

(t − a)n

n!
(x − t)

∥∥∥ψ(n+1)
∥∥∥

[t,x],∞
dt

≤
∥∥∥ψ(n+1)

∥∥∥
[a,x],∞

x∫
a

(t − a)n

n!
(x − t) dt

=
(x − a)n+2

(n + 2)!

∥∥∥ψ(n+1)
∥∥∥

[a,x],∞
.

If we similarly calculate the other integrals in the right of (3.2), and later we add all these
inequalities, we can easily deduced desired inequality (3.1). �

Now, we establish a new inequality similar to the inequality (3.1) by using a different method in the
following Theorem.

Theorem 4. Supposing that ψ : [a, b] → R is an n−times differentiable function such that n-th
derivative of ψ is absolutely continuous on [a, b] , for n ∈ N. If ψ(n+1) ∈ Lr([a, b]) for r > 1 with
1
r + 1

s = 1, then, for any x ∈
[
a, a+b

2

]
, one has∣∣∣∣∣∣∣S (ψ : n, x) −
[
1 + (−1)n]
(n + 1)!

(x − a)n+1 +

(
a + b

2
− x

)n+1ψ(n)(x)

+ (−1)n

b∫
a

ψ(t)dt

∣∣∣∣∣∣∣∣
≤

(x − a)n+1+ 1
s

n!
B

(
n + 1, 1 +

1
s

) ∥∥∥ψ(n+1)
∥∥∥

[a,x],r

+
1
n!

(
a + b

2
− x

)n+1+ 1
s ∥∥∥ψ(n+1)

∥∥∥
[x,b],r

×

B(n + 1, 1 +
1
s

) +

n∑
k=0

(−1)k
(
n
k

)
2n+1−k+ 1

s

n + 1 − k + 1
s


+

1
n!

(b − x)n+1+ 1
s

n∑
k=0

(−1)k
(
n
k

)1 −
(
1 − x−a

b−x

)k+1+ 1
s

k + 1 + 1
s

∥∥∥ψ(n+1)
∥∥∥

[x,b],r

(3.3)

where S (ψ : n, x) is defined as in (2.2), and B(·, ·) is a beta function.

Proof. We consider the inequality (3.2). Using Holder’s inequality, which is applied to integrals, for
the first integral in the right of (3.2), we have

x∫
a

(t − a)n

n!

x∫
t

∣∣∣ψ(n+1)(ξ)
∣∣∣ dξdt ≤

x∫
a

(t − a)n

n!
(x − t)

1
s
∥∥∥ψ(n+1)

∥∥∥
[t,x],r

dt

≤
∥∥∥ψ(n+1)

∥∥∥
[a,x],r

x∫
a

(t − a)n

n!
(x − t)

1
s dt.
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Applying the change of the variable u = x−t
x−a to the above integral and from du = −dt

x−a , we
conclude that

x∫
a

(t − a)n

n!

x∫
t

∣∣∣ψ(n+1)(ξ)
∣∣∣ dξdt ≤

(x − a)n+1+ 1
s

n!
B

(
n + 1, 1 +

1
s

) ∥∥∥ψ(n+1)
∥∥∥

[a,x],r
.

In a similar way, if we use Holder’s inequality for the second integrals in the right of (3.2), we have

a+b−x∫
x

1
n!

∣∣∣∣∣t − a + b
2

∣∣∣∣∣n
t∫

x

∣∣∣ψ(n+1)(ξ)
∣∣∣ dξdt

≤
∥∥∥ψ(n+1)

∥∥∥
[x,b],r

a+b
2∫

x

1
n!

(
a + b

2
− t

)n

(t − x)
1
s dt

+
∥∥∥ψ(n+1)

∥∥∥
[x,b],r

a+b−x∫
a+b

2

1
n!

(
t −

a + b
2

)n

(t − x)
1
s dt

For we to calculate both of these integrals, we should apply the change of the variable

u =
t − x

a+b
2 − x

du =
dt

a+b
2 − x

.

Herewith, it is deduced that

a+b−x∫
x

1
n!

∣∣∣∣∣t − a + b
2

∣∣∣∣∣n
t∫

x

∣∣∣ψ(n+1)(ξ)
∣∣∣ dξdt

≤
1
n!

(
a + b

2
− x

)n+1+ 1
s ∥∥∥ψ(n+1)

∥∥∥
[x,b],r

×

B(n + 1, 1 +
1
s

) +

n∑
k=0

(−1)k
(
n
k

)
2n+1−k+ 1

s

n + 1 − k + 1
s

 .
For the last integral in the right of (3.2), if we use the change of the variable u = t−x

b−x after applying
Hölder’s inequality to this integral, then one has

b∫
a+b−x

(b − t)n

n!

t∫
x

∣∣∣ψ(n+1)(ξ)
∣∣∣ dξdt

≤
1
n!

(b − x)n+1+ 1
s

n∑
k=0

(−1)k
(
n
k

)1 −
(
1 − x−a

b−x

)k+1+ 1
s

k + 1 + 1
s

∥∥∥ψ(n+1)
∥∥∥

[x,b],r
.

Thus, desired inequality (3.3) can be found by combining all these integrals and the Theorem
is proved. �
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Theorem 5. Assuming that ψ : [a, b] → R is an n−times differentiable function such that n-th
derivative of ψ is absolutely continuous on [a, b] , for n ∈ N. If ψ(n+1) ∈ L1([a, b]), then, for any
x ∈

[
a, a+b

2

]
, we possess∣∣∣∣∣∣∣S (ψ : n, x) −

[
1 + (−1)n]
(n + 1)!

(x − a)n+1 +

(
a + b

2
− x

)n+1ψ(n)(x)

+ (−1)n

b∫
a

ψ(t)dt

∣∣∣∣∣∣∣∣
≤

(x − a)n+1

(n + 1)!

∥∥∥ψ(n+1)
∥∥∥

[a,x],1
+

(x − a)n+1

(n + 1)!

∥∥∥ψ(n+1)
∥∥∥

[x,b],1

+
2

(n + 1)!

(
a + b

2
− x

)n+1 ∥∥∥ψ(n+1)
∥∥∥

[x,b],1

(3.4)

where S (ψ : n, x) is defined as in (2.2).

Proof. Considering the first integral in the right of (3.2), we find that

x∫
a

(t − a)n

n!

x∫
t

∣∣∣ψ(n+1)(ξ)
∣∣∣ dξdt ≤

x∫
a

(t − a)n

n!

∥∥∥ψ(n+1)
∥∥∥

[t,x],1
dt

≤
∥∥∥ψ(n+1)

∥∥∥
[a,x],1

x∫
a

(t − a)n

n!
dt

=
(x − a)n+1

(n + 1)!

∥∥∥ψ(n+1)
∥∥∥

[a,x],1
.

If the other two integrals given in the right of (3.2) are observed in a similar way, then the inequality
given the Theorem can be deduced. The proof is thus completed. �

Corollary 2. Let f and x be defined as in Theorem 3. If we use the fact that

max {Υ,Φ} =
Υ + Φ

2
+

∣∣∣∣∣Υ − Φ

2

∣∣∣∣∣
and the property of maximum max {an, bn} = (max {a, b})n for a, b > 0 and n ∈ N in the right hand side
of (3.4), then one has the inequality∣∣∣∣∣∣∣S (ψ : n, x) −

[
1 + (−1)n]
(n + 1)!

(x − a)n+1 +

(
a + b

2
− x

)n+1ψ(n)(x)

+ (−1)n

b∫
a

ψ(t)dt

∣∣∣∣∣∣∣∣
≤

1
(n + 1)!

[
b − a

2
+

∣∣∣∣∣x − a + b
2

∣∣∣∣∣]n+1 ∥∥∥ψ(n+1)
∥∥∥

[a,b],1
.
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As well as these main results given in this section, if we choose x = a+b
2 or x = 3a+b

4 in the
inequalities (3.1), (3.3), and (3.4), then we can deduce new Ostrowski type inequalities. Furthermore,
taking n = 1 or n = 2 in inequalities presented in this section, we find some results obtained in the
earlier works. Because these results can be readily obtained by using elementary analysis operations,
the examination of these cases is left to reader.

4. Applications for quadrature rules

We handle applications of the inequalities presented in the former part so as to find the assessment
of composite quadrature rules. To put it in different way, the new approaches to the estimation of
quadrature formula for perturbed inequalities obtained by using mappings whose higher-order
derivatives are bounded are examined.

First of all, we observe relation between our new quadrature rules and exact value of the integrals
of the functions that will be presented. Then, we define new quadrature rules which are deduced in
investigating upper bound in Theorem 3.

b∫
a

ψ(t)dt ≈ Qn,1(ψ) =

n−1∑
k=0

(−1)k
[
ψ(k) (b) + (−1)k ψ(k) (a)

]
2k+1 (k + 1)!

(b − a)k+1

+

[
1 + (−1)n]

2n+1 (n + 1)!
(b − a)n+1 ψ(n)(a),

b∫
a

ψ(t)dt ≈ Qn,2(ψ) =

n−1∑
k=0

[
1 + (−1)k

]
ψ(k)

(
a+b

2

)
2k+1 (k + 1)!

(b − a)k+1

+

[
1 + (−1)n]

2n+1 (n + 1)!
(b − a)n+1 ψ(n)

(
a + b

2

)
and

b∫
a

ψ(t)dt ≈ Qn,3(ψ) =

n−1∑
k=0

[
1 + (−1)k

] [
ψ(k)

(
a+3b

4

)
+ (−1)k ψ(k)

(
3a+b

4

)]
(k + 1)!

(
b − a

4

)k+1

+ 2
[
1 + (−1)n]
(n + 1)!

(
b − a

4

)n+1

ψ(n)
(
3a + b

4

)
.

Now, we observe approaches to the estimation of Qn,1(ψ), Qn,2(ψ) and Qn,3(ψ) quadrature formulas
for the functions ψ1(x) = x4+2x2+1, ψ2(x) = cosx−x, ψ3(x) = ex sin x, ψ4(x) = ex2

, ψ5(x) = sin x−x3,
and ψ6(x) = ln(x2 + 1) sin(x2 + 1).

From the Table 1, we see that Qn,1(ψ) and Qn,2(ψ) quadrature rules give the precise value of the
integral of ψ1 for n = 4. This situation shows that Qn,1(ψ) and Qn,2(ψ) will present the exact value of
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the integrals of any functions which are polynomial of degree m for n = m.

Table 1. Error estimations for the functions ψ1, ψ2, ψ3.
ψ(x) [a, b]

∫ b

a
ψ(x)dx n Qn,1(ψ) Qn,2(ψ)

ψ1 [0, 1] 1, 866667 4 1, 866667 1, 866667
Error: 0 0

ψ2

[
0, π2

]
−0, 233701 10 −0, 233701 −0, 233701

Error: 0 0
ψ3 [0, 1] 0, 909331 6 0, 909338 0, 909331

Error: 7.0356E − 6 1.373E − 7
ψ3 [0, 1] 0, 909331 15 0, 909331 0, 909331

Error: 0 0

Liu et al. offered some quadrature rules deduced by using twice differentiable functions in [20].
While they find the errors 5.1 × 10−4 and 6.5 × 10−5 for the function ψ2 in their numerical results, we
can calculate the same function with the error 0 by using Qn,1(ψ) and Qn,2(ψ). So, we understand that
the results obtained using higher-order differentiable mappings are more useful. Furthermore, Qn,1(ψ)
provide an error of the order 10−6 with the integral of ψ3 for n = 6, whereas Qn,2(ψ) report an error of
the order 10−7 with the integral of ψ3 for n = 6. However, we capture the exact precise of the integral of
ψ3 for n = 15. These cases show that if we increase the order of n, then the exact values of the integrals
are approximated.

From the Table 2, it is seen which results are deduced on different interval for the function ψ4. We
also examined the cases when n = 11 and n = 20 on the same intervals in the Table 2.

Table 2. Error estimations for the function ψ4.
ψ(x) [a, b]

∫ b

a
ψ(x)dx n Qn,1(ψ) Qn,2(ψ)

ψ4 [0, 1] 1, 462652 11 1, 462658 1, 462652
Error: 5.8789E − 6 1.888E − 7

ψ4 [0, 1] 1, 462652 20 1, 462652 1, 462652
Error: 0 0

ψ4 [1, 2] 14, 989976 11 14, 99375 14, 98989
Error: 3.7732E − 3 8.42317E − 5

ψ4 [1, 2] 14, 989976 20 14, 989976 14, 989976
Error: 8.4E − 9 0

We examine which results are obtained for the different order derivatives in the above table. As
shown in all the table, Qn,2(ψ) generally give better results than Qn,1(ψ). However, Qn,1(ψ) report better
outcomes for the function ψ6 while Qn,2(ψ) give more effective results for the function ψ5. So, we
can conclude that a quadrature rule is not always more useful than the others. What is more, Qn,3(ψ)
offers worse conclusions than the other two rules as shown in Table 3. If more effective outcomes are
required, then it can be applied numerical integration methods which are used to find closer estimates
by dividing the intervals into thinner pieces.
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Table 3. Error estimations for the functions ψ5, ψ6.
ψ(x) [a, b]

∫ b

a
ψ(x)dx n Qn,1(ψ) Qn,2(ψ) Qn,3(ψ)

ψ5 [2, 3] −15, 676154 6 −15, 676155 −15, 676154 −15, 675991
Error: 1.141E − 6 6.4E − 9 1.6344E − 4

ψ5 [2, 3] −15, 676154 9 −15, 676154 −15, 676154 −15, 675992
Error: 1E − 10 0 1.6272E − 4

ψ6 [−1, 1] 0, 509386 15 0, 509028 0, 508178 0, 441388
Error: 3.5805E − 4 1.2076E − 3 6.7997E − 2

ψ6 [−1, 1] 0, 509386 30 0, 509386 0, 509249 0, 441388
Error: 9E − 10 1.3736E − 4 6.6799E − 2

Let Id : a = x0 < x1 < ... < xd−1 < xd = b be a partition of the interval [a, b] , and mp = xp+1 − xp

for (p = 0, ..., d − 1) . Define the perturbed quadrature rules

Qn,1(ψ, Id) =

n−1∑
k=0

d−1∑
p=0

(−1)k
[
ψ(k)

(
xp+1

)
+ (−1)k ψ(k)

(
xp

)]
2k+1 (k + 1)!

(
mp

)k+1

+

[
1 + (−1)n]

2n+1 (n + 1)!

d−1∑
p=0

(
mp

)n+1
ψ(n)(xp),

(4.1)

Qn,2(ψ, Id) =

n−1∑
k=0

d−1∑
p=0

[
1 + (−1)k

]
ψ(k)

( xp+xp+1

2

)
2k+1 (k + 1)!

(
mp

)k+1

+

[
1 + (−1)n]

2n+1 (n + 1)!

d−1∑
p=0

ψ(n)
( xp + xp+1

2

) (
mp

)n+1

(4.2)

and
Qn,3(ψ, Id)

=

n−1∑
k=0

d−1∑
p=0

[
1 + (−1)k

] [
ψ(k)

( xp+3xp+1

4

)
+ (−1)k ψ(k)

(3xp+xp+1

4

)]
22k+2 (k + 1)!

(
mp

)k+1

+

[
1 + (−1)n]

22n+1 (n + 1)!

d−1∑
p=0

(
mp

)n+1
ψ(n)

(
3xp + xp+1

4

)
.

Theorem 6. Let ψ : F → R be a n time differentiable function on F◦ and [a, b] ⊂ F◦. If the nth
derivative ψ(n) is absolutely continuous on [a, b] , then we have

b∫
a

ψ(t)dt = Qn,1(ψ, Id) + Rn,1(ψ, Id),
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where Qn,1(ψ, Id) is defined by formula (4.1), and the remainder Rn,1(ψ, Id) satisfies the estimations

∣∣∣∣Rn,1(ψ, Id)
∣∣∣∣ ≤



1
2n+1(n+1)! ||ψ

(n+1)||[a,b],∞

d−1∑
p=0

(
mp

)n+2

A(n,q)

2n+1+ 1
s n!
||ψ(n+1)||[a,b],r

d−1∑
p=0

(
mp

)n+1+ 1
s

1
2n(n+1)! ||ψ

(n+1)||[a,b],1

d−1∑
p=0

(
mp

)n+1

where 1
r + 1

s = 1 and A(n, s) is defined by

A(n, s) =

B(n + 1, 1 +
1
s

) +

n∑
k=0

(−1)k
(
n
k

)
2n+1+ 1

s−k

n + 1 + 1
s − k

 .
Proof. Choosing x = a in the inequalities (3.1), (3.3) and (3.4). If we apply the resulting inequalities
to the intervals

[
xp, xp+1

]
for p = 0, 1, ..., d − 1 and then sum over p from 0 to d − 1, from the triangle

inequality, we reach the estimations (6). �

Remark 1. Supposing that all the assumptions of Theorem 3 hold. Then we have

b∫
a

ψ(t)dt = Qn,2(ψ, Id) + Rn,2(ψ, Id)

and
b∫

a

ψ(t)dt = Qn,3(ψ, Id) + Rn,3(ψ, Id)

where Qn,2(ψ, Id) and Qn,3(ψ, Id) are defined as in (4.2) and (4.3) respectively. Taking x = a+b
2 and

x = 3a+b
4 in the inequalities (3.1), (3.3) and (3.4), and later applying similar processes in the proof

of the above theorem to the resulting inequalities, then new estimations provided by the remainders
Rn,2(ψ, Id) and Rn,3(ψ, Id) can be obtained.

5. Applications for some elementary functions

For convenience, we give the following notations Bk(x) and Cn(x) that will be used throughout this
section in order to simplify the details of presentations. Bk(x) and Cn(x) are defined by

Bk(x) =

(x − a)k+1 + (−1)k

(
a + b

2
− x

)k+1
and

Cn(x) =

(x − a)n+1 +

(
a + b

2
− x

)n+1 .
Initially, we think the exponential mapping ψ(t) = et with t ∈ R, then, for a ≤ x ≤ a+b

2 , one possesses∥∥∥ψ(n+1)
∥∥∥

[a,x],∞
= ex ,

∥∥∥ψ(n+1)
∥∥∥

[x,b],∞
= eb (5.1)
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and ∥∥∥ψ(n+1)
∥∥∥

[a,x],r
=

(
erx − era

r

) 1
r

,
∥∥∥ψ(n+1)

∥∥∥
[x,b],r

=

(
erb − erx

r

) 1
r

(5.2)

for r ≥ 1. In this case, by the inequality (3.1) and the equalities in (5.1), one has the inequality∣∣∣∣∣∣∣∣
n−1∑
k=0

(−1)n+1
[
ea+b−x + (−1)k ex

]
(k + 1)!

Bk(x)

−

[
1 + (−1)n]
(n + 1)!

Cn(x)ex + (−1)n
(
eb − ea

)∣∣∣∣∣∣
≤

(x − a)n+2

(n + 2)!
ex +

2
(n + 1)!

(
a + b

2
− x

)n+2

eb

+

[
(b − a) (x − a)n+1

(n + 1)!
−

2n + 3
(n + 2)!

(x − a)n+2
]

eb

for a ≤ x ≤ a+b
2 . Also, by the inequality (3.3) and the equalities in (5.2), we conclude that

∣∣∣∣∣∣∣∣
n−1∑
k=0

(−1)n+1
[
ea+b−x + (−1)k ex

]
(k + 1)!

Bk(x)

−

[
1 + (−1)n]
(n + 1)!

Cn(x)ex + (−1)n
(
eb − ea

)∣∣∣∣∣∣
≤

(x − a)n+1+ 1
s

n!
B

(
n + 1, 1 +

1
s

) (
erx − era

r

) 1
r

+ A(n, s)
1
n!

(
a + b

2
− x

)n+1+ 1
s
(
erb − erx

r

) 1
r

+
1
n!

(
erb − erx

r

) 1
r

(b − x)n+1+ 1
s

n∑
k=0

(−1)k
(
n
k

)1 −
(
1 − x−a

b−x

)k+1+ 1
s

k + 1 + 1
s

where A(n, s) is defined as in (6).
Now, we deal with another function which is of large interest. Let ψ(t) = ln t, t > 0. Utilizing the

inequality (3.1), because of

ψ(k)(t) =
(−1)k−1 (k − 1)!

tk k ≥ 1 and t > 0

and ∥∥∥ψ(n+1)
∥∥∥

[a,x],∞
=

n!
an+1

∥∥∥ψ(n+1)
∥∥∥

[x,b],∞
=

n!
xn+1 ,
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we have the logarithmic inequality∣∣∣(−1)n+1 ln x(a + b − x)

+

n−1∑
k=1

(−1)n
[
(a + b − x)k + (−1)k xk

]
k (k + 1) xk(a + b − x)k Bk(x)

+

[
1 + (−1)n]

n (n + 1) xn Cn(x) + (−1)n
[
ln

bb

aa − (b − a)
]∣∣∣∣∣∣

≤
(x − a)n+2

(n + 2)!
n!

an+1 +
2

(n + 1)!

(
a + b

2
− x

)n+2 n!
xn+1

+

[
(b − a) (x − a)n+1

(n + 1)!
−

2n + 3
(n + 2)!

(x − a)n+2
]

n!
xn+1

for any 0 < a ≤ x ≤ a+b
2 < ∞. Similarly, it may be obtained new logarithmic inequalities by using the

inequalities (3.3) and (3.4). For these results, we need to know that

∥∥∥ψ(n+1)
∥∥∥

[a,x],r
=

n!
(
x(n+1)r−1 − a(n+1)r−1

) 1
r

[(n + 1)r − 1]
1
r xn+1− 1

r an+1− 1
r

∥∥∥ψ(n+1)
∥∥∥

[x,b],r
=

n!
(
b(n+1)r−1 − x(n+1)r−1

) 1
r

[(n + 1)r − 1]
1
r bn+1− 1

r xn+1− 1
r

for r ≥ 1.
In addition to all these results, by choosing x = a+b

2 in the inequalities given in this section, it can be
stated the results that provide some simple estimates for the exponential and logarithm at the midpoint.

6. Conclusions

In this work, we establish some integral inequalities for higher-order differentiable functions. Some
applications of the inequalities developed in this paper are also given. In order to validate that their
generalized behavior, we show the relation of our results with previously published ones. In future
works, authors can obtain similar inequalities by using the different classes of functions.
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