Article

Family of Enneper Minimal Surfaces

Erhan Güler
Department of Mathematics, Faculty of Sciences, Bartın University, Bartın 74100, Turkey; eguler@bartin.edu.tr; Tel.: +90-378-501-1000-1521

Received: 18 October 2018; Accepted: 22 November 2018; Published: 26 November 2018

Abstract

We consider a family of higher degree Enneper minimal surface E_{m} for positive integers m in the three-dimensional Euclidean space \mathbb{E}^{3}. We compute algebraic equation, degree and integral free representation of Enneper minimal surface for $m=1,2,3$. Finally, we give some results and relations for the family E_{m}.

Keywords: Enneper minimal surface family; Weierstrass representation; algebraic surface; degree; integral free representation

1. Introduction

Minimal surfaces have an important role in the mathematics, physics, biology, architecture, etc. These kinds of surfaces have been studied over the centuries by many mathematicians and also geometers. A minimal surface in \mathbb{E}^{3} is a regular surface for which the mean curvature vanishes identically.

There are many important classical works on minimal surfaces in the literature such as [1-10]. However, we only see a few notable works about algebraic minimal surfaces, including general results and the properties. They were given by Enneper [11,12], Henneberg [13,14] and Weierstrass [9,15].

One of them is the classical Enneper minimal surface that was given by Enneper. See $[11,12]$ for details. About Enneper minimal surface, many nice papers were done such as [16-24] in the last few decades.

In this paper, we introduce a family of higher degree Enneper minimal surface E_{m} for positive integers m in the three-dimensional Euclidean space \mathbb{E}^{3}. In Section 2, we give the family of Enneper minimal surfaces E_{m}. We obtain the algebraic equation and degree of surface E_{1} (resp., E_{2}, E_{3}). Using the integral free form of Weierstrass, we find some algebraic functions for $E_{m}(m \geq 1, m \in \mathbb{Z})$ in Section 3 . Finally, we give some general findings for a family of higher degree Enneper minimal surface E_{m} with a table in the last section.

2. The Family of Enneper Minimal Surfaces E_{m}

We will often identify \vec{x} and $\overrightarrow{x^{t}}$ without further comment. Let \mathbb{E}^{3} be a three-dimensional Euclidean space with natural metric $\langle.,\rangle=.d x^{2}+d y^{2}+d z^{2}$.

Let \mathcal{U} be an open subset of \mathbb{C}. A minimal (or isotropic) curve is an analytic function $\Psi: \mathcal{U} \rightarrow \mathbb{C}^{n}$ such that $\Psi^{\prime}(\zeta) \cdot \Psi^{\prime}(\zeta)=0$, where $\zeta \in \mathcal{U}$, and $\Psi^{\prime}:=\frac{\partial \Psi}{\partial \zeta}$. In addition, if $\Psi^{\prime} \cdot \overline{\Psi^{\prime}}=\left|\Psi^{\prime}\right|^{2} \neq 0$, then Ψ is a regular minimal curve.

Thus, let see the following lemma for complex minimal curves.
Lemma 1. Let $\Psi: \mathcal{U} \rightarrow \mathbb{C}^{3}$ be a minimal curve and write $\Psi^{\prime}=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$. Then,

$$
\mathcal{F}=\frac{\varphi_{1}-i \varphi_{2}}{2} \text { and } \mathcal{G}=\frac{\varphi_{3}}{\varphi_{1}-i \varphi_{2}}
$$

lead to the Weierstrass representation of Ψ. That is,

$$
\Psi^{\prime}=\left(\mathcal{F}\left(1-\mathcal{G}^{2}\right), i \mathcal{F}\left(1+\mathcal{G}^{2}\right), 2 \mathcal{F} \mathcal{G}\right)
$$

Therefore, we have minimal surfaces in the associated family of a minimal curve, as given by the following Weierstrass representation theorem [9] for minimal surfaces:

Theorem 1. Let \mathcal{F} and \mathcal{G} be two holomorphic functions defined on a simply connected open subset \mathcal{U} of \mathbb{C} such that F does not vanish on \mathcal{U}. Then, the map

$$
\mathbf{x}(\zeta)=\operatorname{Re} \int^{\zeta}\left(\begin{array}{c}
\mathcal{F}\left(1-\mathcal{G}^{2}\right) \\
i \mathcal{F}\left(1+\mathcal{G}^{2}\right) \\
2 \mathcal{F} \mathcal{G}
\end{array}\right) d \zeta
$$

is a minimal, conformal immersion of \mathcal{U} into \mathbb{C}^{3}, and \mathbf{x} is called the Weierstrass patch.
We now consider the Enneper's curve of value m :
Lemma 2. The Enneper's curve of value m

$$
\begin{equation*}
E_{m}(\zeta)=\left(\zeta-\frac{\zeta^{2 m+1}}{2 m+1}, i\left(\zeta+\frac{\zeta^{2 m+1}}{2 m+1}\right), 2 \frac{\zeta^{m+1}}{m+1}\right) \tag{1}
\end{equation*}
$$

is a minimal curve in \mathbb{C}^{3}, where $m \in \mathbb{R}-\{-1,-1 / 2\}, \zeta \in \mathbb{C}, i=\sqrt{-1}$.
Then, we have $E_{m}^{\prime} \cdot E_{m}^{\prime}=0$. Hence, Enneper's surface of value m in \mathbb{E}^{3} is

$$
\begin{equation*}
E_{m}(\zeta)=\operatorname{Re} \int E_{m}^{\prime}(\zeta) d \zeta \tag{2}
\end{equation*}
$$

Lemma 3. The Weierstrass patch determined by the functions

$$
F(\zeta)=1 \text { and } \mathcal{G}(\zeta)=\zeta^{m}
$$

is a representation of Enneper's higher degree surfaces E_{m}, where $m \geq 2$.
For $m=1$, we get the classical Enneper's surface E_{1} (see also [4,11,25] for details).
Remark 1. Note that the catenoid and classical Enneper's surface are the only complete regular minimal surfaces in \mathbb{E}^{3} with finite total curvature -4π.

See [5] for details.
Gray, Abbena and Salamon [26] gave the complex forms of the Enneper's curve and surface of value m. Therefore, the associated family of minimal surfaces is described by

$$
\begin{aligned}
E(r, \theta ; \alpha) & =\operatorname{Re} \int e^{-i \alpha} E_{m}^{\prime} \\
& =\cos (\alpha) \operatorname{Re} \int E_{m}^{\prime}+\sin (\alpha) \operatorname{Im} \int E_{m}^{\prime} \\
& =\cos (\alpha) E_{m}(r, \theta)+\sin (\alpha) E_{m}^{*}(r, \theta)
\end{aligned}
$$

When $\alpha=0$ (resp. $\alpha=\pi / 2$), we have the Enneper's surface of value m (resp. the conjugate surface E_{m}^{*}).

The parametric equation of E_{m}, in polar coordinates, is

$$
E_{m}(r, \theta)=\left(\begin{array}{c}
r \cos (\theta)-\frac{r^{2 m+1}}{2 m+1} \cos [(2 m+1) \theta] \tag{3}\\
-r \sin (\theta)-\frac{r^{2 m+1}}{2 m+1} \sin [(2 m+1) \theta] \\
2 \frac{r^{m+1}}{m+1} \cos [(m+1) \theta]
\end{array}\right)
$$

Using the binomial formula, we obtain the following parametric equations of $E_{m}(u, v)$:

$$
\begin{align*}
& x(u, v)=\operatorname{Re}\left\{u+i v-\frac{1}{2 m+1}\left[\sum_{k=0}^{2 m+1}\binom{2 m+1}{k} u^{2 m+1-k}(i v)^{k}\right]\right\} \\
& y(u, v)=\operatorname{Re}\left\{-v+i u+\frac{i}{2 m+1}\left[\sum_{k=0}^{2 m+1}\binom{2 m+1}{k} u^{2 m+1-k}(i v)^{k}\right]\right\} \tag{4}\\
& z(u, v)=\operatorname{Re}\left\{\frac{2}{m+1}\left[\sum_{k=0}^{m+1}\binom{m+1}{k} u^{m+1-k}(i v)^{k}\right]\right\} .
\end{align*}
$$

Next, we will focus on the algebraic equation and degree of surface E_{m}.
With $\mathbb{R}^{3}=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$, the set of roots of a polynomial $f(x, y, z)=0$ gives an algebraic surface. An algebraic surface is said to be of degree n, when $n=\operatorname{deg}(f)$.

It is seen that $\operatorname{deg}(x)=2 m+1, \operatorname{deg}(y)=2 m+1, \operatorname{deg}(z)=m+1$ for $E_{m}(u, v)$ (see also Table 1 for details). Using polynomial eliminate methods, we calculate the algebraic equations and degrees of the surfaces E_{1}, E_{2}, E_{3}. For the surface E_{1} (i.e., classical Enneper surface), it is known that the surface has degree 9. Thus, it is also an algebraic minimal surface. For expanded results of E_{1}, see [4].

2.1. Algebraic Equation of Enneper Minimal Surface E_{1}

The simplest Weierstrass representation $(\mathcal{F}, \mathcal{G})=(1, \zeta)$ gives classical Enneper minimal surface of value 1 . In polar coordinates, the parametric equation of E_{1} is

$$
E_{1}(r, \theta)=\left(\begin{array}{c}
r \cos (\theta)-\frac{r^{3}}{3} \cos (3 \theta) \tag{5}\\
-r \sin (\theta)-\frac{r^{3}}{3} \sin (3 \theta) \\
r^{2} \cos (2 \theta)
\end{array}\right)
$$

where $r \in[-1,1], \theta \in[0, \pi]$. The parametric form of the surface E_{1}, in (u, v) coordinates, is

$$
E_{1}(u, v)=\left(\begin{array}{c}
-\frac{1}{3} u^{3}+u v^{2}+u \tag{6}\\
-u^{2} v+\frac{1}{3} v^{3}-v \\
u^{2}-v^{2}
\end{array}\right)
$$

where $u, v \in \mathbb{R}$.
Lemma 4. A plane intersects an algebraic minimal surface in an algebraic curve [13].
See also [4] for details. Considering the above lemma, we find the algebraic equation of the curve

$$
E_{1}(u, 0)=\gamma_{1}(u)=\left(u-\frac{u^{3}}{3}, 0, u^{2}\right)
$$

on the $x z$-plane is as follows (see Figure 1, left):

$$
z^{3}-6 z^{2}-9 x^{2}+9 z=0
$$

and its degree is $\operatorname{deg}\left(\gamma_{1}\right)=3$. Thus, $x z$-plane intersects the algebraic minimal surface E_{1} in an algebraic curve $\gamma_{1}(u)$.

Using the polynomial eliminate method, we calculate the irreducible algebraic equation $E_{1}(x, y, z)=0$ of surface $E_{1}(u, v)$ by hand as follows (see Figure 1, right):

$$
\begin{aligned}
& -64 z^{9}+432 x^{2} z^{6}-432 y^{2} z^{6}+1215 x^{4} z^{3}+6318 x^{2} y^{2} z^{3}+3888 x^{2} z^{5} \\
& +1215 y^{4} z^{3}+3888 y^{2} z^{5}+1152 z^{7}+729 x^{6}-2187 x^{4} y^{2}+4374 x^{4} z^{2} \\
& +2187 x^{2} y^{4}+6480 x^{2} z^{4}-729 y^{6}-4374 y^{4} z^{2}-6480 y^{2} z^{4}-729 x^{4} z \\
& +1458 x^{2} y^{2} z-3888 x^{2} z^{3}-729 y^{4} z-3888 y^{2} z^{3}-5184 z^{5}=0
\end{aligned}
$$

Figure 1. left: algebraic curve $\gamma_{1}(u)$; right: algebraic surface $E_{1}(x, y, z)=0$.

Its degree is $\operatorname{deg}\left(E_{1}\right)=9$. Therefore, E_{1} is an algebraic minimal surface. All of these results for classical Enneper surface E_{1} were obtained first in [11] by Enneper.

Next, we study algebraic equations and degrees of the higher degree Enneper minimal surfaces for values $m=2$ and $m=3$.

2.2. Algebraic Equation of Enneper Minimal Surface E_{2}

In polar coordinates, the parametric equation of E_{2} is

$$
E_{2}(r, \theta)=\left(\begin{array}{c}
r \cos (\theta)-\frac{r^{5}}{5} \cos (5 \theta) \tag{7}\\
-r \sin (\theta)-\frac{r^{5}}{5} \sin (5 \theta) \\
\frac{2}{3} r^{3} \cos (3 \theta)
\end{array}\right)
$$

where $r \in[-1,1], \theta \in[0, \pi]$. The parametric form of the surface E_{2}, in (u, v) coordinates, is

$$
E_{2}(u, v)=\left(\begin{array}{c}
u-\frac{1}{5} u^{5}+2 u^{3} v^{2}-u v^{4} \tag{8}\\
-v-u^{4} v+2 u^{2} v^{3}-\frac{1}{5} v^{5} \\
\frac{2}{3} u^{3}-2 u v^{2}
\end{array}\right)
$$

where $u, v \in \mathbb{R}$.
Using the polynomial eliminate method, we find the algebraic equation of the curve

$$
E_{2}(u, 0)=\gamma_{2}(u)=\left(u-\frac{u^{5}}{5}, 0, \frac{2}{3} u^{3}\right)
$$

on the $x z$-plane as follows (see Figure 2, left)

$$
-243 z^{5}-4000 x^{3}-5400 x z^{2}+6000 z=0
$$

and its degree is $\operatorname{deg}\left(\gamma_{2}\right)=5$. Hence, $x z$-plane intersects the algebraic minimal surface E_{2} in an algebraic curve $\gamma_{2}(u)$.

We calculate the irreducible algebraic equation $E_{2}(x, y, z)=0$ of surface $E_{2}(u, v)$ by using Maple software (version 17, Waterloo Maple Inc., Waterloo, ON, Canada) as follows (see Figure 2, right)

$$
\begin{aligned}
& 847288609443 z^{25}+4358480501250 x^{3} z^{20}-13075441503750 x y^{2} z^{20} \\
& -131157978046875 x^{6} z^{15}-474186536015625 x^{4} y^{2} z^{15} \\
& +107 \text { other lower degree terms }=0
\end{aligned}
$$

and its degree is $\operatorname{deg}\left(E_{2}\right)=25$. Hence, E_{2} is an algebraic minimal surface.

Figure 2. left: algebraic curve $\gamma_{2}(u)$; right: algebraic surface $E_{2}(x, y, z)=0$.

2.3. Algebraic Equation of Enneper Minimal Surface E_{3}

The parametric equation of Enneper's minimal surface of value 3, in polar coordinates, is

$$
E_{3}(r, \theta)=\left(\begin{array}{c}
r \cos (\theta)-\frac{r^{7}}{7} \cos (7 \theta) \tag{9}\\
-r \sin (\theta)-\frac{r^{7}}{7} \sin (7 \theta) \\
\frac{1}{2} r^{4} \cos (4 \theta)
\end{array}\right)
$$

where $r \in[-1,1], \theta \in[0, \pi]$. In (u, v) coordinates, E_{3} has the following form:

$$
E_{3}(u, v)=\left(\begin{array}{c}
u-\frac{1}{7} u^{7}+3 u^{5} v^{2}-5 u^{3} v^{4}+u v^{6} \tag{10}\\
-v-u^{6} v+5 u^{4} v^{3}-3 u^{2} v^{5}+\frac{1}{7} v^{7} \\
\frac{1}{2} u^{4}-3 u^{2} v^{2}+\frac{1}{2} v^{4}
\end{array}\right)
$$

where $u, v \in \mathbb{R}$.
We get the algebraic equation of the curve

$$
E_{3}(u, 0)=\gamma_{3}(u)=\left(u-\frac{u^{7}}{7}, 0, \frac{u^{4}}{2}\right)
$$

on the $x z$-plane as follows:

$$
128 z^{7}-1568 z^{4}-2401 x^{4}-5488 x^{2} z^{2}+4802 z=0
$$

Its degree is $\operatorname{deg}\left(\gamma_{3}\right)=7$. Then, we see that the $x z$-plane intersects the algebraic minimal surface E_{3} in an algebraic curve $\gamma_{3}(u)$.

In Cartesian coordinates x, y, z, the algebraic equation $E_{3}(x, y, z)=0$ of surface $E_{3}(u, v)$ by using Maple software is as follows:

$$
\begin{aligned}
& -2475880078570760549798248448 z^{49}+5079604062565768134821675008 x^{4} z^{42} \\
& -30477624375394608808930050048 x^{2} y^{2} z^{42}+5079604062565768134821675008 y^{4} z^{42} \\
& +633850350654216217766624493568 x^{8} z^{35}+406 \text { other lower degree terms }=0 .
\end{aligned}
$$

Its degree is $\operatorname{deg}\left(E_{3}\right)=49$. Thus, E_{3} is an algebraic minimal surface.
Corollary 1. The family of higher degree (also classical) Enneper minimal surfaces $E_{m}(u, v)$ are algebraic minimal surfaces, where $m \in \mathbb{Z}, m \geq 1$ (see Table 1).

Next, we obtain the general algebraic equation for the curve γ_{m} :
Corollary 2. We consider the curve

$$
E_{m}(u, 0)=\gamma_{m}(u)=\left(u-\frac{u^{2 m+1}}{2 m+1}, 0, \frac{2 u^{m+1}}{m+1}\right)
$$

on the xz-plane. By using Mathematica (version 8, Wolfram Research Inc., Champaign, IL, USA; Oxfordshire, UK; Tokyo, Japan; Boston, MA, USA), we get the following algebraic equation:

$$
\begin{equation*}
\left.(2 m+1)\left(x-2^{-\frac{1}{m+1}}[(m+1) z]^{\frac{1}{m+1}}\right)^{m+1}+\left(2^{-1}(m+1) z\right]\right)^{2 m+1}=0 \tag{11}
\end{equation*}
$$

where $m+1 \neq 0,2 m+1 \neq 0$, and its degree is $\operatorname{deg}\left(\gamma_{m}\right)=2 m+1$.

3. Integral Free Form

Integral free form of the Weierstrass representation (see [15]) is

$$
\left(\begin{array}{l}
x \tag{12}\\
y \\
z
\end{array}\right)=\operatorname{Re}\left(\begin{array}{c}
\left(1-w^{2}\right) \phi^{\prime \prime}(w)+2 w \phi^{\prime}(w)-2 \phi(w) \\
i\left[\left(1+w^{2}\right) \phi^{\prime \prime}(w)-2 w \phi^{\prime}(w)+2 \phi(w)\right] \\
2\left[w \phi^{\prime \prime}(w)-\phi^{\prime}(w)\right]
\end{array}\right) \equiv \operatorname{Re}\left(\begin{array}{c}
f_{1}(w) \\
f_{2}(w) \\
f_{3}(w)
\end{array}\right)
$$

where algebraic function $\phi(w)$ and the functions $f_{i}(w)$ are connected by the relation

$$
\begin{equation*}
\phi(w)=\frac{1}{4}\left(w^{2}-1\right) f_{1}(w)-\frac{i}{4}\left(w^{2}+1\right) f_{2}(w)-\frac{1}{2} w f_{3}(w) \tag{13}
\end{equation*}
$$

for $w \in \mathbb{C}$. Integral free form is suitable for algebraic minimal surfaces. For instance, $\phi(w)=\frac{1}{6} w^{3}$ gives rise to classical Enneper minimal surface E_{1} (see [4] for details).

After some calculations by using the last two equations above, we get following corollary:
Corollary 3. We obtain algebraic functions $\phi(w)$, and then get the function $\phi(w)=\frac{w^{3}}{2}-\frac{w^{4}}{3}+\frac{w^{5}}{10}$, which leads to Enneper minimal surface E_{2}. We also find $\phi(w)=\frac{w^{3}}{2}-\frac{w^{5}}{4}+\frac{w^{7}}{14}$ for $E_{3}, \phi(w)=\frac{w^{3}}{2}-\frac{w^{6}}{5}+\frac{w^{9}}{18}$ for E_{4}, and so on.

Hence, we have following lemma:
Lemma 5. The algebraic function in the integral free form for a higher degree (also classical) Enneper minimal surfaces E_{m} is as follows:

$$
\begin{equation*}
\phi_{E_{m}}(w)=\frac{w^{3}}{2}-\frac{w^{m+2}}{m+1}+\frac{w^{2 m+1}}{2(2 m+1)} \tag{14}
\end{equation*}
$$

where $m \geq 1, m \in \mathbb{Z}$.

4. Conclusions

Briefly, we give all findings, calculated in Sections 2 and 3 for the Enneper surface family, in Table 1 as follows.

Table 1. Algebraic Enneper minimal surfaces $E_{m}, m \geq 1, m \in \mathbb{Z}$.

Surface	$\operatorname{deg}(x, y, z)$	$\operatorname{deg}\left(E_{m}\right)$	$\operatorname{deg}\left(\gamma_{m}\right)$	Algebraic Function
$E_{1}($ classical $)$	$(3,3,2)$	9	3	$\frac{1}{6} w^{3}$
E_{2}	$(5,5,3)$	25	5	$\frac{1}{2} w^{3}-\frac{1}{3} w^{4}+\frac{1}{10} w^{5}$
E_{3}	$(7,7,4)$	49	7	$\frac{1}{2} w^{3}-\frac{1}{4} w^{5}+\frac{1}{14} w^{7}$
				\vdots
\vdots	\vdots	\vdots	\vdots	\vdots
E_{m}	$(2 m+1,2 m+1, m+1)$	$(2 m+1)^{2}$	$2 m+1$	$\frac{1}{2} w^{3}-\frac{1}{m+1} w^{m+2}+\frac{1}{2(2 m+1)} w^{2 m+1}$

Looking at the table above, we also have the following results:
Corollary 4. We find the following relation between degree of algebraic function $\phi_{E_{m}}(w)$ in the integral free form and curve γ_{m} of surface E_{m} :

$$
\operatorname{deg}\left(\gamma_{m}\right)=2 m+1=\operatorname{deg}\left(\phi_{E_{m}}\right)
$$

and

$$
\operatorname{deg}\left(E_{m}\right)=(2 m+1)^{2}=\left(\operatorname{deg}\left(\gamma_{m}\right)\right)^{2}=\left(\operatorname{deg}\left(\phi_{E_{m}}\right)\right)^{2},
$$

where integers $m \geq 1$.
Remark 2. For integers $m \geq 4$, algebraic equations and also degrees of Enneper minimal surfaces E_{m} can be calculated. However, calculation is a time problem for software programmes.

Funding: This research received no external funding.
Conflicts of Interest: The author declares no conflict of interest regarding the publication of this paper.

References

1. Bour, E. Théorie de la déformation des surfaces. J. l'Êcole Imperiale Polytech. 1862, 22, 1-148.
2. Demoulin, A. Sur les surfaces minima applicables sur des surfaces de revolution ou sur des surfaces spirales. Darboux Bull. 1897, 2, 244-252.
3. Haag, J. Note sur les surfaces minima applicables sur une surface de revolution. Darboux Bull. 1906, 30, 75-94.
4. Nitsche, J.C.C. Lectures on Minimal Surfaces. Volume 1. Introduction, Fundamentals, Geometry and Basic Boundary Value Problems; Translated from the German by Feinberg, J.M.; With a German Foreword; Cambridge University Press: Cambridge, UK, 1989.
5. Osserman, R. A Survey of Minimal Surfaces; Van Nostrand Reinhold Co.: New York, NY, USA; London, UK; Melbourne, Australia, 1969.
6. Rado, T. On the Problem of Plateau, 1st ed.; Springer: New York, NY, USA, 1933; Subharmonic Functions Reprint; Springer: New York, NY, USA; Heidelberg, Germany, 1971.
7. Ribaucour, A. Etude des elassoides ou surfaces a courbure moyenne nulle. Mem. Cour. et Mem. Sav. Etr. Acad. Roy. Sci. Belg. Bruxelles. 1882, 44, 236.
8. Schwarz, H.A. Miscellen aus dem Gebiete der Minimalflachen. J. für die reine und Angew. Math. (Crelle's J.) 1875, 80, 280-300.
9. Weierstrass, K. Untersuchungen über die flächen, deren mittlere Krümmung überall gleich null ist. Preuss Akad. Wiss. 1866, III, 219-220.
10. Whittemore, J.K. Minimal surfaces applicable to surfaces of revolution. Ann. Math. 1917, 19, 1-20. [CrossRef]
11. Enneper, A. Untersuchungen über einige Punkte aus der allgemeinen Theorie der Flächen. Math. Ann. 1870, 2, 58-623. [CrossRef]
12. Enneper, A. Analytisch geometrische Untersuchungen. Gott. Nachr. 1868, 258-277, 421-443.
13. Henneberg, L. Uber die evoluten der ebenen algebraischen kurven. Vierteljahresschr. Naturforsch. Ges. Zur. 1876, 21, 71-72.
14. Henneberg, L. Determination of the lowest genus of the algebraic minimum surfaces. Br. Ann. 1878, IX/2, 54-57.
15. Weierstrass, K. Mathematische Werke; Mayer \& Muller: Berlin, Germany, 1903; Volume 3.
16. Barbosa, J.L.M.; Colares, A.G. Minimal Surfaces in \mathbb{R}^{3}; Lecture Notes in Mathematics 1195; Springer: Berlin, Germany, 1986.
17. Barbosa, J.L.M.; Do Carmo, M.P. On regular algebraic surfaces of \mathbb{R}^{3} with constant mean curvature. J. Differ. Geom. 2016, 102, 173-178. [CrossRef]
18. Cheshkova, M.A. On the geometry of Enneper's surface. (Russian) Differentsialnaya Geom. Mnogoobraz 2007, 38, 139-142.
19. Dumitru, D. Minimal surfaces that generalize the Enneper's surface. Novi Sad J. Math. 2010, 40, 17-22.
20. Fernandez, I.; Lopez, F.J. On the uniqueness of the helicoid and Enneper's surface in the Lorentz-Minkowski space \mathbb{R}_{1}^{3}. Trans. Am. Math. Soc. 2011, 363, 4603-4650. [CrossRef]
21. Kaya, S.; López, R. The Björling problem and Weierstrass-Enneper representation of maximal surfaces in Lorentz-Minkowski space. In Differential Geometry in Lorentz-Minkowski Space; University Granada: Granada, Spain, 2017; pp. 43-59.
22. Kokubu, M. On a construction of higher codimensional minimal surfaces based on Enneper's surface and the catenoid. (Japanese) Minimal surfaces and related topics (Kyoto, 1999). Sūrikaisekikenkyūsho Kōkyūroku 1999, 1113, 65-84.
23. Odehnal, B. On algebraic minimal surfaces. $K o G$ 2016, 20, 61-78.
24. Velickovic, V. Visualization of Enneper's surface by line graphics. Filomat 2017, 31, 387-405. [CrossRef]
25. Dierkes, U.; Hildebrandt, S.; Sauvigny, F. Minimal Surfaces, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010.
26. Gray, A.; Abbena, E.; Salamon, S. Modern Differential Geometry of Curves and Surfaces with Mathematica ${ }^{\circledR}$, 3rd ed.; Studies in Advanced Mathematics; Chapman \& Hall/CRC: Boca Raton, FL, USA, 2006.
