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Abstract: We consider a family of higher degree Enneper minimal surface Em for positive integers m
in the three-dimensional Euclidean space E3. We compute algebraic equation, degree and integral
free representation of Enneper minimal surface for m = 1, 2, 3. Finally, we give some results and
relations for the family Em.
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1. Introduction

Minimal surfaces have an important role in the mathematics, physics, biology, architecture,
etc. These kinds of surfaces have been studied over the centuries by many mathematicians and
also geometers. A minimal surface in E3 is a regular surface for which the mean curvature vanishes
identically.

There are many important classical works on minimal surfaces in the literature such as [1–10].
However, we only see a few notable works about algebraic minimal surfaces, including general results
and the properties. They were given by Enneper [11,12], Henneberg [13,14] and Weierstrass [9,15].

One of them is the classical Enneper minimal surface that was given by Enneper. See [11,12]
for details. About Enneper minimal surface, many nice papers were done such as [16–24] in the last
few decades.

In this paper, we introduce a family of higher degree Enneper minimal surface Em for positive
integers m in the three-dimensional Euclidean space E3. In Section 2, we give the family of Enneper
minimal surfaces Em. We obtain the algebraic equation and degree of surface E1 (resp., E2, E3). Using the
integral free form of Weierstrass, we find some algebraic functions for Em (m ≥ 1, m ∈ Z) in Section 3.
Finally, we give some general findings for a family of higher degree Enneper minimal surface Em with
a table in the last section.

2. The Family of Enneper Minimal Surfaces Em

We will often identify −→x and
−→
xt without further comment. Let E3 be a three-dimensional

Euclidean space with natural metric 〈. , .〉 = dx2 + dy2 + dz2.
Let U be an open subset of C. A minimal (or isotropic) curve is an analytic function Ψ : U → Cn

such that Ψ′ (ζ) ·Ψ′ (ζ) = 0, where ζ ∈ U , and Ψ′ := ∂Ψ
∂ζ . In addition, if Ψ′ ·Ψ′ = |Ψ′|2 6= 0, then Ψ is a

regular minimal curve.
Thus, let see the following lemma for complex minimal curves.

Lemma 1. Let Ψ : U → C3 be a minimal curve and write Ψ′ = (ϕ1, ϕ2, ϕ3) . Then,

F =
ϕ1 − iϕ2

2
and G =

ϕ3

ϕ1 − iϕ2
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lead to the Weierstrass representation of Ψ. That is,

Ψ′ =
(
F
(

1− G2
)

, iF
(

1 + G2
)

, 2FG
)

.

Therefore, we have minimal surfaces in the associated family of a minimal curve, as given by the
following Weierstrass representation theorem [9] for minimal surfaces:

Theorem 1. Let F and G be two holomorphic functions defined on a simply connected open subset U of C such
that F does not vanish on U . Then, the map

x (ζ) = Re
∫ ζ

 F
(
1− G2)

i F
(
1 + G2)

2FG

 dζ

is a minimal, conformal immersion of U into C3, and x is called the Weierstrass patch.

We now consider the Enneper’s curve of value m:

Lemma 2. The Enneper’s curve of value m

Em (ζ) =

(
ζ − ζ2m+1

2m + 1
, i
(

ζ +
ζ2m+1

2m + 1

)
, 2

ζm+1

m + 1

)
(1)

is a minimal curve in C3, where m ∈ R− {−1,−1/2} , ζ ∈ C, i =
√
−1.

Then, we have E′m · E′m = 0. Hence, Enneper’s surface of value m in E3 is

Em (ζ) = Re
∫

E′m (ζ) dζ. (2)

Lemma 3. The Weierstrass patch determined by the functions

F (ζ) = 1 and G (ζ) = ζm

is a representation of Enneper’s higher degree surfaces Em, where m ≥ 2.

For m = 1, we get the classical Enneper’s surface E1 (see also [4,11,25] for details).

Remark 1. Note that the catenoid and classical Enneper’s surface are the only complete regular minimal surfaces
in E3 with finite total curvature −4π.

See [5] for details.
Gray, Abbena and Salamon [26] gave the complex forms of the Enneper’s curve and surface of

value m. Therefore, the associated family of minimal surfaces is described by

E (r, θ; α) = Re
∫

e−iαE′m

= cos (α)Re
∫

E′m + sin (α) Im
∫

E′m

= cos (α) Em (r, θ) + sin (α) E∗m (r, θ) .

When α = 0 (resp. α = π/2), we have the Enneper’s surface of value m (resp. the conjugate
surface E∗m).
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The parametric equation of Em, in polar coordinates, is

Em (r, θ) =

 r cos (θ)− r2m+1

2m+1 cos [(2m + 1) θ]

−r sin (θ)− r2m+1

2m+1 sin [(2m + 1) θ]

2 rm+1

m+1 cos [(m + 1) θ]

 . (3)

Using the binomial formula, we obtain the following parametric equations of Em (u, v) :

x(u, v) = Re
{

u + iv− 1
2m+1

[
∑2m+1

k=0 (2m+1
k )u2m+1−k (iv)k

]}
,

y(u, v) = Re
{
−v + iu + i

2m+1

[
∑2m+1

k=0 (2m+1
k )u2m+1−k (iv)k

]}
,

z(u, v) = Re
{

2
m+1

[
∑m+1

k=0 (m+1
k )um+1−k (iv)k

]}
.

(4)

Next, we will focus on the algebraic equation and degree of surface Em.
With R3 = {(x, y, z) | x, y, z ∈ R}, the set of roots of a polynomial f (x, y, z) = 0 gives an algebraic

surface. An algebraic surface is said to be of degree n, when n = deg( f ).
It is seen that deg (x) = 2m + 1, deg (y) = 2m + 1, deg (z) = m + 1 for Em (u, v) (see also Table 1

for details). Using polynomial eliminate methods, we calculate the algebraic equations and degrees of
the surfaces E1, E2, E3. For the surface E1 (i.e., classical Enneper surface), it is known that the surface
has degree 9. Thus, it is also an algebraic minimal surface. For expanded results of E1, see [4].

2.1. Algebraic Equation of Enneper Minimal Surface E1

The simplest Weierstrass representation (F ,G) = (1, ζ) gives classical Enneper minimal surface
of value 1. In polar coordinates, the parametric equation of E1 is

E1 (r, θ) =

 r cos (θ)− r3

3 cos(3θ)

−r sin (θ)− r3

3 sin (3θ)

r2 cos (2θ)

 , (5)

where r ∈ [−1, 1], θ ∈ [0, π]. The parametric form of the surface E1, in (u, v) coordinates, is

E1 (u, v) =

 − 1
3 u3 + uv2 + u
−u2v + 1

3 v3 − v
u2 − v2

 , (6)

where u, v ∈ R.

Lemma 4. A plane intersects an algebraic minimal surface in an algebraic curve [13].

See also [4] for details. Considering the above lemma, we find the algebraic equation of the curve

E1 (u, 0) = γ1 (u) =
(

u− u3

3
, 0, u2

)
on the xz-plane is as follows (see Figure 1, left):

z3 − 6z2 − 9x2 + 9z = 0,

and its degree is deg(γ1) = 3. Thus, xz-plane intersects the algebraic minimal surface E1 in an algebraic
curve γ1 (u).
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Using the polynomial eliminate method, we calculate the irreducible algebraic equation
E1(x, y, z) = 0 of surface E1(u, v) by hand as follows (see Figure 1, right):

−64z9 + 432x2z6 − 432y2z6 + 1215x4z3 + 6318x2y2z3 + 3888x2z5

+1215y4z3 + 3888y2z5 + 1152z7 + 729x6 − 2187x4y2 + 4374x4z2

+2187x2y4 + 6480x2z4 − 729y6 − 4374y4z2 − 6480y2z4 − 729x4z

+1458x2y2z− 3888x2z3 − 729y4z− 3888y2z3 − 5184z5 = 0.

Figure 1. left: algebraic curve γ1 (u); right: algebraic surface E1(x, y, z) = 0.

Its degree is deg(E1) = 9. Therefore, E1 is an algebraic minimal surface. All of these results for
classical Enneper surface E1 were obtained first in [11] by Enneper.

Next, we study algebraic equations and degrees of the higher degree Enneper minimal surfaces
for values m = 2 and m = 3.

2.2. Algebraic Equation of Enneper Minimal Surface E2

In polar coordinates, the parametric equation of E2 is

E2 (r, θ) =

 r cos (θ)− r5

5 cos(5θ)

−r sin (θ)− r5

5 sin (5θ)
2
3 r3 cos (3θ)

 , (7)

where r ∈ [−1, 1], θ ∈ [0, π]. The parametric form of the surface E2, in (u, v) coordinates, is

E2 (u, v) =

 u− 1
5 u5 + 2u3v2 − uv4

−v− u4v + 2u2v3 − 1
5 v5

2
3 u3 − 2uv2

 , (8)

where u, v ∈ R.
Using the polynomial eliminate method, we find the algebraic equation of the curve

E2 (u, 0) = γ2 (u) =
(

u− u5

5
, 0,

2
3

u3
)

on the xz-plane as follows (see Figure 2, left)

−243z5 − 4000x3 − 5400xz2 + 6000z = 0,
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and its degree is deg(γ2) = 5. Hence, xz-plane intersects the algebraic minimal surface E2 in an
algebraic curve γ2 (u).

We calculate the irreducible algebraic equation E2(x, y, z) = 0 of surface E2(u, v) by using Maple
software (version 17, Waterloo Maple Inc., Waterloo, ON, Canada) as follows (see Figure 2, right)

847288609443z25 + 4358480501250x3z20 − 13075441503750xy2z20

−131157978046875x6z15 − 474186536015625x4y2z15

+107 other lower degree terms = 0,

and its degree is deg(E2) = 25. Hence, E2 is an algebraic minimal surface.

Figure 2. left: algebraic curve γ2 (u); right: algebraic surface E2(x, y, z) = 0.

2.3. Algebraic Equation of Enneper Minimal Surface E3

The parametric equation of Enneper’s minimal surface of value 3, in polar coordinates, is

E3 (r, θ) =

 r cos (θ)− r7

7 cos(7θ)

−r sin (θ)− r7

7 sin (7θ)
1
2 r4 cos (4θ)

 , (9)

where r ∈ [−1, 1], θ ∈ [0, π]. In (u, v) coordinates, E3 has the following form:

E3 (u, v) =

 u− 1
7 u7 + 3u5v2 − 5u3v4 + uv6

−v− u6v + 5u4v3 − 3u2v5 + 1
7 v7

1
2 u4 − 3u2v2 + 1

2 v4

 , (10)

where u, v ∈ R.
We get the algebraic equation of the curve

E3 (u, 0) = γ3 (u) =
(

u− u7

7
, 0,

u4

2

)
on the xz-plane as follows:

128z7 − 1568z4 − 2401x4 − 5488x2z2 + 4802z = 0.

Its degree is deg(γ3) = 7. Then, we see that the xz-plane intersects the algebraic minimal surface
E3 in an algebraic curve γ3 (u).
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In Cartesian coordinates x, y, z, the algebraic equation E3(x, y, z) = 0 of surface E3(u, v) by using
Maple software is as follows:

−2475880078570760549798248448z49 + 5079604062565768134821675008x4z42

−30477624375394608808930050048x2y2z42 + 5079604062565768134821675008y4z42

+633850350654216217766624493568x8z35 + 406 other lower degree terms = 0.

Its degree is deg(E3) = 49. Thus, E3 is an algebraic minimal surface.

Corollary 1. The family of higher degree (also classical) Enneper minimal surfaces Em (u, v) are algebraic
minimal surfaces, where m ∈ Z, m ≥ 1 (see Table 1).

Next, we obtain the general algebraic equation for the curve γm:

Corollary 2. We consider the curve

Em (u, 0) = γm (u) =
(

u− u2m+1

2m + 1
, 0,

2um+1

m + 1

)
on the xz-plane. By using Mathematica (version 8, Wolfram Research Inc., Champaign, IL, USA; Oxfordshire,
UK; Tokyo, Japan; Boston, MA, USA), we get the following algebraic equation:

(2m + 1)(x− 2−
1

m+1 [(m + 1)z]
1

m+1 )m+1 + (2−1(m + 1)z])2m+1 = 0, (11)

where m + 1 6= 0, 2m + 1 6= 0, and its degree is deg(γm) = 2m + 1.

3. Integral Free Form

Integral free form of the Weierstrass representation (see [15]) is x
y
z

 = Re


(
1− w2) φ′′(w) + 2wφ′(w)− 2φ(w)

i
[(

1 + w2) φ′′(w)− 2wφ′(w) + 2φ(w)
]

2 [wφ′′(w)− φ′(w)]

 ≡ Re

 f1 (w)

f2 (w)

f3 (w)

 , (12)

where algebraic function φ(w) and the functions fi (w) are connected by the relation

φ(w) =
1
4

(
w2 − 1

)
f1 (w)− i

4

(
w2 + 1

)
f2 (w)− 1

2
w f3 (w) (13)

for w ∈ C. Integral free form is suitable for algebraic minimal surfaces. For instance, φ(w) = 1
6 w3 gives

rise to classical Enneper minimal surface E1 (see [4] for details).
After some calculations by using the last two equations above, we get following corollary:

Corollary 3. We obtain algebraic functions φ(w), and then get the function φ(w) = w3

2 −
w4

3 + w5

10 , which leads
to Enneper minimal surface E2. We also find φ(w) = w3

2 −
w5

4 + w7

14 for E3, φ(w) = w3

2 −
w6

5 + w9

18 for E4,
and so on.

Hence, we have following lemma:

Lemma 5. The algebraic function in the integral free form for a higher degree (also classical) Enneper minimal
surfaces Em is as follows:

φEm(w) =
w3

2
− wm+2

m + 1
+

w2m+1

2(2m + 1)
, (14)
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where m ≥ 1, m ∈ Z.

4. Conclusions

Briefly, we give all findings, calculated in Sections 2 and 3 for the Enneper surface family, in Table 1
as follows.

Table 1. Algebraic Enneper minimal surfaces Em, m ≥ 1, m ∈ Z.

Surface deg(x, y, z) deg (Em) deg (γm) Algebraic Function

E1 (classical) (3, 3, 2) 9 3 1
6 w3

E2 (5, 5, 3) 25 5 1
2 w3 − 1

3 w4 + 1
10 w5

E3 (7, 7, 4) 49 7 1
2 w3 − 1

4 w5 + 1
14 w7

...
...

...
...

...
Em (2m + 1, 2m + 1, m + 1) (2m + 1)2 2m + 1 1

2 w3 − 1
m+1 wm+2 + 1

2(2m+1)w2m+1

Looking at the table above, we also have the following results:

Corollary 4. We find the following relation between degree of algebraic function φEm(w) in the integral free
form and curve γm of surface Em :

deg (γm) = 2m + 1 = deg (φEm)

and
deg (Em) = (2m + 1)2 = (deg (γm))

2 = (deg (φEm))
2,

where integers m ≥ 1.

Remark 2. For integers m ≥ 4, algebraic equations and also degrees of Enneper minimal surfaces Em can be
calculated. However, calculation is a time problem for software programmes.
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