International Conference on Pure and Applied Mathematics

 BOOK OF ABSTRACTS AND PROGRAMME

 SPONSORS

 SPONSORS
 Van Kültür ve
 Gevaş Kaymakamlığı Tuşba Belediyesi

Contents

Welcome xiii
Committees xiv
Programme xviii
Tuesday, August 25 xviii
Wednesday, August 26 xxiii
Thursday, August 27 xxxii
Friday, August 28 xxxix
Abstracts of Invited Speakers xl
Mahmoud Abdel-Aty
Prospective of quantum information 1
Kenzu Abdella
Solving boundary value problems using the sinc collocation method with derivative interpolation 2
Marat U. Akhmet
Extension of chaos, control and applications 3
Ersan Akyıldız
An overview of discrete Log and Trace based public key cryptography on finite fields 4
Feyzi Başar
Recent trends related to four dimensional matrix transformations 5
Ismail Kucuk
Some aspects of optimal control 6
Hüseyin Merdan
Asset flow differential equations 7
Heybetkulu Mustafayev
Some ergodic properties of measures 8
Hidenori Ogata, Hiroshi Hirayama
Hyperfunction method for numerical integrations 9
Abstracts of Speakers 10
Emel A. Ugurlu, Kürsat Hakan Oral, Unsal Tekir
Extension of uniformly primary ideals 11
Reza Abazari, Mehrdad Lakestani
Numerical solution of the Rosenau-Burgers equation using quintic B- spline collocation method 12
Mahmoud Abdel-Aty, Mohamed Kamel Prospectives of geometric phase 13
Abderrahim Houmat
Coupling of finite and hierarchical infinite elements: application to a homogeneous isotropic half-space 14
Qais Mustafa Abdulqader
Comparison between discriminant analysis and logistic regression anal- ysis: an application on caesarean births and natural births data 15
Abdullahi Rashid Adem
Solutions and conservation laws of a two-dimensional integrable gen- eralization of the Kaup-Kupershmidt equation 16
Essa Aghdassi
Exact constants for best approximation on the group $\mathrm{SU}(2)$ 17
Asghar Ahmadkhanlu
Existence and uniqueness results for a class of fractional boundary value problem 18
Dashti Ahmed Ali
A comparison of methods for computing the matrix exponential ap- pears in systems of differential equations 19
Marat U. Akhmet, Duygu Aruğaslan, Nur Cengiz
Exponential stability of periodic solutions of recurrent neural net- works with functional dependence on piecewise constant argument 20
Mehmet Ali Aktürk, Alexey Lukashov
Sharp Rusak-type inequalities for rational functions on several intervals 21Ali Al-Karaly, Karim KholyAspects of analitical solutions and simulation of high order ODE . . 22
Nazmiye Alemdar, Sedat Temel
Group-2-groupoids and 2g-crossed modules 23
Nihan Aliev, Ahmad Pashavand
Multipoint boundary value problem for a fractional order ordinary linear differential equation with variable coefficient 24
Hadeel Salim Alkutubi
Regression analysis for brest cancer patients 25
Mehmet Nuri Almalı, Zinnur Dikici, Özkan Atan
The simulation of sound signal masking with sprout chaotic oscillation 26
Nagehan Alsoy-Akgün
DQM solution of natural convection flow of water-based nanofluids 27
Nagehan Alsoy-Akgün
DRBEM solution of natural convection flow of water-based nanofluidsin an inclined angle28
Derya Altıntan, Vilda Purutçuoğlu, Ömür Uğur
Functional Impulses in Exact Stochastic Simulation 29
Houas Amrane, Mokhtari Zouhir
A novel binary image encryption alghorithm based on difuse repre- sentation 30
Kâmil Arı
On the generalized k-Pell (p,i)-numbers 31
Okan Arslan, Hatice Kandamar
γ-radicals of gamma rings 32
Allaberen Ashyralyev, Sema Akturk
Fractional spaces generated by the positive differential operator in the half-space 33
Serkan Aslıyüce, Feza Güvenilir
Grüss Inequality on Discrete Fractional Calculus with delta operator 34
Arife Atay, H. Ilhan Tutalar
Regular local functions in ideal topological spaces 35
Mehmet Atçeken, Ümit Yıldırım, Süleyman Dirik
On almost $C(\alpha)$-manifolds satisfying certain conditions on quasi-conformalcurvature tensor36
Matallah Atika
Multiple solutions to p-Kirchhoff type problems in \mathbb{R}^{n} critical p- Kirchhoff equations 37
Gamzegül Aydın, Hüseyin Merdan, Abdessamad Tridane
Stability analysis of HIV infection model with tumor 38
Ozgur Aydogmus
Extinction in a generalized chain binomial epidemic model 39
Timur Ayhan, Cemil TunçGlobal existence and boundedness results for solutions of specific thirdorder nonlinear vector differential equations40
Azam Azimi, Mahmood Ghaffari, Gholam Hossein Riazi, Mohammad Mehdi
Tavakol
Theoretical and computational modeling studies on the -cyperone - tubulin interaction 41
Ali Bajravani
Projective geometry related to the secant loci in symmetric product of smooth algebraic curves 42
Amir Baklouti
Jordan superalgebras with some homogeneous structures 43
Haci Mehmet Baskonus, Hasan Bulut, Mirac Kayhan
Regarding analytical prototype studies for the generalized nonlinear Pochhammer-Chree equation 44
Şenay Baydaş, Bülent Karakas
Lie group structure on $n \times n$ Markov matrix 45
Aysegul Bayram, Vedat SiapGraph-theoretic approach to the ideal structure of a family of non-chain rings46
Afshin Behmaram
On some graph invariants of generalized Fullerene 47
Murat Bekar, Yusuf Yaylı
Involutions of Dual Split-Quaternions 48
Abdallah Benaissa
Asymptotic expansion of double oscillatory integrals: contribution of non stationary critical points of the second kind 49
Enes Abdurrahman Bilgin
Development of an educational software for basic statistics 50
Enes Abdurrahman Bilgin, Sıddık Keskin
Regression analysis algorithm for circular data 51
Tevfik Bilgin, İsmail Gökhan Kelebek
Characterization of $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{4}\right]\right)$ 52
Abasalt Bodaghi
Various notions of module amenability 53
Hacer Bozkurt, Yllmaz Yılmaz
Some new theorems in Hilbert quasilinear spaces 54
Mustafa Buyukarslan, Oguzhan Bahadir
On statistical manifold with dual connection and its applications 55
Abdurrahman Büyükkaya, hpeyker Öztürk
Some fixed point theorems satisfying Meir-Keeler type contractions via rational expression in 2-metric spaces 56
Musa Cakir, Derya Arslan
A numerical method for nonlinear singularly perturbed multi-point boundary value problem 57
Musa Cakir, Derya Arslan
Reduced differential transform method for sixth-order singularly per- turbed Boussinesq equation 58
Murat Cancan, Süleyman Ediz
Inverted distance and inverted Wiener index 59
Şerifenur Cebesoy, Elgiz Bairamov, Yelda Aygar
Matrix-valued difference operators with polynomial type Jost solu- tions on the whole axis 60
Mirac Cetin Firengiz, Naim Tuglu
Some incomplete q-polynomals 61
Ayşegül Çaksu Güler, Esra Dalan Yıldırım
Some fixed point theorems on soft G-metric spaces 62
Özge Çolakoğlu, Hamza Menken
On the q-extension of the p-adic beta function 63
Reza Danaei, Aliasghar Jodayree AkbarfamDynamical stability and mathematical modeling of heroin epidemicin Urmia64
Gopal Datt
Operator equations generalizing the notions of Hankel and Toeplitz operators 65
Latifa Debbi, Zineb Arab
Numerical approximations for some fractional stochastic partial dif- ferential equations 66
İzzettin Demir, Oya Bedre Özbakır, İsmet Yıldız
Some properties of soft proximity spaces 67
Emre Deniz, Gülsüm Ulusoy, Ali Aral
Convergence properties on Jain-Durrmeyer operators 68
İsmail Hakkı Denizler
Nakayama's lemma for artinian modules and generalized matlis dual-ity69
Süleyman Dirik, Mehmet Atçeken, Ümit Yildirim
Pseudo-slant submanifold in Sasakian space forms 70
Sibel Doğru Akgöl, Ağacık ZaferA general result On asymptotic integration of impulsive differentialequations71
Gonca Durmaz, Ishak Altun
Some fixed point theorems for a weak partial metric space 72
Hakki Duru, Akbar Barati Chiyaneh,
Difference schemes on adapted mesh for the initial boundary value Sobolev problems with boundary layers 73
Hakki Duru, Akbar Barati Chiyaneh,
Finite difference schemes on Shishkin mesh for singularly perturbed initial-boundary value Sobolev type problems 74
Tarini Kumar Dutta
Analysis on stability of limit cycles and Hopf bifurcation in Van Der Pol nonlinear differential equation 75
Süleyman Ediz, Murat Cancan
Reverse Zagreb indices of cartesian product of graphs 76
Ramazan Ekmekçi, Rıza Ertürk
Q-convergence of graded difilters 77
Omar El-Basha, Ahmed El-Shahat, Hussin Fayed, Mahmoud Abdel-Aty Chaos theory and Lorenz attractors 78
Alaa El-Din El-OzeiriResearch on using Uranium-Lead radioactive decay in detecting theage of the Earth79
Mehdi Eliasi
On ordering of trees by multiplicative version of zagreb indices 80
Opeyemi Oluwole Enoch
The eigenvalues (energy levels) of the Riemann Zeta function 81
Samet Erden, Mehmet Zeki Sarıkaya
Generalized Bullen type inequalities for local fractional integrals andits applications82
Fevzi Erdogan, Kerem Yamac, Mehmet Giyas Sakar
A fitted Numerov method for singularly perturbed reaction-diffusion equations 83
Fevzi Erdogan, Kerem Yamac, Mehmet Giyas Sakar
An exponential fitted method for singularly perturbed reaction-diffusion equations 84
Hilmi Ergören
Impulsive neutral fractional differential inclusions at variable times 85
Hilmi Ergören
Neutral fractional differential equations with impulses at variable times 86
Morteza Faghfouri, Sahar Mashmouli
Anti-invariant semi-Riemannian submersions admitting vertical from Lorentzian Sasakian and Para Sasakian manifolds 87
Fatemeh Fatahi, Gholamreza Safakish
On Generalization of the Strongly irreducible submodules 88
Fatemeh Fatahi, Gholamreza Safakish, Rohollah Piri Rings over which Monoid rings are semicommutative 89
Ghanbary Fatemeh, Ahmad Jafarian
Artificial intelligence based modeling for water treatment 90
Alev Firat, Şule Ayar Özbal Symmetric bi-multipliers on incline algebras 91
İlker Gençtürk, Kerim Koca
Dirichlet boundary value problem for a $\mathrm{N}^{\text {th }}$ order complex differentialequation92
Gülistan Kaya Gök, , Nursah Mutlu, Serife Büyükköse Kirchoff index of weigted graphs 93
Gülistan Kaya Gök, , Nursah Mutlu, Serife Büyükköse
Wiener index of weigted graphs 94
Mustafa Gök, Erdal Beyde
Analysis of the reasoning skills of students in solving a non-routineproblem95
İclal Gör, Rıfat Aşlıyan, Ömer Kalfa
Textile image classification using naive bayes and multi-layer perceptron 96
İclal Gör, Korhan GünelSolving systems of linear differential equations by using artificial neu-ral networks97
İbrahim Halil Gumus, Omar Hirzallah
Schatten p-norm inequalities for accretive-dissipative 2 x 2 operator matrices 98
Erhan Güler, Yusuf Yaylı
Generalized Bour's theorem in Minkowski space form 99
Erhan Güler, Vahit Zambak
Algebraic surfaces of Henneberg in Minkowski 3-space 100
Süleyman Güler, Yücel Özdaş
On weak continuity of soft topological spaces 101
Ibrahim Halil Gumus, Omar HirzallahSchatten p-norm inequalities for accretive-dissipative 2 x 2 operatormatrices102
Mehmet Güngör, Ahmet Demiralp, Yunus Bulut, M.Şamil Şık, Yusuf Kıraç On comparison of coherent systems via dynamic system signature 103
Ayşın Erkan Gürsoy, Kürşat Aker
A combinatorial approach to Catalan numbers 104
Ayşın Erkan Gürsoy, Kürşat Aker
Murnaghan-Nakayama rule for Jack polynomials 105
Ayşe Feza Güvenilir, Billur Kaymakçalan, Neslihan Nesliye PelenSome results on predator-prey dynamic systems with Beddington-DeAngelis type functional response106
Yakup Haci, Muhammet Candan
Optimal control problem for processes given by multi-parameter lin- ear stochastic dynamic system 107
Benseridi Hamid
Asymptotic analysis of a dynamical problem of non-isothermal linear elasticity with friction 108
Youssef S. Hassan, Amr Mamdouh, Kareemeldien Maklad, Ahmed A. El- ghannam, Mahmoud Abdelaty
Adaptive step size numerical solution to first order ODEs, a refine- ment of Euler's and RK methods 109
A. H. Homid, Mahmoud Abdel-Aty
Implementing quantum search algorithm in the presence of dissipation 110
Nesir Huseyin, Anar Huseyin, Khalik Guseinov, Vladimir Ushakov
Approximation of the set of trajectories of control system describedby an affine Volterra type integral equation111
Boukemara Ibtissem
Structure of basin and bifurcation phenomena in two-dimensional piecewise maps 112
Seda İğret Araz, Murat Subaşı, Hakkı Güngör, Hülya Durur
On obtaining stable solution for a hyperbolic coefficient control problem113
Feda İlhan, Zahir MuradoğluElasto-plastic deformation of an incompressible bending plate withclamped boundary114
Mohammad Ilmakchi
Real hypersurfaces in complex projective space with weakly constant holomorphic curvature 115
Mohammad Reza Jabbarzadeh
Moore-Penrose inverse of weighted composition operators on L^{p}-spaces 116
Ahmad Jafarian
Artificial neural network method for solving fractional Fredholm in-tegral equations117
Mehdi Jalalvand, Zeinab Moeini Rad, Ameneh Sayahi
Numerical solution for some weakly singular nonlinear Volterra inte- gral equations 118
Shabnam Jamshidzadeh, Nasrin Eghbali
Stability of Cauchy functional equation and quadratic equation by generalized operations 119
Sunnie Joshi, Benjamin Seibold, Pak-Wing Fok A computational model for the simulation of atherosclerotic plaques 120
Hatice Karabenli, Alaattin Esen, E. Nesligül Aksan
Collocation finite element solutions for Stefan problem with Neumannboundary condition121
Nazli Karaca, Isa Yıldırım
On the convergence of Newton-Like method for solving nonlinear equations in Banach spaces 122
Emine Serap Karacan, Emel A.Ugurlu, Unsal Tekir
On almost prime ideals 123
Bülent Karakaş, Şenay Baydaş
Group structure of Markov polygons 124
Murat Karakaş, Hasan Karabudak
A new regular matrix defined by Fibonacci numbers and its applications125Yağmur Karakoç
Cone metric spaces and cone two metric spaces 126
Mahmut Karakuş
On Λ - semiconservative FK spaces 127
Esra Karaoğlu, Hüseyin Merdan
Hopf bifurcations of a ratio-dependent predator-prey model involving two discrete maturation time delays 128
Zeynep Kayar
Fractional boundary value problems (BVPs) and Lyapunov type in- equality 129
Barış Kesler, Necat Görentaş
On S_{1}, B_{1} near Rings 130
Reza Keykhaei
A generalized static mean-variance portfolio optimization 131
Alireza Khalili Golmankhaneh
Fractal calculus and applications 132
Hossein Jabbari Khamnei, Roghaye Makouyi
Recurrence relation for the moments of order statistics from a beta- pareto distribution 133
Mehmet Kır, Hukmi Kızıltunç
The concept of weak (ψ, α, β) contractions in partially ordered metric spaces 134
Mehmet Eyüp Kiriş, Naki Çaltıner
On generalized some inequalities for s - convex functions 135
Alper Korkmaz, Hakan Kasım Akmaz
Exponential Cubic B-spline Based Solutions of Advection-Diffusion Equation 136
Erdal Korkmaz, Cemil Tunç
Inequalities and exponential decay of certain differential equations of first order in time varying delay 137
Abdulhamit Kucukaslan
Generalized fractional maximal operator on generalized local Morrey spaces 138
Mustafa Kudu, Gabil M. Amiraliyev
Fourth order approximate method for a time-delayed pseudo-parabolic equation 139
Hatice Kusak Samancı, Ali Caliskan
A new approach to one parameter motion 140
Hatice Kusak Samancı, Ali Caliskan
The level curves and surfaces on time scales 141
Hatice Kusak Samancl, Serpil Kaya
The dual-variable Bernstein polynomials 142
Fatih Kutlu, Tunay Bilgin
Distance measures for temporal intuitionistic fuzzy sets 143
Ömer KüsmüşAnother description on the units of integral group ring of dicyclicgroup of order 12144
Ömer Küsmüs, Turgut Hanoymak
A possible key exchange protocol over group rings 145
Mehtap Lafcı, Gizem S. OztepeOscillation of Mixed Type Third Order Nonlinear Differential Equa-tion with Piecewise Constant Arguments146
Abdelkader Lakmeche, Mohamed Helal, Ahmed Lakmeche
Pulsed chemotherapy model 147
Mahmoud MahdianGeneral Non-Markovian dynamics of open quantum systems and spec-tral density of complex systems using exceptional orthogonal polyno-mials148
Mahmoud Mahdian
Phonon spectral density of the FMO light-harvesting complex with associated and generalized Jacobi polynomials 149
Khanlar R. Mamedov, F. Ayca Cetinkaya, Ozge Akcay
Boundary value problem for a Sturm-Liouville operator with piece- wise continuous coefficient 150
Khanlar R. Mamedov, Ozge Akcay, F. Ayca Cetinkaya
On the inverse problem for a class of Dirac operators 151
Shahram Mehry, Saeid MomenaliHeat source using the conjugate gradient method with adjoint problem152
Shahram Mehry, Reza Safakish
A classification of Ramanujan complements of unitary Cayley graphs 153
Shahram Mehry, Reza Safakish, Sadegh SadeghiThe problem of clothseller's son154
Shahram Mehry, Reza Safakish, Amir Saeidi
Nilpotent Lie algebras and Betti number behavior 155
Adnan Melekoğlu
Mirrors on Hurwitz surfaces 156
Hamza Menken, Özge Çolakoğlu
On the p-Adic Log Beta Function 157
Abdelaziz Mennouni
A modified Galerkin method for solving integral equations of the sec- ond kind 158
Alev Meral, Ömür Uğur
Optimal portfolio strategies under various risk measures 159
Hüseyin Merdan, Özlem Ak Gümüş, Gamzegül Aydın
Global stability analysis of a general scalar difference equation 160
Tiachachat Meriem, Miloud Mihoubi
The r-Whitney numbers liked to generalized Bernoulli polynomials 161
Nadia Amel Messaoudi, Salah Manseur, Mustapha Blidia
Revisit scheme of Adomian decomposition method for non homoge- neous heat equation 162
Gülhan Mınak, Ishak Altun
F-contractions on metric spaces and some related fixed point results 163
Sahar Moayeri Rahni
The skew inverse semigroup ring 164
Sahar Moayeri RahniWhen the universal inverse semigroup $\operatorname{Pr}(S)$ of inverse semigroup S165
Abeidallah Mohamed
Generalized Newton transformation and its application to transversal submanifolds 166
Belaidi Mohamed
Generalized Markov processes 167
Ahmet Mollaoğulları, Mehmet Tekkoyun
Euler-Lagrange and Hamilton-Jacobi equations on a Riemann almost contact model of a Cartan space of order k 168
Dilmi Mourad
Existence and regularity of the solution for nonlinear and oblique problems with friction 169
Ahmad Moussavi, Alireza Moussavi
On nilpotent elements in Ore extensions 170
Heybetkulu Mustafayev, Cesim Temel
Mixing type theorem for power bounded measures 171
Akindele Michael OkedoyeHeat transfer in hydro magnetic oscillatory flow past an impulsivelystarted porous limiting surface with heat generation/absorption172
Aykut Or, Yakup Haci
Graphical method for interval valued bimatrix games 173
Sameera Abdulsalam Othman
Forecasting by adaptive double exponential smoothing 174Mohamed Vall Ould MoustaphaLaplace equation with triple-inverse square potentials on Euclideanspace and applications175
M. Emin Özdemir, Havva Kavurmacı-Önalan
($\mathrm{g},(\mathrm{h}-\mathrm{m})$)-convex dominated functions 176
Engin Ozkan, Aykut Göçer, Ipek Altun
The relationship Between $\mathrm{n}^{\text {th }}$ Lucas number and a sequence defined by M-Sequences 177
Rukiye Ozturk, Ali Aydogdu, Engin OzkanAn alternative proof for a lemma used in the trace formula for GL(2)over a number field178
Alex Pijyan
On estimation of unknown parameters of exponential-logarithmic dis- tribution by censored data 179
Shpetim Rexhepi
On existence of weyl derivative of functions in lorentz space with Quasi-monotone fourier coefficients 180
Asra Rezafadaei
Beautiful number 6174 181
Vahid Roomi
Asymptotic behavior of solutions of generalized Liénard system 182
Benmansour Safia
Multiple solutions to nonhomogeneous elliptic Kirchhoff equations in\mathbb{R}^{n}183
Mehmet Giyas Sakar, Onur Saldir
A new numerical approach for solving time-fractional partial differ- ential equations 184
Onur Saldir, Mehmet Giyas Sakar
A combination of VIM and asymptotic expansion for singularly per- turbed convection-diffusion problem 185
Ahmad Samaila, Basant Jha
Effefts of transpiration on g-gitter fully developed mixed convection flow in a vertical channel 186
Semra Saracoğlu Çelik, Yusuf Yaylı, Erhan Güler
Euler spirals in space forms 187
Muhammed Talat Sarıaydın, Vedat Asıl
Characterizations of quaternionic some surfaces in Minkowski 3-space 188
Muhammed Talat Sarıaydın, Vedat AsılNew parametric representation of a surface family with common smaran-dache asymptotic by using Bishop frame189
Mehmet Zeki Sarıkaya, Samet Erden, Hüseyin Budak
Some generalized Ostrowski type inequalities involving local fractional integrals and applications 190
Mehmet Zeki Sarıkaya, Tuba Tunç, Samet Erden
Generalized Steffensen inequalities for local fractional integrals 191
Selin Savaskan, Aykut Or, Yakup Haci
Lemke-Howson algorithm for two-person non-zero sum games 192
Nazish Shahid
The influence of thermal radiation, mass diffusion and fractional pa- rameters on MHD flow over a vertical plate that applies time depen- dent shear to the fluid 193
Ahmad Shayganmanesh, Ahmad Saeedi
Stability and accuracy of RBF direct method for solving a dynamic investment model 194
Ali Sirma
Approximating the Riemann-Stieltjes integral in terms of Simpson's rule 195
Güzide Şenel
Matrix representation of soft points and its application 196
Hacer Şengül, Mikail Et
On Wijsman I - lacunary statistical convergence of order α of sequences 197
Sebaheddin Şevgin, Pınar YurdakulUlam stability of some Volterra equations198
Hatice Taskesen
Blow up of solutions for a nonlinear Timoshenko equation with posi- tive initial energy 199
Mahrouz Tayeb, Chaili Rachid
Comparison of differential operators in Gevrey space 200
Selçuk Topal
Algorithms in Minimal Ferrer Graph Constructions 201
Selçuk TopalA Computational Approach to Syllogistic English Sentences with Di-transitive Verbs in Formal Semantics202
Ali Hakan Tor
Hyperbolic smoothing method for sum-max problems 203
Ümit Totur, İbrahim Çanak Tauberian conditions for the (C, α) integrability of functions 204
Ümit Totur, İbrahim Çanak
The (C, α, β) integrability of functions and a Tauberian theorem 205
Ümit Totur, Muhammet Ali Okur
On Tauberian remainder theorems for Cesàro summability method of noninteger order 206
Sedigheh Toubaei
A finite difference method for smooth solution of system of linear weakly singular Volterra integral equations 207
Cemil Tunç
Stability and boundedness of solutions of Volterra integro-differential equations 208
Cemil Tunç, Yener Altun
On the asymptotic behaviors of solutions certain non-linear neutral equations with multiple deviating arguments 209
Cemil Tunç, Melek Gözen
On exponential stability of solutions of neutral differential systemwith multiple variable delays210
Cemil Tunç, Sizar Abid MohammedOn the stability and boundedness of differential equations of thirdorder with retarded argument211
Cemil Tunç, Ramazan Yazgan
On the existence of pseudo almost periodic solutions to a class of Lasota-Wazewska model differential equation 212
Ercan Tunç, Orhan Özdemir
Oscillation theorems for second-order nonlinear differential equations with nonlinear damping 213
Ercan Tunç, Osman Tunç
On the oscillation of a class of damped fractional differential equations 214
Ali Uçum, Kazım İlarslan, Makoto Sakaki
On generalized null Bertrand curves in \mathbb{E}_{2}^{4} 215
Gulsen Ulucak, Unsal Tekir, Kursat Hakan Oral
A note on lattice module 216
Serhan Ulusan, Adnan Melekoğlu
Symmetry groups of Petrie polygons 217
Gülsüm Ulusoy, Tuncer Acar
Generalized Szsz-Mirakyan-Durrmeyer operators and their apprroxi- mation properties 218
Gülsüm Ulusoy, Emre Deniz, Ali Aral
On generalized Durrmeyer operators 219
Uğur Ulusu, Ömer Kişi
\mathcal{I}-Cesaro summability of sequences of sets 220
Secil Yalaz Toprak, Mujgan Tez, H.Ilhan Tutalar
Asymptotic normality of parametric part in partially linear models in the presence of measurement error 221
Tuğba Yavuz
Coefficient Estimates For a New Subclass of Close-to-Convex Functions222
Medine Yeşilkayagil, Feyzi Başar
Some topological properties of the spaces of almost null and almost convergent double sequences 223
Ümit Yıldırım, Mehmet Atçeken, Süleyman Dirik
On almost $C(\alpha)$-manifold satisfying some conditions on the weyl pro- jective curvature tensor 224
Nihal Yokus, Nimet Coskun
Jost solution and spectrum of the discrete Sturm-Liouville equations with hyperbolic eigenparameter 225
Ali Zalnezhad, Ghasem Shabani, Hossein Zalnezhad, Mehdi Zalnezhad Achieving the largest primes: algorithm and relations in order 225
Abstracts of Posters 227
Özlem Ak GümüşLocal stability analysis and Allee effects in a nonlinear discrete-timepopulation model involving delay228
Melike Dede, Bahattin Erdinc, Murat Aycibin, Mehmet Nurullah Secuk, Sinem Erden Gulebaglan, Emel Kilit Dogan, Harun Akkus Ab initio investigation of the physical properties of perovskite rbcdbr3 structure 229
Erdal Ekici, Ayşe Nur Tunç
On the notion of θ-openness 230
Fatma Erdinc, Emel Kilit Dogan, Mehmet Nurullah Secuk, Bahattin Erdinc, Murat Aycibin, Sinem Erden Gulebaglan, Harun Akkus
Ab initio calculation of physical properties of rbgecl3 231
Irem Eroglu, Erdal Guner
Connectedness in monotone ordered space 232
Djaouida Guettal, Mohamed Rahal
Global optimization problem of Lipschitz functions using a-dense curves233
Sinem Erden Gulebaglan, Emel Kilit Dogan, Mehmet Nurullah Secuk, Mu- rat Aycibin, Bahattin Erdinc, Harun Akkus
Structural and electronic properties of axd1-xbyc1-y quaternary al- loys via first principles 234
Sinem Erden Gulebaglan, Emel Kilit Dogan, Mehmet Nurullah Secuk, Mu- rat Aycibin, Bahattin Erdinc, Harun Akkus
Structual, dynamic and termodynamic properties of cspbbr3 com- pound in cubic perovskites via first principles 235
Mesut Kaval, Bahattin Erdinc, Mehmet Nurullah Secuk, Murat Aycibin, Emel Kilit Dogan, Sinem Erden Gulebaglan, Harun Akkus
First principle calculation of electroinic band structure of lurho3 com- pound 236
Yeşim Saraç, Vedat Asıl, S. Şule Şener On the optimal control problem in a parabolic system 237
Mehmet Nurullah Secuk, Harun Akkus, Bahattin Erdinc, Sinem Erden Gulebaglan, Murat Aycibin, Emel Kilit Dogan
Strusctural, dynamic and optical properties of double-layer hexagonal bitecl crystal 238
Mehmet Nurullah Secuk, Rana Eda Bicer, Harun Akkus, Bahattin Erdinc, Murat Aycibin, Emel Kilit Dogan, Sinem Erden Gulebaglan Structural, elastic and thermodynamic properties of hexagonal bitebr crystal 239
Mehmet Nurullah Secuk, Rana Eda Bicer, Harun Akkus, Bahattin Erdinc, Murat Aycibin, Emel Kilit Dogan, Sinem Erden Gulebaglan
Structural, elastic properties of bitebi crystal 240
Sefa Anıl Sezer, İbrahim Çanak
Conditions for convergence and subsequential convergence of regularly generated sequences 241
Other Participants 242

Welcome

Dear Participants,

Welcome to the International Conference on Pure and Applied Mathematics, ICPAM 2015, Van, Turkey. The conference is organized and is to be held at Yüzüncü Yıl University from August 25th to August 28th. We are happy to have you here in Van.

The main aim of the conference is to provide participants with an opportunity to exchange the latest information and ideas, and to encourage debate on many issues in international mathematical researches. During the conference you will certainly meet old and new colleagues, exchange ideas, develop new projects. You will also feel and enjoy the special atmosphere of Van and Turkey.

With 76 sessions and 230 presentations and more than 250 participants from 24 countries, Algeria, Armenia, Azerbaijan, Canada, Egypt, France, Georgia, India, Iran, Iraq, Isle of Man, Japan, Jorden, Kosovo, Kuwait, Macedonia, Mauritania, Nigeria, Pakistan, Russian Federation, Saudi Arabia, South Africa, Turkey, United Arab Emirates, USA, as well as people from 55 different university from Turkey, ICPAM 2015 will provide a stimulating opportunity for a global interchange of ideas on recent advances in mathematics.

I would like to express my deep gratitude to Prof. Dr. Peyami BATTAL, President of Yüzüncü Yıl University, for his encouragement and support in all stages of this conference.

I am grateful to all the participants in the International Conference on Pure and Applied Mathematics, particularly the members of the Scientific and Organizing Committees, the referees and the authors for producing such a high standard conference.

The conference is almost entirely from the registration support of participants. Behind this, we are grateful to Rectorate of YYU, Faculty of Sciences of YYU and Administrative Coordination Office of Research Project (BAP) for their financial support. We would also like to thank to the sponsor, Mayor of Tuşba Municipality for their generous support. Have a pleasant stay in Van.

Professor Cemil Tunç
Chair Organizer of ICPAM Organizing Committee

Committees

Honorary Board:

Prof. Dr. Peyami BATTAL
President of Yuzuncu Yil University, Van, TURKEY
Conference Chair:
Cemil TUNÇ
Department of Mathematics, Yuzuncu Yil University, Van, TURKEY

Scientific Program Committee:

Nagehan Alsoy Akgün

Zeynep Kayar
Ali Hakan Tor

Organizing Committee:

Şenay Baydaş	Mahmut Karakuş
Musa Çakır	Mehmet Giyas Sakar
Esin İnan Çınar	Sebaheddin Şevgin
Hakkı Duru	Mehmet Açil
Serkan Ali Düzce	Akbar Barati
Fevzi Erdoğan	Sultan Erdur
Ali Sırma	Bahar Kalkan
Cesim Temel	Ömer Küsmüş
M. Şerif Aldemir	Murat Luzum
Cemil Büyükadalı	Sizar Abid Mohammed
Murat Cancan	Onur Saldır
İ. Hakkı Denizler	Hayri Topal
Hilmi Ergören	Osman Tunç
Necat Görentaş	Raziye Yağız
Turgut Hanoymak	Ramazan Yazgan
Hasan Kara	

Scientific Committee:

Abdel-shafi Obada, Al-Azhar University, EGYPT
Ahmed Mohamed Ahmed El-Sayed, Alexandria University, EGYPT
Aleksandr O. Ignatyev, National Academy of Sciences of Ukraine, UKRAINE
Ali Hasan Nayfeh, Virginia Polytechnic Institute and State University, USA
Aliakbar Montazer Haghighi, Prairie View A\&M University, USA
Assia Guezane-Lakoud, Universite Badji Mokhtar de Annaba, ALGERIA
Ayman Badawi, American University of Sharjah, UAE
Bingwen Liu, Hunan University of Arts and Science, P. R. CHINA
Bruno de Andrade, University of Sao Paulo, BRAZIL
Bülent Karakaş, Yuzuncu Yil University, TURKEY
Canan Bozkaya, Middle East Technical University, TURKEY
Cemil Tunc, Yuzuncu Yil University, TURKEY
Cesim Temel, Yuzuncu Yil University, TURKEY
Ekrem Savaş, Istanbul Commerce University, TURKEY
Elgiz Bayram, Ankara University, TURKEY
Ercan Tunç, Gaziosmanpasa University, TURKEY
Ersan Akyıldız, Middle East Technical University, TURKEY
Esin İnan Çınar, Yuzuncu Yil University, TURKEY
Feyzi Başar, Fatih University, TURKEY
Gabil Amirali, Erzincan University, TURKEY
Hakkı Duru, Yuzuncu Yil University, TURKEY
Haluk Hüseyin, Anadolu University, TURKEY
Hamdullah Şevli, Istanbul Commerce University, TURKEY
Heybetkulu Mustafayev, Yuzuncu Yil University, TURKEY
Hüseyin Aydın, Erzurum Teknik University, TURKEY
Hüseyin Merdan, TOBB University of Economics and Technology, TURKEY
İrfan Siap, Yildiz Technical University, TURKEY
Ismail Küçük, Yildiz Technical University, TURKEY
John R. Graef, University of Tennessee, USA
Józef Banaś, Rzeszow Technical University, POLAND
Khalil Ezzinbi, Cadi Ayyad University, MOROCCO
Leigh C. Becker, Christian Brothers University, USA
Luís Sanchez Rodrigues, University of Lisbon, PORTUGAL

Mahmoud Abdel-Aty, Zewail City of Science and Technology, EGYPT
Martin J. Bohner, Missouri University of Science and Technology, USA
Marat Akhmet, Middle East Technical University, TURKEY
Masilamani Sambandham, Morehouse College, USA
Mehmet Atçeken, Gaziosmanpaşa University, TURKEY
Mikail Et, Siirt University, TURKEY
Mohamed Ali Hammami, University of Sfax, TUNISIA
Mohameden Ould Ahmedou, Justus-Liebig-Universitat Giessen, GERMANY
Mohhamad Sal Moslehian, Ferdowsi University of Mashhad, IRAN
Mouffak Benchohra, Universite Djilali-Liabes Sidi Bel Abbes, ALGERIA
Muhammad Aslam Noor, COMSATS Institute of Information Technology, PAKISTAN

Musa Çakır, Yuzuncu Yil University, TURKEY
Mustafa Bayram, Yildiz Technical University, TURKEY
Münevver Tezer-Sezgin, Middle East Technical University, TURKEY
Naim L. Braha, University of Prishtina, REPUBLIC of KOSOVA
Nizameddin Isgenderov, Baku State University, AZERBAIJAN
Octavian G. Mustafa, University of Craiova, ROMANIA
Olufemi Adeyinka Adesina, Obafemi Awolowo University, NIGERIA
Ömer Akın, TOBB University of Economics and Technology, TURKEY
Reza Abazari, University of Tabriz, Tabriz, Iran
Richard M. Low, San Jose State University, California, USA
Salim A. Messaoudi, King Fahd University of Petroleum and Minerals, SAUDI ARABIA

Samir H. Saker, Mansoura University, EGYPT
Shair Ahmad, University of Texas, USA
Smail Djebali, Ecole Normale Superieure, ALGERIA
Şenay Baydaş, Yuzuncu Yil University, TURKEY
Tunay Bilgin, Yuzuncu Yil University, TURKEY
Vatan Karakaya, Yildiz Technical University, TURKEY,
Zeraoulia Elhadj, University of Tebessa, ALGERIA

Programme

Tuesday, August 25
Room Amphi Chair: Hakan TOR
10:30-11:00 Opening Ceremony

Room Amphi Chair: Hüseyin MERDAN
11:00-11:30 Marat AKHMET
Extension of chaos, control and applications
11:30-11:45 Coffee Break

Room Amphi Chair: Hüseyin MERDAN
11:45-12:15 Mahmoud ABDEL-ATY
Prospective of quantum information
12:15-13:45 Lunch Break

Room Amphi Chair: Bülent KARAKAŞ
14:00-14:30 Hidenori OGATA, Hiroshi Hirayama
Hyperfunction method for numerical integrations
14:30-15:00 Feyzi BAŞAR
Recent trends related to four dimensional matrix transformations
15:00-15:15 Coffee Break

Room 101 Chair: Ercan TUNÇ
15:15-15:35 Nihal YOKUŞ, Nimet Coskun
Jost solution and spectrum of the discrete Sturm-Liouville equations with hyperbolic eigenparameter
15:35-15:55 Şerifenur CEBESOY, Elgiz Bairamov, Yelda Aygar
Matrix-valued difference operators with polynomial type Jost solutions on the whole axis
15:55-16:15 Hilmi ERGÖREN
Impulsive neutral fractional differential inclusions at variable times 16:15-16:30 Coffee Break

Room 101 Chair: Zeynep KAYAR
16:30-16:50 Serkan ASLIYÜCE, Feza Güvenilir
Grüss inequality on discrete fractional calculus with delta operator
16:50-17:10 Sibel DOĞRU AKGÖL, Ağacık Zafer
A general result on asymptotic integration of impulsive differential equations
17:10-17:30 Cemil Tunç, Yener ALTUN
On the asymptotic behaviors of solutions certain non-linear neutral equations with multiple deviating arguments
Room 102 Chair: Marat AKHMET
15:15-15:35 Mehtap LAFCI, Gizem S. ÖztepeOscillation of mixed type third order nonlinear differential equationwith piecewise constant arguments
15:35-15:55 Mohamed Vall OULD MOUSTAPHALaplace equation with triple-inverse square potentials on euclideanspace and applications
15:55-16:15 Allaberen Ashyralyev, Sema AKTÜRK
Fractional spaces generated by the positive differential operator inthe half-space
16:15-16:30 Coffee Break
Room 102 Chair: Zineb ARAB16:30-16:50 Matallah ATIKAMultiple solutions to p-Kirchhoff type problems in \mathbb{R}^{n} criticalp-Kirchhoff equations
16:50-17:10 Benmansour SAFIAMultiple solutions to nonhomogeneous elliptic Kirchhoff equationsin \mathbb{R}^{n}
17:10-17:30 Abdullahi Rashid ADEMSolutions and conservation laws of a two-dimensional integrablegeneralization of the Kaup-Kupershmidt equation
Room 103 Chair: Semra SARAÇOĞLU ÇELİK
15:15-15:35 Erhan GÜLER, Yusuf YaylGeneralized Bour's theorem in Minkowski space form
15:35-15:55 Erhan Güler, Vahit ZAMBAK
Algebraic surfaces of Henneberg in Minkowski 3-space
15:55-16:15 Muhammed Talat SARIAYDIN, Vedat AsslCharacterizations of quaternionic some surfaces in Minkowski3 -space
16:15-16:30 Coffee Break
Room 103 Chair: Mehmet ATÇEKEN16:30-16:50 Semra SARAÇOĞLU ÇELİK, Yusuf Yaylı, Erhan GülerEuler spirals in space forms
16:50-17:10 Muhammed Talat SARIAYDIN, Vedat AsllNew parametric representation of a surface family with commonsmarandache asymptotic by using Bishop frame
17:10-17:30 Mahrouz TAYEB, Chaili RachidComparison of differential operators in Gevrey space
Room 104 Chair: Bülent KARAKAS
15:15-15:35 Sahar MOAYERI RAHNI
The skew inverse semigroup ring
15:35-15:55 Okan ARSLAN, Hatice Kandamar
Γ-radicals of gamma rings
15:55-16:15 Alev Firat, Şule AYAR ÖZBAL
Symmetric bi-multipliers on incline algebras

16:15-16:30 Coffee Break

Room 104 Chair: Şenay BAYDAŞ
16:30-16:50 Sahar MOAYERI RAHNI
When the universal inverse semigroup $\operatorname{Pr}(s)$ of inverse semigroup S is E^{*}-unitary
16:50-17:10 Tevfik BİLGİN, İsmail Gökhan Kelebek
Characterization of $U_{1}\left(\mathbb{Z}\left[C_{n} \times C_{4}\right]\right)$
17:10-17:30 Ahmad MOUSSAVI, Alireza Moussavi
On nilpotent elements in Ore extensions

Room 105 Chair: Musa ÇAKIR
15:15-15:35 Hatice KARABENLі̇, Alaattin Esen, E. Nesligül Aksan Collocation finite element solutions for Stefan problem with Neumann boundary condition
15:35-15:55 Musa Cakir, Derya ARSLAN
A numerical method for nonlinear singularly perturbed multi-point boundary value problem
15:55-16:15 Hakki Duru, Akbar BARATI CHIYANEH
Difference schemes on adapted mesh for the initial boundary value Sobolev problems with boundary layers
16:15-16:30 Coffee Break

Room 105 Chair: Nagehan AKGÜN
16:30-16:50 Alper KORKMAZ, Hakan Kasım Akmaz
Exponential cubic B-spline based solutions of advection-diffusion equation
16:50-17:10 Reza ABAZARI, Mehrdad Lakestani
Numerical solution of the Rosenau-Burgers equation using quintic B-spline collocation method
17:10-17:30 Dashti AHMED ALI
A comparison of methods for computing the matrix exponential appears in systems of differential equations

Room 106 Chair: Cesim TEMEL
15:15-15:35 Ümit Totur, İbrahim ÇANAK
Tauberian conditions for the (C, α) integrability of functions
15:35-15:55 Mehmet Ali AKTÜRK, Alexey Lukashov
Sharp rusak-type inequalities for rational functions on several intervals
15:55-16:15 Abdallah BENAISSA
Asymptotic expansion of double oscillatory integrals: Contribution of non stationary critical points of the second kind
16:15-16:30 Coffee Break
Room 106 Chair: M. KARAKUŞ
16:30-16:50 Samet ERDEN, Mehmet Zeki Sarıkaya Generalized Bullen type inequalities for local fractional integrals and its applications
16:50-17:10 Emre DENİZ, Gülsüm Ulusoy, Ali Aral Convergence properties on Jain-Durrmeyer operators
17:10-17:30 Gülsüm ULUSOY, Tuncer Acar Generalized Szsz-Mirakyan-Durrmeyer operators and their apprroximation properties

Room 107 Chair: Ishak ALTUN

15:15-15:35 Gülhan MINAK, Ishak Altun F-contractions on metric spaces and some related fixed point results 15:35-15:55 Abdurrahman BÜYÜKKAYA, Mahpeyker Öztürk Some fixed point theorems satisfying Meir-Keeler type contractions via rational expression in 2 -metric spaces
15:55-16:15 Gonca DURMAZ, Ishak Altun
Some fixed point theorems for a weak partial metric space
16:15-16:30 Coffee Break
Room 107 Chair: Esra DALAN YILDIRIM
16:30-16:50 Ayşegül ÇAKSU GÜLER, Esra Dalan Yıldırım
Some fixed point theorems on soft G-metric spaces
16:50-17:10 Yağmur KARAKOÇ
Cone metric spaces and cone two metric spaces
17:10-17:30 Süleyman GÜLER, Yücel Özdaş
On weak continuity of soft topological spaces
Room 108 Chair: Feyzi BAŞAR
15:15-15:35 Uğur Ulusu, Ömer Kíşi̇
I-Cesro summability of sequences of sets
15:35-15:55 Medine YEŞİLKAYAGİL, Feyzi Başar
Some topological properties of the spaces of almost null and almost convergent double sequences
15:55-16:15 Alireza KHALILI GOLMANKHANEH
Fractal calculus and application
16:15-16:30 Coffee Break

Room 108 Chair: Hakan TOR
16:30-16:50 A. HOMID, Mahmoud Abdel-Aty
Implementing quantum search algorithm in the presence of dissipation
16:50-17:10 Ahmad SHAYGANMANESH, Ahmad Saeedi
Stability and accuracy of RBF direct method for solving a dynamic investment model
17:10-17:30 Seda İĞRET ARAZ, Murat Subaşı, Hakkı Güngör, Hülya Durur On obtaining stable solution for a hyperbolic coefficient control problem

Wednesday, August 26
Room Amphi Chair: Murat SUBAŞI
09:00-09:30 Ersan AKYILDIZ
An overview of discrete Log and Trace based public key cryptography on finite fields
09:30-10:00 Vatan KARAKAYA
10:00-10:15 Coffee Break

Room Amphi Chair: Ersan AKYILDIZ
14:00-14:30 Hüseyin Merdan
Asset flow differential equations
14:30-15:00 Poster Presentations

Room 101 Chair: Hilmi ERGÖREN
10:15-10:35 Khanlar R. Mamedov, F. Ayca CETINKAYA, Ozge Akcay Boundary value problem for a Sturm-Liouville operator with piecewise continuous coefficient
10:35-10:55 Asghar AHMADKHANLU
Existence and uniqueness results for a class of fractional boundary value problem
10:55-11:15 Zeynep KAYAR
Fractional boundary value problems (BVPs) and Lyapunov type inequality
11:15-11:30 Coffee Break

Room 101 Chair: Alireza KHALILI GOLMANKHANEH
11:30-11:50 Khanlar R. Mamedov, Özge AKÇAY, F. Ayca Cetinkaya On the inverse problem for a class of Dirac operators
11:50-12:10 Shahram Mehry, Saeid MOMENALI
Heat source using the conjugate gradient method with adjoint problem
12:10-12:30 Ahmad JAFARIAN
Artificial neural network method for solving fractional Fredholm integral equations
12:30-13:45 Lunch Break

Room 101 Chair: Erdal KORKMAZ
15:15-15:35 Derya ALTINTAN, Vilda Purutçuoğlu, Ömür Uğur Functional impulses in exact stochastic simulation
15:35-15:55 Sebaheddin ŞEVGİN, Pinar Yurdakul Ulam stability of some Volterra equations
15:55-16:15 Cemil Tunç, Sizar Abid MOHAMMED
On the stability and boundedness of differential equations of third order with retarded argument
16:15-16:30 Coffee Break

Room 101 Chair: Derya ALTINTAN

16:30-16:50 Ayşe Feza Güvenilir, Billur Kaymakçalan, Neslihan Nesliye PELEN
Some results on predator-prey dynamic systems with BeddingtonDeangelis type functional response

16:50-17:10 Erdal KORKMAZ, Cemil Tunç
Inequalities and exponential decay of certain differential equations of first order in time varying delay
17:10-17:30 Abderrahim HOUMAT
Coupling of finite and hierarchical infinite elements: Application to a homogeneous isotropic half-space

Room 102 Chair: Sebaheddin ŞEVGíN
10:15-10:35 Ozgur AYDOĞMUŞ
Extiction in a generalized chain binomial epidemic model
10:35-10:55 Gamzegül AYDIN, Hüseyin Merdan, Abdessamad Tridane Stability analysis of HIV infection model with tumor
10:55-11:15 Azam AZIMI, Mahmood Ghaffari, Gholam Hossein Riazi, Mohammad Mehdi Tavako
Theoretical and computational modeling studies on the α-cyperonetubulin interaction
11:15-11:30 Coffee Break

Room 102 Chair: Hidenori OGATA

11:30-11:50 Hakan TOR

Hyperbolic smoothing method for sum-max problems
11:50-12:10 Sameera Abdulsalam OTHMAN
Forecasting by adaptive double exponential smoothing
12:10-12:30 Mahmoud MAHDIAN
Phonon spectral density of the FMO light-harvesting complex with associated and generalized Jacobi polynomials
12:30-13:45 Lunch Break

Room 102 Chair: Özgür AYDOĞMUŞ
15:15-15:35 Haci Mehmet BASKONUS, Hasan Bulut, Mirac Kayhan Regarding analytical prototype studies for the generalized nonlinear Pochhammer-Chree equation
15:35-1555 Marat U. AKHMET, Duygu Aruğaslan, Nur Cengiz Exponential stability of periodic solutions of recurrent neural networks with functional dependence on picewise constant argument
15:55-16:15 Nesir Huseyin, Anar Huseyin, Khalik GUSEINOV, Vladimir Ushakov Approximation of the set of trajectories of control system described by an affine Volterra type integral equation
16:15-16:30 Coffee Break

Room 102 Chair: Nagehan AKGÜN
16:30-16:50 Amir BAKLOUTI
Jordan superalgebras with some homogeneous structures
16:50-17:10 Shahram Mehry, Reza SAFAKISH, Amir Saeidi
Nilpotent Lie algebras and Betti number behavior
17:10-17:30 Mehmet KIR, Hukmi Kızıltunç
The concept of weak (ψ, α, β) contractions in partially ordered metric spaces
Room 103 Chair: Şenay BAYDAŞ
10:15-10:35 Morteza Faghfouri, Sahar MASHMOULI
Anti-invariant semi-Riemannian submersions admitting vertical from Lorentzian Sasakian and para Sasakian manifolds
10:35-10:55 Süleyman DİRİK, Mehmet Atçeken, Ümit Yildirim Pseudo-slant submanifold in Sasakian space forms
10:55-11:15 Ali UÇUM, Kazım İlarslan, Makoto Sakaki On generalized null Bertrand curves in E_{2}^{4}
11:15-11:30 Coffee Break

Room 103 Chair: Süleyman DİRİK
11:30-11:50 Mohammad ILMAKCHI
Real hypersurfaces in complex projective space with weakly constant holomorphic curvature
11:50-12:10 Mehmet ATÇEKEN, Umit Yıldırım, Süleyman Dirik
On almost $C(\alpha)$-manifold satisfying certain conditions on quasiconformal curvature tensor
12:10-12:30 Umit YILDIRIM, Mehmet Atçeken, Süleyman Dirik On almost $C(\alpha)$-manifold satisfying some conditions on the weyl projective curvature tensor
12:30-13:45 Lunch Break

Room 103 Chair: Süleyman EDİZ
15:15-15:35 İbrahim Halil GUMUS, Omar Hirzallah
Schatten p-norm inequalities for accretive-dissipative 2×2 operator matrices
15:35-15:55 Shahram MEHRY, Reza Safakish
A classification of Ramanujan complements of unitary Cayley graphs
15:55-16:15 Abdelkader LAKMECHE, Mohamed Helal, Ahmed Lakmeche Pulsed chemotherapy model
16:15-16:30 Coffee Break

Room 103 Chair: Güzide ŞENEL
16:30-16:50 Aysegul BAYRAM, Vedat Siap
Graph-theoretic approach to the ideal structure of a family of nonchain rings
16:50-17:10 Ömer KÜSMÜŞ
Another description of units of integral group ring of dicyclic group of order 12
17:10-17:30 Nazmiye Alemdar, Sedat TEMEL
Group-2-groupoids and 2g-crossed modules

Room 104 Chair: Turgut HANOYMAK
10:15-10:35 Özge ÇOLAKOĞLU, Hamza Menken
On the q-extension of the p-adic Beta function
10:35-10:55 Mirac CETİN FİRENGİZ, Naim Tuglu
Some incomplete q-polynomals
10:55-11:15 Murat BEKAR, Yusuf Yayl
Involutions of dual split-quaternions
11:15-11:30 Coffee Break

Room 104 Chair: Turgut HANOYMAK
11:30-11:50 Emel A. UGURLU, Kürsat Hakan Oral, Unsal Tekir Extension of uniformly primary ideals
11:50-12:10 Emine Serap KARACAN, Emel A.Ugurlu, Unsal Tekir On almost prime ideals

12:10-12:30 Ismail Hakkı DENİZLER

Nakayama's lemma for artinian modules and generalized matlis duality
12:30-13:45 Lunch Break

Room 104 Chair: Afshin BEHMARAM
15:15-15:35 Gülüstan Kaya GÖK, Nursah Mutlu, Serife Büyükköse Kirchoff index of weigted graphs
15:35-15:55 Mehdi ELIASI
On ordering of trees by multiplicative version of Zagreb indices
15:55-16:15 Adnan MELEKOĞLU
Mirrors on Hurwitz surfaces
16:15-16:30 Coffee Break

Room 104 Chair: Adnan MELEKOĞLU
16:30-16:50 Gülistan Kaya GÖK, Nursah Mutlu, Serife Büyükköse
Wiener index of weigted graphs
16:50-17:10 Murat CANCAN, Süleyman Ediz
Inverted distance and inverted Wiener index
17:10-17:30 Süleyman EDİZ, Murat Cancan
Reverse Zagreb indices of cartesian product of graphs

Room 105 Chair: Mahmut KARAKUŞ
10:15-10:35 Gülsüm ULUSOY, Emre Deniz, Ali Aral On generalized Durrmeyer operators
10:35-10:55 Mehmet Zeki SARIKAYA, Samet Erden, Hüseyin Budak Some generalized Ostrowski type inequalities involving local fractional integrals and applications
10:55-11:15 Mehmet Zeki Sarıkaya, Tuba TUNÇ, Samet Erden Generalized Steffensen inequalities for local fractional integrals 11:15-11:30 Coffee Break

Room 105 Chair: Hakkı DURU

11:30-11:50 Ahmad SAMAILA, Basant Jha
Effefts of transpiration on g-gitter fully developed mixed convection flow in a vertical channel
11:50-12:10 Youssef S. HASSAN, Amr Mamdouh, Kareemeldien Maklad, Ahmed A. Elghannam, Mahmoud Abdelaty Adaptive step size numerical solution to first order ODEs, a refinement of Eulers and RK methods
12:10-12:30 Sunnie JOSHI, Benjamin Seibold, Pak-Wing Fok
A computational model for the simulation of atherosclerotic plaques
12:30-13:45 Lunch Break

Room 105 Chair: Ali SIRMA
15:15-15:35 Abdelaziz MENNOUNI
A modified Galerkin method for solving integral equations of the second kind
15:35-15:55 Mehdi JALALVAND, Zeinab Moeini Rad, Ameneh Sayahi
Numerical solution for some weakly singular nonlinear Volterra integral equations
15:55-16:15 Sedigheh TOUBAEI
A finite difference method for smooth solution of system of linear weakly singular Volterra integral equations
16:15-16:30 Coffee Break

Room 105 Chair: Mehmet Giyas SAKAR
16:30-16:50 Shabnam JAMSHIDZADEH, Nasrin Eghbali
Stability of Cauchy functional equation and quadratic equation by generalized operations
16:50-17:10 Nadia Amel MESSAOUDI, Salah Manseur, Mustapha Blidia Revisit scheme of adomian decomposition method for nonhomogeneous heat equation
17:10-17:30 Mustafa KUDU, Gabil M. Amiraliyev
Fourth order approximate method for a time-delayed pseudo-parabolic equation

Room 106 Chair: İbrahim ÇANAK
10:15-10:35 Ümit Totur, Muhammet Ali OKUR
On Tauberian remainder theorems for Cesàro summability method of noninteger order
10:35-10:55 Ümit TOTUR, İbrahim Çanak
The (C, α, β) integrability of functions and a Tauberian theorem
10:55-11:15 Abasalt BODAGHI
Various notions of module amenability
11:15-11:30 Coffee Break

Room 106 Chair: Zeynep KAYAR
11:30-11:50 Ali AL-KARALY, Karim Kholy
Aspects of analitical solutions and simulation of high order ODE
11:50-12:10 Boukemara IBTISSEM
Structure of basin and bifurcation phenomena in two-dimensional piecewise maps
12:10-12:30 Fatemeh Fatahi, Gholamreza SAFAKISH, Rohollah Piri Rings over which Monoid rings are semicommutative
12:30-13:45 Lunch Break

Room 106 Chair: Mehmet Zeki SARIKAYA
15:15-15:35 Mehmet Eyüp KİRİŞ, Naki Çaltıner On generalized some inequalities for s - convex functions
15:35-15:55 Mohammad Reza JABBARZADEH
Moore-penrose inverse of weighted composition operators on L^{p}-spaces

16:15-16:30 Coffee Break

Room 106 Chair: İsmail KÜÇÜK
16:30-16:50 Gopal DATT
Operator equations generalizing the notions of Hankel and Toeplitz operators

16:50-17:10 Abdulhamit KUCUKASLAN
Generalized fractional maximal operator on generalized local Morrey spaces
17:10-17:30 Alev MERAL, Ömür Uğur Optimal portfolio strategies under various risk measures

Room 107 Chair: Hamza MENKEN
10:15-10:35 Hacer BOZKURT, Yılmaz Yılmaz
Some new theorems in Hilbert quasilinear spaces
10:35-10:55 Arife ATAY, H. Ilhan Tutalar
Regular local functions in ideal topological spaces
10:55-11:15 İzzettin DEMİR, Oya Bedre Özbakır, İsmet Yıldız
Some properties of soft proximity spaces
11:15-11:30 Coffee Break

Room 107 Chair: Ayşegül ÇAKSU GÜLER
11:30-11:50 Hamza MENKEN, Özge Çolakoğlu
On the p-adic log beta function
11:50-12:10 Ramazan EKMEKÇİ, Rıza Ertürk
Q-convergence of graded difilters
12:10-12:30 Engin Ozkan, Aykut GÖÇER, İpek Altun
The relationship between nth lucas number and a sequence defined by m-sequences
12:30-13:45 Lunch Break

Room 107 Chair: Hatice TAŞKESEN

15:15-15:35 Hadeel Salim ALKUTUBI
Regression analysis for brest cancer patients
15:35-15:55 Enes Abdurrahman BİLGİN, Sıddık Keskin
Regression analysis algorithm for circular data
15:55-16:15 Hossein JABBARI KHAMNEI, Roghaye Makouyi
Recurrence relation for the moments of order statistics from a beta-pareto distribution
16:15-16:30 Coffee Break

Room 107 Chair: Sebaheddin ŞEVGİN
16:30-16:50 Qais Mustafa ABDULQADER
Comparison between discriminant analysis and logistic regression analysis: An application on caesarean births and natural births data
16:50-17:10 Mehmet Güngör, Ahmet Demiralp, Yunus Bulut, M.Şamil Şık, Yusuf
KIRAÇ
On comparisons of coherent systems via dynamic system signature
17:10-17:30 Mahmoud MAHDIAN
General non-Markovian dynamics of open quantum systems and spectral density of complex systems using exceptional orthogonal polynomials

Room 108 Chair: Hatice TAŞKESEN
10:15-10:35 Nazish SHAHID
The influence of thermal radiation, mass diffusion and fractional parameters on mhd flow over a vertical plate that applies time dependent shear to the fluid
10:35-10:55 Alex PIJYAN
On estimation of unknown parameters of exponential-logarithmic distribution by censored
10:55-11:15 Seçil YALAZ TOPRAK, Mujgan Tez, H.Ilhan Tutalar Asymptotic normality of parametric part in partially linear models in the presence of measurement error
11:15-11:30 Coffee Break

Room 108 Chair: Gopal DATT
11:30-11:50 İlker GENÇTÜRK, Kerim Koca
Dirichlet boundary value problem for a nth order complex differential equation
11:50-12:10 Tugba YAVUZ
Coefficient estimates for a new subclass of close-to-convex functions
12:10-12:30 Serhan ULUSAN, Adnan Melekoğlu
Symmetry groups of petrie polygons
12:30-13:45 Lunch Break

Room 108 Chair: Ümit TOTUR

15:15-15:35 M. Emin Özdemir, Havva KAVURMACI ÖNALAN
$(g,(h-m))$-convex dominated functions
15:35-15:55 Hatice KUSAK SAMANCI, Serpil Kaya
The dual-variable Bernstein polynomials
15:55-16:15 Alaa El-Din EL-OZEIRI
Research on using uranium-lead radioactive decay in detecting the age of earth
16:15-16:30 Coffee Break

Room 108 Chair: Musa ÇAKIR
16:30-16:50 Feda İLHAN, Zahir Muradoğlu
Elasto-plastic deformation of an incompressible bending plate with clamped boundary
16:50-17:10 Musa Cakır, Derya ARSLAN
Reduced differential transform method for sixth-order singularly perturbed Boussinesq equation
17:10-17:30 Rukiye ÖZTÜRK, Ali Aydogdu, Engin Ozkan
An alternative proof for a lemma used in the trace formula for $G L(2)$ over a number field

Thursday, August 27

Room Amphi Chair: Abasalt BODAGHI
10:30-11:00 Kenzu ABDELLA
Solving boundary value problems using the sinc collocation method with derivative interpolation
11:00-11:15 Coffee Break
12:15-13:45 Lunch Break

Room Amphi Chair: Şenay BAYDAŞ

14:00-14:30 İsmail KÜÇÜK

Some aspects of optimal control
14:30-15:00 Heybetkulu MUSTAFAYEV
Some ergodic properties of measures

Room 101 Chair: Ercan TUNÇ
11:15-11:35 Cemil TUNÇ
Stability and boundedness of solutions of volterra integro-differential equations
11:35-11:55 Cemil Tunç, Melek GÖZEN
On exponential stability of solutions of neutral differential system with multiple variable delays
11:55-12:15 Timur AYHAN, Cemil Tunç
Global existence and boundedness results for solutions of specific third order nonlinear vector differential equations
12:15-13:45 Lunch Break

Room 101 Chair: Zeynep KAYAR
15:15-15:35 Ercan TUNÇ, Osman Tunç
On the oscillation of a class of damped fractional differential equations
15:35-15:55 Hilmi ERGÖREN
Neutral fractional differential equations with impulses at variable times
15:55-16:15 Nihan ALIEV, Ahmad Pashavand Multipoint boundary value problem for a fractional order ordinary linear differential equation with variable coefficient
16:15-16:30 Coffee Break

Room 101 Chair: Hilmi ERGÖREN
16:30-16:50 Cemil Tunç, Ramazan YAZGAN
On the existence of pseudo almost periodic solutions to a class of Lasota-Wazewska model differential equation
16:50-17:10 Vahid ROOMI
Asymptotic behavior of solutions of generalized Lienard system

Room 102 Chair: Derya ALTINTAN
11:15-11:35 Benseridi HAMID
Asymptotic analysis of a dynamical problem of non-isothermal linear elasticity with friction
11:35-11:55 Dilmi MOURAD
Existence and regularity of the solution for nonlinear and oblique problems with friction
11:55-12:15 Belaidi MOHAMED
Generalized Markov processes
12:15-13:45 Lunch Break

Room 102 Chair: Mehmet Giyas SAKAR
15:15-15:35 Yakup Haci, Muhammet CANDAN
Optimal control problem for processes given by multi-parameter linear stochastic dynamic system
15:35-15:55 Latifa Debbi, Zineb ARAB
Numerical approximations for some fractional stochastic partial differential equations
15:55-16:15 Aykut OR, Yakup Haci
Graphical method for interval valued bimatrix games
16:15-16:30 Coffee Break

Room 102 Chair: Hakan TOR
16:30-16:50 Reza DANAEI, Aliasghar Jodayree Akbarfam Dynamical stability and mathematical modeling of heroin epidemic in Urmia
16:50-17:10 Tarini Kumar DUTTA
Analysis on stability of limit cycles and hopf bifurcation in Van der pol nonlinear differential equation

Room 103 Chair: Bülent KARAKAŞ
11:15-11:35 Ahmet MOLLAOĞULLARI, Mehmet Tekkoyun
Euler-Lagrange and Hamilton-Jacobi equations on a Riemann almost contact model of a Cartan space of order k
11:35-11:55 Abeidallah MOHAMMED
Generalized Newton transformation and its application to transversal submanifolds
11:55-12:15 Mustafa BUYUKARSLAN, Oguzhan Bahadır
On statistical manifold with dual connection and its applications
12:15-13:45 Lunch Break

Room 103 Chair: Ali BAJRAVANI
15:15-15:35 Hatice KUSAK SAMANCI, Ali Calıskan
A new approach to one parameter motion
15:35-15:55 Bülent Karakaş, Şenay BAYDAŞ
Group structure of Markov polygons
15:55-16:15 Şenay Baydaş, Bülent KARAKAŞ
Lie group structure on $n \times n$ Markov matrix
16:15-16:30 Coffee Break

Room 103 Chair: Şenay BAYDAŞ

16:30-16:50 Hatice KUSAK SAMANCI, Ali Calıskan
The level curves and surfaces on time scales
16:50-17:10 Ali BAJRAVANI
Projective geometry related to the secant loci in symmetric product of smooth algebraic curves
17:10-17:30 Asra REZAFADAEI
Beautiful number 6174

Room 104 Chair: Kenzu ABDELLA

11:15-11:35 Kamil ARI

On the generalized k -Pell (p, i)-numbers
11:35-11:55 Ali ZALNEZHAD, Ghasem Shabani, Hossein Zalnezhad, Mehdi Zalnezhad
Achieving the largest primes: Algorithm and relations in order
11:55-12:15 Murat KARAKAS, Hasan Karabudak
A new regular matrix defined by Fibonacci numbers and its applications
12:15-13:45 Lunch Break

Room 104 Chair: Turgut HANOYMAK
15:15-15:35 Ayşın ERKAN GÜRSOY, Kürşat Aker
Murnaghan-Nakayama rule for Jack polynomials
15:35-15:55 Essa AGHDASSI
Exact constants for best approximation on the group $\mathrm{SU}(2)$
15:55-16:15 Tiachachat MERIEM, Miloud Mihoubi
The r-Whitney numbers linked to generalised Bernoulli polynomials
16:15-16:30 Coffee Break

Room 104 Chair: Süleyman EDİZ
16:30-16:50 Ayşın ERKAN GÜRSOY, Kürşat Aker
A combinatorial approach to Catalan numbers
16:50-17:10 Afshin BEHMARAM
On some graph invariants of generalized Fullerene
17:10-17:30 Shahram Mehry, Reza Safakish, Sadegh SADEGHI The problem of clothseller's son

Room 105 Chair: Hakkı DURU
11:15-11:35 Fevzi ERDOGAN, Kerem Yamac, Mehmet Giyas Sakar
An exponential fitted method for singularly perturbed reactiondiffusion equations
11:35-11:55 Fevzi Erdogan, Kerem YAMAC, Mehmet Giyas Sakar
A fitted Numerov method for singularly perturbed reaction-diffusion equations
11:55-12:15 Onur SALDIR, Mehmet Giyas Sakar
A combination of VIM and asymptotic expansion for singularly perturbed convection-diffusion problem
12:15-13:45 Lunch Break
Room 105 Chair: Fevzi ERDOGAN
15:15-15:35 Nagehan AKGÜNDQM solution of natural convection flow of water-based nanofluid
15:35-15:55 Ali SIRMAApproximating the Riemann-Stieltjes integral in terms of Simpson'srule
15:55-16:15 Opeyemi Oluwole ENOCHThe eigenvalues (energy levels) of the Riemann Zeta function
16:15-16:30 Coffee Break
Room 105 Chair: Fevzi ERDOGAN
16:30-16:50 Nagehan AKGÜNDRBEM solution of natural convection flow of water-basednanofluids in an inclined angle
16:50-17:10 Hakki Duru, Akbar BARATI CHIYANEHFinite difference schemes on Shishkin mesh for singularly perturbedinitial-boundary value Sobolev type problems
17:10-17:30 Mehmet Giyas SAKAR, Onur Saldır
A new numerical approach for solving time-fractional partialdifferential equations
Room 106 Chair: I. Hakkı DENIZLER
11:15-11:35 Houas AMRANE, Mokhtari ZouhirA novel binary image encryption alghorithm based on difuserepresentation
11:35-11:55 Ömer Küsmüş, Turgut HANOYMAKA possible key exchange protocol over group rings
11:55-12:15 Fatemeh Fatahi, Gholamreza SAFAKISHOn generalization of the strongly irreducible submodules
12:15-13:45 Lunch Break
Room 106 Chair: İ. Hakkı DENİZLER
15:15-15:35 Gulsen ULUCAK, Unsal Tekir, Kursat Hakan Oral
A note on lattice module
15:35-15:55 Selçuk TOPAL
Algorithms in minimal ferrer graph constructions
15:55-16:15 Selçuk TOPALA computational approach to syllogistic English sentences withditransitive verbs in formal semantics
16:15-16:30 Coffee Break
Room 106 Chair: Ali SIRMA
16:30-16:50 Enes Abdurrahman BİLGİNDevelopment of an educational software for basic statistics
16:50-17:10 Mustafa GÖK, Erdal BeydeAnalysis of the reasoning skills of students in solving a non-routineproblem
17:10-17:30 Barış KESLER, Necat Görentaş
On S_{1}, B_{1} near rings

Room 107 Chair: Nagehan AKGÜN

11:15-11:35 Akindele Michael OKEDOYE

Heat transfer in hydro magnetic oscillatory flow past an impulsively started porous limiting surface with heat generation/absorption
11:35-11:55 Hatice TAŞKESEN
Blow up of solutions for a nonlinear Timoshenko equation with positive initial energy
11:55-12:15 Mahmoud Abdel-Aty, Mohamed KAMEL
Prospectives of geometric phase
12:15-13:45 Lunch Break

Room 107 Chair: Özlem AK GÜMÜŞ
15:15-15:35 Esra KARAOĞLU, Hüseyin Merdan
Hopf bifurcations of a ratio-dependent predator-prey model involving two discrete maturation time delays
15:35-15:55 Mehmet Nuri ALMALI, Zinnur Dikici, Özkan Atan
The simulation of sound signal masking with sprout chaotic oscillation
15:55-16:15 Omar EL-BASHA, Ahmed El-Shahat, Hussin Fayed, Mahmoud Abdel-Aty
Chaos theory and Lorenz attractors
16:15-16:30 Coffee Break

Room 107 Chair: Mahmut KARAKUŞ
16:30-16:50 Ercan Tunç, Orhan ÖZDEMİR
Oscillation theorems for second-order nonlinear differential equations with nonlinear damping
16:50-17:10 Hüseyin Merdan, Özlem AK GÜMÜŞ, Gamzegül Aydın
Global stability analysis of a general scalar difference equation
17:10-17:30 Heybetkulu Mustafayev, Cesim TEMEL
Mixing type theorem for power bounded measures

Room 108 Chair: Cesim TEMEL
11:15-11:35 Güzide ŞENEL
Matrix representation of soft points and its application
11:35-11:55 Mahmut KARAKUŞ
On λ - semiconservative FK spaces
11:55-12:15 Fatih KUTLU, Tunay Bilgin Distance measures for temporal intuitionistic fuzzy sets
12:15-13:45 Lunch Break

Room 108 Chair: Khalik GUSEINOV
15:15-15:35 İclal GÖR, Rufat Aşlyyan, Ömer Kalfa
Textile image classification using naive bayes and multi-layer perceptron
15:35-15:55 G. Selin SAVAŞKAN, Aykut Or, Yakup Haci
Lemke-Howson algorithm for two-person non-zero games
15:55-16:15 Reza KEYKHAEI
A generalized static mean-variance portfolio optimization

16:15-16:30 Coffee Break

Room 108 Chair: Özgür AYDOĞMUŞ
16:30-16:50 İclal GÖR, Korhan Günel
Solving systems of linear differential equations by using artificial neural networks
16:50-17:10 Ghanbary FATEMEH, Ahmad Jafarian
Artificial intelligence based modeling for water treatment
17:10-17:30 Hacer ŞENGÜL, Mikail Et
On Wijsman I - lacunary statistical convergence of order α of sequences

	August 27, 2015 Thursday								
Time	Amphi	Room 101	Room 102	Room 103	Room 104	Room 105	Room 106	Room 107	Room 108
8:00-10:00	(Social Program)								
Chair	A. BODAGHI ${ }^{\text {a }}$								
10:30-11:00	$\begin{aligned} & \text { Kenzu } \\ & \text { ABDELLA } \end{aligned}$	Invited Speaker							
11:00-11:15	Coffee Break								
Chair		E. TUNC	$\begin{aligned} & \hline D . \\ & A L T I N T A N \end{aligned}$	B. KARAKAS	K. ABDELLA	H. DURU	$\begin{aligned} & \text { i. H. } \\ & \text { DENIZLER } \end{aligned}$	N. AKGÜN	C. TEMEL
11:15-11:35		C. TUNÇ	B. HAMID	A. MOL- LAOĞULLARI	K. ARI	F. ERDOGAN	H. AMRANE	$\begin{aligned} & \text { A. M. OKE- } \\ & \text { DOYE } \\ & \text { D } \end{aligned}$	G. ŞENEL
11:35-11:55		M. GÖZEN	D. MOURAD	A. MOHAMMED	A. ZAL- NEZHAD	K. YAMAC	$\begin{aligned} & \text { T. } \\ & \text { MANOY- } \end{aligned}$	H. TAŞKESEN	M. KARAKUS
11:55-12:15		T. AYHAN	B. MOHAMED	M. BUYUKARSLAN	M. KARAKAS	O. SALDIR	G. SAFAKISH	M. KAMEL	F. KUTLU
12:15-13:45	Lunch Break								
Chair	Ş. BAYDAŞ \quad Lunch Break								
14:00-14:30	İsmail KÜÇÜK	Invited Speaker							
14:30-15:00	Heybetkulu MUSTAFAYEV	Invited Speaker							
15:00-15:15	Coffee Break								
Chair		Z. KAYAR	M. G. SAKAR	$\begin{aligned} & A . \\ & B A J R A V A N I \end{aligned}$	$\begin{aligned} & T . \\ & \text { HANOYMAK } \end{aligned}$	$\begin{aligned} & \text { FRDOGAN } \\ & \text { ERD } \end{aligned}$	$\underset{\text { DENİZLER }}{\dot{I}_{i}} \mathrm{H} .$		$\begin{aligned} & \text { K. } \\ & G U S E I N O V \end{aligned}$
15:15-15:35		E. TUNÇ	M. CANDAN	H. KUSAK SAMANCI	A. ERKAN GÜRSOY	N. AKGÜN	G. ULUCAK	E. KARAOĞLU	İ. GÖR
15:35-15:55		H. ERGÖREN	Z. ARAB	Ş. BAYDAŞ	E. AGHDASSI	A. SIRMA	S. TOPAL	M. N. ALMALI	$\begin{aligned} & \text { G. S. } \\ & \text { SAVAŞKAN } \end{aligned}$
15:55-16:15		N. ALIEV	A. OR	B. KARAKAŞ	T. MERIEM	O. O. ENOCH	S. TOPAL	O. EL-BASHA	R. KEYKHAEI
16:15-16:30	Coffee Break								
Chair		H. ERGÖREN	H. TOR	Ş. BAYDAS	S. EDİZ	$\begin{aligned} & F . \\ & E R D O G A N \end{aligned}$	A. SIRMA	$\begin{aligned} & M . \\ & K A R A K U S ̧ \end{aligned}$	$\begin{aligned} & \ddot{O} . \\ & A Y D O G ̆ M U S S \end{aligned}$
16:30-16:50		R. YAZGAN	R. DANAEI	H. KUSAK SAMANCI	A. ERKAN GÜRSOY	N. AKGÜN	E. A. BİLGİN	O. ÖZDEMIR	İ. GÖR
16:50-17:10		V. ROOMI	T. K. DUTTA	A. BAJRAVANI	A. BEHMARAM	A. BARATI CHIYANEH	M. GÖK	Ö. AK GÜMÜS	G. FATEMEH
17:10-17:30				A. REZAFADAEI	S. SADEGHI	M. G. SAKAR	B. KESLER	C. TEMEL	H. ŞENGÜL

Social Programme

Wednesday, August 26
17:30-18:30 Visit to the Van cat House
19:00-21:00 Conference Dinner

Thursday, August 27

8:00-10:00 Van Breakfast
Friday, August 28
All day excursion: Visit to Van Fortress and Akdamar Island and Church

Abstracts of Invited Speakers

PROSPECTIVE OF QUANTUM INFORMATION
 Mahmoud ABDEL-ATY ${ }^{1}$, Lyazzat Atymtayeva
 ${ }^{1}$ Zewail City of Science and Technology, Egypt
 ${ }^{2}$ Kazakh-British Technical University, Kazakhstan

Abstract

In this communication we discuss different aspects of Bioinformatics models and its application quantum information and quantum computer. We focus on the dynamics of charge qubits coupled to a nanomechanical resonator under influence of both a phonon bath in contact with the resonator and irreversible decay of the qubits. Even in the presence of enviroment, the inherent entanglement is found to be rather robust. Due to this fact, together with control of system parameters, the system may therefore be especially suited for quantum computer. Our findings also shed light on the evolution of open quantum many-body systems.

[^0]
SOLVING BOUNDARY VALUE PROBLEMS USING THE SINC COLLOCATION METHOD WITH DERIVATIVE INTERPOLATION

Kenzu ABDELLA ${ }^{1}$
Trent University, Peterborough, Canada

MSC 2000: 34B05, 34B15, 34B40, 34B60, 65L10, 65Z05

Abstract

We consider the application of a Sinc-Collocation approach based on first derivative to solve boundary value problems (BVPs) arising from fluid dynamics related models. Even in the presence of singularities that are often present in fluid dynamics problems involving boundary layers, the Sinc-collocation technique provides exponentially convergent approximations including those posed on unbounded domains. The typical Sinc strategy is to start with the Sinc interpolation of the unknown function and to obtain its first and higher derivatives through successive differentiation in order to transform the BVP into discrete system which has a basic drawback as it is well-known that numerical differentiation process is highly sensitive to numerical errors. However, the first derivative interpolation approach presented in this paper uses Sinc-based integration to approximate the unknown has advantages over the customary Sinc method since integration has the effect of damping out numerical errors that are inherently present in numerical approximations. Moreover, the approach presented in this paper preserves the appropriate endpoints behaviors of the Sinc bases, resulting in a highly accurate and computationally efficient method [1]. The accuracy and stability of the proposed method is demonstrated through several fluid dynamics model problems including a hydrodynamic model of wind-driven currents and the Blasius and nonlinear BVPs [2]. It is further shown that the proposed approach is more accurate and computationally efficient than those obtained by other approaches.

Keywords: Boundary value problems, sinc-collocation, fluid dynamics.

References

[1] K. Abdella, J. Comp. Methods in Sci. and Eng. 15 (2015) 1-11.
[2] Y. Mohseniahouei, K. Abdella, M. Pollanen, J. of Comp. Sci. 7 (2015) 13-26.

[^1]
EXTENSION OF CHAOS, CONTROL AND APPLICATIONS

Marat U. AKHMET ${ }^{1}$

${ }^{1}$ Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey

Abstract

A new method of chaos extension introduced and developed in several our papers and summarized in the book [1] will be discussed. We concern theoretical aspects of the method as well as application opportunities in physics, economics, robotics, neural networks and meteorology.

References

[1] M. U. Akhmet, M. O. Fen, Replication of chaos in neural networks, Physics and Economy, Springer, 2015.

[^2]
AN OVERVIEW OF DISCRETE LOG AND TRACE BASED PUBLIC KEY CRYPTOGRAPHY ON FINITE FIELDS

Ersan AKYILDIZ ${ }^{1}$
${ }^{1}$ Institute of Applied Mathematics and Department of Mathematics, METU, Ankara, TURKEY

Abstract

The Discrete Logarithm Problem (DLP), that is computing x, given $y=\alpha^{x}$ and $(\alpha)=G \subset \mathbb{F}_{q}^{*}$, based Public Key Cryptosystem (PKC) have been studied since the late 1970s. Such development of PKC was possible because of the trapdoor function $f: \mathbb{Z}_{l} \rightarrow G=(\alpha) \subset \mathbb{F}_{q}^{*}, f(m)=\alpha^{m}$ is a group homomorphism. Due to this fact we have: Diffie Hellman (DH) type key exchange, ElGamal type message encryption, and Nyberg-Rueppel type digital signature protocols. The cryptosystems based on the trapdoor $f(m)=\alpha^{m}$ are well understood and complete. However, there is another trapdoor function $f: \mathbb{Z}_{l} \rightarrow G, f(m) \rightarrow \operatorname{Tr}\left(\alpha^{m}\right)$, where $G=(\alpha) \subset \mathbb{F}_{q^{k}}^{*}$, $k \geq 2$, which needs more atention from researchers from a cryptographic protocols point of view. In the above mentioned case, although f is computable, it is not clear how to produce protocols such as Difie Hellman type key exchange, ElGamal type message encryption, and Nyberg-Rueppel type digital signature algorithm, in general. It would be better, of course if we can find a more efficient algorithm than repeated squaring and trace to compute $f(m)=\operatorname{Tr}\left(\alpha^{m}\right)$ together with these protocols. In the literature we see some works for a more efficient algorithm to compute $f(m)=\operatorname{Tr}\left(\alpha^{m}\right)$ and not wondering about the protocols. We also see some works dealing with an efficient algorithm to compute $\operatorname{Tr}\left(\alpha^{m}\right)$ as well as discussing the cryptographic protocols. In this review paper, we are going to discuss the state of art on the subject.

[^3]
RECENT TRENDS RELATED TO FOUR DIMENSIONAL MATRIX TRANSFORMATIONS

Feyzi BAŞAR ${ }^{1}$,
${ }^{1}$ Fatih University, İstanbul, Turkey

MSC 2000: 46A45, 40C05

Abstract

Our main goal is to present a short survey on the spaces of double sequences and four dimensional matrix transformations. In Section 2, we give the corresponding results for four dimensional dual summability methods of the new sort to the results obtained by Altay and Başar in [Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 30 (5) (2006), 591-608] for two dimensional dual summability methods of the new sort. In Section 3, we present multidimensional analogues of Petersen' theorem "The necessary and sufficient conditions for the regular matrix $A=\left(a_{m n}\right)$ to be stronger than the regular Riesz mean $\left(R, p_{n}\right)$, where $p_{n}>0$ for all $n \in \mathbb{N}$ " for double sequences. In Section 4 , as the domain of four dimensional Riesz mean $R^{q t}$ associated with the sequences $q=\left(q_{k}\right)$ and $t=\left(t_{l}\right)$ of non-negative real numbers in the spaces $\mathcal{M}_{u}, \mathcal{C}_{p}, \mathcal{C}_{b p}$ and \mathcal{C}_{r}, we introduce the double sequence spaces $R^{q t}\left(\mathcal{M}_{u}\right), R^{q t}\left(\mathcal{C}_{p}\right), R^{q t}\left(\mathcal{C}_{b p}\right)$ and $R^{q t}\left(\mathcal{C}_{r}\right)$, and also examine some properties of those sequence spaces. Furthermore, we show that these sequence spaces are Banach spaces. Let $\vartheta \in\{p, b p, r\}$. We determine the α-dual and $\beta(\vartheta)$-dual of the space $R^{q t}\left(\mathcal{M}_{u}\right)$ and $\beta(\vartheta)$-duals of the spaces $R^{q t}\left(\mathcal{C}_{b p}\right)$ and $R^{q t}\left(\mathcal{C}_{r}\right)$ of double sequences. Finally, we characterize the classes $\left(R^{q t}\left(\mathcal{C}_{r}\right): \mathcal{C}_{\vartheta}\right)$, $\left(\mu:\left(R^{q t}\left(\mathcal{C}_{\vartheta}\right)\right)\right.$ and $\left(R^{q t}\left(\mathcal{C}_{\vartheta}\right): \mathcal{C}_{f}\right)$ of four-dimensional matrix transformations, where μ and \mathcal{C}_{f} denote any given double sequence space and the space of almost convergent double sequences, respectively. Section 5 is devoted to Steinhaus type theorems together with the definitions of four dimensional conull and coregular matrices, and the characterizations of the classes $\left(\mathcal{M}_{u}: \mathcal{C}_{\vartheta}\right)$, where $\vartheta \in\{p, p 0, f\}$. In Section 6, we state and prove the Mercerian theorem for a four dimensional matrix and the space of convergent double sequences in the Pringsheim's sense.

Keywords: Double sequence space, paranormed sequence space, alpha-, beta-duals and matrix transformations.

[^4]
SOME ASPECTS OF OPTIMAL CONTROL

Ismail KUCUK ${ }^{1}$
Yildiz Technical University, Istanbul, Turkey

Abstract

Applications of the optimal control problems arise in many fields of engineering and science. This talk presents a brief overview of the main ideas and concepts of optimal control problems. The discussion will take place in terms of the distributed parameter systems and on its applications to active control of smart mechanical systems and possible other applications will be introduced. The behavior of smart mechanical systems involving the control of vibrations are modeled through partial differential equations that involve unit step functions and their derivatives due to pathces. Engineering applications of the patches can be seen in beams, plates, etc. The solution of the problem necessitates the implementation of numerical or approximate methods. The applications of these methods to piezolaminated smart beams using actuators will be discussed to illustrate the main ideas [1]. $$
\begin{equation*} \mathcal{L}[w]=K f(t)\left(\mathcal{H}^{\prime \prime}\left(x-x_{1}\right)-\mathcal{H}^{\prime \prime}\left(x-x_{2}\right)\right), \quad 0<x<L, 0<t<t_{f}, \tag{1} \end{equation*}
$$

Optimal control of nonlinear applications will also be presented briefly [2] along with possible future projects.

Keywords: Optimal control, maximum principle, variational methods.

References

[1] I. Kucuk, I. S. Sadek, E. Zeini, S. Adali, Optimal vibration control of piezolaminated smart beams by the maximum principle, Computers and Structures 89 (2011) 744-749.
[2] I. Kucuk, I. Sadek, A robust technique for solving optimal control of coupled Burgers equations, IMA Journal of Mathematical Control and Information 28 (2011) 239-250.

[^5]
ASSET FLOW DIFFERENTIAL EQUATIONS

Hüseyin MERDAN ${ }^{1}$

> ${ }^{1}$ TOBB University of Economics and Technology, Departments of Mathematics, Ankara, Turkey

MSC 2010: 91B25, 91B50, 91G99

Abstract

In this talk, I will give an overview on deterministic asset pricing models. I will present asset flow differantial equations used for modeling a single asset market involving a group of investors. Derivation of models are based on the assumption of the finiteness of assets (rather than assuming unbounded arbitrage) in addition to investment strategies that are based on either price momentum (trend) or valuation considerations.

Keywords: Ordinary differential equations for asset pricing, price dynamics, asset flow, dynamical system approach to mathematical finance.

References

[1] H. Merdan, G. Caginalp, W. C. Troy, Bifurcation analysis a single-group asset flow model, Quarterly Applied Mathematics, in press, 2015.
[2] H. Merdan, M. Alisen, A mathematical model for asset pricing, Applied Mathematics and Computation 218 (2011) 449-1456.
[3] G. Caginalp, H. Merdan, Asset price dynamics with heterogeneous groups, Physica D 225 (2007) 43-54.
[4] G. Caginalp, G. B. Ermentrout, Numerical studies of differential equation related to theoretical financial markets, Appl. Math. Lett. 4 (1991) 35-38.
[5] G. Caginalp, D. Balenovich, Market oscilations induced by the competition between value-based and trend-based investment strategies, Appl. Math. Finance 1 (1994) 129-164.
[6] G. Caginalp, D. Balenovich, Asset flow and momentum: deterministic and stochastic equations, Phil. Trans. R. Soc. Lond. A 357 (1999) 2119-2133.

[^6]
SOME ERGODIC PROPERTIES OF MEASURES

Heybetkulu MUSTAFAYEV ${ }^{1}$

Department of Mathematics, Faculty of Science, Yüzüncü Yıl University, 65080, Van, TURKEY

MSC 2000: 16S34, 16U60

Abstract

Let G be a locally compact abelian group with the dual group Γ and let $M(G)$ be the convolution measure algebra of G. By $\widehat{\mu}$ we denote the Fourier-Stieltjes transform of $\mu \in M(G)$: $$
\widehat{\mu}(\gamma)=\int_{G} \bar{\gamma}(g) d \mu(g), \gamma \in \Gamma .
$$

For $n \in \mathbb{N}$, by μ^{n} we denote n-times convolution power of $\mu \in M(G)$. A measure $\mu \in M(G)$ which satisfies $\sup _{n \in \mathbb{N}}\left\|\mu^{n}\right\|<\infty$ is called power bounded.

In the case when $1<p \leq 2$, by \widehat{f} we will denote the Hausdorff-Young-Plancherel transform of $f \in L^{p}(G)$. For a closed subset F of Γ, by $L^{p}(F)$ we denote the set of all $f \in L^{p}(G)$ such that $\widehat{f}=0$ almost everywhere on F (\widehat{f} is only defined up to sets of Haar measure zero).

We have the following. Theorem. Let G be a locally compact abelian group and let μ ba a power bounded measure on G. If $1<p \leq 2$, then the following conditions are equivalent for a closed subset F of Γ : (a) $\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{k=0}^{n-1} \mu^{k} * f\right\|_{p}=0$, for all $f \in L^{p}(F)$. (b) $\widehat{\mu}(\gamma) \neq 1$, for all $\gamma \in \Gamma \backslash F$.

References

[1] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin New York, 1985.
[2] B. M. Schreiber, Measures with bounded convolution powers, Trans. Amer. Math. Soc. 151 (1970) 405-431.
[3] R. Jones, J. Rosenblatt, A. Tempelman, Ergodic theorems for convolutions of a measure on a group, Illinois J. Math., 38 (1994) 521-553.
[4] E. Kaniuth, A.T. Lau, A. Ülger, Power boundedness in Fourier and Fourier-Stieltjes algebras and other commutative Banach algebras, J. Funct. Anal. 260 (2011) 2366-2386.

[^7]
HYPERFUNCTION METHOD FOR NUMERICAL INTEGRATIONS

Hidenori OGATA ${ }^{1}$, Hiroshi HIRAYAMA ${ }^{2}$
1The University of Electro-Communications, Chofu, Japan
2 Kanagawa Institute of Technology, Atsugi, Japan

MSC 2000: 65D30, 65D32

Abstract

In this paper, we examine a numerical integration method proposed by Hirayama [1]. In his method, an integral $I=\int_{a}^{b} f(x) w(x) \mathrm{d} x(-\infty<a<b<+\infty)$, where $f(x)$ is a given real analytic function and $w(x)$ is a weight function, is transformed into the complex integral on a closed contour $$
\begin{equation*} I=\frac{1}{2 \pi \mathrm{i}} \oint_{C} f(z) \Psi(z) \mathrm{d} z \quad \text { with } \quad \Psi(z)=\int_{a}^{b} \frac{w(x)}{z-x} \mathrm{~d} x, \tag{1} \end{equation*}
$$ where C is a closed contour surrounding the inverval $[a, b]$ and included in a complex domain D such that $f(z)$ is analytic in it, and is approximated by the trapezoidal rule. We here call this method the "hyperfunction method" since (1) is the definition of the integral I when the integrand $f(x) w(x)$ is regarded as a hyperfunction [2]. The hyperfunction method gives good approximations especially for integrals with so strong end-point singularities that the DE rule [3] does not work for them.

Keywords: Numerical integration, analytic function, hyperfunction.

References

[1] H. Hirayama, A numerical integration rule by the contour integral transformation, Abstracts of the 44-th Numerical Analysis Symposium, 21-24 (in Japanese).
[2] U. Graf, Introduction to Hyperfunctions and Their Integral Transforms, An Applied and Computational Approach, Birkhuser, 2010.
[3] H. Takahasi, M. Mori, Double exponential formulas for numerical integrations, Publ. RIMS Kyoto Univ. 9 (1974) 721-741.

[^8]
Abstracts of Speakers

EXTENSION OF UNIFORMLY PRIMARY IDEALS

Emel A. UGURLU ${ }^{1}$, Kürsat Hakan ORAL ${ }^{2}$, Unsal TEKIR ${ }^{3}$

${ }^{1,3}$ Marmara University, Istanbul, Turkey
${ }^{2}$ Yildiz Technical University, Istanbul, Turkey

MSC 2000: 13A15

Abstract

In this study, we combine the concept of strongly primary ideal and the concept of uniformly primary ideal. So, to define strongly uniformly primary ideal, the ring R must be integral domain with the quotient field K. We study the basic properties of strongly uniformly primary ideals. Moreover we examine the relation between strongly uniformly primary ideals and strongly prime ideals. Finally, we define Noetherian Strongly s-primary ideals and Mori Strongly s-primary ideals. Thus, we obtain the relation between strongly uniformly primary ideals, strongly primary ideals, Noetherian Strongly s-primary ideals and Mori Strongly s-primary ideals.

Keywords: strongly primary, uniformly primary, strongly uniformly primary

References

[1] J. A. Cox, A. J. Hetzel, Uniformly Primary Ideals, Journal of Pure and Applied Algebra 212 (2008) 1-8.
[2] A. G. Naoum, I. M. A. Hadi, Strongly primary submodules, Iraqi Journal of Science 46 (1) (2005) 334-337.

[^9]
NUMERICAL SOLUTION OF THE ROSENAU-BURGERS EQUATION USING QUINTIC B-SPLINE COLLOCATION METHOD

Reza ABAZARI ${ }^{1}$, Mehrdad LAKESTANI ${ }^{2}$
${ }^{1}$ Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
${ }^{2}$ Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

MSC 2000: 65M06, 65M12

Abstract

Consider the initial-boundary value problem of Rosenau-Burgers equation as follow $$
\left\{\begin{array}{l} \frac{\partial u}{\partial t}+\frac{\partial^{5} u}{\partial x^{4} \partial t}+\frac{\partial u}{\partial x}+u \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial x^{2}}=0, \tag{1}\\ u(x, t)=u_{x x}(x, t)=0, \quad x \in \partial \Omega, t \in(0, T], \\ u(x, 0)=u_{0}(x), \quad x \in \bar{\Omega}, \end{array}\right.
$$ where $x \in \Omega=[0, L], t \in(0, T], L>0, T>0$. Since, the exact solution of the Rosenau-Burgers equation is unknown, and on the other side, this equation has important role in the mechanical engineering, therefore, there are some good works that has been devoted to approximate the numerical solutions to the initial-boundary value problem of Rosenau-Burgers equation [3, 5]. In this paper, a B-spline algorithm based on the collocation method with trial functions taken as quintic B-spline functions over the elements will be constructed. This scheme is based on the CrankNicolson formulation for time integration and quintic B-spline functions for space integration. The unconditional stability of the method is proved using Von-Neumann approach. A prior bound and the error estimates of the approximate solutions are discussed with a numerical example.

Keywords: Rosenau-Burgers equation, Quintic B-spline method, Crank-Nicolson scheme, Thomas algorithm, error estimate.

References

[1] B. Hu, Y. Xu, J. Hu, Crank-Nicolson finite difference scheme for the RosenauBurgers equation, Appl. Math. Comput. 204 (2008) 311-316.
[2] W. Ma, A. Yang, Y. Wang,, A Second-Order Accurate Linearized Difference Scheme for the Rosenau-Burgers Equation, Journal of Information \& Computational Science 7 (8) (2010) 1793-1800.

[^10]
PROSPECTIVES OF GEOMETRIC PHASE

Mahmoud ABDEL-ATY ${ }^{1}$, Mohamed KAMEL ${ }^{2}$

1,2 University of science and technology zewailcity, Cairo, Egypt

Abstract

In this paper we discuss some new models of geometric phase and its applications. Numerical treatments have been done to compare between the strong coupling and weak coupling.

[^11]
COUPLING OF FINITE AND HIERARCHICAL INFINITE ELEMENTS: APPLICATION TO A HOMOGENEOUS ISOTROPIC HALF-SPACE

Abderrahim HOUMAT ${ }^{1}$
${ }^{1}$ University of Tlemcen, Tlemcen, Algeria

Abstract

Boundary value problems of half-spaces often find applications in structure-soil interaction where the soil bounding the structure extends to infinity. Such problems are generally difficult if not impossible to solve analytically and resort to numerical methods is usually made. Houmat [1] developed a method for coupling cubic-order quadrilateral finite elements with the finite side of a new coordinate ascent hierarchical infinite element using the method of least squares [2]. The method was applied to a non-homogeneous cross-anisotropic half-space subjected to a non-uniform circular loading.

In this work, the method developed in [1] is extended to a homogeneous isotropic half-space subjected to a uniform circular load applied on the surface. A fixed mesh constructed from coupled finite and hierarchical infinite elements is used and convergence is sought simply by increasing the degree of the interpolating polynomial. The vertical displacement and vertical stress below the center of the load are obtained. The efficiency of the technique is demonstrated through convergence study as a function of the degree of the interpolating polynomial and comparison with analytical solutions.

Keywords: Coupling of finite and hierarchical infinite elements, least squares, homogeneous isotropic half-space.

References

[1] A. Houmat, Coupling of finite and hierarchical infinite elements: application to a non-homogeneous cross-anisotropic half-space subjected to a non-uniform circular loading, International Journal for Numerical and Analytical Methods in Geomechanics 37 (2013) 1552-1573.
[2] A. Houmat, M. M. Rashid, Coupling of h and p finite elements: application to free vibration analysis of plates with curvilinear plan-forms, Applied Mathematical Modelling 36 (2012) 505-520.

[^12]
COMPARISON BETWEEN DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION ANALYSIS:AN APPLICATION ON CAESAREAN BIRTHS AND NATURAL BIRTHS DATA
 Qais Mustafa ABDULQADER ${ }^{1}$
 ${ }^{1}$ Dohuk Polytechnic University, Dohuk, Iraq

MSC 2000: 62-06

Abstract

The Discriminant Analysis (DA) and the Logistic Regression Analysis (LRA) are two statistical methods used for analyzing data and predicting group membership from a set of predictors.Many applications have been done in this area such as the recent works of $[1,2]$. In [3] Shaheen focused through application on Leukemia data for the comparison between three forms for classification data belongs two groups when the response variable has two categories only.In this paper we shall aplly both (DA) and (LRA) for the caesarean births and natural births data using stepwise method.We also make a comparison between the two analysis and then we choose the best one for classifying the type of birth depending on the results of the analysis.

Keywords: Discriminant analysis, logistic regression analysis, caesarean births

References

[1] E. Zandkarimi and others, References comparison and discriminant analysis in identifying the determinants of type 2 diabetes among prediabetes of Kermanshah rural areas, Journal of Kermanshah university of medical sciences 17 (2013) 300-308.
[2] A. Elhabil, M. Eljazzar, A comparative study between linear discriminant analysis and multinomial logistic regression, An-Najah university journal research 28 (2014) 1528-1548.
[3] H. I. Shaheen, Comparison between some of linear classification models with practical application,Journal of economic and management 20 (2014) 394-410.

[^13]
SOLUTIONS AND CONSERVATION LAWS OF A TWO-DIMENSIONAL INTEGRABLE GENERALIZATION OF THE KAUP-KUPERSHMIDT EQUATION

Abdullahi Rashid ADEM ${ }^{1}$
International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-WestUniversity, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa

Abstract

A two-dimensional integrable generalization of the Kaup-Kupershmidt equation, which arises in various problems in mathematical physics. Exact solutions are obtained using the Lie symmetry method along with the extended tanh method and the extended Jacobi elliptic function method. More over we present conservation laws which are derived using the multiplier approach.

Keywords: Lie symmetry method, extended tanh method, Jacobi elliptic function method.

[^14]
EXACT CONSTANTS FOR BEST APPROXIMATION ON THE GROUP SU(2)
 Essa AGHDASSI ${ }^{1}$
 ${ }^{1}$ Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

Abstract

In the present paper we study the properties of least upper bound of the best approximation by algebraic polynomials in metrics L_{1} and L_{∞} for classes of convolutions defined on group $\mathrm{SU}(2)$. The exact constants for best approximation by trigonometric polynomials in $L_{\infty}(-\pi, \pi)$ is studied by many authors. Finally in this paper we proved that for group $\operatorname{SU}(2)$ analog of the Favard-Akheizer-Krein theorem does not hold.

Keywords: Group $\operatorname{SU}(2)$, the Favard-Akheizer-Krein theorem, the best approximation.

[^15]
EXISTENCE AND UNIQUENESS RESULTS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEM

Asghar AHMADKHANLU ${ }^{1}$
${ }^{1}$ Azarbaijan Shahid Madani University, Tabriz, Iran

MSC 2000: 34BXX

Abstract

In this work a class of boundary value problem including fractional differential equation is studied. The existence and uniqueness of solution for a nonlinear fractional boundary value problem are discussed. This problem includes a nonlinear fractional differential equation of order $\alpha \in(0,1]$ and fractional integral boundary conditions. In fact we consider the following boundary value problem of fractional differential equation $$
\begin{align*} & { }^{c} \mathcal{D}^{\alpha} y(t)=f(t, y(t)) \quad 0<\alpha<1, \quad t \in J:=[0, T] \tag{1}\\ & y(0)+\mu \int_{0}^{T} y(s) d s=y(T), \end{align*}
$$

where ${ }^{c} \mathcal{D}^{\alpha}$ denotes the Caputo fractional derivative of order $\alpha, f: J \times \mathbb{R} \rightarrow \mathbb{R}$ is given function will be specified later and $\mu \in \mathbb{R}$.
Banach contraction principle and Browder-Poter fixed point theorem will be used for proving existence and uniqueness of solution for that problem.

Keywords: Fractional differential equations, fractional integral condition, boundary value problem, fixed point.

References

[1] R. P. Agarwal, B. Andrade, C. Cuevas, Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, Nonlinear Anal. Real World Appl. 11 (2010) 3532-3554.
[2] B. Ahmad, Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations, Appl. Math. Lett. 23 (2010) 390-394.

[^16]
A COMPARISON OF METHODS FOR COMPUTING THE MATRIX EXPONENTIAL APPEARS IN SYSTEMS OF DIFFERENTIAL EQUATIONS

Dashti AHMED ALI ${ }^{1}$
${ }^{1}$ Koya University, Koya, Kurdistan Region, Iraq

MSC 2000: 65F99, 15A15

Abstract

The matrix exponential commonly arises in the applications of various scientific fields due to the fact that it can provide the solution of the systems of linear differential equations arising in the mathematical modelling of scientific problems. There are a number of methods to compute the matrix exponential e^{A} for any given square matrix A. However, none of them are completely satisfactory. This paper aims to investigate and analyse a certain number of these methods, in terms of accuracy and efficiency, such as Taylor series method, Padé approximant, the scaling and squaring algorithm, and the spectral decomposition technique. All of the methods have been implemented in Matlab environment, and then a number of experiments have been carried out on these methods. As a result of the accuracy and efficiency tests, we have found that the scaling and squaring algorithm, is the most accurate and cost-efficient method.

Keywords: Matrix exponential, Taylor series, Padé approximant, accuracy, efficiency.

[^17]
EXPONENTIAL STABILITY OF PERIODIC SOLUTIONS OF RECURRENT NEURAL NETWORKS WITH FUNCTIONAL DEPENDENCE ON PIECEWISE CONSTANT ARGUMENT

Marat U. AKHMET ${ }^{1}$, Duygu ARUĞASLAN ${ }^{2}$, Nur Cengiz ${ }^{3}$
${ }^{1}$ Middle East Technical University, Ankara, Turkey
${ }^{2,3}$ Süleyman Demirel University, Isparta, Turkey

MSC 2010: 34K13,34K20,92B20

Abstract

Akhmet [1] generalized differential equations with piecewise constant argument by taking any piecewise constant functions as arguments, and recently he introduced functional dependence on piecewise constant argument [2]. These equations play an important role in applications such as neural networks [3]. In this study, we develope a model of recurrent neural network with functional dependence on piecewise constant argument of generalized type given by $$
\begin{equation*} x^{\prime}(t)=-A x(t)+E x(\gamma(t))+B h\left(x_{t}\right)+C g\left(x_{\gamma(t)}\right)+D . \tag{1} \end{equation*}
$$

Using the theoretical results obtained by Akhmet [2], we investigate conditions for exponential stability of periodic solutions for (1).

Keywords: Differential equations with functional dependence on piecewise constant argument, recurrent neural networks, stability, periodic solutions.

References

[1] M. U. Akhmet, On the integral manifolds of the differential equations with piecewise constant argument of generalized type, Differential and Difference Equations and Applications, Hindawi Publ. Corp., New York (2006) 11-20.
[2] M. U. Akhmet, Quasilinear retarded differential equations with functional dependence on piecewise constant argument, Communications On Pure And Applied Analysis 13 (2) (2014) 929-947.
[3] M. U. Akhmet, D. Aruğaslan, E. Yılmaz, Stability analysis of recurrent neural networks with piecewise constant argument of generalized type, Neural Networks 23 (2010) 805-811.

[^18]
SHARP RUSAK-TYPE INEQUALITIES FOR RATIONAL FUNCTIONS ON SEVERAL INTERVALS

Mehmet Ali AKTÜRK ${ }^{1}$, Alexey LUKASHOV ${ }^{2}$
${ }^{1}$ Istanbul University, Istanbul, Turkey
${ }^{2}$ Fatih University and Saratov State University, Istanbul and Saratov, Russia

MSC 2000: 41A17, 41A20

Abstract

We consider sharp Rusak-type inequalities for rational functions on several intervals when the system of intervals is a "rational function inverse image" of an interval and those functions are large in gaps.

Let $\Re\left(\xi_{1}, \ldots, \xi_{2 n}\right)$ be the set of all " rational functions " of the form
$r(x)=\frac{b_{0} x^{n}+b_{1} x^{n-1}+\ldots+b_{n}}{\sqrt{\rho_{\nu}(x)}}, b_{0}, \ldots, b_{n} \in \mathbb{C}$ and $\rho_{\nu}(x)=\prod_{j=1}^{2 n}\left(x-\xi_{j}\right)$ is a real polynomial of degree ν which is positive on $E=\bigcup_{j=1}^{l}\left[a_{2 j-1}, a_{2 j}\right],-1=a_{1}<a_{2}<\ldots<$ $a_{2 l}=1$. (ξ_{j} might be equal to ∞, then $\left(x-\xi_{j}\right)$ should be omitted) Consider also the set $\Re^{*}\left(\xi_{1}, \ldots, \xi_{2 n}\right)$ which consists of those functions $r \in \Re\left(\xi_{1}, \ldots, \xi_{2 n}\right)$, which satisfy $|r(x)|>\|r\|_{C(E)}$ for all $x \in[-1,1] \backslash E$. The last condition can not omit.

Theorem. Suppose that $\sum_{j=1}^{2 n} \omega_{k}\left(\xi_{j}\right)=2 q_{k}, q_{k} \in \mathbb{N}, k=1, \ldots, l$, and $\left|\xi_{j}\right|>$ $1, j=1, \ldots, 2 n$. Then for any $r \in \Re^{*}\left(\xi_{1}, \ldots, \xi_{2 n}\right),\|r\|_{C(E)}=1$ the inequality

$$
\left|r^{\prime}(x)\right| \leq\left\{\begin{array}{c}
\gamma_{n}^{\prime}(x), x \in \widetilde{E}_{n}, \tag{1}\\
\left|m_{n}^{\prime}(x)\right|, x \in E \backslash \widetilde{E}_{n}
\end{array}\right.
$$

is valid, where

$$
\begin{aligned}
m_{n}(x) & =\cos \left(\gamma_{n}(x)\right), \gamma_{n}(x)=\frac{\pi}{2} \int_{a_{1}}^{x} \sum_{j=1}^{2 n} \varpi_{E}\left(x, \xi_{j}\right) d x \\
\widetilde{E}_{n} & =\left[x_{1}, x_{q_{1}}\right] \cup\left[x_{q_{1}}, x_{q_{1}+q_{2}}\right] \cup \ldots \cup\left[x_{q_{1}+\ldots+q_{l-1}}, x_{n}\right],
\end{aligned}
$$

and $x_{1}<\ldots<x_{n}$ are zeros of m_{n} (there are q_{k} zeros on $\left.\left[a_{2 k-1}, a_{2 k}\right], k=1, \ldots, l\right)$.
For $r(x) \equiv \varepsilon m_{n}(x),|\varepsilon|=1$, inequality in (1) is attained.
Research supported by RFBR-TUBITAK (14-01-91370/113F369).

Keywords: Inequalities in approximation, approximation by rational functions.

[^19]
ASPECTS OF ANALITICAL SOLUTIONS AND SIMULATION OF HIGH ORDER ODE

Ali AL-KARALY ${ }^{1}$, Karim KHOLY ${ }^{2}$
${ }^{1}$ University of science and technology in zewail city, Giza, Egypt
${ }^{2}$ University of science and technology in zewail city, Giza, Egypt

MSC 2000: 34C10

Abstract

This article will introduce the concept of Laplace transformation and how it improved the process of obtaining the exact solution of ODE and its application. This article will focus on the one and two degree of freedom systems, and how can the system be solved by even easier models such as state space modeling, and also how the system can be simulated by different methods. Finally there will be a comparative study to see which method is the least complex and more accurate to find the solution.

Keywords: Laplace transformation, ODE, state space, simulink

[^20]
GROUP-2-GROUPOIDS AND 2G-CROSSED MODULES

Nazmiye ALEMDAR ${ }^{1}$, Sedat TEMEL ${ }^{2}$
1,2 Erciyes University, Kayseri, TURKEY

MSC 2000: 18D05, 18D35, 20J15, 20L05

Abstract

The main idea of this paper is to construct the group structure on a 2 -groupoid which we call group-2-groupoid. As an algebraic structure corresponding to a group2 -groupoid, a $2 G$-crossed module is obtained on the structure of crossed modules. Then we prove the categorical equivalence between group-2-groupoids and 2 G -crossed modules.

Keywords: 2-groupoid, group-2-groupoid, 2G-crossed module.

References

[1] J. C. Baez, An Introduction to n-Categories, Category Theory and Computer Science, Lecture Notes in Computer Science 1290 (1997) 1-33.
[2] R. Brown, C.B. Spencer, \mathcal{G}-groupoids, Crossed Modules and The Fundamental Groupoid of a Topological Group, Proc. Konn. Ned. Akad. v. Wet. 79 (1976) 296-302.
[3] B. Noohi, Notes on 2-Groupoids, 2-Groups and Crossed Modules, Homology Homotopy Appl. 9 (1) 75-106 (2007).

[^21]
MULTIPOINT BOUNDARY VALUE PROBLEM FOR A FRACTIONAL ORDER ORDINARY LINEAR DIFFERENTIAL EQUATION WITH VARIABLE COEFFICIENT

Nihan ALIEV, Ahmad PASHAVAND ${ }^{1}$
Institute of Mathematics and Mechanics of NAS of Azerbaijan 9, B.Vahabzade str., AZ 1141, Baku, Azerbaijan

Abstract

In problems stated for ordinary linear differential equations with fractional order derivative, the number of boundary conditions is determined by the step changed by the derivative in the equation. In this paper we'll consider a multipoint boundary value problem for a variable coefficient equation and the domain of the problem will be taken arbitrary (i.e. that can contain zero). For that factorials are determined in a new sense and the independent solutions are constructed with its help.

Keywords: fractional derivative, a factorial in a new sense, multipoint boundary value problem, a new expansion formula for a function.

References

[1] F. G. Tricomi, Differential Equations. Blackie \& Son Limited, 1961.
[2] M. Fatemi, N. Aliyev, S. Shahmorad, Existence and Uniqueness of Solution for a Fractional order Inteqro-Differential Equation with Non-local and Global Boundary Conditions. Scientific Research Applied Mathematics 2 (2011) 12921296.

[^22]
REGRESSION ANALYSIS FOR BREST CANCER PATIENTS

Hadeel Salim ALKUTUBI ${ }^{1}$

Kufa University, Najaf, Iraq

Abstract

In this study, Breast cancer in Al-Sader Medical city was introduced . Regression analysis is used to analyzed the data to get the mathematical model and the effect between all variables. In the results, there exist a positive relationship between Y (tumor levels) and X1 (education) in the years 2013, 2014.

Keywords: Linear regression, correlation coefficient, brest cancer.

References

[1] H. Alkutubi, On regression modeling of human immunodeficiency virus patients, American Journal of Applied Sciences, Science Publication 6 (8) (2009) 15801585.
[2] H. Alkutubi, N. Ibrahim, N. Yaseen, On statistical analysis of cancer tumors in Tikrit hospital, European Journal of Scientific Research, Euro. Journal Publishing Inc. 35 (1) (2009) 106-120.
[3] M. Bland, An introduction to medical statistics, 3th ed. Oxford University Press, 2000.
[4] L. L. Lawrence, Statistics meaning and method, Harcourt Brace Jovan, 1975.

[^23]
THE SIMULATION OF SOUND SIGNAL MASKING WITH SPROUT

 CHAOTIC OSCILLATIONMehmet Nuri ALMALI ${ }^{1}$, Zinnur DİKİC \dot{I}^{2}, Özkan ATAN ${ }^{3}$

1,3 University of Yüzüncü Yul, Van, Turkey
${ }^{2}$ Avea Iletisim Hizmetleri A.S, Istanbul, Turkey

MSC 2000: 34C28

Abstract

Chaotic masking, which is one of the subjects aimed to supply the information security in communication medium, is addressed in this work. The system of Sproot used in chaotic masking and how to make chaotic masking in system are introduced. Then, PID control method providing synchronization in the system is defined. The masking process on sound signals using chaotic oscillation is simulated with Matlab/Simulink registered program.

Keywords: Chaos, chaotic masking, synchronization, PID, chaotic oscillator.

[^24]
DQM SOLUTION OF NATURAL CONVECTION FLOW OF WATER-BASED NANOFLUIDS

Nagehan ALSOY-AKGÜN ${ }^{1}$
${ }^{1}$ Department of Mathematics, Yüzüncü Yll University, Van, Turkey

Abstract

In this study, unsteady natural convection heat transfer of water-based nanofluid in a square cavity with heat source at the left vertical wall is studied by solving the equation of conservation of mass, momentum and energy. Stream function-vorticity form of the governing equations are solved by using the differantial quadrature method (DQM). Vorticity transport and energy equations are transformed to the form of modified Helmholtz equations by discretizing the time derivative terms first. This procedure eliminates the need of another time integration scheme in vorticity transport and energy equations, and has the advantage of using large time increments. The computational results are obtained for Rayleigh number values between 10^{3} and 10^{6}, volume fraction of nanoparticals changing from 0 to 0.2 and the length of the heater varying from 0.25 to 1.0 . Also, two types of nanoparticals $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ and Cu$)$ are tested. The results are show that the type of the nanoparticles and the length of the heat source affect the flow and temperature flow.

Keywords: DQM, natural convection, nanofluid

References

[1] S. Gümgüm, M. Tezer-Sezgin, DRBEM solution of natural convection flow of nanofluids with a heat source, Engineering Analysis with Boundary Elements 34 (2010) 727-737.
[2] E. Büyük Öğüt, Natural convection of water-based nanofluids in an inclined enclosure with a heat source, International Journal of Thermal Sciences 48 (2009) 2063-2073.
[3] H. F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow 29 (2008) 1326-1336.

[^25]
DRBEM SOLUTION OF NATURAL CONVECTION FLOW OF WATER-BASED NANOFLUIDS IN AN INCLINED ANGLE

Nagehan ALSOY-AKGÜN ${ }^{1}$
${ }^{1}$ Department of Mathematics, Yüzüncü Yol University, Van, Turkey

Abstract

In this study, heat transfer and fluid flow due to buoyancy forces in a partially heated and an inclined square enclosure is carried out using two types of nanoparticals $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ and Cu$)$. Stream function-vorticity form of the governing equations are solved by using dual reciprocity boundary element method (DRBEM) with the fundamental solution of modified Helmholtz equation. By using the form of modified Helmholtz equation for the governing equations, the need of another time integration scheme is eliminated. Results are given in terms of streamlines, isoterms and vorticity contours for inclined angle from 0° to 90°, Rayleigh number values between 10^{3} and 10^{6}, and volume fraction of nanoparticals changing from 0 to 0.2 . Also, the length of the heater is taken $0.25,0.5$ and 1.0 which is placed at the center of the left wall. The results are show that the type of the nanoparticles, the length of the heat source and the inclined angle affect the heat transfer of the fluid.

Keywords: DRBEM, natural convection, nanofluid, inclined angle.

References

[1] E. Büyük Öğüt, Natural convection of water-based nanofluids in an inclined enclosure with a heat source, International Journal of Thermal Sciences 48 (2009) 2063-2073.
[2] S. Gümgüm, M. Tezer-Sezgin, DRBEM solution of natural convection flow of nanofluids with a heat source, Engineering Analysis with Boundary Elements 34 (2010) 727-737.
[3] H. F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow 29 (2008) 1326-1336.

[^26]FUNCTIONAL IMPULSES IN EXACT STOCHASTIC SIMULATION
Derya ALTINTAN ${ }^{1}$, Vilda PURUTÇUOĞLU, ${ }^{2}$ Ömür UĞUR ${ }^{3}$
${ }^{1}$ Department of Mathematics, Selçuk University, Konya
${ }^{2}$ Department of Statistics, Middle East Technical University, Ankara ${ }^{3}$ Institute of Applied Mathematics, Middle East Technical University, Ankara

Abstract

Jumps which are observed in many population models give rise to fluctuations in the dynamics of systems. Deterministic model which is based on the Impulsive Differential Equations (IDEs) considers these jumps as impulses and defines the dynamics of the system between successive jump times with the Ordinary Differential Equations (ODEs). From our previous studies, we have proposed a model which is the complement of IDEs in the sense that both studies consider the jumps as impulses. The main difference between these two approaches is that the former implements ODEs to model the dynamics of system between successive jump times while the latter applies the Chemical Master Equation (CME). From the analyses we have shown that such impulses can be added to the system under the two main scenarios, namely, impulses at fixed time and impulses at fixed states. Hereby as the novelty in this work, we extend our model in such a way that if the jump function and the realization of the model intersect, we update the time to the intersection time point and update the state vector according to the jump function. We insert this idea in the exact Gillespie algorithm and assess the performance of our extended model in different epidemic modellings.

Acknowledgement: This work is supported by the AGEP grant (No: BAP-08-11-2014-007) of the Middle East Technical University.

Keywords: Impulsive differential equations, ordinary differential equations, stochastic simulation, Gillespie algorithm, epidemic models.

References

[1] A. Samoilenko, N. Perestyuk, Impulsive differential equations, Singapore; River Edge, NJ : World Scientific, (1995).

[^27]
A NOVEL BINARY IMAGE ENCRYPTION ALGHORITHM BASED ON DIFUSE REPRESENTATION

Houas AMRANE ${ }^{1}$, Mokhtari ZOUHIR ${ }^{2}$
1,2 University Mohamed Khider, Biskra, Algeria

Abstract

Despite the fact that binary images are very common in our life, only a few research works have been done to protect this type of images. In this work, we propose a new alghorithm to encrypt binary images. In the first step, we present a new basis to reduce the amount of data required to represent the image. In the second stage, the image is split into d blocks, which use in new images of the same size as the original, and represent them in the new basis to obtain a key-image and encrypted images, the parameters obtained by this transformation are considered as key-image for the encryption and decryption algorithm. The decryption step is made by subtraction between each encrypted image and key-image, then summing them in an image to obtain the original one. Experimental results introduced at the end of this article demonstrate the efectiveness of the proposed strategy.

Keywords: Cryptography, binary image encryption, key-image.

[^28]
ON THE GENERALIZED K-PELL (P,I)-NUMBERS

Kâmil ARI ${ }^{1}$
${ }^{1}$ Karamanoğlu Mehmetbey University, Karaman, Turkey

MSC 2010: 11B39; 65Q30; 05A15

Abstract

This study focus on the generalized k-Pell (p, i)-numbers for $k=1,2, \ldots$ and $0 \leq i \leq$ p. It introduces the generalized k-Pell (p, i)-numbers and their generating matrices and generating functions. Some interesting identities are established. The basic properties of Fibonacci and Fibonacci-like numbers are well known and are outlined, for example in [1] and generalizations of Pell numbers can be found in the literature. In [2] P. Catarino consider a generalization of Pell numbers, which the author calls the k-Pell numbers.

Keywords: Fibonacci numbers, Pell numbers, Binet's formula.

References

[1] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Theory and applications, John Wiley and Sons, New York, 1989.
[2] P. Catarino, On some identities and generating functions for k-Pell numbers, International Journal of Mathematical Analysis 7 (38) (2013) 1877-1884.
[3] E. Kılıç, The generalized Pell (p; i)-numbers and their Binet formulas,combinatorial representations, sums, Chaos, Solitons \& Fractals 40 (4) (2009) 2047-2063.
[4] P. Catarino, P. Vasco, Some Basic Properties and a Two-by-Two Matrix involving the k-Pell numbers, International Journal of Mathematical Analysis 7 (45) (2013) 2209-2215.
[5] S. Falcón, A. Plaza, On the Fibonacci k-numbers. Chaos, Solitons \&Fractals 32 (5) (2007) 1615-24.
[6] E. Kılıç, The generalized order-k-Fibonacci-Pell sequence by matrix methods, Journal of Computational and Applied Mathematics 209 (2007) 133-145.

[^29]
γ-RADICALS OF GAMMA RINGS

Okan ARSLAN ${ }^{1}$, Hatice Kandamar ${ }^{2}$
${ }^{1,2}$ Adnan Menderes University, Aydın, Turkey

MSC 2000: 16N60, 16W25, 16Y99

Abstract

Let M be a weak Nobusawa Γ-ring and γ be a nonzero element of Γ. The main focus of this work is to find out new properties for the structure of Γ-ring M. For this reason, we define γ-Lie ideals of Γ-ring M and investigate commutativity conditions for M with derivation. We also define some γ-radicals of the Γ-ring M and show these radicals are strictly weaker than the radicals of M in the literature.

Keywords: Gamma ring, prime Γ-ring, k-derivation, commutativity, γ-radical.

References

[1] O. Arslan, H. Kandamar, γ-Lie structures in γ-prime gamma rings with derivations, J. Algebra Comb. Discrete Appl. 2 (1) (2015) 25-37.
[2] R. Awtar, Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc. 41 (1973) 67-74.
[3] W. E. Barnes, On the 「-rings of Nobusawa, Pacific J. Math. 18 (3) (1966) 411422.
[4] W.E. Coppage, J. Luh, Radicals of gamma rings, J. Math. Soc. Japan 23 (1) (1971) 40-52.
[5] H. Kandamar, The k-Derivation of a Gamma-Ring, Turk. J. Math. 23 (3) (2000) 221-229.
[6] S. Kyuno, Gamma Rings, Hadronic Press, Palm Habor, 1991.
[7] S. Kyuno, On the radicals of gamma rings, Osaka J. Math. 12 (1975) 639-645.
[8] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964) 81-89.

[^30]
FRACTIONAL SPACES GENERATED BY THE POSITIVE DIFFERENTIAL OPERATOR IN THE HALF-SPACE

Allaberen ASHYALYEV ${ }^{1}$, Sema AKTURK ${ }^{2}$
${ }^{1}$ Department of Mathematics, Fatih University, 34500 Buyukcekmece, Istanbul, Turkey,
${ }^{1}$ Department of Mathematics, ITTU, Ashgabat, Turkmenistan,
${ }^{2}$ Department of Mathematics, Fatih University, 34500 Buyukcekmece, Istanbul, Turkey,

MSC 2000: 35J25, 47E05, and 34B27

Abstract

In the study, we consider the positivity of multi-dimensional differential operator in the half-space. We investigate the structure of fractional spaces generated by differetial operators in the half-space. We establish the equivalence of the norms of these fractional spaces and Hölder spaces.

We also discuss its applications to theory of partial differential equations.

Keywords: Positive operator, fractional spaces, Green's function, Hölder spaces.

References

[1] A. Ashyralyev, P. E. Sobolevskii, Well-posedness of parabolic difference equations. Birkhäuser Verlag, Basel, Boston, Berlin, 1994.
[2] S. I. Danelich, Fractional powers of positive difference operators. Dissertation, Voronezh State University, Voronezh, 1989.

[^31]
GRÜSS INEQUALITY ON DISCRETE FRACTIONAL CALCULUS WITH DELTA OPERATOR

Serkan ASLIYÜCE ${ }^{1}$, A. Feza GÜVENİLİR ${ }^{2}$
${ }^{1,2}$ Ankara University, Ankara, Turkey

MSC 2000: 39A12, 34A25, 26A33

Abstract

In this talk, firstly we will give basic definitions and theorems of discrete fractional calculus with delta operator. After that, using fractional delta operators we shall introduce the inequlity given by G. Grüss in 1935:

If f and g are continuous functions on $[a, b]$ satisfying $$
\phi \leq f(t) \leq \Phi \text { and } \gamma \leq g(t) \leq \Gamma \text { for all } t \in[a, b],
$$ then $$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x\right| \leq \frac{1}{4}(\Phi-\phi)(\Gamma-\gamma) .
$$

Keywords: Discrete fractional calculus, Grüss type inequality.

References

[1] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$, Math. Z. 39 (1935) 215-226.
[2] E. Akin, S. Aslyüce, A. F. Güvenilir, B. Kaymakalan, Discrete Grüss type inequality on fractional calculus, J. Inequal. Appl. 2015 (174) (2015) 7 pp.

[^32]
REGULAR LOCAL FUNCTIONS IN IDEAL TOPOLOGICAL SPACES

Arife ATAY 1, H.Ilhan TUTALAR ${ }^{2}$

1,2 Dicle University, Diyarbakir, Turkey

MSC 2000: 54A05,54C10

Abstract

This paper deals with a space in which topology is replaced by its generalized open sets. We define an operator $A^{* r}(I, \mathrm{RO}(X, \tau))$ called the regular local function of A with respect to I and $\mathrm{RO}(X, \tau)$ as follows: $A^{* r}(I, \mathrm{RO}(X, \tau))=\{x \in X: A \bigcap U \notin I$ for every $U \in \operatorname{RO}(X, x)\}$. We investigate properties of $A^{* r}(I, \operatorname{RO}(X, \tau))$.

Keywords: Regular open set, regular closed set, ideal topological space, local function, regular local function.

References

[1] A. Vadivel, M. Navuluri, Regular semi local functiobs in ideal topological spaces, Journal of Advenced Research in Scientific Computing 5 (2013) 1-6.
[2] A. Al Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43 (2013) 139-149.
[3] K. Kuratowski, Topology, Academic Press, NewYork 1 (1966).
[4] M. Khan, T.Noiri, Semi local functions in ideal topological spaces, Journal of Advenced Research in Pure Mathematics 2 (2010) 36-42.
[5] N. R. Paul, RgI-closed sets in ideal topological spaces, International Journal of Computer Applications 69 (2013).
[6] S. Mistry, S. Modak, ($)^{* p}$ and Ψ_{p} Operator, International Mathematical Forum 7 (2012) 89-96.

[^33]
ON ALMOST $C(\alpha)$-MANIFOLDS SATISFYING CERTAIN CONDITIONS ON QUASI-CONFORMAL CURVATURE TENSOR
 Mehmet ATÇEKEN ${ }^{1}$, Ümit YILDIRIM ${ }^{2}$, Süleyman DİRİK ${ }^{3}$
 ${ }^{1,2}$ Gaziosmanpasa University, Tokat, Turkey
 ${ }^{3}$ Amasya University, Amasya, Turkey

MSC 2000: 53C15, 53C44, 53D10.

Abstract

In the present paper, we have studied the curvature tensors of almost $C(\alpha)$-manifolds satisfying the conditions $\widetilde{C}(\xi, X) \widetilde{Z}=0, \widetilde{C}(\xi, X) P=0, \widetilde{C}(\xi, X) S=0, \widetilde{Z}(\xi, X) \widetilde{C}=0$ and $\widetilde{C}(\xi, X) \widetilde{C}=0$. According these cases, we classified almost $C(\alpha)$-manifolds, where P is the Weyl projective curvature tensor, \widetilde{Z} is the concircular curvature tensor, S is the Ricci tensor and \widetilde{C} is quasi-conformal curvature tensor.

Keywords: Almost $C(\alpha)$-manifold, quasi-conformal curvature tensor, Einstein manifold.

References

[1] D. E. Blair, Contact manifolds in Riemannian geometry, Springer-Verlag, Berlin, Germany, 1976.
[2] D. Janssens, L. Vanhecke, Almost contact structure and curvature tensors, Kodai Math. J. 4 (1981) 1-27.
[3] M. M. Tripathi, J. S. Kim, On the concircular curvature tensor of a (κ, μ) manifold, Balkan J. Geom. Appl. 9 (1) (2004) 104-114.
[4] U. C. De, J. B. Jun, A. K. Gazi, Sasakian manifolds with quasi-conformal curvature tensor, Bull. Korean Math. Soc. 45 (2008) (2) 313-319.
[5] Ü. Yıldırım, M. Atçeken, On curvature tensor of an almost $C(\alpha)$-manifold, International Journal of Physical and Mathematical Sciences 5 (1) (2015) 53-61.

[^34]
MULTIPLE SOLUTIONS TO P-KIRCHHOFF TYPE PROBLEMS IN \mathbb{R}^{N} CRITICAL P-KIRCHHOFF EQUATIONS

Matallah ATIKA ${ }^{1}$

${ }^{1}$ Ecole préparatoire en sciences économiques, commerciales et sciences de gestion, Département de mathématiques, Tlemcen-Algérie

Abstract

In this paper, we use variational methods to study the existence and multiplicity of non negative solutions for a p-Kirchhoff equation involving the critical Sobolev exponent.

Keywords: p-Kirchhoff equation, the critical Sobolev exponent, non negative solutions.

References

[1] C. O. Alves, F. J. S. A. Correa, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85-93.
[2] C. S. Chen , J. C. Huang, L. H. Liu, Multiple solutions to the nonhomogeneous pKirchhoff elliptic equation with concave-convex nonlinearities, Appl. Math. Lett. 26 (2013) 754-759.
[3] S. J. Chen, L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on \mathbb{R}^{N}, Nonlinear Analysis: Real World Applications 14 (2013) 1477-1486.
[4] F. J. S. A. Corrêa, G. M. Figueiredo, On a elliptic equation of p-Kirchhoff type via variational methods, Bull. Aust. Math. Soc. 74 (2006) 263-277.

[^35]STABILITY ANALYSIS OF HIV INFECTION MODEL WITH TUMOR Gamzegül AYDIN ${ }^{1}$, Hüseyin MERDAN ${ }^{2}$, Abdessamad TRIDANE ${ }^{3}$
${ }^{1,2}$ TOBB University of Economics and Technology, Departments of Mathematics, Ankara, Turkey
${ }^{3}$ United Arab Emirates University, Departments of Mathematics, Al Ain, Abu Dhabi, United Arab Emirates

MSC 2010: 34D20, 37C75, 92B99

Abstract

In this study, we propose a mathematical model of HIV infection with tumor cells. We model the interaction between tumor cells, helper T cells, infected helper T cells and virus cells by using a nonlinear dynamical system approach which gives rates of change of the four cell populations in the body. First, we prove the positivity of the solution, as desired in any population dynamics. Then, we analyze the local asymptotic stability of equilibrium points of the HIV infection model. In the end, we support our theoretical results by some numerical simulations.

Keywords: HIV infection, nonlinear dynamical system, stability analysis.

References

[1] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, 2003.
[2] T. Jang, H.-D. Kwon, J. Lee, Free terminal time optimal control problem of an HIV model based on a conjugate gradient method, Bull Math Biol. 73 (10) (2011) 2408-2429.
[3] H. R. Joshi, Optimal Control of an HIV Immunology Model, Optim. Contr. Appl. Math 23 (2002) 199-213.

[^36]
EXTINCTION IN A GENERALIZED CHAIN BINOMIAL EPIDEMIC MODEL

Ozgur AYDOGMUS ${ }^{1}$

${ }^{1}$ Social Sciences University of Ankara, Ankara, Turkey

Abstract

Here, our aim is to study extinction times in a stochastic epidemic model. First we consider the mean dynamics of the stochastic model. Since we are interested in a nonoverlapping population, our meanfield equations are difference equations. We give conditons for existence and global stability of endemic equilibrium. We show that the stochastic model stays close to the deterministic model for finite time. Using this approximation, we also give exponential lower bounds for mean time to extinction. In addition, we also calculate mean time to reach endemic equilibrium for large populations.

Keywords: Chain binomial epidemic model, difference equations, extinction time.

[^37]
GLOBAL EXISTENCE AND BOUNDEDNESS RESULTS FOR SOLUTIONS OF SPECIFIC THIRD ORDER NONLINEAR VECTOR DIFFERENTIAL EQUATIONS

Timur AYHAN ${ }^{1}$, Cemil TUNÇ ${ }^{2}$
${ }^{1}$ Siirt University, Siirt, Turkey
${ }^{2}$ Yuzuncu Yil University, Van, Turkey

Abstract

We give criteria for the global existence and boundedness of all solutions of a kind of third order nonlinear ordinary vector differential equations of the form: $$
\left(q(t)\left(p(t) X^{\prime}\right)^{\prime}\right)^{\prime}+F\left(X, X^{\prime}\right) X^{\prime \prime}+G\left(X^{\prime}\right) X^{\prime}+c X=P(t)
$$

By means of the Lyapunov second (direct) method, we obtain a new result on the subject and give an example for the illustration of the topic. Our result includes and generalizes some earlier results in the literature.

Keywords: Global existence, Lyapunov function, boundedness, third order.

References

[1] A. M. A. Abou-El-Ela, Boundedness of the solutions of certain third-order vector differential equations, Annals of Differential Equations 1 (2) (1985) 127-139.
[2] A. U. Afuwape, Further ultimate boundedness results for a third-order nonlinear system of differential equations, Unione Matematica Italiana Bollettino C. Serie VI 4 (1) (1985) 347-361.
[3] C. Tunc, On the boundedness and periodicity of the solutions of a certain vector differential equation of third-order, Applied Mathematics and Mechanics (English edn. 20 (2) (1999) 163-170.)

[^38]
THEORETICAL AND COMPUTATIONAL MODELING STUDIES ON THE -CYPERONE - TUBULIN INTERACTION

Azam AZIMI ${ }^{1}$, Mahmood GHAFFARI ${ }^{2}$, Gholam Hossein RIAZI ${ }^{3}$, Mohammad Mehdi TAVAKOL ${ }^{4}$

1,2,3 University of Tehran , Tehran, Iran
${ }^{4}$ University of Allameh Tabatabaee, Tehran ,Iran

Abstract

In order to determine the binding site of -cyperone, the main sesquiterpenoid of Cyperus rotundus L . on tubulin, one of the main protein in the eukaryotic cytoskeleton, we performed molecular dynamics (MD) simulation and docking studies. Simulation was done using the GROMACS package with G43a1 force field. The equilibrium geometries of the tubulin with heteroatoms GTP and GDP (PDB: 1tub) were achieved using MD simulation at 300 K . The entire system was minimized using the steepest descent of 1000 steps followed by the conjugate gradients of 9000 steps. To demonstrate the quality of the simulation data, we determined the root mean square deviation (RMSD) of protein backbone. The final structure was employed as the main configuration for -cyperone binding studies. Autodock 3.0 package was used for molecular blind docking, and pre-set calculation parameters in Autodock 3.0 were considered as default. Effective surface hydrophobicity influences the intermolecular interactions, such as binding of small hydrophobic ligands with macromolecules, suggesting a hydrophobic interaction between -cyperone and -tubulin. Understanding the association site and energy of binding, that underlies -cyperone action to tubulin, is critical in the rational design of new drugs. The tubulin RMSD increased within 4 ns and then fluctuated in nano-scale around 0.3 nm till 10 ns , indicating that after elimination of the unfavorable strains from X-ray geometry, tubulin acquired a rather stable form, following an energy minimization (steepest descent of 1000 steps followed by the conjugate gradients of 9000 steps) for maintaining the better structure. We found an energy score of $9.61 \mathrm{kcal} / \mathrm{mol}$ upon simulation of -cyperone interaction with GDP tubulin.

Keywords: Molecular dynamics, simulation, tubulin RMSD, -cyperone, computational modeling.

[^39]
PROJECTIVE GEOMETRY RELATED TO THE SECANT LOCI IN SYMMETRIC PRODUCT OF SMOOTH ALGEBRAIC CURVES

Ali BAJRAVANI ${ }^{1}$
Azarbaijan Shahid Madani University, Tabriz, Iran.

MSC 2000: 14H99; 14H51.

Abstract

We describe the tangent space of the secant loci associated to a line bundle on a projective smooth algebraic curve. Denoting by $V_{d}^{r}(L)$ the $(d-r)$-th secant loci of C associated to the line bundle L on C, we obtain:

Theorem. 1 (a) If D belongs to $V_{d}^{r}(L) \backslash V_{d}^{r+1}(L)$, the tangent space to $V_{d}^{r}(L)$ at D is $T_{D}\left(V_{d}^{r}(L)\right)=\left(\operatorname{Im}\left(\alpha_{L} \mu_{0}^{L}\right)\right)^{\perp}$ where μ_{0}^{L} is the cup product map

$$
\mu_{0}^{L}: H^{0}(C, \mathcal{O}(D)) \otimes H^{0}(C, L(-D)) \rightarrow H^{0}(C, L)
$$

(b) If $D \in V_{d}^{r+1}(L)$ then $T_{D}\left(V_{d}^{r}(L)\right)=H^{0}\left(C, L \otimes \mathcal{O}_{D}\right)$. In particular, if $V_{d}^{r}(L)$ has the expected dimension and $d<s+1+r$, then $D \in \operatorname{Sing}\left(V_{d}^{r}(L)\right)$.

Theorem . 2 The scheme $V_{d}^{r}(L)$ is smooth at $D \in V_{d}^{r}(L) \backslash V_{d}^{r+1}(L)$ and has the expected dimension $d-r \cdot(s+1-(d-r))$ if and only if μ_{0}^{L} is injective.

Lemma . 3 For a very ample line bundle L on C and an integer d with $d \geq 4$, if $V_{d}^{r}(L) \neq \emptyset$, then no irreducible component of $V_{d}^{r}(L)$ is contained in $V_{d}^{r+1}(L)$.

Theorem . 4 Let C be a hyper-elliptic curve and L a line bundle on C whose space of global sections has dimension $s+1$. Assume moreover that $d \leq s+1$. Then $V_{d}^{r}(L)$ is empty or irreducible of dimension $d-r$ according to whether $d<2 r$ or $2 r \leq d$, respectively.

Theorem . 5 If C is non hyper-elliptic and L a very ample line bundle on C with $d \leq$ $h^{0}(L)-1$, then every component of $V_{d}^{r}(L)$ has dimension at most equal to $d-r-1$.

Corollary . 6 Assume that L is a very ample line bundle on C with $h^{0}(L)=d+1 \geq 4$. Then $V_{d}^{1}(L)$, if non empty, is of dimension $d-2$.

Keywords: Symmetric products, very ample line bundle.

References

[1] M. Aprodu, E. Sernesi, Secant spaces and syzygies of special line bundles on curves, Algebra and Number Theory 9 (2015) 585-600.
[2] A. Bajravani, Martens-Mumford Theorems for Brill-Noether Schemes arising from Very Ample Line bundles, To appear in Archive der Mathematik.
[3] M. Coppens, Some remarks on the Scheme W_{d}^{r}, Annali di Matem. P. e A. 97 (1990) 183-197.

[^40]
JORDAN SUPERALGEBRAS WITH SOME HOMOGENEOUS STRUCTURES

Amir BAKLOUTI ${ }^{1}$

${ }^{1}$ Um All-Qura University, Mecca, Saudi Arabia

MSC 2000: 17C50, 17B60, 17B20, 17B05

Abstract

A symplectic pseudo-Euclidean Jordan superalgebra is a Jordan superalgebra endowed with both a homogeneous symplectic form and a homogeneous associative non-degenerate supersymmetric bilinear form. We give a necessary and sufficient condition to construct a symplectic Lie superalgebra given a symplectic Jordan superalgebra. We also give an inductive description of symplectic pseudo-Euclidean Jordan superalgebras. Next, we establish in this paper the equivalence between the existence of solutions of the Yang Baxter equation from Jordan superalgebras (YBE) and that of symplectic forms on Jordan superalgebras.

Keywords: Jordan superalgebras, quadratic Lie superalgebras, TKK construction, double extensions, Yang Baxter equation.

[^41]
REGARDING ANALYTICAL PROTOTYPE STUDIES FOR THE
 GENERALIZED NONLINEAR POCHHAMMER-CHREE EQUATION

Haci Mehmet BASKONUS ${ }^{1}$, Hasan BULUT ${ }^{2}$, Mirac KAYHAN ${ }^{3}$
${ }^{1}$ Faculty of Engineering, Tunceli University, Tunceli, Turkey
${ }^{2}$ Faculty of Science,Firat University, Elazig, Turkey
${ }^{3}$ Faculty of Science,Inonu University, Malatya, Turkey

Abstract

In this study, we have applied the Bernoulli sub-equation function method to obtain some new analytical solutions for the generalized nonlinear Pochhammer-Chree equation. We have submitted the general structure of Bernoulli sub-equation function method in section 2. In Section 3, as an application, we have obtained some new analytical solutions of the generalized nonlinear Pochhammer-Chree equation defined by [1]; $$
\begin{equation*} u_{t t}-u_{t t x x}+\gamma u_{x x t}-\left(\lambda_{1} u+\lambda_{2} u^{p}+\lambda_{3} u^{2 p-1}\right)_{x x}=0 \tag{1} \end{equation*}
$$ where $\gamma, \lambda_{1}, \lambda_{2}, \lambda_{3}$ are constants and they are not zero. Then, we have plotted two and three dimensional surfaces of analytical solutions by the help of wolfram Mathematica 9.

Keywords: The Bernoulli sub-equation function method, generalized nonlinear Pochhammer-Chree equation, exponential function solution, trigonometric function solutions, hyperbolic function solutions, complex function solution.

References

[1] T. Krisztin, Nonoscillations for functional differential equations of mixed type, Journal of Mathematical Analysis and Applications 254 (2000) 326-345.
[2] J. M. Ferreira and A. M. Pedro, Oscillations of delay difference systems, J. Math. Anal. Appl. 221 (1998) 364-383.

[^42]LIE GROUP STRUCTURE ON $N \times N$ MARKOV MATRIX

Şenay BAYDAŞ ${ }^{1}$, Bülent KARAKAŞ ${ }^{2}$
1,2 Yüzüncü Yıl University, Van, Türkiye

MSC 2000: 51B25

Abstract

This paper presents a Lie group structure on the set of all $n \times n$ Markov matrices.

Keywords: Lie groups, Markov matrices.

\section*{References} [1] J. G. Sumner, Lie Geometry of 2×2 Markov Matrices, Journal of Theoretical Biology 327 (2013) 88-90. [2] J. G. Sumner, Fernandez-Sanchez, J., Jarvis. P.D., Lie Markov Models, Journal of Theoretical Biology 298 (2012) 16-31.

[^43]
GRAPH-THEORETIC APPROACH TO THE IDEAL STRUCTURE OF A FAMILY OF NON-CHAIN RINGS

Aysegul BAYRAM ${ }^{1}$, Vedat SİAP ${ }^{2}$

${ }^{1}$ Department of Mathematics, Yildiz Technical University, Istanbul, Turkey
${ }^{2}$ Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey

MSC 2000: 05C99, 94B05

Abstract

For finite $k \geq 1$ $$
\begin{equation*} R_{k}=F_{2}\left[u_{1}, u_{2}, \ldots, u_{k}\right] /\left\langle u_{i}^{2}=0, u_{i} u_{j}=u_{j} u_{i}\right\rangle . \tag{1} \end{equation*}
$$ and $R_{0}=F_{2}$ (finite field with two elements) are commutative rings with characteristic two. In [1], Yildiz et.al studied some special codes, called self-dual codes, over this ring. This family of rings has been studied as a new source for building linear codes. As pointed out in these studies, it is not easy to determine all ideals of R_{k} where $k>1$, since it is not a principal ideal ring. In this study, we determine the ideal structure of R_{3} by using the zero-divisor graph [2] of $R_{3}(k=3)$.

Keywords: Zero-divisor graphs, non-chain rings.

References

[1] S. Dougherty, B. Yildiz, A. Kaya, Self-Dual Codes over R_{k} and Binary Self-Dual Codes, European Journal of Pure and Applied Mathematics 6 (2013) 89-106.
[2] D. F. Anderson, A. Badawi, On the Zero-Divisor Graph of a Ring, Communications in Algebra 36 (2008) 3073-3092.

[^44]
ON SOME GRAPH INVARIANTS OF GENERALIZED FULLERENE

Afshin BEHMARAM ${ }^{1}$

${ }^{1}$ University of Tabriz, Tabriz, Iran

MSC 2000: 05C30, 05C70

Abstract

Fullerene graph is cubic planar graphs which faces are pentagon or Hexagon. In chemistry, Fullerenes are allotropes of carbon with a spherical nanostructure and study as one of important molecule structure in nano and carbon structure. A connected 3-regular planar graph is called m-generalized fullerene if it has the following types of faces: two m-gons and all other pentagons and hexagons.note that for $\mathrm{m}=5,6 \mathrm{an} \mathrm{m}$-generalized fullerene is a classical fullerene graph. One of the importnat class of m-generalized Fullerene is elongated barrel and denoted by $F(m, k)$.In $\mathrm{F}(\mathrm{m}, \mathrm{k})$, The first circle is an m -gon. Then m -gon is bounded by m pentagons. After that we have additional k layers of hexagon. At the last circle m -pentagons connected to the second m -gon. Some graph invariants of m -generalized fullerene are presented in this lecture .we determine the diameter and some distances property of $\mathrm{F}(\mathrm{m}, \mathrm{k})$ and proof the hamiltonicity of this graph .Then we found both upper bound and lower bound for the number of perfect matching in m-generalized fullerene and enumerate the exact number of perfect matching in $F(m, k)$ for some m.

Keywords: Fullerene, perfect matching, graph invariant.

References

[1] V. Andova, T. Doslic, M. Krnc, B. Luzar, R. Skrekovski, On the diameter and some related invariants of fullerene graphs, MATCH Commun. Math. Comput.Chem. 68 (2012) 109-130.
[2] A. Behmaram, S. Friedland, Upper bounds for perfect matchings in Pfaffian and planar graphs, Electronic J. Combin. 20 (2013) 1-16.
[3] H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, R. E. Smaley, Buckminsterfullerene, Nature 318 (1985) 162-163.

[^45]
INVOLUTIONS OF DUAL SPLIT-QUATERNIONS

Murat BEKAR ${ }^{1}$, Yusuf YAYLI 2
${ }^{1}$ Necmettin Erbakan University, Konya, TURKEY
${ }^{2}$ Ankara University, Ankara, TURKEY

MSC 2000: 11R52; 53A25; 53A35; 53B30; 70B10; 70E15

Abstract

Involutions and anti-involutions, which are self-inverse linear mappings, are useful tools to determine rigid-body (screw) motions. In 3-dimensional Euclidean space \mathbb{R}^{3}, a reflection of a vector in a plane can be represented by an involution or antiinvolution mapping obtained by using real-quaternions. Also, a reflection of a line about a line in \mathbb{R}^{3} can be represented by an involution or anti-involution mapping obtained by using dual-quaternions. In this study, we will represent involution and anti-involution mappings obtained by using dual split-quaternions, and a geometric interpretation of each as rigid-body motions in 3-dimensional Minkowski space \mathbb{R}_{1}^{3}.

Keywords: Dual split-quaternions, involutions, rigid-body (screw) motions.

[^46]
ASYMPTOTIC EXPANSION OF DOUBLE OSCILLATORY INTEGRALS: CONTRIBUTION OF NON STATIONARY CRITICAL POINTS OF THE SECOND KIND

Abdallah BENAISSA ${ }^{1}$
${ }^{1}$ LAMIE, Batna University , Batna, Algeria

MSC 2000: 41A60

Abstract

In in this paper, we show that the contribution of a non-stationary critical point of the second kind to the asymptotic expansion of a double oscillatory integral is governed by "the order of contact" between the boundary of the domain of integration and the level curve of the phase through the critical point. Complete asymptotic expansions are derived and the coefficient of the leading term is computed in terms of the original data of the problem. This problem was previously studied by several authors, but only in the special case when the order of contact is minimal.

Keywords: Asymptotic expansion, oscillatory integral, critical point of the second kind.

References

[1] A. Benaissa, C. Roger, Asymptotic expansion of multiple oscillatory integrals with a hypersurface of stationary points of the phase, Proc. R. Soc. A 469 (2013) 20130109, http://dx.doi.org/10.1098/rspa. 2013.0109.
[2] M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th expanded edition, Cambridge Press, Cambridge, 1999.
[3] R. Wong, Asymptotic approximations of integrals, Academic Press, Boston, 1989.

[^47]
DEVELOPMENT OF AN EDUCATIONAL SOFTWARE FOR BASIC STATISTICS

Enes Abdurrahman BİLGİN ${ }^{1}$
${ }^{1}$ Faculty of Education, Yüzüncü Yıl University, Van, Turkey

MSC 2000: 97U50,62-07

Abstract

In this study we aim to develop a dynamic educational software. For this purpose we have developed a software that capable of both describing and analyzing issues of statistics. Programme can both produce random sample and solve statistics. The developed software has been created with the c\# language with 2900 lines of code. General algorithm of the program, the calculated values compared with the actual values of these values will be presented in this study.

Keywords: Educationonal software, statistical software, c\# programming language.

References

[1] A. Jonathan, R. Godfrey, M. T. Loots, Statistical Software (R, SAS, SPSS, and Minitab) for Blind Students and Practitioners, Software Review Vol. 58 (2014).
[2] Ş. Büyüköztürk, SPSS Uygulamalı bilgisayar destekli istatistik öğretiminin istatistiğe yönelik tutumlara ve istatistik başarısına etkisi, Eğitim Araştırmaları Dergisi 20 (2000).
[3] N. Doğan, Bilgisayar destekli istatistik öğ retiminin başarıya ve istatistiğe karşı tutuma etkisi, Eğitim ve Bilim, 154 (2009).

[^48]
REGRESSION ANALYSIS ALGORITHM FOR CIRCULAR DATA

Enes Abdurrahman BİLGİN ${ }^{1}$, Sıddık KESKİN ${ }^{2}$
${ }^{1}$ Faculty of Education, Yüzüncü Yıl University, Van, Turkey
${ }^{2}$ Faculty of Medicine, Yüzüncü Yıl University, Van, Turkey

MSC 2000: 62J99,68N01

Abstract

In this study, we aimed to develop a software algorithm that can provide the opportunity to create the foundations of a regression of circular data without any additional information. For this purpose, we have developed special algorithms for circular regression and some basic circular statistics. Some of these are mode, mean, standard deviation and correlation. Algorithms have been developed with c\# programming language. It was created for this purpose and approximately 3760 lines of code. We will give obtained results and error rates.

Keywords: circular regression, software algorithm, c\# programming language.

References

[1] T. Downs, K. V. Mardia, Circular regression, Biometrika 89 (2002) 683-697.
[2] N. I. Fisher, A. J. Lee, Regression models for an angular response, Biometrics 48 (1992) 665-77.
[3] S. R. Jammalamadaka, A. SenGupta, Topics in Circular Statistics, Section 1.3, World Scientific Press, Singapore, 2001.

[^49]$$
\text { CHARACTERIZATION OF } \mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times C_{4}\right]\right)
$$

Tevfik BİLGİN ${ }^{1}$, İsmail Gökhan KELEBEK ${ }^{2}$

${ }^{1,2}$ Fatih University, İstanbul, Turkey

MSC 2000: 16U60, 16S34

Abstract

Let us denote $C_{n}^{*}=C_{n} \times C_{4}$ where $C_{n}=<a: a^{n}=1>$ and $C_{4}=<x: x^{4}=1>$. In this study it was shown that the unit group of the integral group ring $\mathbb{Z} C_{n}^{*}$ can be written as an internal direct product of unit groups as follows: $$
U\left(\mathbb{Z} C_{n}^{*}\right)= \pm C_{n}^{*} \times F \times U\left(1+\mathbb{Z} C_{n}(1-x)\left(1+x^{2}\right)\right) \times \operatorname{Im} \varphi \times\left[\operatorname{Ker} \varphi /\left\langle x^{2}\right\rangle\right]
$$ where F is the torsion free part of $U\left(\mathbb{Z} C_{n}\right)$. At the end we gave two concrete examples.

Keywords: Integral group ring, unit group, generators of unit group.

References

[1] G. Higman, Units in group rings, D.Phil.Thesis, University of Oxford, Oxford, 1940.
[2] R. G. Ayoub, C. Ayoub, On the group ring of a finite abelian group, Bull. Aust. Math. Soc. 1 (1969) 245-261.
[3] T. Bilgin, Characterization of $U_{1}\left(\mathbb{Z} C_{12}\right)$, Intern. J. Pure and Appl. Math. 4 (2004) 531-535.
[4] I. G. Kelebek, T. Bilgin, Computing the rank of $U(\mathbb{Z} A)$, Intern. J. Algebra 7 (2013) 145-156.
[5] R. M. Low, On the units of the integral group ring $\mathbb{Z}\left[G \times C_{p}\right]$, J. Algebra Appl. 7 (2008) 393-403.
[6] E. G. Goodaire, E. Jespers and C.P. Milies, Alternative Loop Rings, NorthHolland Mathematics Studies 184 Amsterdam, 1996.
[7] I. G. Kelebek, T. Bilgin, Characterization of $U_{1}\left(\mathbb{Z}\left[C_{n} \times K_{4}\right]\right)$, Ejpam, 7 (4) (2014) 462-471.

[^50]
VARIOUS NOTIONS OF MODULE AMENABILITY

Abasalt BODAGHI ${ }^{1}$
${ }^{1}$ Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran

MSC 2010: 43A20, 43A40, 46H25

Abstract

The concept of module amenability for a class of Banach algebras that are modules over another Banach algebra was introduced by M. Amini in 2004. He showed that for an inverse semigroup S with the set of idempotents E, the semigroup algebra $l^{1}(S)$ is module amenable, as a Banach module over $l^{1}(E)$, if and only if S is amenable. In this talk, we present the notions of module amenability, module contractibility, n-weak module amenability, module character amenability, module (uniform) approximate amenability, module pseudo-amenability and module pseudocontractibility for Banach algebras. We also show that under which conditions the semigroup algebra $l^{1}(S)$ (as $l^{1}(E)$-module) satisfies in the above mentioned concepts, where S an inverse semigroup with the subsemigroup of idempotents E.

Keywords: Banach module, inverse semigroup, module amenability.

References

[1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004) 243-254.
[2] M. Amini, A. Bodaghi, D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum 80 (2010) 302-312.
[3] A. Bodaghi, M. Amini, Module character amenability of Banach algebras, Arch. Math (Basel) 99 (2012) 353-365.
[4] A. Bodaghi, M. Amini, A. Jabbari, Permanent weak module amenability of semigroup algebras, Ann. Alex. Uni. Math. To appear
[5] H. P.-Aghababa, A. Bodaghi, Module approximate amenability of Banach algebras, Bull. Iran. Math. Soc. 39 (6) (2013) 1137-1158.

[^51]
SOME NEW THEOREMS IN HILBERT QUASILINEAR SPACES

Hacer BOZKURT ${ }^{1}$, Yılmaz YILMAZ ${ }^{2}$
${ }^{1}$ Batman University, Batman, Turkey
${ }^{2}$ İnönü University, Malatya, Turkey

MSC 2000: 34C10

Abstract

This study is concerned with the some new theorems and definitions in Hilbert quasilinear spaces. First, we introduce minimizing vector theorem and some results in Hilbert quasilinear spaces. Next, we provide two main examples: First example is a Hilbert quasilinear space, that does not satisfy the orthogonal decomposition and second example is subset of a Hilbert quasilinear space with the orthogonal decomposition properties. Then, we have from first example that any Hilbert quasilinear space may not satisfy the orthogonal decomposition theorem of Hilbert spaces. Finally, we give some results related to above theorems provide an important contributions to the improvement of the quasilinear functional analysis.

Key words: Quasilinear space, quasilinear inner prouct space, quasilinear Hilbert Space, orthogonality.

\section*{References} [1] G. Alefeld, G. Mayer, Interval Analysis: Theory and Applications, Journal of Computational and Applied Mathematics 121 (2000) 421-464. [2] S. M. Aseev, Quasilinear operators and their application in the theory of multivalued mappings, Proceedings of the Steklov Institute of Mathematics, (2) (1986) 23-52. [3] H. Bozkurt, S. Çakan, Y. Yılmaz, Quasilinear inner product spaces and Hilbert quasilinear spaces, International Journal of Analysis 2014 Article ID 258389, 7 pages, 2014, Doi:10.1155/2014/258389. [4] Y. Yılmaz, S. Çakan, Ş. Aytekin, Topological quasilinear spaces, Abstract and Applied Analysis 2012 Article ID 951374, 10 pages, 2012. Doi:10.1155/2012/951374.

[^52]
ON STATISTICAL MANIFOLD WITH DUAL CONNECTION AND ITS APPLICATIONS

Mustafa BUYUKARSLAN ${ }^{1}$, Oguzhan BAHADIR ${ }^{2}$
1,2 Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey

Abstract

Statistical manifolds was introduced by Amari in 1985. He has studied statistical manifolds in terms of information geometry. Since the geometry of such manifolds includes the notion of dual connection, also called conjugate connection in afine geometry, it is closely related to affine differential geometry. A statistical manifold is, in short, a Riemannian manifold (M, g) with one additional structure given by a torsion-free and symmetric affine connection ∇ and its dual connection ∇^{*}, which is also assumed to be torsion-free; we say ∇ and ∇^{*} are mutually dual whenever $X g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X}^{*} Z\right)$ holds for all vector fields X, Y, Z on M. In this paper, we gave some fundamental definitions and theorems, then we studied statistical manifolds with dual connection and its applications.

Keywords: Statistical manifold, statistical structure, dual connection.

References

[1] S. L. Lauritzen, Lecture Notes-Monograph Series, Volume 10 Hayward, CA, Statistical Manifolds, (1987) 165-197.
[2] B. O'Neill, Academic Press, Newyork, Semi-Riemannian Geometry With Applications to Relativity, 1983).
[3] K.Takano, Journal of Geometry, Basel , Statistical manifolds with almost contact structures and its statistical submersions, 85 (2006) 171-187.
[4] K. Yano, M. Kon, World. Sci. Pub. Co. Ltd., Singapore, Structures on Manifolds, 1984.
[5] M. E. Aydin, A. Mihai, I.Mihai, Filomat, Published by Faculty of Sciences and Mathematics, University of Nis, Serbia, Some Inequalities on Submanifolds in Statistical Manifolds of Constant Curvature 29 (3) (2015) 465-477.

[^53]
SOME FIXED POINT THEOREMS SATISFYING MEIR-KEELER TYPE CONTRACTIONS VIA RATIONAL EXPRESSION IN 2-METRIC SPACES

Abdurrahman BÜYÜKKAYA ${ }^{1}$, Mahpeyker ÖZTÜRK ${ }^{2}$
1,2 Department of Mathematics, Sakarya University, Sakarya, Turkey

MSC 2000: 54H25, 47H10

Abstract

In this paper, we establish some fixed point theorems for Meir-Keeler type contractions via rational expressions and also we obtain some results for mappings satisfying integral type contractions in 2- metric spaces.

Keywords: Fixed point, Meir-Keeler type contraction, 2-metric spaces.

References

[1] S. Gahler, 2-metrische raume und ihre topologiche strukture, Math. Nachr. 26 (1963) 953-956.
[2] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969) 326-329.
[3] B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math. 6 (1975) 1455-1458.
[4] A. Branciari, A Fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002) 531-536.
[5] T. Suzuki, Meir-Keeler contractions of integral type are still Meir-Keeler contractions, Int. J. Math. Math. Sci. 2007 (2007), Article ID 39281, 6 pages.

[^54]
A NUMERICAL METHOD FOR NONLINEAR SINGULARLY PERTURBED MULTI-POINT BOUNDARY VALUE PROBLEM

Musa CAKIR ${ }^{1}$, Derya ARSLAN ${ }^{2}$
1,2 Yuzuncu Yil University, Van, Turkey

MSC 2000: 34B10, 65L05, 65L11, 65L12, 65L20

Abstract

We consider the following nonlinear singular perturbed multi-point problem: $$
\begin{gathered} -\varepsilon^{2} u^{\prime \prime}+f(x, u)=0, \quad 0<x<1, \\ u(0)=0, \\ k_{0} u(1)=\sum_{i=1}^{m} k_{i} u\left(s_{i}\right)+k_{m+1} \int_{0}^{1} u(x) d x+d, \end{gathered}
$$ where $0<\varepsilon \ll 1$ is small perturbation parameter, the function $f(x, u)$ is sufficiently smooth on $[0,1] \times \mathbb{R}, s_{i} \in(0,1), i=1,2, \ldots, m, k_{0} \geq 0$, and furthermore $\frac{\partial f}{\partial u}(x, u) \geq$ $\alpha>0$.The solution $u(x)$ has boundary layers at $x=0$ and $x=1$.This study is concerned with ε-uniform numerical method for the nonlinear singularly perturbed multi-point boundary value problem. We describe some properties of the solution of this problem. The numerical method is constructed on Shishkin mesh and the method is shown to be convergent of first order in the discrete maximum norm. Consequently, the numerical experiments which demostrate the sharpness of our theoretical analysis are presented.

Keywords: Singular perturbation, fitted finite difference method, Shishkin mesh, nonlocal boundary condition, uniform convergence.

References

[1] A. A. Smarskii, Theory of Difference Scheme. Marcel Dekker, New York, 2001.
[2] R. Cziegis, The Numerical Solution of Singularly Perturbed Nonlocal Problem, Lietuvas Matem. Rink. (in Russian) 28 (1988) 144-152.
[3] D. Herceg, On The Numerical Solution of a Singularly Perturbed Nonlocal Problem, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990) 1-10.

[^55]
REDUCED DIFFERENTIAL TRANSFORM METHOD FOR SIXTH-ORDER SINGULARLY PERTURBED BOUSSINESQ EQUATION

${ }^{1}$, ${ }^{2}$ Yuzuncu Yil University, Van, Turkey

MSC 2000: 34D15, 35B25, 65N20, 65N12, 65N15

Abstract

We consider the following the ill-posed Boussinesq equation and sixth-order singularly perturbed Boussinesq equation, respectively: $$
u_{t t}=u_{x x}+u_{x x}^{2}+u_{x x x x}, \text { and } u_{t t}=u_{x x}+u_{x x}^{2}+u_{x x x x}+\epsilon u_{x x x x x x}
$$

The purpose of this paper is to obtain the approximate solution of sixth-order singularly perturbed Boussinesq equation and the ill-posed Bouissnesq equation ($\epsilon=0$) by the reduced differential transform method (RDTM). This numerical method for solving a wide variety of linear and nonlinear partial differential equations usually gets the solution in a series form. The suggested algorithm is quite efficient and is practically well suited for use in these problems. Several examples are presented to demonstrate the efficiency and reliability of the RDTM (Because this method yield the desired accuracy only in a few terms and in a series form of the exact solution), and numerical results are discussed, compared with exact solution. The numerical results show that this method is a powerful tool for solving nonlinear singular perturbed PDEs and the results show that the method reduces the numerical calculations.

Keywords: Singularly perturbed Boussinesq equation, ill-posed Boussinesq equation, reduced differential transform method.

References

[1] R. K. Dash, P. Daripa, Analytical and numerical studies of singularly perturbed Boussinesq equation, Applied Mathematicand Computation 126 (2002) 1-30.
[2] J. K. Zhou, Differential transformation and its applications for electrical circuits. Huazhong University Press, Wuhan, China, 1986.
[3] Y. Keskin, G. Oturanc, Reduced differential transform method for partial differential equations, International Journal of Nonlinear Sciences and Numerical Simulation 10 (2009) 741-750.

[^56]
INVERTED DISTANCE AND INVERTED WIENER INDEX
 Murat CANCAN ${ }^{1}$, Süleyman EDİZ ${ }^{2}$
 1,2 Education Faculty, Yüzüncü Yal University, Van 65080, Turkey

MSC 2000: 05C12

Abstract

The Wiener index is the sum of distances between all pairs of vertices of a (connected) graph. In this paper we defined two novel graph invariants; the inverted distance and the inverted Wiener index. The inverted distance of between any two different vertices u and v of a simple connected graph G defined as; $i(u, v)=D-d(u, v)+1$ where D denotes the diameter of G and $d(u, v)$ denotes the distance of the vertices u and v. The inverted Wiener index of a simple connected graph G defined as; $I W(G)=\sum_{u \neq v} i(u, v)$ where the sum is taken over unordered pairs of vertices of G. We characterized maximum trees with respect to the inverted Wiener index.

Keywords: inverted distance, inverted Wiener index, Wiener index, average inverted distance.

[^57]
MATRIX-VALUED DIFFERENCE OPERATORS WITH POLYNOMIAL TYPE JOST SOLUTIONS ON THE WHOLE AXIS

Şerifenur CEBESOY ${ }^{1}$, Elgiz BAIRAMOV ${ }^{2}$, Yelda AYGAR ${ }^{3}$
${ }^{1,2,3}$ Ankara University, Ankara, Turkey

MSC 2000: 39A05, 39A70, 39A10, 47A05.

Abstract

The main aim of this paper is to obtain the Jost solutions and some spectral properties of a second order matrix self-adjoint difference equation on the whole axis. In this paper, we investigate the analytical properties and asymptotic behaviors of these Jost solutions. Then, we find continuous spectrum of the operator L generated by matrix-valued difference expression of second order. At last, we get that the operator L has a finite number of real eigenvalues.

Keywords: Difference equations, discrete operator, Jost solution, eigenvalues, continuous spectrum.

References

[1] G. S. Guseinov, The inverse problem of scattering theory for a second order difference equation on the whole real line, Dokl. Akad. Nauk SSSR 230 (5) (1976) 1045-1048.
[2] Y. Aygar, E. Bairamov, Jost solution and the spectral properties of the matrixvalued difference operators, Appl. Math. Comput., 218 (19) (2012) 9676-9681.

[^58]
SOME INCOMPLETE Q-POLYNOMALS

Mirac CETIN FIRENGIZ ${ }^{1}$, Naim TUGLU ${ }^{2}$

${ }^{1}$ Baskent University, Ankara, Turkey
${ }^{2}$ Gazi University, Ankara, Turkey

MSC 2000: 11B39, 05A30

Abstract

The q-analogues of Fibonacci polynomials were studied by Carlitz [6] and Cigler $[8,7]$. We use q-analogues of Fibonacci polynomials to define incomplete q-Fibonacci polynomials. We obtain some properties and relations between these polynomials.

Keywords: Incomplete Fibonacci numbers, incomplete q-Fibonacci polynomials, q-Fibonacci polynomials.

References

[1] A. Pinter, H. M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo Serie II 48 (1999) 591-596.
[2] P. Filipponi, Incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo Serie II 45 (1996) 37-56.
[3] D. Tasci and M. Cetin-Firengiz, Incomplete Fibonacci and Lucas p-numbers, Math. and Comput. Modelling 52 (2010) 1763-1770.
[4] D. Tasci, M. Cetin-Firengiz, N. Tuglu, Incomplete bivariate Fibonacci and Lucas p-polynomials, Discrete Dyn. Nat. and Soc. 2012 Article ID 840345 (2012) 11 pages.
[5] L. Carlitz, Fibonacci notes 4: q-Fibonacci polynomials, Fibonacci Q. 13 (1975) 97-101.
[6] J. Cigler, A new class of q-Fibonacci polynomials, The Electron. J. Combin. 10 (2003) R19.
[7] J. Cigler, Einige q-analoga der Lucas- und Fibonacci-polynome, Sitzungsber, AW 211 (2002) 3-20.

[^59]SOME FIXED POINT THEOREMS ON SOFT G-METRIC SPACES

Ayşegül ÇAKSU GÜLER ${ }^{1}$, Esra DALAN YILDIRIM ${ }^{2}$
${ }^{1}$ Ege University, Faculty of Science, Department of Mathematics, 35100- İzmir, Turkey
${ }^{2}$ Yaşar University, Faculty of Science and Letters, Department of Mathematics, 35100- Izmir, Turkey

MSC 2000: 54A05, 06D72, 47H10

Abstract

In this presentation, the notion of soft G-complete space is introduced and some properties of such spaces are investigated. Then, some fixed point theorems for mappings satisfying sufficient conditions are proved on soft G-metric spaces.

Keywords: soft set, soft G-metric space, fixed point.

References

[1] S. Das, S. K. Samanta, Soft real set, soft real number and their properties, J. Fuzzy Math. 20 (3) (2012) 551- 576.
[2] S. Das, S. K. Samanta, On soft metric spaces, J. Fuzzy Math. 21 (3) (2013) 707734.
[3] A. C. Guler, E. D. Yildirim, O. B. Ozbakir, A fixed point theorem in soft Gmetric spaces, submitted.
[4] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (4-5) (1999) 19-31.
[5] Z. Mustafa and B. Sims, A New approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006) 289-297.
[6] Z. Mustafa, H. Obeidat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Applications 2008 (2008), Article ID 189870, 12 pages.
[7] D. Wardowski, On a soft mapping and its fixed points, Fixed Point Theory Appl. 2013 (182) (2013) 11 pp.

[^60]
ON THE Q-EXTENSION OF THE P-ADIC BETA FUNCTION

Özge ÇOLAKOĞLU ${ }^{1}$, Hamza MENKEN ${ }^{2}$
${ }^{1,2}$ Mersin University, Mersin, Turkey

MSC 2000: 11S80, 33D05

Abstract

Let p be a fixed prime number. By $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} we denote the ring of p-adic integers, the field of p-adic numbers and the completion of the algebraic closure of \mathbb{Q}_{p}, respectively. Y. Morita (1975) defined the p-adic gamma function $\Gamma_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ by the formula $$
\Gamma_{p}(x)=\lim _{n \rightarrow x}(-1)^{n} \prod_{\substack{1 \leq j<n \\(j, p)=1}} j
$$

Let $q \in \mathbb{C}_{p}$ with $|q-1|_{p}<1$ and $q \neq 1$, the q-extention of the p-adic gamma function is defined by $$
\Gamma_{p, q}(x)=\lim _{n \rightarrow x}(-1)^{n} \prod_{\substack{1 \leq j<n \\(j, p)=1}} \frac{1-q^{j}}{1-q} \quad \text { for } x \in \mathbb{Z}_{p}
$$

where n runs over pozitive integers. We recall that $\lim _{q \rightarrow 1} \Gamma_{p, q}=\Gamma_{p}$.
In the present work we consider the q-extention of the p-adic beta function which is defined by

$$
B_{p, q}(x, y)=\frac{\Gamma_{p, q}(x) \Gamma_{p, q}(y)}{\Gamma_{p, q}(x+y)} .
$$

We obtain some properties of the q-extention of the p-adic beta function $B_{p, q}$.
Keywords: p-adic number, q-extention of the p-adic gamma function, q-extention of the p-adic beta function.

References

[1] K. Koblitz, q-extension of the p-adic gamma function, American Mathematical Society, 1980.
[2] Y. Morita, A p-adic analogue of the Γ - function, J. Fac. Science Univ. Tokyo 22 (1975) 225-266.

[^61]
DYNAMICAL STABILITY AND MATHEMATICAL MODELING OF HEROIN EPIDEMIC IN URMIA

Reza DANAEI ${ }^{1}$, Aliasghar Jodayree AKBARFAM ${ }^{2}$
${ }^{1}$ University College of Science and Technology Elm'o Fan, Urmia, Iran
${ }^{2}$ University of Tabriz, Tabriz, Iran

MSC 2000: 37L15, 37N25, 37N30

Abstract

Experts say Iranians have turned to opiates partly out of despire at rising unemployment and economic trouble, and partly because alcohol, which they might otherwise use, is illegal.The main reason, though, is obvious. Iran shares a long and porous border with Afghanistan, which produces most of the world's opium poppies. Four million of its 70 million people are addicts. HIV and Injecting Drug have consistently highlighted in recent years the ongoing and persistent nature of opiate and particularly heroin use on a global scale. National prevalence studies have indicated the scale of the problem, but the drug-using career, typically consisting of initiation, habitual use, a treatment-relapse cycle and eventual recovery, is not well understood. We will presents a ODE model of opiate addiction, based on the principles of mathematical epidemiology. The aim of this model is to identify parameters of interest for further study, with a view to informing and assisting policy-makers in targeting prevention and treatment resources for maximum effectiveness. An epidemic threshold value R_{0}, is proposed for the drug-using career. Sensitivity analysis is performed on R_{0} and it is then used to examine the stability of the system. The model we use is as bellow:

$$
\begin{gathered}
\frac{d S}{d t}=\Delta-\frac{\alpha_{1} D_{1} S}{N}-\mu S \\
\frac{d D_{1}}{d t}=\frac{\alpha_{1} D_{1} S}{N}-p D_{1}+\frac{\alpha_{3} D_{1} D_{2}}{N}-\left(\mu+r_{1}\right) \mu S \\
\frac{d D_{2}}{d t}=p D_{1}-\frac{\alpha_{3} D_{1} D_{2}}{N}-\left(\mu+r_{2}\right)
\end{gathered}
$$

Keywords: Mathematical modeling, dynamical stability, reproduction ratio R_{0}.

[^62]
OPERATOR EQUATIONS GENERALIZING THE NOTIONS OF HANKEL AND TOEPLITZ OPERATORS

Gopal DATT ${ }^{1}$
${ }^{1}$ Department of Mathematics, PGDAV College, University of Delhi, Delhi, India

Abstract

Hankel and Toeplitz operators came into existence with the work of H. Hankel in 1861 and O. Toeplitz in 1911 respectively. Although, the initial appearance of these operators was seen in matrix form, but various equivalent forms were obtained subsequently. In terms of matrices, a Hankel operator is an operator on a Hilbert space whose matrix with respect to an orthonormal basis is constant along each diagonal perpendicular to the main one and a Toeplitz operator is one whose matrix is constant along each diagonal parallel to the main one. In terms of operator equations, Hankel and Toeplitz operators on Hardy spaces are nothing but the solutions of operator equations $U^{*} X=X U$ and $U^{*} X U=X$ respectively, where U is the forward unilateral shift and U^{*} is its adjoint. Barria and Halmos in 1982 focused the attention of mathematicians towards a new direction by proposing the operator equation $U^{*} X U=\lambda X$ for an arbitrary complex number. The study of Hankel and Toeplitz operators has gone a long way with the inception of various classes of operators like slant Hankel, slant Toeplitz, essentially slant Hankel, essentially slant Toeplitz, $k^{\text {th }}$-order slant Hankel, $k^{\text {th }}$-order slant Toeplitz operators, λ-Hankel operators. The present talk is a motivation of the work of Barria and Halmos that leads to some generalizations of the operator equations characterizing Hankel and Toeplitz operators and has come up as a recent development in this direction.

Keywords: Hankel operators, Teoplitz operators, operator equations.

[^63]
NUMERICAL APPROXIMATIONS FOR SOME FRACTIONAL STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

Latifa DEBBI ${ }^{1}$, Zineb ARAB 2
${ }^{1}$ Laboratory of Pure and Applied Mathematics, Faculty of Sciences, University Ferhat Abbas, El-Maabouda Setif 19000 \& University of M’hamed Bougara, Algeria.
${ }^{2}$ Department of Mathematics, Faculty of sciences, University El-Hadj Lakhdher, Batna 05000,Algeria. E3 Laboratory of Pure and Applied Mathematics, Faculty of Sciences, University Ferhat Abbas, El-Maabouda Setif 19000, Algeria.

Abstract

In this work, we elaborate and calculate the rate of convergence of several numerical schemes to approximate the solution of some fractional stochastic partial differential equations (FSPDEs); fractional stochastic heat and Burgers equations with gaussian multiplicative noise. In particular, we use Galerkin spectral method in space, Euler method in time and we elaborate a complete scheme. We prove strong convergence and we calculate explicitly the rate of convergence and show its dependence on the fractional power of the Laplacian.

Keywords: Strong convergence, Galerkin spectral method, implicit Euler scheme, multiplicative noise, fractional laplacian, Burgers equation.

[^64]SOME PROPERTIES OF SOFT PROXIMITY SPACES
İzzettin DEMİR ${ }^{1}$, Oya BEDRE ÖZBAKIR ${ }^{2}$, İsmet YILDIZ ${ }^{3}$
1,3 Department of Mathematics, Duzce University, 81620, Duzce-Turkey
${ }^{2}$ Department of Mathematics, Ege University, 35100, Izmir-Turkey

MSC 2000: 54A40, 06D72, 54E05.

Abstract

In this work, we continue investigating the properties of soft proximity spaces. Also, we give the notion of a soft δ-neighborhood in soft proximity spaces and obtain a few results analogous to the ones that hold for δ-neighborhood in proximity spaces. Moreover, we show that each soft uniform space on X induces a soft proximity space on the same set. Finally, we prove the existences of initial soft proximity spaces.

Keywords: soft set, soft proximity, soft δ-neighborhood, initial soft proximity.

References

[1] A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl. 21 (2012) 113-119.
[2] A. Kandil, O. A. Tantawy, S. A. El-Sheikh, A. Zakaria, New Structures of Proximity Spaces, Inf. Sci. Lett. 3 (3) (2014) 85-89.
[3] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
[4] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 1931.
[5] S. A. Naimpally, B. D. Warrack, Proximity Spaces, Cambridge Univ. Press, New York, 1970.
[6] O. B. Özbakır, İ. Demir, On the soft uniformity and its some properties, Journal of Mathematical and Computational Science, accepted.

[^65]
CONVERGENCE PROPERTIES ON JAIN-DURRMEYER OPERATORS
 Emre DENIZ ${ }^{1}$, Gülsüm ULUSOY ${ }^{2}$, Ali ARAL ${ }^{3}$
 1,2,3 Kirikkale University, Kirikkale, Turkey

MSC 2000: 41A25, 41A35, 41A36

Abstract

In this talk, we extend Jain operators to Durrmeyer type operators. We deal with some approximation properties of the new operators. Firstly, we estimate quantitative asymtotic formula in terms of weighted modulus of smoothness. Also we present weighted uniform convergence using weighted Korovkin type theorem.

Keywords: Jain operators, Durrmeyer operators, modulus of smoothness, Korovkin type theorem.

References

[1] A. D. Gadzhiev, Theorems of the of P. P. Korovkin type theorems, Math. Zametki 20 (5) (1976) 781-786, Math. Notes 20 (5-6) (1976) 996-998 (English Translation).
[2] A. D. Gadjiev, R. O. Efendiyev and E. Ibikli, On Korovkin type theorem in the space of locally integrable functions, Zech. Math. J. 53 (128) (2003) 45-53.
[3] G. C. Jain, Approximation of functions by a new class of linear operators, J. Austral. Math. Soc. 13 (3) (1972) 271-276.
[4] O. Szasz, Generalization of S. Bernstein's polynomials to the infinite interval, J. of Research of the Nat. Bur. of Standards 45 (1950) 239-245.
[5] V. Gupta, G. C. Greubel, Moment Estimations of New Szász-MirakyanDurrmeyer Operators, Arxiv:1410.3371v3 [math.CA] (3 Nov. 2014).

[^66]
NAKAYAMA'S LEMMA FOR ARTINIAN MODULES AND GENERALIZED MATLIS DUALITY

İsmail Hakkı DENİZLER ${ }^{1}$

${ }^{1}$ Yüzüncü Yal Üniversitesi, Van, Turkey

MSC 2010: 13E10,13E05

Abstract

The purpose of this study is to produce Nakayama's Lemma for Artinian modules. Note that Nakayama's Lemma is applicable for Noetherian modules. To prove the Artinian case, we develop a generalization of Matlis duality which applies to a complete semi-local Noetherian ring; This enables us to pass back and forth between the category of Noetherian modules and Artinian modules. This technique is used in conjunction with the completion of R (the ring we define modules over) related to R-module A, to show how several result about Artinian modules can be deduced from well-known classical Noetherian results. The classical duality of Matlis was originally developed for a complete local Noetherian ring. We use the fact that such a ring is isomorphic to a direct product of finitely many complete local rings and appeal to the standard version of Matlis' duality.

Keywords: Artinian rings and modules, finite dimensional algebras.

References

[1] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958) 511-528.
[2] R. Y. Sharp, Artinian modules over commutative rings, Math. Proc. Camb. Phil. Soc. 111 (1992) 25-33.
[3] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, 2000.
[4] D. W. Sharpe, P. Vámos, Injective Modules, Cambridge University Press, 1972.

[^67]
PSEUDO-SLANT SUBMANIFOLD IN SASAKIAN SPACE FORMS
 Süleyman DİRİK ${ }^{1}$, Mehmet ATÇEKEN ${ }^{2}$, Ümit YILDIRIM ${ }^{3}$
 ${ }^{1}$ Amasya University, Amasya, Turkey
 ${ }^{2,3}$ Gaziosmanpasa University, Tokat, Turkey

MSC 2000: 53C15, 53C25, 53C17, 53D15 and 53D10.

Abstract

In this paper, we study the geometry of the pseudo-slant submanifolds of a Sasakian space form. Necessary and sufficient conditions are given for a submanifold to be a pseudo-slant submanifold, pseudo- slant product, mixed geodesic and totally geodesic in Sasakian manifolds. Finally, we give some results for totally umbilical pseudo-slant submanifold in a Sasakian manifold and Sasakian space form.

Keywords: Sasakian manifold, Sasakian space form, Slant submanifold, Pseudoslant submanifold.

References

[1] M. Atçeken, S. K. Hui, Slant and pseudo-slant submanifolds in (LCS)nmanifolds, Czechoslovak Math. J. 63 (2013) 177-190.
[2] M. Atçeken, S. Dirik, On the geometry of pseudo-slant submanifolds of a Kenmotsu manifold, Gulf joural of mathematics 2 (2014) 51-66.
[3] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematic Springer-Verlog, New York, 509 (1976).
[4] J. L. Cabrerizo, A. Carriazo, L. M. Fernndez, M. Fernndez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J. 42 (2000) 125-138.
[5] V. A. Khan, M. A. Khan, Pseudo-slant submanifolds of a Sasakian manifold, Indian J. prue appl. Math. 38 (2007) 31-42 .
[6] A. Lotta, Slant submanifolds in contact geometry, Bulletin Mathematical Society Roumanie 39 (1996) 183-198.

[^68]
A GENERAL RESULT ON ASYMPTOTIC INTEGRATION OF IMPULSIVE DIFFERENTIAL EQUATIONS

Sibel DOĞRU AKGÖL ${ }^{1}$, Ağacık ZAFER ${ }^{2}$
${ }^{1}$ Middle East Technical University, Ankara, Turkey
${ }^{2}$ American University of the Middle East, Egaila, Kuwait

Abstract

There is hardly any work about asymptotic integration of differential equations under impulse effect. We consider second order nonlinear impulsive differential equations with fixed moments of impulses. By using principal and nonprincipal solutions we find an asymptotic representation of the solutions depending on a parameter.

Keywords: fixed point theory, impulsive differential equations, principal and nonprincipal solutions, asymptotic integration.

References

[1] S. Rogovchenko, Y. Rogovchenko, Asymptotic behaviour of solutions of second order nonlinear differential equations, Portugal. Math. 57 (2000) 17-33.
[2] T. Ertem, A. Zafer, Asymptotic integration of second-order nonlinear differential equations via principal and nonprincipal solutions, Appl. Math. Comput. 219 (2013) 5876-5886.

[^69]
SOME FIXED POINT THEOREMS FOR A WEAK PARTIAL METRIC SPACE Gonca DURMAZ ${ }^{1}$, Ishak ALTUN ${ }^{2}$

1,2 Kırıkkale University, Faculty of Sciences and Arts, Department of Mathematics, Kırıkkale-Turkey

MSC 2010: $54 \mathrm{H} 25,47 \mathrm{H} 10$

Abstract

In this presentation, we present new developments about contractions on a weak partial metric space. Then, considering this contractions, we give some fixed point theorems for singlevalued mappings on a complete weak partial metric space.

Keywords: Fixed point, weak partial metric space, contraction mapping.

References

[1] I. Altun, G. Durmaz, Weak partial metric spaces and some fixed point results, Appl. Gen. Topol. 13 (2012) 179-191.
[2] G. Durmaz, Ö. Acar, I. Altun, Some fixed point results on weak partial metric spaces, Filomat 27 (2013) 317-326.
[3] G. Durmaz, Ö. Acar, I. Altun, Two general fixed point results on weak partial metric space, Journal of Nonlinear Analysis and Optimization 5 (1) (2014) 27-35.
[4] Ö. Acar, I. Altun, G. Durmaz, A fixed point theorem for new type contraction on weak partial metric spaces, Vietnam J. Math., 2015, Doi:10.1007/s10013-014-0112-0.
[5] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Struct. 7 (1999) 71-83.

[^70]
DIFFERENCE SCHEMES ON ADAPTED MESH FOR THE INITIAL BOUNDARY VALUE SOBOLEV PROBLEMS WITH BOUNDARY LAYERS

Hakki DURU ${ }^{1}$, Akbar BARATI CHIYANEH ${ }^{2}$

${ }^{1,2}$ Yuzuncu Yil University, Van, Turkey

MSC 2000: 65M06, 34K26, 65M12, 34K28

Abstract

In this paper, a new adaptive mesh strategy has been developed for solving the linear singular initial-boundary value Sobolev type differential equation in the domain $D=(0, l) \times(0, T]$, form as follows: $$
\begin{equation*} L u \equiv-\varepsilon \frac{\partial^{4} u}{\partial t^{2} \partial x^{2}}+a(x) \frac{\partial^{2} u}{\partial t^{2}}-\varepsilon \frac{\partial^{2} u}{\partial x^{2}}+b(x, t) u=f(x, t), \quad(x, t) \in D, \tag{1} \end{equation*}
$$

with the initial data

$$
\begin{equation*}
u(x, 0)=u(x), \quad \frac{\partial u}{\partial t}(x, 0)=\psi(x), \tag{2}
\end{equation*}
$$

and boundary conditions

$$
\begin{equation*}
u(0, t)=u(l, t)=0 . \tag{3}
\end{equation*}
$$

Here ε is a small positive parameter $(0<\varepsilon \ll 1), a(x) \geq \alpha>0,|b(x, t)| \leq b$, $u(x), \psi(x)$ and $f(x, t)$ are sufficiently smooth functions. For the numerical solution of this problem, we use an finite difference schemes on B-mesh on a non-uniform mesh which is accomplished by the method of integral identities with the use of basis functions and interpolating quadrature rules with weight and remainder term in integral form. The error estimates for the numerical solution are obtained.

Keywords: Singular perturbation, Sobolev problem, uniform convergence, difference schemes, Bakhvalov mesh.

References

[1] G. M. Amiraliyev, Difference schemes on the uniform mesh for singular perturbed pseudoparabolic equation, Turkish J. Math. 19 (1995).
[2] T. Linß, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Berlin Heidelberg, Springer-Verlag, 2010.
[3] A. A. Smarskii, Theory of Difference Scheme, Marcel Dekker, New York, 2001.

[^71]
FINITE DIFFERENCE SCHEMES ON SHISHKIN MESH FOR SINGULARLY PERTURBED INITIAL-BOUNDARY VALUE SOBOLEV TYPE PROBLEMS

Hakki DURU ${ }^{1}$, Akbar BARATI CHIYANEH ${ }^{2}$
${ }^{1,2}$ Yuzuncu Yil University, Van, Turkey

MSC 2000: 65M06, 65M12, 34K28

Abstract

In this paper, we present a finite difference schemes on piece-wise uniform Shishkin mesh for solving singular perturbation Sobolev problem. We show that the constructed difference scheme is stable and first order uniform convergence. We give a numerical example which illustrate the theoretical results on the uniform accuracy of the discrete problem, as well as the robustness of the method.

Keywords: Singular perturbation, difference schemes, Shishkin mesh, Sobolev problem.

References

[1] G. M. Amiraliyev, Investigation of the difference schemes for the quasi-linear Sobolev equations, Differ. Equ. 23 (8) (1987) 1453-1455 (Russian).
[2] V. I. Lebedev, The method of diffence for the equations of Sobolev type, Dokl. Acad. Sci.USSR 114 (6) (1957) 1166-1169.
[3] R. Bellman, K. L. Cooke, Differential-Difference Equations, Mathematics in Science and Engineering 61963.
[4] W. H. Ford, T. W. Ting, Uniform error estimates for difference approximations to nonlinear pseudo-parabolic partial differential equations. SIAM. J. Numer. Anal. 15 (1974) 155-169.
[5] S. L. Sobolev, About new problems in mathematical physics, Izv. Acad. Sci. USSR, Math. 18 (1) (1954) 3-50.

[^72]
ANALYSIS ON STABILITY OF LIMIT CYCLES AND HOPF BIFURCATION IN VAN DER POL NONLINEAR DIFFERENTIAL EQUATION

Tarini Kumar DUTTA ${ }^{1}$
${ }^{1}$ Gauhati University, Guwahati, India

Abstract

The main purpose of this paper is to discuss the following objectives with the famous Van Der Pol Nonlinear Differential Equation.The Van Der Pol oscillator is an oscillator with nonlinear damping governed by the second-order differential equation:

$$
\partial^{2} x / \partial t^{2}-\epsilon\left(1-x^{2}\right) \partial x / \partial t+x=0
$$

where x is the dynamical variable and

$$
\varepsilon>0
$$

a parameter.

The objectives are as follows:
(i) Development of general theory and formulae for determining Hopf Bifurcations on any non-linear Differential equations
(ii) Existence of Chaos, Limit Cycles, Supercritical and Subcritical Hopf Bifurcations of Van Der Pols Oscillator and their Statistical analysis.

Keywords: Stability, limit cycles, supercritical, subcritical Hopf bifurcations.

[^73]
REVERSE ZAGREB INDICES OF CARTESIAN PRODUCT OF GRAPHS

Süleyman EDİZ ${ }^{1}$, Murat CANCAN ${ }^{2}$
${ }^{1,2}$ Education Faculty, Yüzüncü Yıl University, Van 65080, Turkey

MSC 2000: 05C07

Abstract

Recently the reverse vertex degree and the reverse Zagreb indices have been defined [1]. Let G be a simple connected graph and v be a vertex of G. Then, the reverse vertex degree of the vertex v, c_{v} defined as follows; $c_{v}=\Delta-d_{v}+1$. The first reverse Zagreb alpha index of G defined as; $C M_{1}^{\alpha}(G)=\sum_{v \in V(G)} c_{v}^{2}$. The first reverse Zagreb beta index of G defined as; $C M_{1}^{\beta}(G)=\sum_{u v \in E(G)}\left(c_{u}+c_{v}\right)$. The second reverse Zagreb index of G defined as; $C M_{2}(G)=\sum_{u v \in E(G)} c_{u} c_{v}$. The chemical predicitivity of these novel indices have been investigated in [2]. In this paper, some exact expressions for the reverse Zagreb indices of Cartesian product of two simple connected graphs were determined.

Keywords: Reverse vertex degree, reverse Zagreb indices, cartesian product of graphs.

References

[1] S. Ediz, Reverse vertex degree and reverse Zagreb indices, (submitted).
[2] M. H. Çalıml, S. Ediz, A new possible tool for QSPR researches: The first reverse Zagreb alpha index, (submitted).

[^74]
Q-CONVERGENCE OF GRADED DIFILTERS

Ramazan EKMEKÇí ${ }^{1}$, Rıza ERTÜRK ${ }^{2}$
${ }^{1}$ Çanakkale Onsekiz Mart University, Çanakkale, Turkey
${ }^{2}$ Hacettepe University, Ankara, Turkey

MSC 2000: 54A05, 54A20, 06D10

Abstract

Convergence of graded difilters have been presented and investigated by the authors in [3]. In this work, using graded Q-dinhd systems defined in [2] the authors define a different convergence type of graded difilters called Q-convergence which has some advantages and some disadvantages in comparison with the convergence defined in [3].

Keywords: Texture, q-convergence, graded ditopology, graded difilter, fuzzy topology.

References

[1] L.M. Brown, R. Ertürk, Ş. Dost, Ditopological texture spaces and fuzzy topology, I. Basic concepts, Fuzzy Sets and Systems 147 (2) (2004) 171-199.
[2] R. Ekmekçi, R. Ertürk, Neighborhood structures of graded ditopological texture spaces, Filomat, accepted.
[3] R. Ekmekçi, R. Ertürk, Graded difilters, submitted.
[4] S. Özçağ, F. Yıldız, L. M. Brown, Convergence of regular difilters and the completeness of di-uniformities, Hacettepe Journal of Mathematics and Statistics 34S (2005) 53-68.
[5] A. Šostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo, Ser. II, 11 (1985) 89-103.
[6] A. Šostak, L. M. Brown Categories of fuzzy topology in the context of graded ditopologies on textures, Iranian Journal of Fuzzy Systems 11 (6) (2014) 1-20.

[^75]
CHAOS THEORY AND LORENZ ATTRACTORS

Omar EL-BASHA ${ }^{1}$, Ahmed EL-SHAHAT ${ }^{2}$, Hussin FAYED ${ }^{3}$, Mahmoud Abdel-Aty ${ }^{4}$
${ }^{1,2,3,4}$ University of Science and Technology at Zewail City, Sheikh Zayed, 6th of October City, Giza, Egypt

Abstract

Chaos theory is one of the fundamental theories in our lives. It ended the so-called deterministic era where everything is predictable. It was thought that the behaviour, whether in the future or the past, of all the physical systems is known and that reaching perfect prediction is a matter of precision and accuracy. In this paper, Chaos theory is introduced along with its origin and history. In addition, Lorenz attractors are also introduced with the famous butterfly representation of Lorenz. Moreover, Applications of the chaos theory are included here. These applications include applications in economics, circuits and meteorology (weather prediction). Finally, the paper is summarized in the conclusion section.

Keywords: Chaos, Lorenz, butterfly, MatLab.

[^76]
RESEARCH ON USING URANIUM-LEAD RADIOACTIVE DECAY IN DETECTING THE AGE OF THE EARTH

Alaa El-Din EL-OZEIRI ${ }^{1}$
${ }^{1}$ University of science and technology, Zewail city, 6th of October, Egypt

Abstract

Since long ago, and the question regarding the exact age of the earth has brought scientists interest all over the world. Before the discovery of the radiometric dating, many estimations for the age of the earth were done, but all of them were far away from the accepted one today. These wrong estimation had a negative effect on other field such as biology, where Darwin faced a big challenge to prove the validity of the theory of evolution. Thanks to science, we now know with a good accuracy that the age of earth is 4.4 Gyr old according to the latest research published in 2014.

Keywords: Age of earth, uranium, radioactive decay, radiometric dating.

[^77]
ON ORDERING OF TREES BY MULTIPLICATIVE VERSION OF ZAGREB INDICES

Mehdi ELIASI ${ }^{1}$

Department of Mathematics and Computer Science, Faculty of Khansar, University of Isfahan, P.O.Box 87931133111, Khansar, Iran

MSC 2000: 05C07

Abstract

A topological index is a real number related to a molecular graph, which is a graph invariant and which has some chemical application. Let $G=(V, E)$ be a molecular graph representing of a chemical structures. The first and the second Zagreb indices of G are defined as: $$
M_{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right], \quad M_{2}(G)=\sum_{u v \in E(G)}\left[d_{G}(u) d_{G}(v)\right],
$$ respectively, where d_{u} denotes the degree of vertex u. These indices have been used to study molecular complexity, chirality, ZE-isomerism and hetero-systems. Gutman et al. [1, 2] have recently proposed to consider the multiplicative variants of Zagreb indices as: $$
P_{1}^{*}(G)=\prod_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right], \quad P_{2}(G)=\prod_{u v \in E(G)}\left[d_{G}(u) d_{G}(v)\right],
$$

In this paper for chemical trees, we introduce some graph transformations, which decrease Π_{1}^{*} and Π_{2}. By using these operations, we identify classes of trees, which have smallest multiplicative version of Zagreb indices among all chemical trees of order $n \geq 16$.

Keywords: Zagreb indices, graph operation, chemical tree.

References

[1] M. Eliasi, I. Gutman, A. Iranmanesh, Multiplicative Versions of First Zagreb Index, MATCH Commun. Math. Comput. Chem. 68 (2012) 217-230.
[2] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst. 1 (2011) 364-383.

[^78]
THE EIGENVALUES (ENERGY LEVELS) OF THE RIEMANN ZETA FUNCTION

Opeyemi Oluwole ENOCH ${ }^{1}$

${ }^{1}$ Federal University Oye-Ekiti, Ekiti State, Nigeria

Abstract

This work presents and examined the communications that were exchanged among some renowned Mathematicians and their thoughts concerning the zeros of the Riemann zeta function. Some meromorphic functions which have the same results as the Riemann zeta function are presented. Matrix representations of these functions are also obtained through which the general form of the point spectral and the trace of the Riemann zeta function were generated. The Riemann Zeta function is presented as a function of complex Variables and thus transformed into a bilinear function, and through the use of Sobolev space theorem, an optimization problem with a variable coefficient is derived. Some methods of solution are also presented.

Keywords:Riemann zeta function, meromorphic functions, Matrix representations, Bilinear function, Sobolev space, Optimization variable coefficient.

References

[1] D. R. Wilkins, On the number of Prime Number less than a given Quantity, Bernhard Riemann, Preliminary version 254 (2000) 326-345 $(1998,1859)$ 1-8.
[2] S. J. Patterson, An introduction to the theory of the Riemann zeta function 254.
[3] O. O. Enoch, L. O. Salaudeen, The Riemann Zeta Function and Its Extension into Continuous Optimization Equation, Elixir International Journal of Discrete Mathematics 57 (2013) 14417-14419.
[4] O. O. Enoch, L. O. Salaudeen, A general representation of the zeros of the Riemann zeta Function via Fourier series Expansion, International Research Journal of Basic and Applied Sciences textbf4 (2) (2012).
[5] O. O. Enoch, On the Turning Point, Critical Line and the Zeros of Riemann Zeta Function, Australian Journal of Basic and Applied Sciences 6 (2012) 279-282.
[6] O. O. Enoch, D. A. Ogundipe, A new representation of the Riemann zeta functions via its functional, Am. journal of scientific Industrial research 3 (4) (2012) 1050-1057.

[^79]GENERALIZED BULLEN TYPE INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS AND ITS APPLICATIONS
Samet ERDEN ${ }^{1}$, Mehmet Zeki SARIKAYA ${ }^{2}$
${ }^{1}$ Bartın University, BARTIN, TURKEY
${ }^{2}$ Düzce University, Düzce, TURKEY
MSC 2000: 26D10, 26D15, 26A33, 52A41, 41A55.

Abstract

In this paper, we establish the generalized Bullen type inequalities involving local fractional integrals on fractal sets $R^{\alpha}(0<\alpha \leq 1)$ of real line numbers. Some applications of these inequalities in numerical integration and for special means are given.

Keywords: Bullen's inequality, local fractional integral, fractal space, generalized convex function, numerical integration, special means.

References

[1] P. S. Bullen, Error estimates for some elementary quadrature rules, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 602-633 (1978), 97-103 (1979).
[2] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, App. Math. and Comp. 147 (2004) 137-146.
[3] N. Minculete, P. Dicu, A. Ratiu, Two reverse inequalities of Bullen's inequality, General Math. 22 (1) (2014) 69-73.
[4] H. Mo, X Sui, D Yu, Generalized convex functions on fractal sets and two related inequalities, Abstract and Applied Analysis, Volume 2014, Article ID 636751, 7 pages.
[5] M. Z. Sarikaya, S.Erden, H. Budak, Some integral inequalities for local fractional integrals, RGMIA Research Report Collection, 18 (2015), Article 65, 12 pp.
[6] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012.

[^80]
A FITTED NUMEROV METHOD FOR SINGULARLY PERTURBED REACTION-DIFFUSION EQUATIONS

Fevzi ERDOGAN ${ }^{1}$, Kerem YAMAC ${ }^{2}$, Mehmet Giyas SAKAR ${ }^{3}$
1,2,3 Yuzuncu Yil University, Van, Turkey

MSC 2000: 34D15, 33F05

Abstract

In this paper we considered singularly perturbed reaction-diffusion problem whose solution exhibits boundary layers. We have introduced a simple and efficient computational technique based on Numerov's scheme which is composed of an exponentially fitted difference scheme on uniform mesh. A fitting factor is obtained from the theory of singular perturbations. The method is shown to uniformly convergent with respect to the perturbation parameter. A numerical experiment illustrate in practice the result of convergence proved theoretically.

Keywords: Singularly perturbation problems, reaction-diffusion problem, boundary layer, fitting factor, Numerov's method.

References

[1] K. W. Morton, Numerical Solution of Convection Diffusion Problems,Chapman and Hall,London, 1995.
[2] R. E. O Malley Jr., Singular Perturbation Methods for Ordinary Differential Equations,Springer-Verlag,New York, 1991.
[3] K. Phaneendra, P. P. Chakravarty, Y. N. Redy, A Fitted Numerov Method for Singularly Perturbation Problems Exhibiting Twin Layers, Applied Mathematics \& Information Sciences 4 (3) (2010) 341-352.
[4] R. K. Bawa, A parallel Aproach for Self-Adjoint Singular Perturbation Problems Using Numerov's Scheme, Int. J.of Computer Mathematics 84 (3) (2007) 317323.
[5] G. M. Amiraliyev, H. Duru, A Note on Parameterized Singular Perturbation Problem, J. Comput. Apply. Math. 182 (2005) 233-242.

[^81]
AN EXPONENTIAL FITTED METHOD FOR SINGULARLY PERTURBED REACTION-DIFFUSION EQUATIONS

Fevzi ERDOGAN ${ }^{1}$, Kerem YAMAC 2, Mehmet Giyas SAKAR ${ }^{3}$
${ }^{1,2,3}$ Yuzuncu Yil University, Van, TURKEY

MSC 2000: 34D15, 33F05

Abstract

In this study we consider a numerical method for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits boundary layers. A finite difference scheme is constructed in an equidistant mesh, which gives first and second order uniform convergence in the discrete maximum norm. A fitting factor is introduced in finite difference scheme and is obtained from the theory of singular perturbations. Thomas algorithm is used to solve the system. The method is shown to uniformly convergent with respect to the perturbation parameter. A numerical experiment illustrate in practice the result of convergence proved theoretically.

Keywords: Reaction-diffusion, singular perturbation, numerov method.

References

[1] R. E. OMalley Jr., Singular Perturbation Methods for Ordinary Differential Equations, Springer-Verlag, New York, 1991.
[2] J. J. H. Miller, E. ORiordan, G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, Singapore, 1996.
[3] K. Phaneendra, P. Pramod Chakravarthy, Y. N. Reddy, A Fitted Numerov Method for Singular Perturbation Problems Exhibiting Twin Layers, Applied Mathematics and Information Sciences 4 (3) (2010) 341-352.

[^82]
IMPULSIVE NEUTRAL FRACTIONAL DIFFERENTIAL INCLUSIONS AT VARIABLE TIMES

 Hilmi ERGÖREN ${ }^{1}$

 Hilmi ERGÖREN ${ }^{1}$}

Yuzuncu Yil University, Van, TURKEY

MSC 2000: 26A33, 34A08, 34A37, 34A60, 34K37

Abstract

In this work, we establish some sufficient conditions for the existence of solutions for a class of initial value problems for impulsive fractional functional differential inclusions with neutral delay at variable moments.

Keywords: Caputo fractional derivative, existence and uniqueness, functional differential inclusions, Impulsive differential inclusions, variable times.

References

[1] Benchohra F. M. Berhoun, J.J. Nieto, Fractional Differential Inclusions with Impulses at Variable Times, Adv. Dyn. Syst. Appl. 7 (1) (2012) 1-15.
[2] C. Song, T. Zhu, J. Cao, Existence of Solutions for Fractional-Order Neutral Differential Inclusions with Impulsive and Nonlocal Conditions, Discrete Dyn. Nat. Soc. 2012 Article ID 363562, 14 pages doi:10.1155/2012/363562.
[3] M. Benchohra, A. Ouahab, Impulsive Neutral Functional Differential Inclusions with Variable Times, Electron. J. Differ. Equ. Vol. 2003 (67) (2003) pp. 1-12.

[^83]
NEUTRAL FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES AT VARIABLE TIMES

Hilmi ERGÖREN ${ }^{1}$

Yuzuncu Yil University, Van, TURKEY

MSC 2000: 26A33, 34A08, 34A37

Abstract

As known, impulsive functional differential equations of integer order with fixed and variable moments and the ones of fractional order with fixed moments take place in the related literature many times (see for instance [1, 2]). However, to the best of our knowledge, the ones of fractional order with variable moments have not been considered yet. In this study, we extend the results of Benchohra and Ouahab [3] having an integer-order impulsive neutral-delay differential equations with variable moments to the fractional order ones.

Keywords: Fractional differential equation, Caputo fractional derivative, impulses, variable times.

References

[1] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Impulsive functional differential equations with variable times, Comput. Math. Appl. 47 (2004) 16591665.
[2] A. Anguraj, M. C. Ranjini, Existence results for fractional impulsive neutral functional differential equations, JFCA 3 (4) (2012) 1-12.
[3] M. Benchohra, A. Ouahab, Impulsive neutral functional differential equations with variable times, Nonlinear Anal. 55 (2003) 679-693.

[^84]
ANTI-INVARIANT SEMI-RIEMANNIAN SUBMERSIONS ADMITTING VERTICAL FROM LORENTZIAN SASAKIAN AND PARA SASAKIAN MANIFOLDS

Morteza FAGHFOURI ${ }^{1}$, Sahar MASHMOULI 2

${ }^{1,2}$ University of Tabriz, Tabriz, Iran

MSC 2000: 53C25, 53C15, 53B30.

Abstract

In this paper we study anti-invariant semi-Riemannian submersions from Lorentzian Sasakian and Para Lorentzian Sasakian onto semi-Riemannian manifolds. We give examples of anti-invariant semi-Riemannian submersions. We survey main results of anti-invariant semi-Riemannian submersions defined on (para) Lorentzian Sasakian manifolds. We investigate necessary and sufficient condition for an anti-invariant semi-Riemannian submersion to be totally geodesic and harmonic.

Keywords: Semi-Riemannian submersion, (Para) Sasakian manifold, anti-invariant submersion.

References

[1] P. Alegre, Slant submanifolds of Lorentzian Sasakian and para sasakian manifolds, Taiwanese J. Math. 17 (3) (2013) 897-910.
[2] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2002.
[3] I. K. Erken, C. Murayhan, Anti-invariant Riemannian submersions form Sasakian manifolds, arxiv:1302.4906v1 20 Feb 2013.

[^85]
ON GENERALIZATION OF THE STRONGLY IRREDUCIBLE SUBMODULES

Fatemeh FATAHI ${ }^{1}$, Gholamreza SAFAKISH ${ }^{2}$

1,2 Department of Mathematics, Faculty of Basic Science, Bouali Sina University of Hamadan, Hamadan, Iran

MSC 2000: 13A15

Abstract

Throughout this article, all rings are considered to be commutative ring with identity and all modules are unitary. Let α be a cardinal, and Λ be a set with $|\Lambda|=\alpha$. A submodule N of an R-module M such that $N \in \operatorname{Lat}(M)$ is said to be α-irreducible, if for submodules $\left\{N_{\lambda}\right\}_{\lambda \in M}$ of M, the equation $\bigcap_{\lambda \in \Lambda} N_{\lambda}=N$ implies that there exists some $\lambda_{0} \in \Lambda$ such that $N_{\lambda_{0}}=N$. In this work we give generalization for the concept α-irreducible submodule. Also we call a submodule N of M is an α-strongly irreducible submodule if for submodules $\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ of M, the inclusion $\bigcap_{\lambda \in \Lambda} N_{\lambda} \subseteq$ N implies that there exists some $\lambda_{0} \in \Lambda$ such that $N_{\lambda_{0}} \subseteq N$. Furthermore, we generalize some properties of them.

Keywords: α-irreducible, α-strongly irreducible, faithful module.

References

[1] M. J. Nikmehr, F. Fatahi, Remarks on α-strongly irreducible ideals, Front. Math. China 71 (2011) 174-178.
[2] A. Khaksari, M. Ershad, H. Sharif, Strongly Irreducible Submodules of Modules, Acta Mathematica Sinica, English Series 22 (4) (2006) 1189-1196.

[^86]
RINGS OVER WHICH MONOID RINGS ARE SEMICOMMUTATIVE

Fatemeh FATAHI ${ }^{1}$, Gholamreza SAFAKISH ${ }^{2}$, Rohollah PIRI
1,2 Department of Mathematics, Faculty of Basic Science, Bouali Sina University of Hamadan, Hamadan, Iran

MSC 2000: 16S36

Abstract

For a monoid M , we introduce strongly M-semicommutative rings, which are generalization of strongly semicommutative rings, and we investigate their properties. We show that if G be a finitely generated Abelian group, then G is torsion free if and only if there exists a ring R with $|R| \geq 2$ such that R is strongly M-semicommutative. We also show that if R be a ring and Δ be a multiplicatively closed subse of R consisting of central regular element. Then R is strongly M-semicommutative if and only if $\Delta^{-1} R$ is strongly M-semicommutative.

Keywords: Semicommutative, strongly M-semicommutative, u.p.-Monoid.

References

[1] A. B. Sing, P. Juyal, M. R. Khan, Strongly reversible rings relative to monoid, International journal of pure and Applied Mathematics 63 (1) (2010) 1-7.
[2] Y. Gang, D. Ruijuan, Rings over which polynomials rings are semicommutative, Vietnam Journal of Mathematics 37 (4) (2009) 527-535.

[^87]
ARTIFICIAL INTELLIGENCE BASED MODELING FOR WATER TREATMENT

Ghanbary FATEMEH ${ }^{1}$, Ahmad JAFARIAN ${ }^{2}$
${ }^{1}$ Department of Chemistry, Mahabad Branch, Islamic Azad university, Mahabad, Iran.
${ }^{2}$ Department of Mathematics, Urmia Branch, Islamic Azad university, Urmia, Iran.

MSC 2000: 92B20

Abstract

In this work, two computational methods are developed to predict the photocatalytic removal of AY23 in the presence of Ag-TiO2 nanoparticles prepared under desired conditions. One is artificial neural network (ANN) approach, another is genetic algorithm (GA) modeling approach. To develop the models, a total of 100 data were used, wherein four parameters, such as initial concentration of dye, UV light intensity, initial dosage of nano $\mathrm{Ag}-\mathrm{TiO} 2$ and irradiation time were used as the input variables and removal of AY23 as output variable. The predictive and generalization abilities of the models were comprehensively evaluated using several statistical tests. The comparison between the predicted results by designed models and the experimental data prove that modeling of the removal process of AY23 by using ANN and GA are precise methods to predict the extent of AY23 removal under different conditions. ANN model performed relatively better than the GA model.

 Keywords: Artificial neural network, genetic algorithm, modeling.[^88]
SYMMETRIC BI-MULTIPLIERS ON INCLINE ALGEBRAS

Alev FIRAT ${ }^{1}$, Şule AYAR ÖZBAL ${ }^{2}$

${ }^{1}$ Ege University, İzmir, Türkiye
${ }^{2}$ Yasar University, İzmir, Türkiye

MSC 2000: 06B35, 06B99, 16B70, 16B99

Abstract

In this study, we introduce the notion of $*$ and + -symmetric bi-multipliers in incline algebras and research some related properties. Also, we define kernel of $*$ and +symmetric bi-multipliers in incline algebras. Additionally, we state some properties of these $*$ and + -symmetric bi-multipliers in integral incline algebras.

Keywords: Symmetric bi-derivations, incline algebras, multipliers, fixed set, kernel.

References

[1] Y.H. Yon, K.H. Kim, On Expansive Linear Maps and V-multipliers of Lattices, Quaestiones Mathematicae 33 (4) 417-427.
[2] G. Szasz, Derivations of Lattices, Acta Sci. Math. (Szeged) 37 (1975) 149-154.
[3] G. Szasz, Translationen der Verbande, Acta Fac. Rer. Nat. Univ. Comenianae 5 (1961) 53-57.
[4] A. Szasz, Partial Multipliers on Partiall Ordered Sets, Novi Sad J. Math. 32 (1) (2002) 25-45.
[5] A. Szasz, J. Turi, Characterizations of Injective Multipliers on Partially Ordered Sets, Studia Univ. "BABE-BOLYAI" Mathematica XLVII (1) (2002) 105-118.
[6] Z. Q. Cao, K. H. Kim, F. W. Roush, Incline Algebra and Applications, Ellis Horwood Series Mathematics and Its Applications, Ellis Horwood, Chichester, UK, 1984.
[7] R. Larsen, An Introduction to the Theory of Multipliers, Berlin Splinger-Verlag, 1971.

[^89]
DIRICHLET BOUNDARY VALUE PROBLEM FOR A ${ }^{\text {th }}$ ORDER COMPLEX DIFFERENTIAL EQUATION

İlker GENÇTÜRK ${ }^{1}$, Kerim KOCA ${ }^{2}$
${ }^{1,2}$ Kırıkkale University, Faculty of Sciences and Arts, Department of Mathematics, Kırıkkale-Turkey

MSC 2000: 30E20, 30E25, 32A55

Abstract

In this work, we investigate the solvability condition of the problem $$
\begin{gather*} \partial_{\bar{z}}^{n} w+c \partial_{z} \partial_{\bar{z}}^{n-1} w=f(z), f \in L_{p}(D, \mathbb{C}), p>2, n=1,2, \ldots, \tag{1}\\ \left.\partial_{\bar{z}}^{k-1} w\right|_{\partial D}=\gamma_{k}, \gamma_{k} \in C(\partial D ; \mathbb{C}), 0 \leq k \leq n-1 \tag{2} \end{gather*}
$$

in the unit disc of complex plane, for $|c|<1$. Moreover, under this condition, we get the unique solution of the problem (1)-(2).

Keywords: Dirichlet boundary value problem, Beltrami equation, polyanalytic equation.

References

[1] G. Harutyunyan, Boundary value problems for the Beltrami operator, Complex Variables and Elliptic Equations An International Journal 52 (6) (2007) 475-484.
[2] H. Begehr, G. Harutyunyan, Neumann problem for the Beltrami operator and for second order operators with Poisson/Bitsadze operator as main part, Complex Variables and Elliptic Equations: An International Journal 54 (12) (2009) 11291150.
[3] H. Begehr, Boundary value problems in complex analysis I-II. Bol. Asoc. Mat. Venezolana (2005) 65-85, 165-184.
[4] H. Begehr, A. Kumar, Boundary value problems for the inhomogeneous polyanalytic equation I. Analysis 25 (2005) 55-71.
[5] H. Begehr, Complex Analytic Methods for Partial Diferential Equations An Introductory Text, Singapore World Scientific, 1994.
[6] I. N. Vekua, Generalized Analytic Functions, Oxford Pergamon, 1962.

[^90]
KIRCHOFF INDEX OF WEIGTED GRAPHS

Gülistan Kaya GÖK ${ }^{1}$, Nursah MUTLU ${ }^{2}$, Serife BÜYÜKKÖSE ${ }^{3}$

${ }^{1}$ Hakkari University, Hakkari, Turkey
${ }^{2,3}$ Gazi University, Ankara, Turkey

MSC 2000: 05C50

Abstract

Let G be a simple, connected graph. The Kirchoff index of G defined as $$
K f(G)=\sum_{i<j} r_{i j} .
$$

In this paper,we define Kirchoff index for the simple connected weighted graphs which edge weights are positive real numbers or positive definite matrices.Furthermore we will give some properties of Kirchoff index for weighted graphs.

Keywords: Weighted graphs, Laplacian matrices, Kirchoff index.

References

[1] P. Dankelmann, Average distance in weighted graphs, Discrete Mathematics 312 (2012) 12-20.
[2] D. J. Klein, M. Randic, Resistance distance, J. Math. Chem. 12 (1993) 81-95.
[3] S. Sorgun, S. Büyükköse, On the bounds for the largest Laplacian eigenvalues of weighted graphs, Discrete Optimization 9 (2012) 122-129.
[4] S. Sorgun, S. Büyükköse, The new upper bounds on the spectral radius of weighted graphs, Applied Mathematics and Computation 218 (2012) 52315238.
[5] C. Vasudev, Graph Theory With Applications, New Delhi/Indian: New Age International Publishers, 2006.
[6] H. Zhang, Y. Yang. C. Li, Kirchoff index of composite graphs, Discrete Applied Mathematics 157 (2009) 2918-2927.
[7] B. Zhou, N. Trinajstic, A note on Kirchoff index, Chemical Physics Letters 455 (2008) 120-123.

[^91]
WIENER INDEX OF WEIGTED GRAPHS

Gülistan Kaya GÖK ${ }^{1}$, Nursah MUTLU ${ }^{2}$, Serife BÜYÜKKÖSE ${ }^{3}$

${ }^{1}$ Hakkari University, Hakkari, Turkey
${ }^{2,3}$ Gazi University, Ankara, Turkey

MSC 2000: 05C50

Abstract

The Wiener index of simple connected G graph defined as $$
W(G)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} d(i, j) .
$$

In this paper, we will define of Wiener index of edge-weighted and vertex-weighted graphs, which weights are positive definite matrices. Moreover we will give some properties of Wiener index for this graphs.

Keywords: Weighted graphs, Laplacian matrices, Wiener index.

References

[1] P. Dankelmann, Average distance in weighted graphs, Discrete Mathematics 312 (2012) 12-20.
[2] P. Dankelmann, I. Gutman, S. Mukwembi, H. C. Swart, The edge- Wiener index of a graph, Discrete Mathematics 309 (2009) 3452-3457.
[3] D. J. Klein, M. Randic, Resistance distance, J. Math. Chem. 12 (1993) 81-95.
[4] S. Sorgun, S. Büyükköse, On the bounds for the largest Laplacian eigenvalues of weighted graphs, Discrete Optimization 9 (2012) 122-129.
[5] H. Zhang, Y. Yang. C. Li, Kirchoff index of composite graphs, Discrete Applied Mathematics 157 (2009) 2918-2927.
[6] B. Zhou, N. Trinajstic, A note on Kirchoff index, Chemical Physics Letters 455 (2008) 120-123.

[^92]
ANALYSIS OF THE REASONING SKILLS OF STUDENTS IN SOLVING A NON-ROUTINE PROBLEM

Mustafa GÖK ${ }^{1}$, Erdal BEYDE ${ }^{2}$
${ }^{1}$ Yüzüncü Yıl University, Van, TURKEY
${ }^{2}$ Zeve Secondary School, Van, TURKEY

MSC 2000: 97A90, 97C30

Abstract

Non-routine problems have a great significance in developing students reasoning skills. Because students attempt to overcome the situation they are in by associating their existing knowledge to arrive at a consistent objective while solving non-routine problems. Naturally these processes necessitate reasoning. This study aims to investigate the reasoning approaches students used in the solution process of a non-routine problem in a milieu designed in compliance with the Theory of Didactical Situations supporting the reasoning skills of seventh grade students. The study was conducted using the qualitative method. Participants of the study were 24 students attending the seventh grade in a middle school in Van province, Turkey. The implementation lasted for 45 minutes. The analysis of the findings of the study was based on the reasoning levels determined by Brousseau and Gibel[1]. As a result, students were able to solve the non-routine problem by establishing interaction with the designed milieu. It could be stated that the designed milieu supported the reasoning skills of the students.

Keywords: Theory of didactical situations, reasoning, non-routine problems, 7th grade.

References

[1] G. Brousseau, P. Gibel, Didactical Handling of Students'Reasoning Processes in Problem Solving Situations, Educational Studies in Mathematics, 59 (2005) 13-58.

[^93]
TEXTILE IMAGE CLASSIFICATION USING NAIVE BAYES AND MULTI-LAYER PERCEPTRON

$\underline{\text { İclal GÖR }}^{1}$, Rıfat AŞLIYAN ${ }^{2}$, Ömer KALFA ${ }^{3}$
Adnan Menderes University, Aydın, Turkey

MSC 68U10 68T10 62H30 62H35

Abstract

In this study, we have designed and implemented textile image classification systems using the methods as Multi-layer Perceptron and Naive Bayes. After the models of the systems are constructed for the classes as "Flowery", "Spotted", "Horizontal Striped", "Vertical Striped", "Plaided", "45 Degree Striped" and "135 Degrees Striped" in training phase, we have computed the success of systems in testing phase. The systems consist of four stages as preprocessing, feature extraction, training and testing [1]. In the preprocessing, first, all textile images are converted to the black-and-white images. Second, the thinning process of the images is performed by skeletonization operation. Third, the Sobel filter is applied to detect the edge of images [2]. In the feature extraction stage, the frequencies of $2 \times 2,3 \times 3$ and 4×4 kernel matrices in the images are calculated for each image. Information gain is also used for the dimension reduction of the images' attribute vectors. In the training stage, the models representing each class are composed by training all attribute vectors. In the testing stage, the systems are evaluated by accuracy and f-measure. As a result, Naive Bayes (The best accuracy and F-measure: 0.944) outperformed Multi-layer Perceptron (The best accuracy: 0.938, The best F-measure: 0.937) in classification accuracy and f-measure.

Keywords: Image classification, Naive Bayes, multi-layer perceptron.

References

[1] R. Aşlyyan, Classification of Textile Images, The Graduate School of Natural and Applied Sciences, MSc Thesis, Dokuz Eylül University, Turkey, 2002.
[2] R. Aşlıyan, A. Alpkoçak, Tekstil Desenlerinin Otomatik Olarak Sınıflandırılması Üzerine Bir Çalışma, 10. Sinyal İşleme ve İletişim Uygulamaları Kurultayı 1 (2002) 123-128.

[^94]
SOLVING SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS BY USING ARTIFICIAL NEURAL NETWORKS

İclal GÖR ${ }^{1}$, Korhan GÜNEL ${ }^{2}$
${ }^{1,2}$ Adnan Menderes University, Aydın, Turkey

MSC 2000: 68T01, $68 \mathrm{~T} 20,34 \mathrm{~A} 30$

Abstract

Artificial neural networks (ANNs) are well known computational methods which can solve different mathematical problems such as approximating the solution of differential equations. In this work, we solve systems of linear differential equations by using ANN called Multi Layer Perceptron (MLP). We present numerical solutions by MLP and compare them with the analytical solutions. The obtained results show that the artificial neural networks are able to solve systems of linear differential equations.

Keywords: Systems of linear differential equations, feedforward neural network, multi layer perceptron, backpropogation algorithm.

References

[1] M. Otadi, M.Mosleh, Numerical solution of quadratic Riccati differential equation by neural network, Mathematical Sciences 5 (3) (2011) 249-257.
[2] A. Malek, R. S. Beidokhti, Numerical solution for high order differential equations using a hybrid neural network-optimization method, Applied Mathematics and Computation 183 (2006) 260-271.
[3] M. Kumar, N. Yadav, Multilayer perceptrons and radial basis function network methods for the solution of differential equations: A survey, Computer and Mathematics with Applications 62 (2011) 3796-3811.
[4] X. Li-ying, W. Hui, Z. Zhe-zhao, The algorithm of neural networks on the initial value problems in ordinary differential equations, Industrial Electronics and Applications, 2007.
[5] J. Fojdl, R.W. Brause, The performance of approximation ordinary differential equations by neural nets, Tools with Artificial Intelligence, 2008.

[^95]
SCHATTEN P-NORM INEQUALITIES FOR ACCRETIVE-DISSIPATIVE 2X2 OPERATOR MATRICES

İbrahim Halil GUMUS ${ }^{1}$, Omar Hirzallah ${ }^{2}$
${ }^{1}$ Adıyaman University, Adıyaman, Turkiye
${ }^{2}$ Hashemite University, Zarqa, Jordan

MSC 2000: 47B10; 47B44; 47A30

Abstract

Let $\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)$ be a 2×2 bounded linear operator on a Hilbert space $\mathbb{H}=\mathcal{H} \oplus \mathcal{H}$ with positive real and imaginary parts, where \mathcal{H} is a complex Hilbert space. It is shown that if $p \geq 2$, then $$
\begin{equation*} \left\|T_{12}\right\|_{p}^{p}+\left\|T_{21}\right\|_{p}^{p} \leq 2^{p-1} \sqrt{\left\|T_{11}\right\|_{p}^{p}\left\|T_{22}\right\|_{p}^{p}} . \tag{1} \end{equation*}
$$ where $\|\cdot\|_{p}$ stands for the Schatten p-norm. Our results generalize and improve some earlier results.

Keywords: Accretive-dissipative operator, Schatten p-norm, inequality.

References

[1] A. George, Kh. D. Ikramov, On the properties of accretive-dissipative matrices, Math. Notes 77 (2005) 767-776.
[2] M. Lin, D. Zhou, Norm inequalities for accretive-dissipative operator matrices, J. Math. Anal. Appl. 407 (2013) 436-442.
[3] Unitarily invariant norm inequalities for accretive dissipative operator matrices, J. Math. Anal. Appl. 412 (2014) 564-569.

[^96]
GENERALIZED BOUR'S THEOREM IN MINKOWSKI SPACE FORM Erhan GÜLER ${ }^{1}$, Yusuf YAYLI ${ }^{2}$
 ${ }^{1}$ Bartın University, Faculty of Science, Department of Mathematics, 74100 Bartın, Turkey
 ${ }^{2}$ Ankara University, Faculty of Science, Department of Mathematics, 06100
 Ankara, Turkey

MSC 2010: 53A35; 53C42

Abstract

We obtain isometric minimal helicoidal and rotational surfaces using generalized Bour's theorem in three dimensional Minkowski space. In addition, we show that the surfaces preserve minimality when their Gauss maps identically equal, choosing any diffentiable functions on the profile curve.

Keywords: Gauss map, Gaussian curvature, helicoidal surface, mean curvature, rotational surface.

References

[1] E. Bour, Theorie de la deformation des surfaces, J. l'Êcole Polytech. 22 (39) (1862) 1-148.
[2] E. Güler, Bour's theorem and lightlike profile curve, Yokohama Math. J. 54 (1) (2007) 55-77.
[3] E. Güler, Y. Yaylı H.H. Hacısalihoğlu, Bour's theorem on Gauss map in Euclidean 3-space, Hacettepe J. Math. Stat. 39 (4) (2010) 515-525.
[4] E, Güler, Y. Yayl, Generalized Bour's theorem, Kuwait J. Sci. 42 (1) (2015) 79-90.
[5] T. Ikawa, Bour's theorem in Minkowski geometry, Tokyo J. Math. 24 (2) (2001) 377-394.
[6] F. Ji, Y. H. Kim, Isometries between minimal helicoidal surfaces and rotation surfaces in Minkowski space, Appl. Math. Comp. 220 (2013) 1-11.
[7] O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L^{3}, Tokyo J. Math. 6 (2) (1983) 297-309.

[^97]
ALGEBRAIC SURFACES OF HENNEBERG IN MINKOWSKI 3-SPACE Erhan GÜLER ${ }^{1}$, Vahit ZAMBAK ${ }^{2}$
 ${ }^{1}$ Bartin University, Faculty of Science, Department of Mathematics, 74100, Bartın, Turkey
 ${ }^{2}$ Milli Eğitim Bakanlığı, Giresun Atatürk Anadolu High School, 28000, Giresun, Turkey

MSC 2010: 53A35; 53C42

Abstract

We consider the algebraic Henneberg zero mean curvature surfaces in three dimensional Minkowski space and compute their classes, degrees and integral free representations.

Keywords: Henneberg surfaces, Gauss map, mean curvature, class, degree.

References

[1] L. Henneberg, Über solche Minimalflachen, welche eine vorgeschriebene ebene Kurve zur geodatischen Linie haben, Dissertation, Zürich, 1875.
[2] _-_, Uber diejenige Minimalflache, welche die Neil'sche Parabel zur ebenen geodatischen Linie hat, Vierteljahresschr. Naturforsch, Ges. Zürich 21 (1876) 66-70.
[3] J. Inoguchi, S. Lee, Null curves in Minkowski 3-space, Int. Electron. J. Geom. 1 (2) (2008) 40-83.
[4] O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space \mathbb{L}^{3}, Tokyo J. Math. 6 (2) (1983) 297-309.
[5] M. Magid, Timelike surfaces in Lorentz 3-space with prescribed mean curvature and Gauss map, Hokkaido Math. J. 20 (3) (1991) 447-464.
[6] Weierstrass, K. Untersuchungen über die flächen, deren mittlere Krümmung überall gleich Null ist, Monatsber. d. Berliner Akad. 612-625, 1866.
[7] _-_, Mathematische Werke. Vol. 3, Mayer \& Muller, Berlin, 1903.

[^98]
ON WEAK CONTINUITY OF SOFT TOPOLOGICAL SPACES

Süleyman GÜLER ${ }^{1}$, Yücel ÖZDAŞㄲ ${ }^{2}$

${ }^{1},{ }^{2}$ Adnan Menderes University, Faculty of Art and Science, Department of Mathematics, 09100- Aydin, Turkey

MSC 2000: 54A05, 54C08, 06D72

Abstract

In this presentation, we introduce soft weak continuous function and soft almost continuous function on soft topological spaces. We show that the notion of soft weak continuous and soft almost continuous are independent. We also obtained soft weak continuity and soft almost continuity are strictly weaker then soft continuity. Then we give some basic theorems and results about these new notions.

Keywords: soft set, soft topological space, soft continuity.

References

[1] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (4-5) (1999) 19-31.
[2] P. K. Maji, R. Biswas, A. R. Roy, On soft set theory, Computers and Mathematics with Applications 45 (2003) 555-562.
[3] M. Shabir, M. Naz, On Soft topological spaces, Computers and Mathematics with Applications 61 (2011) 1786-1799.
[4] S. Das, S. K. Samanta, Soft real set, soft real number and their properties, J. Fuzzy Math. 20 (3) (2012) 551- 576.
[5] D. A. Rose, Weak continuity and almost continuity, Internat. J. Math. and Math. Sci. 7 (2) (1984) 311-318.
[6] N. Levine, A Decomposition of Continuity in Topological Spaces, Amer. Math. Monthly 68 (1961) 44-46.

[^99]
SCHATTEN P-NORM INEQUALITIES FOR ACCRETIVE-DISSIPATIVE 2X2 OPERATOR MATRICES

İbrahim Halil GUMUS ${ }^{1}$, Omar Hirzallah ${ }^{2}$
${ }^{1}$ Adıyaman University, Adıyaman, Turkiye
${ }^{2}$ Hashemite University, Zarqa, Jordan

MSC 2000: 47B10; 47B44; 47A30

Abstract

Let $\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)$ be a 2×2 bounded linear operator on a Hilbert space $\mathbb{H}=\mathcal{H} \oplus \mathcal{H}$ with positive real and imaginary parts, where \mathcal{H} is a complex Hilbert space. It is shown that if $p \geq 2$, then $$
\begin{equation*} \left\|T_{12}\right\|_{p}^{p}+\left\|T_{21}\right\|_{p}^{p} \leq 2^{p-1} \sqrt{\left\|T_{11}\right\|_{p}^{p}\left\|T_{22}\right\|_{p}^{p}} \tag{1} \end{equation*}
$$ where $\|\cdot\|_{p}$ stands for the Schatten p-norm. Our results generalize and improve some earlier results.

Keywords: Accretive-dissipative operator, Schatten p-norm, inequality.

References

[1] A. George, Kh. D. Ikramov, On the properties of accretive-dissipative matrices, Math. Notes 77 (2005) 767-776.
[2] M. Lin, D. Zhou, Norm inequalities for accretive-dissipative operator matrices, J. Math. Anal. Appl., 407 (2013) 436-442.
[3] Unitarily invariant norm inequalities for accretive dissipative operator matrices, J. Math. Anal. Appl., 412 (2014) 564-569.

[^100]
ON COMPARISON OF COHERENT SYSTEMS VIA DYNAMIC SYSTEM SIGNATURE

Mehmet GÜNGÖR ${ }^{1}$, Ahmet DEMİRALP ${ }^{2}$, Yunus BULUT ${ }^{3}$, M. Şamil ŞIK ${ }^{4}$, Yusuf KIRAÇ ${ }^{5}$
1,2,3,4 Department of Econometrics, Inonu University, Malatya, Turkey
${ }^{5}$ Department of Computer Technologies, Siirt University, Siirt, Turkey

MSC 2010: 62N05, 62G30, 60E15

Abstract

System signature is extremely useful tool for comparing of coherent systems. Let X_{i} 's be independent and identically distributed n-components lifetimes of a system with T lifetime. The signature of the system is $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ where s_{i} is equal to probability of event $\left(\mathrm{T}=X_{i: n}\right)$ and $X_{i: n}$ is the i th order statistics of X_{i} 's. Also, dynamic system signature is the truncated form of system signature when exactly i components of the system have failed at time t. In this study, comparison of new better than used (NBU) and uniformly new better than used (UNBU) properties of aging systems with dynamic system signature by stochastic, hazard rate and likelihood ratio orderings are investigated.

Keywords: Coherent system, order statistics, signature, aging, NBU, UNBU, stochastic, Hazard rate and Likelihood ratio orderings.

References

[1] F. J. Samaniego, N. Balakrishnan, J. Navarro, Dynamic Signatures and Their Use in Comparing the Reliability of New and Used Systems, Wiley Peridicals, Inc., Naval Research Logistics 56 (2009) 577-591.
[2] F. J. Samaniego, System Signatures and their applications in engineering reliability, International Series in Operations Research and Management Science 110 Springer, New York, 2007.
[3] R. E. Barlow, F. Proschan, Statistical theory of reliability and life testing: Probability Models,Holt, Rinehart and Winston, Inc., New York, 1975 1-25.

[^101]
A COMBINATORIAL APPROACH TO CATALAN NUMBERS

Ayşın Erkan GÜRSOY ${ }^{1}$, Kürşat AKER ${ }^{2}$
${ }^{1}$ Istanbul Technical University, Istanbul, Turkey
${ }^{2}$ Middle East Technical University, Northern Cyprus Campus, KKTC via Mersin
10, Turkey

Abstract

In this paper, we form a bijection between two sets which their cardinalities are Catalan numbers. Also we prove a conjecture in [1] with regard to the equality of two generating functions are connected with these two sets whose cardinalities are Catalan numbers.

Keywords: Catalan numbers, generating functions, Dyck paths.

References

[1] K. Aker, M. B. Can, From Parking Functions to Gelfand Pairs, Proceedings of the American Mathematical Society 140 (4) (2012) 1113-1124 S 0002-9939(2011)11010-4.
[2] R. P. Stanley, Catalan Addendum, http://www-math.mit.edu/ ${ }^{\text {rstan/ec/catadd.pdf, } 2013 .}$

[^102]
MURNAGHAN-NAKAYAMA RULE FOR JACK POLYNOMIALS

Ayşın ERKAN GÜRSOY ${ }^{1}$, Kürşat AKER ${ }^{2}$

${ }^{1}$ Istanbul Technical University, Istanbul, Turkey
${ }^{2}$ Middle East Technical University, Northern Cyprus Campus, KKTC via Mersin 10, Turkey

Abstract

For λ is a partition and n is a nonnegative integer, Murnaghan-Nakayama rule for Schur functions calculates the product of a Schur function s_{λ} and a power symmetric function p_{n} : $$
s_{\lambda} p_{n}=\sum_{\nu}(-1)^{h t(\nu / \lambda)} s_{\nu},
$$ where all partitions $\lambda \subseteq \nu$ for which ν / λ is a border strip with n boxes and the height $h t(\nu / \lambda)$ of the border strip is the number of rows, minus 1 . This is the theorem in [3]. In this work, we investigate Murnaghan Nakayama rule for Jack polynomials. We obtain some combinatorial results and interpretations for some conditions.

Keywords: Jack polynomials, symmetric functions, young diagram.

References

[1] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, 1995.
[2] R. Sakamoto, J. Shiraishi, D. Arnaudon, L. Frappat, E. Ragoucy, Correspondence between Conformal Field Theory and Calogero-Sutherland Model. Nucl.Phys. B704 (2005) 490-509.
[3] R. P. Stanley, Enumerative Combinatorics 2 Cambridge University Press, 1998.
[4] R. P. Stanley, Some combinatorial properties of Jack symmetric functions, Advances in Mathematics 77 (1) (1989) 76-115.

[^103]
SOME RESULTS ON PREDATOR-PREY DYNAMIC SYSTEMS WITH BEDDINGTON-DEANGELIS TYPE FUNCTIONAL RESPONSE

Ayşe Feza GÜVENİLİR ${ }^{1}$, Billur KAYMAKÇALAN ${ }^{2}$, Neslihan Nesliye PELEN ${ }^{3}$
${ }^{1}$ Ankara University, Ankara, Turkey
${ }^{2}$ Çankaya University, Ankara, Turkey
${ }^{3}$ Ondokuz Mays University, Samsun, Turkey

Abstract

We consider two dimensional predator-prey system with Beddington-DeAngelis type functional response on Time Scales. For this special case we try to find under which conditions the system is permanent and globally attractive. This study will also give beneficial results for continuous and discrete case.

Keywords: Predator-prey dynamic system, permanence, global attractivity, Beddington DeAngelis type functional response.

References

[1] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficency, Journal of Animal Ecology, 44 (1975) 331340.
[2] M. Bohner, A. Peterson, Dynamic Equations on Times Scales:an introduction with applications, Birkhäuser Velag, Basel, Boston, Berlin, 2001.
[3] M. Bohner, M. Fan, J. Zhang, Existence of periodic solutions in predatorprey and competition dynamic systems, Nonlinear Analysis RealWorld Applications 7 (2006) 11931204.
[4] F. Chen, Permanence and global stability of nonautonomous LotkaVolterra system with predator-prey and deviating arguments, Appl. Math. Comput. 173 (2006) 10821100.
[5] J. Cui, Y. Takeuchi, Permanence, extinction and periodic solution of predatorprey system with BeddingtonDeAngelis functional response, J. Math. Anal. Appl. 317 (2006) 464474.

[^104]
OPTIMAL CONTROL PROBLEM FOR PROCESSES GIVEN BY MULTI-PARAMETER LINEAR STOCHASTIC DYNAMIC SYSTEM
 Yakup H. HACI ${ }^{1}$, Muhammet CANDAN ${ }^{2}$
 1,2 Canakkale Onsekiz Mart University, Canakkale, TURKEY

MSC 2000: 49N05, 49J15, 93C10, 93E20

Abstract

In this work, processes represented by multi-parameter linear stochastic dynamic system are investigated [1], [2] and by considering optimal control problem, principle of optimality is proven. Also, for existence of optimal control and corresponding optimal trajectory, proof of theorem of necessity and sufficiency condition is attained.

Keywords: Optimal control problem, linear stochastic dynamic system, optimal trajectory.

References

[1] I. V. Gaishun, Completely Solvable Multidimensional Differential Equations, Nauka, 1983.
[2] R. Gabasov, F. M. Kirillova, N. S. Paulianok, Optimal Control of Linear Systems on Quadratic Performance Index, Appl. and Comput. Math. 7 (2008) 4-20.
[3] Y. Hacı, K. Ozen, Terminal Control Problem for Represented by Nonlinear Multiparameter binary Dynamic System, Control and Cybernetics, 38 (2009) 625633.
[4] V. G. Boltyanskii, Optimal control of Discrete Systems, John Wiley, 1978.
[5] S. V. Yablonsky, Introduction to Discrete Mathematics, Mir Publisher, Moscow, 1989.

[^105]
ASYMPTOTIC ANALYSIS OF A DYNAMICAL PROBLEM OF NON-ISOTHERMAL LINEAR ELASTICITY WITH FRICTION

Benseridi HAMID ${ }^{1}$

${ }^{1}$ Department of Mathematics Setif 1 University, Setif, 19000, Algeria

MSC 2000: 35R35, 76F10, 78M35.

Abstract

In this paper, we are interested in the study of the asymptotic analysis of a dynamical problem in elasticity with non linear friction of Tresca type. The Lamé coefficients of thin layer are assumed to vary with respect to the thin layer parameter ε and depend of the temperature. We prove the existence and uniqueness of the weak solution for the limit problem. The proof is carried out by the use of the asymptotic behaviour when the dimension of the domain tends to zero.

Keywords: A priori inequalities, free boundary problems, elasticity system, asymptotic approach, Tresca law.

References

[1] M. Boukrouche, G. Lukaszewicz, Asymptotic analysis of solutions of a thin film lubrication problem with nonlinear boundary conditions, Int. J. Eng. Sci. 41 (2003) 521-537.
[2] M. Boukrouche, R. El Mir, On a non-isothermal, non-Newtonian lubrication problem with Tresca law: Existence and the behavior of weak solutions, Nonlinear Analysis: Real World Applications, 9 (2008) 674-692.
[3] M. Boukrouche, R. Elmir, Asymptotic analysis of non-Newtonian fluid in a thin domain with Tresca law, Nonlinear analysis, Theory Methods and applications 59 (2004) 85-105.
[4] M. Dilmi, H. Benseridi, A. Saadallah, Asymptotic Analysis of a Bingham Fluid in a Thin Domain with Fourier and Tresca Boundary Conditions, Adv. Appl. Math. Mech. 6 (2014) 797-810.
[5] B.-Q. Dong, Z.-M. Chen, Asymptotic stability of non-Newtonian flows with large perturbation in \mathbb{R}^{2}, Applied Mathematics and Computation, 173 (1) (2006) 243-250.
[6] B. Guo, G. Lin, Existence and uniqueness of stationary solutions of non-Newtonian viscous incompressible fluids, Communications in Nonlinear Science and Numerical Simulation, 4 (1) (1999) 63-68.
[7] W. H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi-Benzollösungen, Kolloid Zeitschrift 39 (1926) 291-300.
[8] A. Massmeyer, E. D. Giuseppe, A. Davaille, T. Rolf, P. J. Tackley, Numerical simulation of thermal plumes in a Herschel-Bulkley fluid, Journal of Non-Newtonian Fluid Mechanics, 195 (2013), 32-45.

[^106]
ADAPTIVE STEP SIZE NUMERICAL SOLUTION TO FIRST ORDER ODES, A REFINEMENT OF EULER'S AND RK METHODS

Youssef S. HASSAN ${ }^{1}$, Amr MAMDOUH, Kareemeldien MAKLAD , Ahmed A. ELGHANNAM, Mahmoud ABDELATY ${ }^{2}$
1,2,3,4,5 University of Science and Technology at Zewail City, Sheikh Zayed, 6th of October City, Giza, Egypt

Abstract

Solving differential equations numerically is a subject that employs a multitude of methods each suitable for certain class of equations. Herein we report a new approach for solving first order ODE numerically that can be considered to be a refinement to Euler and RK methods. Instead of using fixed step sizes as employed in these methods, our method estimates the suitable step size based on an evaluation of the second derivative of the solution curve at or in the vicinity of the iteration point.

Keywords: Differential equations, numerical, step size.

[^107]
IMPLEMENTING QUANTUM SEARCH ALGORITHM IN THE PRESENCE OF DISSIPATION

A. H. HOMID ${ }^{1}$, Mahmoud Abdel-Aty ${ }^{2}$

${ }^{1,2}$ University of Science and Technology, Zewail City for Science and Technology, 6th of October, Giza, Egypt

Abstract

Here, we propose a new physical scheme for perfect implementation of quantum search algorithm in presence of qubits dissipation. It is shown that Grover algorithm is obtained as a special case of the suggested quantum search algorithm. We have generated the the quantum gates to realize the required steps for implementing the algorithm.

Keywords: Quantum computation, quantum search algorithm and quantum superconducting.

[^108]
APPROXIMATION OF THE SET OF TRAJECTORIES OF CONTROL SYSTEM DESCRIBED BY AN AFFINE VOLTERRA TYPE INTEGRAL EQUATION

Nesir HUSEYIN ${ }^{1}$, Anar HUSEYIN ${ }^{2}$, Khalik GUSEINOV ${ }^{3}$, Vladimir USHAKOV ${ }^{4}$
1,2 Cumhuriyet University, Sivas, Turkey
${ }^{3}$ Anadolu University, Eskisehir, Turkey
${ }^{4}$ Russian Academy of Sciences, Ekaterinburg, Russia

MSC 2000: 93C23

Abstract

The control system described by an affine Volterra type integral equation is considered. It is assumed that the system is nonlinear with respect to the phase vector and is affine with respect to the control vector. Admissible control functions are chosen from the closed ball of the space $L_{p}, p>1$, with radius μ and centered at the origin. Approximation of the set of trajectories of the system generated by all admissible control functions is studied. The set of admissible control functions is replaced by the set which consists of a finite number of control functions and generates a finite number of trajectories. An evaluation of the Hausdorff distance between the set of trajectories of the system and the set consisting a finite number of trajectories is given. This paper extends the results obtained in [1] and [2].

Keywords: Integral equation, control system, approximation.

References

[1] A. Huseyin, On the approximation of the set of trajectories of control system described by a Volterra integral equation, Nonlin. Anal. Model. Contr. 19 (2014) 199-208.
[2] N. Huseyin, Kh. G. Guseinov, V. N. Ushakov, Approximate construction of the set of trajectories of the control system described by a Volterra integral equation, Math. Nachr. 288 (2015) DOI: 10.1002/mana.201300191.

[^109]
STRUCTURE OF BASIN AND BIFURCATION PHENOMENA IN TWO-DIMENSIONAL PIECEWISE MAPS

Boukemara IBTISSEM 1
Department of Mathematics, Laboratory of Mathematics, Dynamics ε Modelization, University of Annaba - Algeria

Abstract

We present in this work the study of a new bifurcation phenomena for discrete time dynamical systems represented by the iteration of piecewise maps, where the bifurcation theory is much less developed. These phenomena are part of a riche new class of bifurcations. We aim to investigate, via numerical examples, some global bifurcations in the two-dimensional phase plane. The dynamical behaviors, multiple basins with fractal boundary, attractors, route to chaos via bifurcations are further investigated. We also show by numerical simulation different types of bifurcations that can occur in such map, including transitions to chaotic attractors. The property of multistability, i.e. the existence of many coexisting attractors, is a characteristic property of such maps. The problem of the delimitation of the attractors and their basins is studied.

Keywords: Piecewise smooth systems, bifurcation, chaos.

References

[1] C. Mira, About Two-Dimensional Piecewise Continuous Noninversible Maps, Int J. of Bif. and Chaos 6 (5) (1996) 893-918.
[2] D. Aharonov, R. L. Devaney, U. Elias, The dynamics of a piecewise linear map and its smooth approximation, Int. J. of Bif. and Chaos 7 (2) (1997) 351-372.
[3] I. Djellit, I. Boukemara, Md Reda Ferchichi, Regular nonlinear dynamics of a piecewise map, Journal of Mathematical and Computational Science 2 (5) (2012) 1241-1256.
[4] I. Boukemara, I. Djellit, Some global bifurcations in piecewise maps, The International Journal of Nonlinear Science (IJNS) 14 (2) (2012).

[^110]
ON OBTAINING STABLE SOLUTION FOR A HYPERBOLIC COEFFICIENT CONTROL PROBLEM

Seda İĞRET ARAZ ${ }^{1}$, Murat SUBAŞI, ${ }^{2}$ Hakkı GÜNGÖR ${ }^{3}$, Hülya DURUR ${ }^{4}$

${ }^{1,2,3}$ Atatürk University, Erzurum, TURKEY
${ }^{4}$ Ardahan University, Ardahan, TURKEY

MSC 2000: 49J20, 35L20, 49J50

Abstract

This study deals with obtaining a solution for the hyperbolic coefficient control problem. The set of admissible controls has been taken as a subspace of the space whose elements and their first generalized derivatives are square integrable functions. Obtaining the gradient of the cost functional and proving the Lipschitz continuity on this set, the necessary condition for optimal solution has been given.

Keywords: Optimal control, second-order hyperbolic equations, Frechet differentiability.

References

[1] Y. Saraç, M. Subaşı On the Regularized Solutions of Optimal Control Problem in a Hyperbolic System, Abstract and Applied Analysis, 2012.
[2] R. K. Tagiyev, On Optimal Control of the Hyperbolic Equation Coefficients, Automation and Remote Control (2012) 1145-1155.
[3] M. Goebel, On Existence of Optimal Control. Math. Nachr. (1979) 67-73.
[4] F.P. Vasilyev, Ekstremal problemlerin Çözüm Metotları, Nauka, 1981.

[^111]ELASTO-PLASTIC DEFORMATION OF AN INCOMPRESSIBLE BENDING PLATE WITH CLAMPED BOUNDARY
Feda İLHAN ${ }^{1}$, Zahir MURADOĞLU ${ }^{2}$
${ }^{1}$ Abant İzzet Baysal University, Bolu, Turkey
${ }^{2}$ Kocaeli University, Kocaeli, Turkey

MSC 2000: 34C10 65N06, 65L10, 35Q74, 35Q90

Abstract

In this study, the bending problem of an elasto-plastic and homogeneously isotropic incompressible plate is studied. It is assumed that the plate with thickness h is placed to the coordinate system $O x_{1} x_{2} x_{3}$ such that the middle surface of the plate is located in $O x_{1} x_{2}$ plane. The plate is supposed to be in equilibrium under the action of the loads applied on the upper surface of the plate in the x_{3} axis direction, while its lower surface is free. It is known from the deformation theory of plasticity that [1] and [2] as $w=w(x)$ is the deflection of a point $x \in \Omega$ on the middle surface of the plate, which is placed in the region $\Omega=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: 0 \leq x_{\alpha} \leq l_{\alpha}, \alpha=1,2\right\}$, satisfies the following nonlinear biharmonic equation: $$
\begin{align*} A w & \equiv \frac{\partial^{2}}{\partial x^{2}}\left[g\left(\xi^{2}(w)\right)\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{1}{2} \frac{\partial^{2} w}{\partial y^{2}}\right)\right]+\frac{\partial^{2}}{\partial x \partial y}\left[g\left(\xi^{2}(w)\right)\left(\frac{\partial^{2} w}{\partial x \partial y}\right)\right] \tag{1}\\ & +\frac{\partial^{2}}{\partial y^{2}}\left[g\left(\xi^{2}(w)\right)\left(\frac{\partial^{2} w}{\partial y^{2}}+\frac{1}{2} \frac{\partial^{2} w}{\partial x^{2}}\right)\right]=F(x, y) \end{align*}
$$

A numerical solution for the boundary value problem related to the fourth order nonlinear PDE for a bending plate with clamped boundary condition by using finite difference method is obtained. Test functions are used for verifying the applicability of the computer program. Accuracy of the approximate solutions of numerical examples showed effectiveness of the given approach.

Keywords: Biharmonic equation, finite difference method, elasto-plastic plate, deflection, plasticity.

References

[1] L. M. Kachanov, Fundamentals of the Theory of Plasticity, North-Holland Publishing Company, Amsterdam, London, 1971.
[2] A. Hasanov, Variational approach to nonlinear boundary value problems for elastoplastic incompressible bending plate, Int. J. Nonl. Mech. 42 (2007) 711721.

[^112]
REAL HYPERSURFACES IN COMPLEX PROJECTIVE SPACE WITH WEAKLY CONSTANT HOLOMORPHIC CURVATURE

Mohammad ILMAKCHI ${ }^{1}$
${ }^{1}$ Azarbaijan Shahid Madani University, Tabriz, Iran

MSC 2000: 53C25, 53C40

Abstract

The homogeneous real hypersurfaces in $\mathbb{C} P^{n+1}$ were classified by Ryoichi Takagi [3] in 1973.

For a homogeneous real hypersurfaces in $\mathbb{C} P^{n}$ we have $g \in\{2,3,5\}$, where g is number of distinct principal curvatures. Zhen Qi Li [2] prove that $g \in\{2,3,5\}$ for all isoparametric real hypersurfaces in $\mathbb{C} P^{n}$ with constant principal curvature. Also, Kimura [1] completed this results.

In this paper, we study isoparametric Hopf hypersurfaces in complex projective space $\mathbb{C} P^{n}$ such that structural vectors field ξ is a principle vector field and with weakly constant holomorphic sectional curvature.

Keywords: Hopf hypersurfaces, complex projective space, weakly constant holomorphic curvature.

References

[1] M. Kimura, Real Hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986) 137-149.
[2] Z. Q. Li, Isoparametric hypersurfaces in $\mathbb{C P n}$ with constant principal curvatures, Chinese Ann. Math. Ser. B 9 (1988).
[3] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973) 495-506.

[^113]
MOORE-PENROSE INVERSE OF WEIGHTED COMPOSITION OPERATORS ON L^{P}-SPACES

Mohammad Reza JABBARZADEH ${ }^{1}$
Department of Mathematical Sciences, University of Tabriz, P. O. Box: 5166617766, Tabriz, Iran

MSC 2000: Primary 47B33, Secondary 47B38.

Abstract

For a weighted composition operator $W: f \mapsto u .(f \circ \varphi)$, we give an explicit formula for the Moore-Penrose inverse of W on $L^{2}(\Sigma)$ and then determine the Hyers-Ulam stability constant for W on $L^{p}(\Sigma)$, in terms of conditional expectation operator.

Keywords: Weighted composition operator, Hyers Ulam stability, Moore Penrose inverse, conditional expectation.

References

[1] T. Krisztin, Nonoscillations for functional differential equations of mixed type, Journal of Mathematical Analysis and Applications 254 (2000) 326-345.
[2] J. M. Ferreira and A. M. Pedro, Oscillations of delay difference systems, J. Math. Anal. Appl. 221 (1998) 364-383.
[3] Q. Huang and M. S. Moslehian, Relationship between the Hyers-Ulam stability and the Moore-Penrose inverse, Electron. J. Linear Algebra 23 (2012) 891-905.
[4] M. R. Jabbarzadeh, Hyers-Ulam stability of weighted composition operators on L^{p}-spaces, Bull. Iranian Math. Soc. 32 (2006) 67-73.
[5] M. R. Jabbarzadeh, A conditional expectation type operator on L^{p} spaces, Oper. Matrices 4 (2010) 445-453.
[6] Alan Lambert, Localising sets for sigma-algebras and related point transformations, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991) 111-118.

[^114]
ARTIFICIAL NEURAL NETWORK METHOD FOR SOLVING FRACTIONAL FREDHOLM INTEGRAL EQUATIONS

Ahmad JAFARIAN 1
${ }^{1}$ Department of Mathematics, Urmia Branch, Islamic Azad university, Urmia, Iran MSC 2000: 45B05

Abstract

For the last decade, several authors demonstrated the performance of artificial neural network models over other traditional testing methods[1, 2]. The current research, aimed to present a global optimization technique based on combination of neural networks approach and power series method for the numerical solution of a fractional Fredholm type integro-differential equation involving the Caputo derivative. The mentioned problem to be solved approximately for the unknown series coefficient via a three-layer feed-forward neural architecture. In other words, an accurate truncated power series representation of the solution function is achieved when a suitable learning algorithm is used for the suggested neural architecture. As applications of the present iterative approach, some kinds of integral equations are investigated. The achieved simulations are compared with the results obtained by some existing algorithms.

Keywords: Fractional Fredholm equation, generalized power series expansion, ANNs approach, Caputo fractional derivative, approximate solution.

References

[1] L. Zhanga, B. Ahmadb, G. Wanga, R.P. Agarwal, Nonlinear fractional integrodifferential equations on unbounded domains in a Banach space, J. Compu. Appl. Math. 249 (2013) 51-56.
[2] A. Anguraj, P. Karthikeyan, M. Rivero, J.J. Trujillo, On new existence results for fractional integro-differential equations with impulsive and integral conditions, J. Math. Anal. Appl. 66 (2014) 2587-2594.

[^115]
NUMERICAL SOLUTION FOR SOME WEAKLY SINGULAR NONLINEAR VOLTERRA INTEGRAL EQUATIONS

Mehdi JALALVAND, ${ }^{1}$ Zeinab Moeini RAD, ${ }^{2}$ Ameneh SAYAHI ${ }^{3}$
1,2,3 Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University, Ahvaz, Iran

Abstract

We consider a second kind weakly singular nonlinear Volterra integral equation defined by a compact operator and derive a Nystrm type interpolant of the solution based on zeroes of orthogonal Chelyshkov polynomials on $[0,1]$ with the weight function 1, (see,[1]). We prove the convergence of the interpolant and derive convergence estimates. For equations with nonlinearity of algebraic kind, we improve the rate of convergence by using a smoothing transformation. Some numerical examples are given.

Keywords: Volterra integral equations, weakly singular kernels, Chelyshkov polynomials.

References

[1] V. S. Chelyshkov, Alternative orthogonal polynomials and quadratures, Electron. Trans. Numer. Anal. (2006) 17-26.
[2] P. Baratella, A Nystrm interpolant for some weakly singular nonlinear Volterra integral equations, Journal of Computational and Applied Mathematics 237 (2013) 542-555.

[^116]
STABILITY OF CAUCHY FUNCTIONAL EQUATION AND QUADRATIC EQUATION BY GENERALIZED OPERATIONS

Shabnam JAMSHIDZADEH ${ }^{1}$, Nasrin EGHBALI ${ }^{2}$
${ }^{1}$ Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
${ }^{2}$ Department of Mathematics, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran

MSC 2000: 65M06, 65M12

Abstract

In 1940 S. M. Ulam proposed the famous Ulam stability problem. In 1941 D. H. Hyers solved this problem for additive mappings subject to the Hyers condition on approximately additive mappings. In this paper we generalize the Hyers result for the Ulam stability problem for pseudo-analysis. Core of the construction presented here consists of generalized pseudo-operations which are generating of classical operations. We consider generated pseudo-operations of the following forms: $$
x \oplus y=g^{-1}(g(x)+g(y)), \quad x \otimes y=g^{-1}(g(x) g(y))
$$ where g is a strictly monotone generating function. Using this type of pseudooperations, an extension the stability of Hyers-Ulam-Rassias and quadratic equations is investigated and proved.

Keywords: Pseudo addition, pseudo multiplication, pseudo-analysis, stability, cauchy functional equation, quadratic functional equation.

References

[1] S. M. Ulam, Problems in Modern Mathematic, Science Edition, John Wiley \& Sons, Inc., New York, 1964.
[2] E. Pap, Pseudo-additive measures and their applications, E. Pap (Ed.), Handbook of measure theory, Elsevier, Amsterdam, (2002) pp. 1403-1465.

[^117]
A COMPUTATIONAL MODEL FOR THE SIMULATION OF ATHEROSCLEROTIC PLAQUES

Sunnie JOSHI ${ }^{1}$, Benjamin SEIBOLD ${ }^{2}$, Pak-Wing FOK 3
${ }^{1,2}$ Temple University, Philadelphia, PA, USA
${ }^{3}$ University of Delaware, Wilmington, DE, USA

Abstract

Atherosclerosis is a chronic inflammatory process in which the arterial wall develops a plaque as a result of the build up of cholesterol and other fatty materials in the interior surface of the wall, and is the most common disease of the arterial system. This study focuses on the implementation of a coupled reaction diffusion model in two dimensions with a cross-sectional geometry of the artery which reveals the interaction between various factors that affect the growth of the plaque. The Darcy equations are implemented to model the intramural flow through the arterial wall. The interaction between the macrophages and the oxidized LDLs are modeled by a system of coupled reaction diffusion equations. A pseudo-Stokes equation is used to compute the longterm growth velocity field of the wall, which is then used for the evolution of the geometry of the plaque.

Keywords: Atherosclerosis, modeling and simulation, reaction diffusion advection.

References

[1] W. Hao, A. Friedman, The LDL-HDL Profile Determines the Risk of Atherosclerosis: A Mathematical Model, PLoS ONE 9 (3) (2014) e90497, doi:10.1371/journal.pone.0090497.
[2] R. L. Bratzler, C. K. Colton, K. A. Smith, Theoretical models for transport of low-density lipoproteins in the arterial wall, Advances in Experimental Medicine and Biology 82 (1977) 943-951.

[^118]
COLLOCATION FINITE ELEMENT SOLUTIONS FOR STEFAN PROBLEM WITH NEUMANN BOUNDARY CONDITION

Hatice KARABENLI $\dot{1}^{1}$, Alaattin ESEN ${ }^{2}$, E.Nesligül AKSAN ${ }^{3}$
${ }^{1,2,3}$ Inonu University, Malatya, Turkey

MSC 2000: 65D07, 65L60, 41A15, 35R37

Abstract

In this paper, we are going to consider one-dimensional Stefan problem with timedependent Neumann boundary condition. For the problem, collocation finite element schemes constructed with variable space grid method and boundary immobilisation method are used. The newly obtained numerical results are represented for temperature distribution, the position of moving boundary and the velocity of moving boundary. The numerical results reached in this study have been compared with exact solutions and other numerical results obtained by finite difference method based on isotherm migration method. And they are found to be in good agreement with each other.

Keywords: Stefan problems, variable space grid method, boundary immobilisation method, collocation finite element method.

References

[1] J. Stefan, Uber die theorie der eisbildung imbesondee uber die eisbindung im polarmeere, Ann. Phys. U. Chem. 42 (1891) 269286.
[2] J. Crank, Free and Moving Boudary Problems, Clarendon Press, Oxford, England, 1984.
[3] H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids Clarendon Press, Oxford, 2nd ed., 1959.
[4] R. M. Furzeland, A survey of the formulation and solution of free and moving boundary (Stefan) problems, Technical Report TR/76, Brunel University, Uxbridge, United Kingdom.
[5] W. D. Murray, F. Landis, Numerical and machine solutions of transient heat conduction problems involving melting or freezing, J.Heat Transfer 81 (1959) 106-112.
[6] S. Kutluay, A.R. Bahadir, A. Ozdes, The numerical solution of one-phase classical Stefan problem, J. Comp. Appl. Math. 81 (1997) 35-44.
[7] S. Kutluay, A. Esen, An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition, Applied Mathematics and Computation 150 (2004) 59-67.
[8] A. H. A. Ali, G. A. Gardner, L. R. T. Gardner, A collocation solution for Burgers equation using cubic B-spline finite elements, Comput. Meth. Appl. Mech. Eng. 100 (1992) 325-337.

[^119]
ON THE CONVERGENCE OF NEWTON-LIKE METHOD FOR SOLVING NONLINEAR EQUATIONS IN BANACH SPACES

Nazli KARACA ${ }^{1}$, Isa YILDIRIM ${ }^{2}$
${ }^{1,2}$ Ataturk University, Erzurum, Turkey

MSC 2000: 47H10, 49M15

Abstract

In this paper, we introduce a Newton-like method for solving nonlinear equations in a Banach space. We present a local and semi-local convergence analysis of our method. Also, we show that our method is better than the Newton method and the S-iteration processes of Newton-like [5] and we give numerical examples to support of our results.

Keywords: Newton's method, fixed point, nonlinear operator equations, Newtonlike method.

References

[1] I. K. Argyros, Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics, 15, Elsevier Publ. Comp., New York, 2007.
[2] R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, Journal of Nonlinear Convex Analysis 8 (1) (2007) 61-79.
[3] J. E. Dennis, On the Kantorovich hypothesis for Newton's method, SIAM Journal on Numerical Analysis 6 (1969) 493-507.
[4] I. K. Argyros, On a class of Newton-like methods for solving nonlinear equations, Journal of Computational and Applied Mathematics 228 (2009) 115-122.
[5] D. R. Sahu, K. K. Singh, V. K. Singh, Some Newton-like methods with sharper error estimates for solving operator equations in Banach spaces, Fixed Point Theory and Applications 1 (2012) 1-20.
[6] N. Kadioglu and I. Yildirim, Approximating fixed points of nonexpansive mappings by a faster iteration process, Journal of Advanced Mathematical Studies 8 (2015) 257-264.

[^120]
ON ALMOST PRIME IDEALS

Emine Serap KARACAN ${ }^{1}$, Emel A. UGURLU ${ }^{2}$, Unsal TEKIR ${ }^{3}$

${ }^{1,2,3}$ Marmara University, Istanbul, Turkey
MSC 2000: 13A15

Abstract

This work consists only of a survey [1]. In this talk, we study almost prime ideals. Throughout this study, R denotes commutative ring with identity. We give some theorems about characterization of almost prime ideals.

Theorem : For a proper ideal I of R the following are equivalent:

1. I is almost prime.
2. For $x \in R-I,(I: x)=I \cup\left(I^{2}: x\right)$.
3. For $x \in R-I,(I: x)=I$ or $(I: x)=\left(I^{2}: x\right)$.
4. For ideals A and B of R with $A B \subseteq I$, but $A B \nsubseteq I^{2}$, then $A \subseteq I$ or $B \subseteq I$.

Theorem : For a proper ideal I of R the following are equivalent:

1. I is n-almost prime.
2. For $x \in R-I,(I: x)=I \cup\left(I^{n}: x\right)$.
3. For $x \in R-I,(I: x)=I$ or $(I: x)=\left(I^{n}: x\right)$.
4. For ideals A and B of R with $A B \subseteq I$, but $A B \nsubseteq I^{n}$, then $A \subseteq I$ or $B \subseteq I$.

Theorem : Let R and S be any two commutative rings. Then an ideal of $R \times S$ is almost prime if and only if it has one of the following three forms,

1. $I \times S$, where I is an almost prime ideal of R.
2. $R \times J$, where J is an almost prime ideal of S.
3. $I \times J$, where I is an idempotent ideal of R and J is an idempotent ideal of S.

Keywords: Almost prime ideals, n-almost prime, idempotent ideal.

References

[1] M. Bataineh, Generalization of Prime Ideals (Thesis), University of Iowa, 2006.
[2] D. D. Anderson, E. Smith, Weakly Prime Ideals, Houston Journal of Mathematics, 29 (4) (2003) 831-840.

[^121]
GROUP STRUCTURE OF MARKOV POLYGONS

Bülent KAKARAŞ̧ ${ }^{1}$, Şenay BAYDAŞ̧ ${ }^{2}$
1,2 Yüzüncü Yal University, Van, Türkiye
MSC 2000: 20F65

Abstract

This paper presents defining Markov n-polygons and shows group structures on these sets.

Keywords: Markov, group.

\section*{References} [1] G. P. Basharin, A. N. Langville, V. A. Naumov, The Life and Work of A.A. Markov, Linear Algebra and its Applications 386 (2004) 3-26. [2] N. Privault, Understanding Markov Chains, Springer, London, 2013.

[^122]
A NEW REGULAR MATRIX DEFINED BY FIBONACCI NUMBERS AND ITS APPLICATIONS

Murat KARAKAŞ ${ }^{1}$, Hasan KARABUDAK ${ }^{2}$

1,2 Bitlis Eren University, Bitlis, Turkey

MSC 2000: 11B39, 46B45

Abstract

The main goal of this study is to introduce the sequence spaces $l_{p}(F), l_{\infty}(F), c(F)$ and $c_{0}(F)$ by means of a new infinite Toeplitz matrix F of Fibonacci numbers and examine some algebraic and topological properties of these spaces where $1 \leq p<\infty$.

Keywords: Regular matrix, fibonacci number, sequence space.

References

[1] A. Wilansky, Summability through functional analysis, North-Holland mathematics studies 85, Elsevier science publishers, Amsterdam: New York, Oxford, 1984.
[2] D. Kalman, R. Mena, The Fibonacci numbers-Exposed, Mathematics Magazine 76 (3) (2003).
[3] E. E. Kara, M. Basarir, An application of Fibonacci numbers into infinite Toeplitz matrices, CJMS 1 (1) (2012) 43-47.
[4] J. F. Basar, Summability theory and its applications, Bentham science publishers, Istanbul, 2011.
[5] M. Mursaleen, A.K. Noman, On some new sequence spaces of non-absolute type related to the spaces l_{p} and l_{∞} I, FILOMAT 25 (2) (2011) 33-51.
[6] T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001.
[7] S. Vajda, Fibonacci and Lucas numbers, and Golden Section: theory and applications, Chichester, Ellis Horword (1989).

[^123]
CONE METRIC SPACES AND CONE TWO METRIC SPACES

Yağmur KARAKOÇ ${ }^{1}$
${ }^{1}$ Gaziantep University, Faculty of Arts And Sciences, Department of Mathematics, Gaziantep, Turkey

Abstract

There are many generalization forms of metric spaces. Some of them are; fuzzy metric space, cone metric space, K-metric space and K-normed space, etc.. In 2007, Chinese mathematicians Zang and Huang described the cone metric spaces as unaware of the existence of the K-metric and K-normed which was defined and used in the 20th century. At both of them, E Banach space was handled instead of reel number. Then, by making further, Huang and Zang gave the definition of convergence of series at cone metric spaces [1]. In this presentation, cone metric spaces which are a generalisation of metric spaces will be handled. Namely, cone two metric spaces will be examined by using two metric spaces instead of known dmetric space by looking at cone metric spaces. The knowledge about convergence of series will be given by using two metric at cone metric spaces. Some theorems and definitions related to cone two metric spaces will be examined and concluded with examples.

Keywords: Metric spaces, cone metric spaces, cone two metric spaces.

References

[1] A. Kurag, Main Properties of Cone Metric Spaces, M.Sc.Thesis, Nevehir Hac Bekta Veli University, 2013.
[2] H. L.-Guang, Z. Xian, Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, Journal of Mathematical Analysis and Applications 332 (2007) 1468-1476.
[3] M. Asadi, H. Soleimani, Examples in Cone Metric: A Survery, Middle East Journal of Scientific Research 11 (12) (2012) 1636-1640, ISSN 1990-9233.
[4] D. Dey, M. Saha, Common Fixed Point Theorems in a Complete 2-Metric Space, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 52 (1) (2013) 79-87.

[^124]ON Λ - SEMICONSERVATIVE FK SPACES

Mahmut KARAKUŞs ${ }^{1}$
${ }^{1}$ Yuzuncu Yil University, Van, Turkey

MSC 2000 : 46A35, 46A45, 40C05

Abstract

An FK space $X \supset \phi$ is Λ - semiconservative FK space if $X^{f} \subset \lambda(S)$, where $\lambda(S)$ is the space of λ - convergent series and X^{f} is f - (or sequential) dual of X, that is

$$
X^{f}=\left\{\left(f\left(\delta^{k}\right)\right): f \in X^{\prime}\right\}
$$

In this work, we give some definitions and theorems related with Λ - semiconservative FK spaces.

Keywords: FK spaces, β - dual, f - dual, semiconservative FK spaces.

References

[1] A. K. Snyder, A. Wilansky, Inclusion Theorems and Semiconservative FK Spaces, Rocky J. Math., 2 (1972) 595-603.
[2] H. G. İnce, Cesáro semiconservative FK spaces, Math Commun., 14 (1) (2009) 157-165.

[^125]
HOPF BIFURCATIONS OF A RATIO-DEPENDENT PREDATOR-PREY MODEL
 INVOLVING TWO DISCRETE MATURATION TIME DELAYS

Esra KARAOĞLU ${ }^{1}$, Hüseyin MERDAN ${ }^{2}$
${ }^{1,2}$ TOBB University of Economics and Technology, Departments of Mathematics, Ankara, Turkey

MSC 2010: 34K13, 34K18, 34K20

Abstract

In this talk, we give a detailed Hopf bifurcation analysis of a ratio-dependent predator-prey system involving two different discrete delays. By analyzing the characteristic equation associated with the model, its linear stability is investigated. Choosing delay terms as bifurcation parameters the existence of Hopf bifurcations is demonstrated. Furthermore, some of the bifurcation properties including direction, stability and period are mentioned. Finally, theoretical results are supported by some numerical simulations.

Keywords: Hopf bifurcation, delay differential equation, time delay, stability, periodic solutions, population dynamics.

References

[1] C. Celik, The stability and Hopf bifurcation for a predator-prey system with time delay, Chaos, Solitons \& Fractals 37 (2008) 87-99.
[2] C. Celik, Hopf bifurcation of a ratio-dependent predator-prey system with time delay, Chaos, Solitons \& Fractals 42 (2009) 1474-1484.
[3] N. D. Hassard, Y. H. Kazarinoff, Theory and Applications of Hopf Bifurcation, Cambridge University Press, 1981.
[4] E. Karaoglu, H. Merdan, Hopf bifurcation analysis for a ratio-dependent predator-prey system involving two delays, ANZIAM Journal 55 (2014) 214-231.

[^126]FRACTIONAL BOUNDARY VALUE PROBLEMS (BVPS) AND LYAPUNOV TYPE INEQUALITY
Zeynep KAYAR ${ }^{1}$, Yüzüncü Yul University, Van, Turkey

MSC 2000: 34B05, 34A08

Abstract

In this talk we prove a sufficient condition for the existence and uniqueness of solutions of linear fractional differential equations involving sequential derivative with Riemann Liouville fractional derivative by using Lyapunov type inequality. As far as we know, this approach is quite new and the connection between BVPs and Lyapunov type inequality obtained for these kind of fractional differential equations is given for the first time.

Keywords: Boundary value problems, sequential fractional derivative, Lyapunov type inequalities.

References

[1] R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fractional Calculus and Applied Analysis 16 (4) (2013) 978-984.
[2] Z. Kayar, A. Zafer, Impulsive Boundary Value Problems for Planar Hamiltonian Systems, Abstract and Applied Analysis 2013 (2013) 6 pages, doi:10.1155/2013/892475.

[^127]ON S_{1}, B_{1} NEAR RINGS

Barış KESLER ${ }^{1}$, Necat GÖRENTAŞ ${ }^{2}$
1,2 Yüzüncü Yıl University, Van, Turkey

MSC 2000: 16Y30

Abstract

A near-rings N is S_{1} near ring if for every $a \in N$, there exists $x \in N^{*}$ where $N^{*}=N-\{0\}$, such that $a N a=x a$. A right near-ring N is a B_{1} near-ring if for every $a \in N$, there exists $x \in N^{*}$, where $N^{*}=N-\{0\}$, such that $N a x=N x a$. We discuss some of their properties, obtain a characterisation and also a structure theorem.

Keywords: S_{1} near ring, B_{1} near-ring.

References

[1] G. Pilz, Near-rings, North Holland, Amsterdam, 1983.
[2] S. Silviya, R. Balakrishnan, T. Tamizh Chelvam, Strong S_{1} near-rings, International Journal of Algebra 4 (5) (2010) 685-691.
[3] R. Balakrishnan, S. Silviya, T. Tamizh Chelvam, B_{1} Near Rings, International Journal of Algebra 5 (14) (2011) 199-205.
[4] S. Silviya, R. Balakrishnan, T. Tamizh Chelvam, S_{1} near-rings, The Mathematics Education 32012.

[^128]
A GENERALIZED STATIC MEAN-VARIANCE PORTFOLIO OPTIMIZATION
 Reza KEYKHAEI ${ }^{1}$
 ${ }^{1}$ Faculty of Mathematics and Computer of Khansar, Isfahan, Iran

MSC 2000: 91G10, 90C20

Abstract

The foundations of Modern Portfolio Theory (MPT) was established in the 1950's by Markowitz [1, 2]. The aim of Markowitz's portfolio selection problem is to maximize the expected return of a portfolio and minimize its variance as the measure of risk. The only sources of uncertainty in the standard Mean-Variance portfolio optimization problem are the future price of assets. Martellini and Urosevic [3] extend the standard model to a single period model with an uncertain exit time. In this paper we generalize the the Markowitz's Mean-Variance model which covers the model of Martellini and Urosevic [3]. It is shown that under some general circumstances the set of optimal portfolios in the generalized model coincides with the standard Markowitz's model.

Keywords: Mean-Variance portfolio optimization, Optimal portfolio, Uncertain exit time

References

[1] H. Markowitz, Portfolio selection, Journal of finance 7 (1952) 77-91.
[2] H. Markowitz, Portfolio Selection: Efficient Diversification of Investment, John Wiley and Sons, New York, 1959.
[3] L. Martellini, B. Urosevic, Static mean variance analysis with uncertain time-horizon, Management Science 52 (6) (2005) 955-964.

[^129]
FRACTAL CALCULUS AND APPLICATIONS

Alireza KHALILI GOLMANKHANEH ${ }^{1}$
${ }^{1}$ Department Of Physics, Urmia Branch, Islamic Azad University, Urmia, Iran

MSC 2000: 26A33, 28A80, 28A25, 37Fxx

Abstract

Fractals are the shape of many objects in the nature. Fractal geometry was studied by Benoit Mandelbrot. Fractals are often sets with fractional dimension. Mathematician and researchers have tried to establish analysis on fractals using measure theory but it is not algorithmic. Riemann method as algorithmic method has been generalized to define derivative and integral on fractal sets and curves. Recently, the researcher try to apply these equation in physics and engineering as a new mathematical models to have better approximation for the real problems.

Keywords: Fractal calculus, fractional local calculus, fractional dimension, local fractional derivatives.

References

[1] J. Kigami, Analysis on Fractals, Cambrigde University Press, 2000.
[2] A. Parvate, S. Satin, A. D. Gangal, Calculus on Fractal Curves in R^{n} Fractals 19 (1) (2011) 15-27.
[3] A. K. Golmankhaneh, A. K. Golmankhaneh, D. Baleanu, About Maxwell's equations on fractal subsets of R^{3}. Cent. Eur. J. of Phys. 11 (6) (2013) 863-867.
[4] A. K. Golmankhaneh, V. Fazlollahi, D. Baleanu, Newtonian mechanics on fractals subset of real-line, Rom. Rep. Phys. 65 (2013) 84-93.
[5] A. K. Golmankhaneh, A. K. Golmankhaneh, D. Baleanu, Lagrangian and Hamiltonian mechanics on fractals subset of real-line, Int. J. Theo. Phys. 52 (11) (2013) 4210-4217.
[6] A. K. Golmankhaneh, A. K. Golmankhaneh, D. Baleanu, Schrodinger Equation on Fractals Curves Imbedding in R^{3}, Int. J. Theo. Phys. 54 (4) (2015) 1275-1282.

[^130]
RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION
 Hossein Jabbari KHAMNEI ${ }^{1}$, Roghaye MAKOUYI ${ }^{2}$
 ${ }^{1}$ Department of Statistics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
 ${ }^{2}$ Payame Noor University of Tabriz, Tabriz, Iran

MSC 2000: 62G30

Abstract

In this paper, a novel cumulative distribution function (c.d.f.) for beta-pareto $(B P)$ distribution, through two distinct practical frames, is developed. However, the presented models are obviously more pragmatic than the ones being demonstrated in previous works, in the case of extending the further relations. Then, using the exhibited c.d.f.s, certain recurrence relations for the single and product moments of the order statistics of a random sample of size n arising from beta-Pareto distribution are derived.

Keywords: Order statistics, single and product moments, recurrence relations, beta-Pareto.

[^131]
THE CONCEPT OF WEAK (ψ, α, β) CONTRACTIONS IN PARTIALLY ORDERED METRIC SPACES
 Mehmet KIR ${ }^{1}$, Hukmi KIZILTUNC ${ }^{2}$
 1,2 Department of Mathematics, Faculty of Science, Atatürk University, 25240, Erzurum-Turkey

MSC 2000: 41A65, 41A15, 47H09, 47H10, 54H25

Abstract

In this paper, we investigate generalized weak (ψ, α, β) contractions in partially ordered sets in order to establish extensions of Banach, Kannan and Chatterjea's xed point theorems in this setting.

Keywords: Fixed point, weak contractions, Kannan fixed point theorem, Chatterjea fixed point theorem, partially ordered set.

References

[1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integerales", Fundamenta Mathematicae, 3 (1922) 133-181.
[2] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am.Math. Soc. 132 (2004) 1435-1443.
[3] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations 22 (2005) 223-239.
[4] B. S. Choudhury, A. Kundu, (ψ, α, β)-weak contractions in partially ordered metric spaces. Appl Math Lett. 25 (2012) 6-10.
[5] J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72 (2010) 1188-1197.
[6] A. A. Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. 72 (2010) 2238-2242.
[7] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968) 71-76.
[8] S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci. 25 (1972) 727-730.
[9] S. Moradi, A. Davood, New extension of Kannan fixed point theorem on complete metric and generalized metric spaces, Int. Journal of Math. Analysis 52011 (47) 2313-1320.
[10] S. Moradi, A. Beiranvand, Fixed point of T_{F}-contractive single-valued mappings, Iranian Journal of Mathematical Sciences and Informatics, 5 (2010) 25-32.

[^132]ON GENERALIZED SOME INEQUALITIES FOR S - CONVEX FUNCTIONS

Mehmet Eyüp KİRİŞ ${ }^{1}$, Naki ÇALTINER ${ }^{2}$
${ }^{1}$ Afyon Kocatepe University,Science and Literature Faculty, Afyonkarahisar, TURKEY
${ }^{2}$ Afyon Kocatepe University, Institute of Science, Afyonkarahisar, TURKEY

MSC 2000: 26D07, 26D15

Abstract

In this paper, a general integral identity for differentiable mapping is derived. Then, we extend some estimates of the right hand and left hand side of a Hermite- Hadamard-Fejér type inequality for functions whose first derivatives absolute values are s convex. Some applications for special means of real numbers are also provided. The results presented here would provide extensions of those given in earlier works.

References

[1] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[2] L. Fejer, Über die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906) 369-390. (Hungarian).
[3] J. Pečarić, F. Proschan, Y.L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1991.
[4] M. Z. Sarikaya, S. Erden, On the weighted integral inequalities for convex function, Acta Universitatis Sapientiae Mathematica, 6 (2) (2014) 194-208.
[5] B-Y Xi, F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat. 42 (3) (2013) 243-257.
[6] S. Erden, M. Z. Sarıkayar, On generalized some inequalities for convex functions, RGMIA Research Report Collection 18 (2015) Article 56 pp 15.

[^133]
EXPONENTIAL CUBIC B-SPLINE BASED SOLUTIONS OF
 ADVECTION-DIFFUSION EQUATION

Alper KORKMAZ ${ }^{1}$, Hakan Kasım AKMAZ ${ }^{2}$
1,2 Çankırı Karatekin University, Çankırı, Turkey

Abstract

Differential quadrature method (DQM), which was first proposed by Bellman et al. [1], based on exponential cubic B-spline functions [2] has been set up to simulate the solutions of the Advection-Diffusion equation numerically. The reduction of the equation to an ordinary differential equation system (ODS) has been performed by the use of differential quadrature method. Then, the resultant ODS has been integrated in time by using Fehlberg fourth-fifth order Runge-Kutta method with degree four interpolant.

Two initial boundary value problems modeling the transport of the initial concentration along a channel and fade out of an initial pulse have been studied. Existence of analytical solutions for both problems provides to measure the error between exact and numerical solutions. In order to check the efficiency and validity of the method, the discrete maximum error norm has been computed for various space step sizes and time step sizes.

Keywords: Differential quadrature method, Exponential cubic B-spline, Advection-Diffusion equation.

References

[1] R. Bellman, B. G. Kashef, J. Casti, Differential quadrature, A tecnique for the rapid solution of nonlinear differential equations, Journal of Computational Physics 10 (1972) 40-52
[2] B. J. McCartin, Theory of exponential splines, Journal of Approximation Theory 66 (1991) 1-23.

[^134]
INEQUALITIES AND EXPONENTIAL DECAY OF CERTAIN DIFFERENTIAL EQUATIONS OF FIRST ORDER IN TIME VARYING DELAY

Erdal KORKMAZ ${ }^{1}$, Cemil TUNÇ ${ }^{2}$
${ }^{1}$ Mus Alparslan University, Mus, Turkey
${ }^{2}$ Yuzuncu Yil University, Van, Turkey

MSC 2000: 34D20, 34C11

Abstract

In this paper, we give sufficient conditions to guarantee exponential decay of solutions to zero of the time varying delay differential equation of first order. By using the LyapunovKrasovskii functional approach, we establish new results on the exponential decay of solutions, which include and improve some related results in the literature.

Keywords: Exponential stability, instability, Lyapunov functional, time delay.

References

[1] M. Adivar, Y. N. Raffoul, Inequalities and exponential decay in time varying delay differential equations, Math. Comput. Modelling 54 (2011) 794802.
[2] J. O. Alzabut, T. Abdeljawad, Exponential boundedness for solutions of linear impulsive differential equations with distributed delay, Int. J. Pure Appl. Math. 34 (2007) 203-217.
[3] T. A. Burton, Stability by fixed point theory or Liapunov theory: a comparison, Fixed Point Theory 4 (2003) 15-32.
[4] T. Wang, Inequalities and stability for a linear scalar functional differential equation, J. Math. Anal. Appl. 298 (2004) 33-44.
[5] J. Vanualailai, Some stability and boundedness criteria for a class of Volterra integro differential systems, Electron. J. Qual. Theory Differ. Equ. 12 (2002) 20-28.

[^135]
GENERALIZED FRACTIONAL MAXIMAL OPERATOR ON GENERALIZED LOCAL MORREY SPACES

Abdulhamit KUCUKASLAN ${ }^{1}$
${ }^{1}$ Department of Mathematics, Ankara University, Ankara, Turkey

MSC 2000: 42B20, 42B25, 42B35.

Abstract

In this talk, we study the continuity properties of the generalized fractional maximal operator M_{ρ} on the generalized local Morrey spaces $L M_{p, \varphi}^{\left\{x_{0}\right\}}$ and generalized Morrey spaces $M_{p, \varphi}$. We find conditions on the triple $\left(\varphi_{1}, \varphi_{2}, \rho\right)$ which ensure the Spanne type boundedness of M_{ρ} from one generalized local Morrey space $L M_{p, \varphi_{1}}^{\left\{x_{0}\right\}}$ to another $L M_{q, \varphi_{2}}^{\left\{x_{0}\right\}}, 1<p<q<\infty$ and from $L M_{1, \varphi_{1}}^{\left\{x_{0}\right\}}$ to the weak space $W L M_{q, \varphi_{2}}^{\left\{x_{0}\right\}}, 1<q<\infty$. We also find conditions on the pair (φ, ρ) which ensure the Adams type boundedness of M_{ρ} from one generalized Morrey space $M_{p, \varphi^{\frac{1}{p}}}$ to another $M_{q, \varphi^{\frac{1}{q}}}$ for $1<p<q<\infty$ and from $M_{1, \varphi}$ to $W M_{q, \varphi^{\frac{1}{q}}}$ for $1<q<\infty$. In all cases the conditions for the boundedness of M_{ρ} are given in terms of supremal-type integral inequalities on $\left(\varphi_{1}, \varphi_{2}, \rho\right)$ and (φ, ρ), which do not assume any assumption on monotonicity of $\varphi_{1}(x, r), \varphi_{2}(x, r)$ and $\varphi(x, r)$ in r.

Keywords: Generalized fractional maximal operator, generalized local Morrey spaces.

References

[1] V. S. Guliyev, A. F. Ismayilova, A. Kucukaslan, A. Serbetci, Generalized fractional integral operators on generalized local Morrey spaces, Journal of Function Spaces 2015 Article ID 594323, 8 pages.
[2] E. Nakai, On generalized fractional integrals, Taiwanese J. Math. 5 (2001) 587-602.
[3] Y. Sawano, S. Sugano, H. Tanaka, Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces, Trans. Amer. Math. Soc. 363 (12) (2011) 6481-6503.

[^136]
FOURTH ORDER APPROXIMATE METHOD FOR A TIME-DELAYED
 PSEUDO-PARABOLIC EQUATION

Mustafa KUDU ${ }^{1}$, Gabil M. AMIRALIYEV ${ }^{2}$

1,2 Erzincan University, Erzincan, Turkey

MSC 2000: 65M15, 65M20, 65L05, 65L70

Abstract

In this study we consider the one dimensional initial-boundary Sobolev problem with delay. For solving this problem numerically, we construct fourth order difference-differential scheme and obtain the error estimate for its solution. Further, for the time variable we use the appopriate Runge-Kutta method for the realization of our difference-differential problem. Numerical results supporting the theory are presented.

Keywords: Sobolev problem, delay difference scheme, error estimate.

[^137]
A NEW APPROACH TO ONE PARAMETER MOTION
 Hatice KUSAK SAMANCI ${ }^{1}$, Ali CALISKAN ${ }^{2}$

${ }^{1}$ Bitlis Eren University, Bitlis, Turkey
${ }^{2}$ Ege University, Izmir, Turkey

MSC 2000: 51J15, 51P05

Abstract

In our study, we study a different approach to one parameter motion. We think that while one of the planes is fixed, the other is deformation on the plane with shear motion. By this way, we will calculate the velocity connection and pole curve that occurred by the movement.

Keywords: Planar motion, pole curve, shear mapping.

References

[1] H. R. Muller, Kinematik Dersleri, Ankara Unv Basimevi, Cevirenler: E. Egesoy, M. Oruc, 1963.
[2] W. Blaschke, H. R. Muller, Ebene Kinematik, Oldenbourg, Munchen, 1956.
[3] O. Bottema, B. Roth., Theoretical Kinematics, Dover Pub., 1990.
[4] F. D. Rogers, J.A. Adams, Mathematical Elements For Computer Graphics McGrawHill, 1990.
[5] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, 1990.

[^138]
THE LEVEL CURVES AND SURFACES ON TIME SCALES
 Hatice KUSAK SAMANCI ${ }^{1}$, Ali CALISKAN ${ }^{2}$

${ }^{1}$ Bitlis Eren University, Bitlis, Turkey
${ }^{2}$ Ege University, Izmir, Turkey

MSC 2000: 51P05, 26E70;

Abstract

The general idea of this paper is to study level curves and surfaces by considering delta gradient functions on time scales. Aided by the definition of the delta gradient function, some geometric structures of level curves and surfaces are investigated.

Keywords: Time scales, level curves and surface, delta calculus.

References

[1] M. Bohner, G. Sh. Guseinov, Partial Differentiation On Time Scale, Dynamic Systems and Appl. 12 (2003) 351-379.
[2] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[3] H. Kusak, A.Caliskan, Aplication of Vector Field and Derivative Mapping on Time Scale, Hadronic Journal, 31 (6) (2008) 617-633.
[4] S. Pasali Atmaca, O. Akguller, Surfaces on Times scales and their metric properties, Advances in Difference Equations, 2013, 1702013.
[5] GS. Guseinov, E. Ozyilmaz, Tangent Lines of Generalized Regular Curves Parametrized by Time Scales, Turk.J.Math 25 (4) (2001) 553-562.

[^139]
THE DUAL-VARIABLE BERNSTEIN POLYNOMIALS

Hatice KUSAK SAMANCI ${ }^{1}$, Serpil KAYA ${ }^{2}$

1,2 Bitlis Eren University, Bitlis, Turkey

MSC 2000: 33E99, 26B12

Abstract

In this paper we introduce the concept of dual Bernstein polynomials and give its some analysis properties. In particular, we investigate some the limit and derivation of dualvariable Bernstein polinomials.

Keywords: Dual-variable Bernstein polnomials, limit, derivations.

References

[1] W.B.V. Kandasamy, F. Smarandache, Dual Numbers, Zip Publishing, Ohio, 2012.
[2] E. Study, Die Geometrie der Dynamen, Leibzig, 1903.
[3] G. Farin, Curves and Surfaces for Computer AidedGeometric Design:, A Practical Guide, 3rd Edition, Academic Press Inc., San Diego, 1993.
[4] G. R. Veldkamp, On the Use of Dual Numbers, Vectors and Matrices in Instantaneous Spatial Kinematics, Mechanisms and Machine Theory, 11 (1976) 141-156.
[5] B. O'Neill, Elementary Geometry Differential, New York and London, 1966.

[^140]
DISTANCE MEASURES FOR TEMPORAL INTUITIONISTIC FUZZY SETS

Fatih KUTLU ${ }^{1}$, Tunay BİLGİN ${ }^{2}$
1,2 Yüzüncü Yıl University, Van, Turkey

MSC 2000: 03E72, 46S40.

Abstract

In this study, we proposed distance measures for temporal intuitionistic fuzzy sets and investigated some properties of these distance measures. Also, we gave numerical examples for TIFS and its distance measures. We compared these distance measures defined with two and three parameters in terms of reliability and applicability.

Keywords: distance measure, temporal intuitionistic fuzzy set, intuitionistic fuzzy set.

References

[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
[2] K. T. Atanassov, Temporal intuitionistic fuzzy sets, Comptes Rendus de l'Academie Bulgare 7 (1991) 5-7.
[3] E. Szmidt, Distances and similarities in intuitionistic fuzzy sets, Springer, Switzerland, 2014.
[4] G. Huang, Y. Liu, X. Wang, New Distances between intuitionistic fuzzy sets, in Proceedings of fourth international conference on machine learning and cybernetics, Guangzhou (2005) 18-21.
[5] R. Parvathi, S. P. Geetha, A note on properties of temporal intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets 15 (1) (2009) 42-48.
[6] S. Yılmaz, G. Çuvalcıoğlu, On level operators for temporal intuitionistic fuzzy sets, 18th Int. Conf. on IFSs, Sofia, 10-11 May 2014, Notes on Intuitionistic Fuzzy Sets 20 (2) (2014) 6-15.

[^141]
ANOTHER DESCRIPTION ON THE UNITS OF INTEGRAL GROUP RING OF DICYCLIC GROUP OF ORDER 12

Ömer KÜSMÜŞs ${ }^{1}$
Department of Mathematics, Faculty of Science, Yüzüncü Yıl University, 65080, Van, TURKEY

MSC 2000: 16S34, 16U60

Abstract

There are many kind of open points with varying difficulty on characterization of unit group of the integral group ring of a given group. In this work, we explicitly give a description of unit group of integral group ring of the group $T_{12}=\left\langle a, b: a^{6}=1, b^{2}=a^{3}, b a b^{3}=a^{5}>\right.$.

Keywords: Unit problem, group ring, integral group ring, dicyclic group.

References

[1] M. M. Parmenter, Free Torsion-Free Normal Complements in Integral Group Rings, Communications in Algebra, 21 (1993) 3611-3617.
[2] E. Jespers, Free Normal Complements and The Unit Group of Integral Group Rings, Proc. Amer. Math. Soc. 122 (1994) 59-66.
[3] R. M. Low, On The Units of Integral Group Ring $\mathbb{Z}\left[G \times C_{p}\right]$, J. Algebra Appl. 7 (2008) 393-403.
[4] Y. Li, Units of $\mathbb{Z}\left[G \times C_{2}\right]$, Quaestiones Mathematicae 21 (1998) 201-218.
[5] C. P. Milies, S. K. Sehgal, An Introduction to Group Rings, Kluwer Acad. Publ., 2002.
[6] S. K. Sehgal, Units in Integral Group Rings, Longman Scientific \& Technical, 1993.

[^142]
A POSSIBLE KEY EXCHANGE PROTOCOL OVER GROUP RINGS
 Ömer KÜSMÜŞ ${ }^{1}$, Turgut HANOYMAK ${ }^{2}$
 ${ }^{1,2}$ Yuzuncu Yil University, Van, Turkey

MSC 2000: 94A60, 11T71, 14G50

Abstract

Key exchange protocols are such methods for parties who want to generate shared cryptographic keys that they can send secret messages to each other securely through an insecure channel. In this paper, we first construct a possible key exchange protocol over group rings by giving a concrete example and discuss the security of the system.

Keywords: group rings, units, cryptographic keys, security.

References

[1] J. Katz, Y. Lindell, Intoduction to Modern Cryptography, 2007.
[2] C. P. Milies, S. K. Sehgal, An Introduction to Group Rings, Kluwer Acad. Publ., 2002.
[3] B. Hurley, T. Hurley, Group Ring Cryptography, Int J. Pure and Appl. Math. 69 (2011) 67-86.
[4] N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, New York, 1994.

[^143]
OSCILLATION OF MIXED TYPE THIRD ORDER NONLINEAR DIFFERENTIAL EQUATION WITH PIECEWISE CONSTANT ARGUMENTS

Mehtap LAFCI ${ }^{1}$, Gizem S. ÖZTEPE ${ }^{2}$
1,2 Ankara University, Ankara, Türkiye

MSC 2000: 34K11

Abstract

In this paper, we study the oscillatory and asymptotic behavior of all solutions of the mixed type third order nonlinear differential equation with piecewise constant arguments.

Keywords: Third order differential equation, piecewise constant arguments, oscillation

\section*{References} [1] H. Liang, G. Wang, Oscillation criteria of certain third-order differential equation with piecewise constant argument, Journal of Applied Mathematics, 2012. [2] Y. Shao, H. Liang, Oscillation criteria of certain even order nonlinear differential equation with piecewise constant argument, Advances in Differential Equations and Control Processes 11 (2) (2013) 71.

[^144]
PULSED CHEMOTHERAPY MODEL

Abdelkader LAKMECHE ${ }^{1}$, Mohamed HELAL ${ }^{2}$,
Ahmed LAKMECHE ${ }^{3}$
${ }^{1,2,3}$ Laboratory of Biomathematics, Univ Sidi Bel Abbes, Sidi Bel Abbes, Algeria

Abstract

A pulsed chemotherapeutic treatment model is considered in this work. We prove existence of nontrivial periodic solutions by the mean of Lyapunov-Schmidt bifurcation method. In this model we consider the case of application of two drugs, the first one P with continuous effect, it appears in the differential equations, and the second one T with instantaneous effects expressed by impulse equations. The study of existence of bifurcated nontrivial periodic solutions is based on the competition parameter values.

Keywords: Chemotherapy, impulsive differential equations, stability.

[^145]
GENERAL NON-MARKOVIAN DYNAMICS OF OPEN QUANTUM SYSTEMS AND SPECTRAL DENSITY OF COMPLEX SYSTEMS USING EXCEPTIONAL ORTHOGONAL POLYNOMIALS

Mahmoud MAHDIAN ${ }^{1}$
${ }^{1}$ Faculty of Physics, Theoretical and astrophysics department, University of Tabriz, 51665-163 Tabriz, Iran

Abstract

According to Ref [1], we study a simple structure of mapping the environment of an open quantum system onto infinite chain representations with nearest neighbour interactions where the system only couples to the first element in the chain. In this paper we explore various properties of exceptional orthogonal polynomials and then use exceptional jacobi polynomials that it can be applied to three types of the bath spectral density sub-Ohmic, Ohmic, and super-Ohmic in open quantum systems.

Keywords: Exceptional orthogonal polynomials, spectral density, open quantum systems.

References

[1] A. W. Chin, A. Rivas, S. F. Huelga, M. B. Plenio, Exact mapping between systemreservoir quantum models and semi-infinite discrete chains using orthogonal polynomials, J. Math. Phys. 51 (2010) 092109.

[^146]
PHONON SPECTRAL DENSITY OF THE FMO LIGHT-HARVESTING COMPLEX WITH ASSOCIATED AND GENERALIZED JACOBI POLYNOMIALS

Mahmoud MAHDIAN ${ }^{1}$
${ }^{1}$ Faculty of Physics, Theoretical and astrophysics department, University of Tabriz, 51665-163 Tabriz, Iran

Abstract

Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum coherence between sites of Bacteriophylla molecules in protein environment. In this paper we consider phonon spectral density(PSD) of protein environment in FMO complex and provide a assessment of PSD using associated and generalized jacobi polynomials.

Keywords: associated and generalized jacobi polynomials, Phonon spectral density, FMO light-harvesting.

References

[1] A. Kell, X. Feng, M. Reppert, R. Jankowiak, On the shape of the Phonon spectral density in photosynthetic complexes, J. Phys. Chem. B 117 (24) (2013) 7317-7323.
[2] A. W. Chin, A. Rivas, S. F. Huelga, M. B. Plenio, Exact mapping between systemreservoir quantum models and semi-infinite discrete chains using orthogonal polynomials, J. Math. Phys. 51 (2010) 092109.

[^147]
BOUNDARY VALUE PROBLEM FOR A STURM-LIOUVILLE OPERATOR WITH PIECEWISE CONTINUOUS COEFFICIENT

Khanlar R. MAMEDOV ${ }^{1}$, F. Ayca CETİNKAYA ${ }^{2}$, Ozge AKCAY ${ }^{3}$
${ }^{1,2,3}$ Mersin University, Mersin, Turkey

MSC 2000: 34L10, 34L40

Abstract

In this paper, a self adjoint boundary value problem with a piecewise continuous coefficient on the positive half line $[0, \infty)$ is considered. The resolvent operator is constructed and the expansion formula with respect to eigenfunctions is obtained. The spectrum of the operator is discussed.

Keywords: Sturm-Liouville operator, resolvent operator, expansion formula.

References

[1] V. A. Marchenko, Sturm-Liouville operators and applications, AMS Chelsea Publishing, 2011.
[2] M. A. Naimark, Linear differential operators, Part II, Frederick Ungar Publishing, 1967.
[3] E. C. Titchmarsh, Eigenfunctions expansions, Oxford, 1962.

[^148]ON THE INVERSE PROBLEM FOR A CLASS OF DIRAC OPERATORS

Khanlar R. MAMEDOV ${ }^{1}$, Ozge AKCAY ${ }^{2}$, F. Ayca CETİNKAYA ${ }^{3}$
${ }^{1,2,3}$ Mersin University, Mersin, Turkey

MSC 2000: 34A55, 34L40.

Abstract

In this paper, we consider the direct and inverse problems for a class of Dirac operators with spectral parameter dependent in boundary condition. The asymptotic formulas of eigenvalues, eigenfunctions and normalizing numbers of this problem are investigated, spectral data is defined by the sets of eigenvalues and normalizing numbers. The expansion formula with respect to eigenfunctions is obtained. The main equation is derived. The uniqueness of inverse problem according to spectral data is proved.

Keywords: Dirac operator, main equation, inverse problem.

References

[1] V. A. Marchenko, Sturm-Liouville Operators and Applications, AMS Chelsea Publishing, Providence, Rhode Island, 2011.
[2] Kh. R. Mamedov, O. Akcay, Inverse eigenvalue problem for a class of Dirac operators with discontinuous coefficient, Boundary Value Problems 2014:110, doi:10.1186/1687-2770-2014-110

[^149]
HEAT SOURCE USING THE CONJUGATE GRADIENT METHOD WITH ADJOINT PROBLEM

Shahram MEHRY ${ }^{1}$, Saeid MOMENALI ${ }^{2}$
${ }^{1}$ Buali sina, Hamedan, Iran
${ }^{2}$ maqsudy, Hamedan, Iran

MSC 2000: 17B56.

Abstract

In this paper, we illustrate the solution of the inverse problem of estimating the temperaturedependent heat Source. Inverse problems of estimating temperature-dependent properties and have been generally solved by the conjugate gradient method with adjoint problem. One-dimensional formulation of heat conduction problem in a slab was used. An unknown heat source are estimated using conjugate gradient method. Finally, the results obtained from inverse method cover the exact values properly.

Keywords: The inverse heat conduction, heat source, conjugate gradient method, function estimation.

References

[1] R. Murty, Ramanujan graphs, Journal of the Ramanujan Math 18 (2003) 1-20.
[2] W. Klotz, T. Sander, Some properties of unitary Cayley graphs, The Electronic Journal of Combinatorics 14 (2007).

[^150]
A CLASSIFICATION OF RAMANUJAN COMPLEMENTS OF UNITARY CAYLEY GRAPHS

Shahram MEHRY ${ }^{1}$, Reza SAFAKISH ${ }^{2}$

${ }^{1,2}$ Buali sina, Hamedan, Iran

MSC 2000: 05C50

Abstract

The unitary Cayley graph on n vertices, X_{n}, has vertex set \mathbb{Z}_{n}, and two vertices a and b are connected by an edge if and only if they differ by a multiplicative unit modulo n, i.e. $\operatorname{gcd}(a b, n)=1$. A k-regular graph X is Ramanujan if and only if $\lambda(X) \leq 2 \sqrt{k-1}$ where $\lambda(X)$ is the second largest absolute value of the eigenvalues of the adjacency matrix of X. We obtain a complete characterization of the cases in which the complements of unitary Cayley graph \bar{X}_{n} is a Ramanujan graph.

Keywords: Graph, Cayley graph, Ramanujan graph.

References

[1] R. Murty, Ramanujan graphs, Journal of the Ramanujan Math, 18 (2003) 1-20.
[2] W. Klotz, T. Sander, Some properties of unitary Cayley graphs, The Electronic Journal of Combinatorics 14 (2007) .

[^151]THE PROBLEM OF CLOTHSELLER'S SON

Shahram MEHRY ${ }^{1}$, Reza SAFAKISH ${ }^{2}$, Sadegh SADEGHI ${ }^{3}$

1,2,3 Buali sina, Hamedan, Iran

MSC 2000: 05C50

Abstract

When wrapped cloth area is intended to calculate without unfolding, how can it be done? This question which, I call, is the problem of clothseller's son is discussed in details in this paper.

Keywords: Wrapped, curvature length, clothseller.

[^152]
NILPOTENT LIE ALGEBRAS AND BETTI NUMBER BEHAVIOR

Shahram MEHRY, ${ }^{1}$ Reza SAFAKISH, ${ }^{2}$ Amir SAEIDI ${ }^{3}$
${ }^{1,2,3}$ Buali sina, Hamedan, Iran

MSC 2000: 17B56.

Abstract

Three general problems concerning the cohomology of a (real or complex) nilpotent Lie algebra: first of all, determining the Betti numbers exactly; second, determining the distribution these Betti numbers follow; and finally, estimating the size of the individual cohomology spaces or the total cohomology space. We show how spectral sequence arguments can contribute to a solution in a concrete setting. For one-dimensional extensions of a Heisenberg algebra, we determine the Betti numbers exactly. We then show that some families in this class have a M-shaped Betti number distribution, and construct the first examples with an even more exotic Betti number distribution. Finally, we discuss the construction of (co)homology classes for split metabelian Lie algebras, thus proving the Toral Rank Conjecture for this class of algebras.

Keywords: Lie algebra, cohomology, Betti numbers.

References

[1] R. Murty, Ramanujan graphs, Journal of the Ramanujan Math, 18 (2003) 1-20.
[2] W. Klotz, T. Sander, Some properties of unitary Cayley graphs,The Electronic Journal of Combinatorics 14 (2007).

[^153]
MIRRORS ON HURWITZ SURFACES

Adnan MELEKOĞLU ${ }^{1}$
${ }^{1}$ Adnan Menderes University, Aydin, Turkey

MSC 2000: 05C10, 30F10

Abstract

A compact Riemann surface X is called symmetric if it admits an anti-conformal involution $\sigma: X \rightarrow X$, which is called a symmetry of X. The fixed-point set of σ consists of disjoint simple closed geodesics on X, which are called the mirrors of σ. Let $g>1$ be a positive integer and $\mu(g)$ be the maximum number of conformal automorphisms of all Riemann surfaces of genus g. Then it is known that $\mu(g) \leq 84(g-1)$. A Riemann surface of genus g admitting $84(g-1)$ conformal automorphisms is called a Hurwitz surface. In this study we find an upper bound for the number of mirrors on Hurwitz surfaces.

Keywords: Riemann surface, Hurwitz surface, symmetry, mirror.

References

[1] R. Fricke, Ueber eine einfache Gruppe von 504 Operationen, Math. Ann. 52 (1899) 321-339.
[2] A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1892) 403-442.
[3] F. Klein, Ueber die Transformation siebenter Ordnung der elliptischen Funktionen, Math. Ann. 14 (1878) 428-471.
[4] A. M. Macbeath, On a curve of genus 7, Proc. London Math. Soc. 15 (3) (1965) 527-542.
[5] A. Melekoğlu, D. Singerman, The structure of mirrors on Platonic surfaces, ArXiv:1501.04744[math.CO]

[^154]ON THE P-ADIC LOG BETA FUNCTION

Hamza MENKEN ${ }^{1}$, Özge ÇOLAKOĞLU ${ }^{2}$

${ }^{1,2}$ Mersin University, Mersin, Turkey

MSC 2000: 11S80, 33D05

Abstract

Let p be a fixed prime number. By $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} we denote the ring of p-adic integers, the field of p-adic numbers and the completion of the algebraic closure of \mathbb{Q}_{p}, respectively. J. Diamond (1977) gave a definition for the p-adic \log gamma function $G_{p}: \mathbb{C}_{p} \backslash \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}$ by the Volkenborn integral $$
G_{p}(x):=\int_{\mathbb{Z}_{p}}\left((x+u) \log _{p}(x+u)-(x+u)\right) d u
$$ where $\log _{p}$ is the p-adic $\operatorname{logarithm}$ function. In the present work we consider the p-adic log beta function and we obtain some its properties.

Keywords: p-adic number, p-adic logarithm function, p-adic log gamma function, p-adic \log beta function.

\section*{References} [1] J. Diamond, The p-adic log gamma function and p-adic Euler constants, Trans. Amer. Math. Soc. 233 (1977) 321-337. [2] K. Iwasawa, Lectures on p-Adic L-Functions Ann. of Math. Stud., vol. 74 Princeton Univ. Press, Princeton, NJ, 1972. [3] A. M. Robert, A Course in p-adic Analysis, Graduate Texts in Mathematics 198, Springer-Verlag New York, 2000.

[^155]
A MODIFIED GALERKIN METHOD FOR SOLVING INTEGRAL EQUATIONS OF THE SECOND KIND

Abdelaziz MENNOUNI ${ }^{1}$
Department of Mathematics, Faculty of Science, University of Batna, Algeria

MSC 2000: 45E05. 45J05

Abstract

A Some important classes of integral equations of the second kind is considered. The problem is investigated by using a modified Galerkin method. We prove the existence of the solution for the approximate equation, and we perform the error analysis.

Keywords: Galerkin method, projection methods, singular integral equations.

References

[1] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge university press, 1997.
[2] R. Kress, Linear Integral Equations, Springer-Verlag, Göttingen, 1998.
[3] A. Mennouni, A projection method for solving Cauchy singular integro-differential equations, Applied Mathematics Letters 25 (2012) 986-989.
[4] A. Mennouni, Airfoil polynomials for solving integro-differential equations with logarithmic kernel, Applied Mathematics and Computation 218 (2012) 11947-11951.
[5] A. Mennouni, Two Projection Methods for Skew-Hermitian Operator Equations, Mathematical and Computer Modelling 55 (2012) 1649-1654.
[6] N. I. Mushkelishvili, Singular Integral Equations, Noordhoff, Groningen, 1953.

[^156]OPTIMAL PORTFOLIO STRATEGIES UNDER VARIOUS RISK MEASURES

Alev MERAL ${ }^{1}$, Ömür UĞUR ${ }^{2}$
${ }^{1}$ Dicle University, Diyarbakir, Turkey
${ }^{2}$ Middle East Technical University, Ankara, Turkey

Abstract

In this research, we search for optimal portfolio strategies in the presence of various risk measures that are common in financial applications. Particularly, we deal with the static optimization problem with respect to Value at Risk, Expected Loss and Expected Utility Loss measures. To do so, under the Black-Scholes model for the financial market, Martingale method is applied to give closed-form solutions for the optimal terminal wealths, then via representation problem the optimal portfolio strategies are achieved. We compare the performances of these measures on the terminal wealths and optimal strategies of such constrained investors. Finally, we present some numerical results to compare them in several respects to give light to further studies.

Keywords: Portfolio optimization, value at risk, expected loss, expected utility loss, BlackScholes model, Martingale method, risk constraints.

References

[1] S. Basak, A. Shapiro, Value-at-Risk-based risk management: Optimal policies and asset prices, The Review of Financial Studies, 14 (2) (2001) 371-405.
[2] A. Gabih, M. Richter, R. Wunderlich: Optimal portfolio strategies with bounded Expected Utility Loss, Tagungsband zum Workshop "Stochastische Analysis", University of Technology Chemnitz, Faculty of Mathematics, ISSN 1612-5665 (2005) 45-83.
[3] I. Karatzas, S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998.

[^157]
GLOBAL STABILITY ANALYSIS OF A GENERAL SCALAR DIFFERENCE EQUATION

Hüseyin MERDAN, ${ }^{1}$ Özlem AK GÜMÜŞ, ${ }^{2}$ Gamzegül AYDIN ${ }^{3}$
${ }^{1,3}$ TOBB University of Economics and Technology, Ankara, Turkey
${ }^{2}$ Adiyaman University, Adiyaman, Turkey

MSC 2000: 39A10,39A30

Abstract

We consider a general first order scalar difference equation with and without Allee effect. The model without Allee effect represents asexual reproduction of a species while the model including Allee effect represents sexual reproduction. We analyze global stabilities of both models analytically and compare the results obtained. Numerical simulations are included to support the analytical results. We conclude that Allee effect decreases global stability of a nonnegative fixed point of the model. This result is different from the local stability behavior of the same fixed point of the model.

Keywords: Allee effect, discrete-time models, global stability.

References

[1] W. C. Allee, Animal Aggretions: A Study in General Sociology, University of Chicago Press, Chicago, 1931.
[2] H. Merdan, O. Ak Gumus, Stability analysis of a general discrete-time population model involving delay and Allee effects, Applied Math and Comp. 219 (2012) 1821-1832.
[3] O. Ak Gumus, Global and local stability analysis in a nonlinear discrete-time population model, Advances in Difference Equations 299 (2014) 1-9.
[4] H. Merdan, Stability analysis of a Lotka-Volterra type predator-prey system involving Allee effects, ANZIAM J. 52 (2010) 139-145.
[5] I. Scheuring, Allee effect increases the dynamical stability of populations, J. Theor Biol. 199 (1999) 407-414.

[^158]
THE R-WHITNEY NUMBERS LIKED TO GENERALIZED BERNOULLI
 POLYNOMIALS
 Tiachachat MERIEM ${ }^{1}$, Miloud MIHOUBI ${ }^{2}$
 ${ }^{1,2}$ RECITS Laboratory, Faculty of Mathematics, USTHB

Abstract

The main object of this paper is to give an application of the r-Whitney numbers on the values at rational arguments of the high order Bernoulli and Euler polynomials. The obtained formulas generalize the known expressions of the Bernoulli numbers of both kinds.

References

[1] H. Belbachir, I. E. Bousbaa, Translated Whitney and r-Whitney numbers: A combinatorial approach, J. Integer Seq. 16 (2013) Article 13.8.6.
[2] M. Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996) 13-33.
[3] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984) 241-259.
[4] G.-S. Cheon, J.-H. Jung, The r-Whitney numbers of Dowling lattices, Discrete Math. 312 (15) (2012) 2337-2348.
[5] M. Merca, A note on the r-Whitney numbers of Dowling lattices, C. R. Acad. Sci. Paris, Ser. I 351 (2013) 649-655.
[6] M. Mihoubi, M. Tiachachat, The values of the high order Bernoulli polynomials at integers and the r-Stirling numbers, available at http://arxiv.org/.

[^159]
REVISIT SCHEME OF ADOMIAN DECOMPOSITION METHOD FOR NON HOMOGENEOUS HEAT EQUATION

Nadia Amel MESSAOUDI ${ }^{1}$, Salah MANSEUR ${ }^{2}$, Mustapha BLIDIA ${ }^{3}$
${ }^{1,2,3}$ Department of mathematics , Lamda Ro laboratory. Scientics faculty. University of Blida, B. P 270 Soumaa Blida, Algeries

Abstract

In this paper, a new revisit scheme of the Adomian decomposition method is proposed to solve the homogenous and non-homogenous initial and boundary value problem of heat equation, leading to the same solution as the one obtained by the separation of variables method. A numerical example is thus given to prove that the presented method is reliable, efficace and can be employed to derive successfullt analytical approximate solutions of heat equation. Keywords: Heat equation, adomian decomposition method, separation of

 variables method.[^160]
F-CONTRACTIONS ON METRIC SPACES AND SOME RELATED FIXED POINT RESULTS

Gülhan MINAK ${ }^{1}$, Ishak ALTUN ${ }^{2}$
1,2 Kırıkkale University, Faculty of Sciences and Arts, Department of Mathematics, Kırıkkale, Turkey

MSC 2010: $54 \mathrm{H} 25,47 \mathrm{H} 10$

Abstract

In this work, we present recent develoments about F-contractions on a metric space. Then, considering F-contractions, we give some fixed point theorem for singlevalued and multivalued mappings on complete metric spaces.

Keywords: Fixed point, single-valued mapping, multivalued mappings, F-contraction.

References

[1] I. Altun, G. Mınak, H. Dag, Multivalued F-contractions on complete metric space, Journal of Nonlinear and Convex Analysis, in press.
[2] M. Olgun, G. Mınak, I. Altun, A new approach to Mizoguchi-Takahashi type fixed point theorem, J. Nonlinear and Convex Anal., in press.
[3] G. Mınak, A. Helvacı I. Altun, Ciric type generalized F-contractions on complete metric spaces and fixed point results, Filomat 28 (6) (2014) 1143-1151.
[4] I. Altun, Multivalued F-contractions and some fixed point results, Proceeding of the International Summer Workshop in Applied Topology ISWAT 2014, 15-36.
[5] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (94) (2012) 6 pp.

[^161]
THE SKEW INVERSE SEMIGROUP RING

Sahar MOAYERI RAHNI ${ }^{1}$
${ }^{1}$ Shiraz University, Shiraz, Iran

MSC 2000: 20M18, 16W22

Abstract

For a given partial action π of an inverse semigroup S on an associative algebra \mathcal{A}, we introduce the notation of skew inverse semigroup ring $\mathcal{A} \rtimes_{\pi} S$, and prove that this construction is associative algebra under some conditions on a partial action π. At the end we define the concept of strongly associative algebra and we show that a semiprime algebra A is strongly associative. We refer to the treatises $[1,2,3]$ for a thorough treatment of the concepts of partial actions, actions, and crossed products. Let $\pi=\left(\left\{\pi_{s}\right\}_{s \in S},\left\{X_{s}\right\}_{s \in S}\right)$ be a partial action of S on A, and let $L=\left\{\sum_{s \in S} a_{s} \delta_{s}: a_{s} \in X_{s}\right\}$ the set of all formal finite sums, with the following multiplication:

$$
\left(a_{s} \delta_{s}\right) \cdot\left(b_{t} \delta_{t}\right)=\pi_{s}\left(\pi_{s^{*}}\left(a_{s}\right) b_{t}\right) \delta_{s t}
$$

With the aid of multiplier algebra, instead of using approximate identity of C^{*}-algebra as in [3], we will prove that if for each $s \in S$ the ideal X_{s} is (L, R)-associative then L is associative, so, it is an algebra. Let I be the ideal generated by the set $\left\{a \delta_{r}-a \delta_{t}\right.$: where $r \leq t$ and $a \in$ $\left.X_{r}\right\}$, then $A \rtimes_{\pi} S$ is the quotient algebra $\frac{L}{I}$, hence, it is an associative algebra.

Keywords: Partial action, inverse semigroup, multiplier algebra.

References

[1] A. Buss, R. Exel, Inverse Semigroup Expansions and Their Actions on C^{*}-Algebras, Illinois. Math. 56 (4) (2012) 1185-1212.
[2] R. Exel, Inverse semigroups and Combinatorial C^{*}-Algebra, Bull. Braz. Math. Soc. (N.S.) 39 (2008) 191-313.
[3] N. Sieben, C^{*}-Crossed Products by Partial Actions and Actions of Inverse semigroups, J. Austral. Math. Soc. (Series A) 63 (1997) 32-46.

[^162]WHEN THE UNIVERSAL INVERSE SEMIGROUP $P R(S)$ OF INVERSE SEMIGROUP S IS E^{*}-UNITARY

Sahar MOAYERI RAHNI ${ }^{1}$
${ }^{1}$ Shiraz University, Shiraz, Iran

MSC 2000: 20M18, 16W22

Abstract

In this work, we will consider the notion of partial actions of groups and partial actions of inverse semigroups on sets, for more details about these concepts the reader is referred to $[1,3]$. At first, for a finite group G we will prove that if the order of G is greater than one then G admits a partial action which is not a homomorphism. We will prove our claim by using the universal inverse semigroup $S(G)$ associated to a group G, more information can be found in [3]. Also, we will consider the universal inverse semigroup $\operatorname{Pr}(S)$ that A. Buss and R. Exel in [3] associated to an inverse semigroup S. Recall that an inverse semigroup S is E^{*}-unitary if for $s \in S$ and $e \in E(S)$, $e \leq s$ implies that $s \in E(S)$. We will show that an inverse semigroup S is E^{*}-unitary if and only if $E(S)$, the set of all idempotents, is a filter. Our main Theorem for an inverse semigroup S is that:

Theorem. An inverse semigroup S is E^{*}-unitary if and only if $\operatorname{Pr}(S)$ is E^{*}-unitary inverse semigroup.

Keywords: Partial action, universal inverse semigroup, E^{*}-unitary inverse semigroup.

References

[1] A. Buss, R. Exel, Inverse Semigroup Expansions and Their Actions on C^{*}-Algebras, Illinois. Math. 56 (4) (2012) 1185-1212.
[2] R. Exel, Inverse semigroups and Combinatorial C^{*}-Algebra, Bull. Braz. Math. Soc. (N.S.) 39 (2008) 191-313.
[3] R. Exel, Partial actions of groups and actions of inverse semigroups, J. Proc. Amer. Math. Soc. 126 (1998) 3481-3494.

[^163]
GENERALIZED NEWTON TRANSFORMATION AND ITS APPLICATION TO TRANSVERSAL SUBMANIFOLDS

Abeidallah MOHAMMED ${ }^{1}$
${ }^{1}$ Ecole préparatoire en sciences économiques, commerciales et sciences de gestion, Département de mathématiques, Tlemcen-Algérie

Abstract

In this paper, we study some properties of generalized Newton transformation T_{U} of a family of endomorphisms, this quantities is a generalisation of the natural Neton transformation. As application we establish a relation between the transversality of two submanifolds and ellipticity of T_{U}. The second part of our work is to determine a flux formula wich can help us to minimise the higher order mean curvature of a submanifold by the geometry of its boundary.

Keywords: Generalized Newton transformation, transversal submanifolds, Neton transformation.

References

[1] M. P. do Carmo, Riemannian Geometry, Birkhauser, 1979 first edition.
[2] K. Andrzejeweski, The Newton transformation and new integral formulae for foliated manifolds, Ann Glob Anal Geom 37 (2010) 103-111.
[3] L. J. Alias, J. H. S. De Lira, J. M. Malacarne, Constant higher order mean curvature hypersurfaces in Riemannian spaces, J. Inst. Math. Jussieu 5 (4) (2006) 527-562.
[4] W. Kozlowski, Generalized Newton transformation and its applications to extrinsic geometry, preprint.

[^164]
GENERALIZED MARKOV PROCESSES

Belaidi MOHAMED ${ }^{1}$

${ }^{1}$ Sciences et Technologies, University Center Elbayadh, Elbayadh, Algeria

Abstract

Generalized Markov processes are long memory Markov processes, they can be , among others, solution of stochastic differential equation delay. Statistical techniques of these processes must be developed to describe these processes in order to apply forecasting techniques.

Keywords: Markov processes, stochastic differential equation, statistical techniques.

References

[1] D. Bosq, D. Blanke, Inference and Prediction in Large Dimensions, John Wiley \& Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2007.

[^165]
EULER-LAGRANGE AND HAMILTON-JACOBI EQUATIONS ON A RIEMANN

ALMOST CONTACT MODEL OF A CARTAN SPACE OF ORDER K

Ahmet MOLLAOĞULLARI ${ }^{1}$, Mehmet TEKKOYUN ${ }^{2}$
${ }^{1,2}$ Çanakkale Onsekiz Mart University, Çanakkale, Turkey

MSC 2000: 70H03, 70H05,70G45

Abstract

Lagrangians and Hamiltonians have many applications in various fields, as: Mathematics, Physics, Optimal Control Theory, Dynamic Systems, Economy, Biology, etc.[1]. Since one can construct geometries of higher-order Lagrange space and higher-order Hamilton space over the manifolds $T^{k} M$ and $T^{* k} M$ of a manifold M respectively, manifold theory has an important role to describe "Euler-Lagrange and Hamilton (-Jacobi) equations" and also "Lagrangian and Hamiltonian mechanics" of a given manifold [2],[3].

Therefore, in this paper, we obtain Euler-Lagrange and Hamilton-Jacobi equations on a Riemann Almost Contact Model of a Cartan Space of order k. In the conclusion we discuss some results about related mechanical system.

Keywords: Cartan manifold, mechanical systems, Lagrange and Hamilton equations.

References

[1] R. Miron, The Geometry of Higher-Order Hamilton Spaces, 2002.
[2] M. Tekkoyun, A. Görgülü, Higher-Order Complex Lagrangian and Hamiltonian Mechanics Systems, Physics Letters A, 357 (2006) 261-269.
[3] M. de Leon, P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics 1989.

[^166]
EXISTENCE AND REGULARITY OF THE SOLUTION FOR NONLINEAR AND OBLIQUE PROBLEMS WITH FRICTION

Dilmi MOURAD ${ }^{1}$
${ }^{1}$ Departement of Mathematics, M'sila University, M'sila, Algeria

MSC 2000: 35B40, 35C20

Abstract

In this paper we consider the nonlinear boundary value problem governed by a stationary perturbed elasticity system with mixed boundary conditions (Tresca-Dirichlet- maximal monotone graph), in a smooth domain. We first establish the existence result and some estimates for weak solutions of its approached problem. A specific regularity of the displacement field is obtained. The proof is based on the approach of maximal monotone graph by its Yosida regularization and the contraction method.

Keywords: Regularity, elasticity, maximal monotone graph.

References

[1] H. Brezis, Monotonicity methods in H-spaces and some applications to non linear partial differential equations, Academic Press, 1971.
[2] H. Benseridi, M. Dilmi, Nonlinear and oblique boundary value problems for the Stokes equations, Electronic Journal of Qualitative Theory of Differential Equations 82 (2011) 1-8.
[3] M. Dilmi, H. Benseridi, Problème de contact sans frottement-Dirichlet pour les équations de Laplace et de Lamé dans un polygone, Anal. Univ. Oradea, fasc. Math, XIV (2007) 221-236.

[^167]
ON NILPOTENT ELEMENTS IN ORE EXTENSIONS

Ahmad MOUSSAVI ${ }^{1}$, Alireza MOUSSAVI ${ }^{2}$
${ }^{1}$ Tarbiat Modares University, Tehran, Iran
${ }^{2}$ Amirkabir University of Technology, Tehran, Iran

MSC 2000: 16S36

Abstract

We introduce the notion of nil- (α, δ)-compatible rings which is a generalization of reduced rings and (α, δ)-compatible rings. In this paper we are concerned with the set of nilpotent elements in the ring of skew polynomial in the more general situation that, when R is semicommutative and has (α, δ)-condition, then we show that the following generalization of equality for polynomial rings holds $\operatorname{nil}(R)[x ; \alpha, \delta]=\operatorname{nil}(R[x ; \alpha, \delta])$.

Keywords: Compatible rings, skew polynomial rings.

References

[1] A. Amitsur, Algebras over infinite fields, Proc. Amer. Math. Soc 7 (1956) 35-48.
[2] R. Antoine, Nilpotent elements and Armendariz rings, J.algebra 319 (2008) 3128-3140.
[3] E. Hashemi, Moussavi, Polynomial extensions of quasi-Baer rings, Acta. Math. Hungar. 151 (2000) 215-226.
[4] Z. Liu, R. Zhao, On weak Armendariz rings, Comm. Algebra 34 (2006) 2607-2616.
[5] H. K. Kim, N. K. Kim, M. S. Jeong, Y. Lee, S. J. Ryu, D. E. Yeo, On conditions provided by nilradicals, J. Korean Math. Soc. 46 (5) (2009) 1027-1040.
[6] J. Krempa, Some examples of reduced, Algebra Colloq. 3 (4) (1996) 289-300.
[7] M.B. Rege, S. Chawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci 73 (1997) 14-17.

[^168]
MIXING TYPE THEOREM FOR POWER BOUNDED MEASURES

Heybetkulu MUSTAFAYEV ${ }^{1}$, Cesim TEMEL ${ }^{2}$
${ }^{1}$ Yuzuncu Yil University, Van TURKEY
${ }^{2}$ Yuzuncu Yil University, Van TURKEY

MSC 2000: 47B07; 30H05

Abstract

Let G be a locally compact abelian group with dual group Γ. By $M(G)$ and $L^{1}(G)$ respectively, we denote the convolution measure algebra and the group algebra of G. For $n \in \mathbb{N}$, by μ^{n} we denote n-times convolution power of $\mu \in M(G)$. A measure $\mu \in M(G)$ which satisfies $\sup _{n \in \mathbb{N}}\left\|\mu^{n}\right\|<\infty$ is called power bounded. For a power bounded measure $\mu \in M(G)$, we have $|\widehat{\mu}(\gamma)| \leq 1$ for all $\gamma \in \Gamma$, where $\widehat{\mu}$ is the Fourier-Stieltjes transform of μ. We put $$
\mathcal{E}_{\mu}:=\{\mu \in \Gamma:|\widehat{\mu}(\gamma)|=1\} .
$$

The main result is as follows. Theorem. If $\mu \in M(G)$ is power bounded, then $$
\lim _{n \rightarrow \infty}\left\|\mu^{n+1} * f-\mu^{n} * f\right\|=0, \forall f \in L^{1}(G)
$$ if and only if $\widehat{\mu}\left(\mathcal{E}_{\mu}\right)=\{1\}$.

Keywords: Group algebra, measure algebra, weak mixing.

References

[1] E. Kaniuth, A. Lau,, A. Ülger, Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras, J. London Math. Soc. 81 (2010) 255-275.
[2] Y. Katznelson, L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986) 313-328.
[3] R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971.
[4] H. Mustafayev, Mixing type theorems for one-parameter semigroups of operators, Semigroup Forum (in press), 2015, DOI 101007/s00233-015-9707-3.

[^169]
HEAT TRANSFER IN HYDRO MAGNETIC OSCILLATORY FLOW PAST AN
 IMPULSIVELY STARTED POROUS LIMITING SURFACE WITH HEAT
 GENERATION/ABSORPTION

Akindele Michael OKEDOYE ${ }^{1}$
Federal University of Petroleum Resources, Effurun, Nigeria

MSC 2000: 76W05

Abstract

This work report the analytical solution of two dimensional hydromagnetic oscillatory flow of a viscous, incompressible and electrically conducting fluid, past a porous, infinite limiting surface with variable suction. The fluid limiting surface is moved impulsively, with a constant velocity, either in the direction of the flow or in the opposite direction, in the presence of a transverse magnetic field. Solutions were obtained for velocity, induced magnetic and temperature fields, and expression were obtained for skin friction, electric current density and rate of heat transfer at the limiting surface. Variations of the emerging flow condition were presented graphically and discussed.

Keywords: Hydromagnetic, oscillations, limiting surface, magnetic field, suction, current density.

References

[1] A. M. Okedoye, Second Law Analysis of Mass Transfer Effect on Unsteady MHD Flow Past an Accelerated Vertical Porous Plate, International Journal of Pure and Applied Sciences and Technology 24 (2) (2014) 29-38.
[2] G. A. Georgantopoulos, C. N. Douskos, G. L. Vassios, G. A. Katsiariso, The Velocity field in Hydromagnectic Oscillatory flow past an Impulsively Started Porous Limiting Surface with Variable Suction, Astrophysics and Space Science 63 (1979) 419-438, 0004-640X/79/0632-0419503.00.

[^170]
GRAPHICAL METHOD FOR INTERVAL VALUED BIMATRIX GAMES

Aykut OR ${ }^{1}$, Yakup H. HACI ${ }^{2}$
${ }^{1,2}$ Canakkale Onsekiz Mart University, Canakkale, TURKEY

MSC 2000: 65G30, 91A05,

Abstract

We consider a two player non zero strategic (bimatrix) game, in which the players payoffs are given by two interval matrices of the same dimension for player I and player $I I$.Interval valued bimatrix whose entries are closed intervals as follows; $$
(\tilde{A}, \tilde{B})=\left[\begin{array}{ccc} \left(\left[a_{11 L}, a_{11 R}\right],\left[b_{11 L}, b_{11 R}\right]\right) & \cdots & \left(\left[a_{1 n L}, a_{1 n R}\right],\left[b_{1 n L}, b_{1 n R}\right]\right) \\ \vdots & \vdots & \vdots \\ \left(\left[a_{m 1 L}, a_{m 1 R}\right],\left[b_{m 1 L}, b_{m 1 R}\right]\right) & \cdots & \left(\left[a_{m n L}, a_{m n R}\right],\left[b_{m n L}, b_{m n R}\right]\right) \end{array}\right]
$$

In this work, we have adapted graphical method for interval valued bi matrix games. In addition the interval valued bi matrix games 2×2 Nash equilibrium is attained by graphical method.

Keywords: Bimatrix games, Nash equilibria, interval matrix.

References

[1] R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, USA, 1979.
[2] E. N. Barron, Game Theory an Introduction, John Wiley\&Sons, Inc., 2008.
[3] D. W. Collins, C. Hu, Studying Interval Valued Matrix Games with Fuzzy Logic, Soft Computing, 12 (2) (2008)147-155.
[4] J. Nash, Non-Cooperative Games, Annals of Mathematics, 54 (2) (1951).
[5] P. K. Nayak, M. Pal, Solution of Rectangular Interval Games Using Graphical Method, Tamsui Oxf. J. of Math. Sci. 22 (1) (2006) 95-115. .
[6] H. Akyar, E. Akyar, A Graphical Method for Solving Interval Matrix Games, Abstract and App. Analy., doi:10.1155/2011/260490.

[^171]
FORECASTING BY ADAPTIVE DOUBLE EXPONENTIAL SMOOTHING

Sameera Abdulsalam OTHMAN ${ }^{1}$

${ }^{1}$ Department of Mathematic, College of Basic Education, University of Dohuk, Duhok, Iraq

Abstract

In this paper we discuss about and where are estimated through some process. We estimating the constant of exponential smoothing using adaptive double exponential smoothing method allow a smoothing parameter to change over time, in order to adapt to changes in the characterizes of the time series, we finding a new exponential smoothing by fixing value to α and β to check a goodness of fit we use mean square error , AIC, x^{2} to test the best model and we compare the method with appropriate ARMA model and forecasting it.

Keywords: Forecast, constant, adaptive, normality, mean square error.

[^172]
LAPLACE EQUATION WITH TRIPLE-INVERSE SQUARE POTENTIALS ON EUCLIDEAN SPACE AND APPLICATIONS

Mohamed Vall OULD MOUSTAPHA ${ }^{1}$

${ }^{1}$ Univerité des Sciences, de Technologie et de Médecine, Nouakchott-Mauritanie

MSC 2000: 35JO5, 35JO8, 35K08

Abstract

The Dirichlet problem for the Laplace equation attached to the Schrödinger operator with triple-inverse square potential on the Euclidian space $\left(R^{+}\right)^{3}$: $$
\begin{equation*} \Delta_{\nu, \mu, \eta}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+V(x, y, z) \tag{1} \end{equation*}
$$ where $$
\begin{equation*} V(x, y, z)=\frac{1 / 4-\nu^{2}}{x^{2}}+\frac{1 / 4-\mu^{2}}{y^{2}}+\frac{1 / 4-\eta^{2}}{z^{2}} \tag{2} \end{equation*}
$$ and ν, μ, η are real parameters, is solved in terms of the three variables Lauricella hypergeometric functions $F_{A}^{(3)}$ and $F_{C}^{(3)}$. Our principal tools are the Hankel transforms and the special functions of mathematical physics. In the paper [3] another type of problems associated to the operator (1) is considered.

Keywords: Laplace equation, inverse square potential, Lauricella hypergeometric functions.

References

[1] M.V. Ould Moustapha, The heat, resolvent and wave kernels with Triple-inverse square potential on the Euclidian spaces, Int. J. Appl. Math. 28 (2015) 343-353.

[^173]
(G,(H-M))-CONVEX DOMINATED FUNCTIONS

M. Emin ÖZDEMIR ${ }^{1}$, Havva KAVURMACI-ÖNALAN ${ }^{2}$
${ }^{1}$ Atatürk University, Erzurum, Turkey
${ }^{2}$ Yüzüncü Yll University, Van,Turkey

MSC 2000: Primary 26D15, Secondary 26D10, 05C38

Abstract

In this paper, a new definition of $(g,(h-m))$-convex dominated functions is introduced and then several integral inequality for this type functions are presented.

Keywords: Convex dominated function, Hermite-Hadamard inequality, $(h-m)$-convex function.

References

[1] S. S. Dragomir, N. M. Ionescu, On some inequalities for convex-dominated functions, Anal. Num. Theor. Approx. 19 (1990) 21-28 MR 936: 26014 ZBL No.733: 26010
[2] S. S. Dragomir, C. E. M Pearce, J.E. Pečarić, Means, g-Convex Dominated \& Hadamard- Type Inequalities, Tamsui Oxford Journal of Mathematical Sciences 18 (2) (2002) 161-173.
[3] H. Kavurmacı, M.E. Özdemir, M.Z. Sarıkaya, New Definitions and Theorems via Different Kinds of Convex Dominated Functions, submitted.
[4] Özdemir et al., On $(h-m)$-convexity and Hadamard-type inequalities, available online http://arxiv.org/abs/1103.6163.
[5] M. E. Özdemir, M. Tunç, H. Kavurmacı, Two new different kinds of convex dominated functions and inequalities via Hermite-Hadamard type, submitted.

[^174]
THE RELATIONSHIP BETWEEN $\mathrm{N}^{\text {th }}$ LUCAS NUMBER AND A SEQUENCE DEFINED BY M-SEQUENCES

Engin OZKAN ${ }^{1}$, Aykut GÖÇER ${ }^{2}$, İpek ALTUN ${ }^{3}$
1,2,3 Erzincan University, Erzincan, Turkey

Abstract

In this work, we consider the sequence whose nth term is the number of M-sequences of length $\mathrm{n}^{\text {th }}[6]$. We define the set of integer vectors $E(n)$ on the sequence. We show that the cardinality of $E(n)$ is the $\mathrm{n}^{\text {th }}$ Lucas number L_{n}. We also give some theorem related to L_{n} and $E(n)$.

Keywords: $\mathrm{n}^{\text {th }}$ Lucas Number, M-Sequences, cardinality.

References

[1] J. Snellman, M. Paulsen, Enumeration of concave integer partitions, J. Integer Seq. 7 (1) (2004) 10. Article 04.1.3. MR2049698.
[2] E. Kiliç, D. Tasci, Generalized order-k Fibonacci and Lucas numbers, Rocky Mountain J. Math. 38 (2008) 19912008.
[3] T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, John Wiley\&SonsInc., ISBN: 978-0-471-39969-8, 2001.
[4] E. zkan, On Truncated Fibonacci Sequences, Indian J. Pure of and App. Mathematics 38 (4) (2007) 241-251.
[5] E. zkan, H. Aydın, R. Dikici, 3-step Fibonacci series modulo, Applied Mathematics and Computation 143 (2003) 165-172.
[6] T. Enkosky, B. Stone, A sequence defined by M-sequences, Discrete Mathematics 333 (2014) 3538.
[7] J. M. Ferreira and A. M. Pedro, Oscillations of delay difference systems, J. Math. Anal. Appl. 221 (1998) 364-383.

[^175]AN ALTERNATIVE PROOF FOR A LEMMA USED IN THE TRACE FORMULA FOR GL(2) OVER A NUMBER FIELD

Rukiye OZTURK ${ }^{1}$, Ali AYDOGDU ${ }^{2}$, Engin OZKAN ${ }^{3}$
1,2 Ataturk University, Erzurum,TURKEY
${ }^{3}$ Erzincan University, Erzincan,TURKEY

MSC 2000: 11F72

Abstract

In this note, we give an alternative proof for a particular part of the lemma given in [3] (p. 201, Lemma 9.9) and which is used in [4] (p. 234, Lemma 6.5).

Keywords: GL(2), symmetric square, trace formula, number field.

References

[1] A. Aydogdu, Y.Z. Flicker, E.Ozkan, R.Ozturk, Explicit forms of the trace formula for GL(2), J. Anal. Math. (to appear).
[2] S. Lang, Algebraic number theory, Springer, 1994.
[3] S. Gelbart, Automorphic forms on adéle groups, Princeton University Press, 1975.
[4] S. Gelbart, H. Jacquet, Forms of GL(2) from the analytic point of view, Proc. Sympos. Pure. Math. 33 (1) (1979).
[5] W. Narkiewichz, Elementary and analytic theory of algebraic numbers, Springer-Verlag, 1990.

[^176]
ON ESTIMATION OF UNKNOWN PARAMETERS OF EXPONENTIAL-LOGARITHMIC DISTRIBUTION BY CENSORED DATA

Alex PIJYAN ${ }^{1}$
${ }^{1}$ Tbilisi State University, Tbilisi, Georgia

MSC 2000: 62N02

Abstract

The problem of estimation of parameters of Exponential-Logarithmic distribution in the case of censored data is considered. We used pseudo maximum likelihood method and construct a procedure to solve this problem. Theorem of consistency is proved. Also, simulation is used to study the properties of estimators derived.

Keywords: Exponential-Logarithmic distribution, pseudo maximum likelihood estimators, consistent estimators, partly censored data.

References

[1] R. Tahmasbi, S. Rezaei, A two-parameter lifetime distribution with decreasing failure rate, Computational Statistics and Data Analysis 52 (8) (2008) 3889-3901.
[2] G. Kulldorff, Contributions to the theory of Estimation from grouped and partially grouped samples, Almqvist\&Wiksell, Stockholm, Goteborg Uppsala.
[3] T. S. Ferguson, A Course in Large sample Theory, Chapman\&Hall, 1996.
[4] J. V. Dillon, G. Lebanon, Statistical and Computational Tradeoffs in Stochastic Compose Likelihood, 2010, arXiv:1003.0691v1.29p.

[^177]
ON EXISTENCE OF WEYL DERIVATIVE OF FUNCTIONS IN LORENTZ SPACE WITH QUASI-MONOTONE FOURIER COEFFICIENTS

Shpetim REXHEPI ${ }^{1}$, Fevzi BERISHA ${ }^{2}$, Egzona ISENI ${ }^{3}$
${ }^{1}$ State University of Tetovo, Macedonia
${ }^{2}$ University of Prishtina, Hasan Prishtina, Prishtina, Kosovo
${ }^{3}$ State University of Tetovo, Macedonia

Abstract

General notations, definitions and results relating to Lorentz spaces, quasi-monotone sequences, best approximation, class of 2π - periodic functions which belong to Lorentz space having quasi-monotone Fourier coefficients and Weyl derivative. Finally the sufficient and necessary condition of existence of Weyl derivative of functions belonging to Lorentz space according to their quasi-monotone Fourier coefficients and properties of best approximation.

Keywords: Lorentz spaces, quasi-monotone sequences,best approximation, Weyl derivative.

[^178]
BEAUTIFUL NUMBER 6174

Asra REZAFADAEI ${ }^{1}$

Tehran Education Organization

MSC 2000: 16S34, 16U60

Abstract

In this article we try to solve "Mysterious number 6174" or "Kaprekar's constant". We solve this problem in two step or two theorem. This problem is this: Consider a 4 -digit number (which is not a multiple for 1111). Sort the digits in bigger-smaller, and reverse order. Subtract the smaller number from the bigger one. Perform the same operation with the remainder (it is called Kaprekar operation). After a number of steps we reach 6174. For example: $$
\begin{aligned} & 3452=>5432-2345=3087 \\ & 3087=>8730-378=8352 \\ & 8352=>8532-2358=6174 \end{aligned}
$$

The question is why these numbers reach 6174 ?
This question was told by an Indian scientist Kaprekar who had lived from 1905 till 1986. A question that after about 50 years no one is able to solve it with mathematical rules and reasons.

As what was talked about, lots of people have tried to solve this abstruse question but they couldn't yet.

However in all of their deoection, s.th is ctllective and that is:
If aet all toe numbers, after a levea ne have a particular irouu of digit npmbers that the magnitude of them is 91 . And again gf set them from the smsllest till the biggest, the mlgnitude will change do 30 . Awt they are shhwn in series named " S ".
$\mathrm{S}=\{9810, ~ 9771, ~ 9621, ~ 9531, ~ 9441, ~ 8820, ~ 8721, ~ 8622, ~ 8532, ~ 8442, ~ 8730, ~ 7731, ~$ $7632,7533,7443,8640,7641,6642,6543,6444,8550,7551,6552,5553,5544,9990$,9981, 9972, 9963, 9954\}

In firss step or throrem, we peoof that why these numbert arrive to the series "S" with parameter and rules of mathematic. After that we proof that why the numbers of series "S" arrive to 6174 with graph.

Keywords: Mysterious number, 6174, Kaprekar.

[^179]
ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF GENERALIZED LIÉNARD SYSTEM

Vahid ROOMI ${ }^{1}$,
${ }^{1}$ Azarbaijan Shahid Madani University, Tabriz, Iran

MSC 2000: 34A12

Abstract

In this paper autonomous Liénard system $$
\begin{equation*} \dot{x}=\phi(z-F(x)), \quad \dot{z}=-g(x), \tag{1} \end{equation*}
$$ is considered. Some sufficient and necessary conditions are presented for the system to have a positive and a negative semiorbit which starts at a point on the curve $z=F(x)$ and approaches the origin without intersecting the x-axes which are very important in the theory of oscillation and global asymptotic stability of the solutions of this system. The following conditions on the system are considered. $\left(\mathbf{C}_{1}\right) F(x)$ and $g(x)$ are continuous on \mathbb{R} with $F(0)=0$ and $x g(x)>0$ for $x \neq 0$ and $\phi(u)$ is continuous differentiable and strictly increasing with $\phi(0)=0$ and $\phi(\pm \infty)= \pm \infty$. $\left(\mathbf{C}_{2}\right)$ For any fixed number $k>0$, there exist $M(k)>0$ with $M(k) \equiv k$ for $0<k \leq 1$ such that $$
|\phi(k u)| \leq M(k) \phi(|u|) \quad \text { for all } u .
$$

Keywords: Global asymptotic stability, Liénard system.

References

[1] A. Aghajani, A. Moradifam, Some sufficient conditions for the intersection with the vertical isocline in the Liénard plane, Appl. Math. Letters 19 (2006) 491-497.
[2] P. Yan, J. Jiang, On global asymptotic stability of second order nonlinear differential systems, Appl. Anal. 81 (2002). 681-703.

[^180]
MULTIPLE SOLUTIONS TO NONHOMOGENEOUS ELLIPTIC KIRCHHOFF EQUATIONS IN \mathbb{R}^{N}

 Benmansour SAFIA ${ }^{1}$

 Benmansour SAFIA ${ }^{1}$
 ${ }^{1}$ Ecole préparatoire en sciences économiques, commerciales et sciences de gestion, Département de mathématiques, Tlemcen-Algérie

Abstract

In this work, we use variational methods to study the existence and multiplicity of solutions for a nonhomogeneous Kirchoff equation involving the critical Sobolev exponent.

Keywords: Nonhomogeneous Kirchoff equation, the critical Sobolev exponent, multiple solutions.

References

[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.
[2] S. J. Chena, L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on \mathbb{R}^{N}, Nonlinear Analysis: Real World Applications 14 (2013) 1477-1486.
[3] B. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, J. Math. Anal. Appl. 394 (2012) 488-495.
[4] C. M. Chu, Multiplicity of positive solutions for Kirchhoff type problem involving critical exponent and sign-changing weight functions, Boundary Value Problems (2014) 1-19.
[5] F. Li, Y. Li, J. Shi, Existence of positive solutions to Kirchhoff type problems with zero mass, J. Math. Anal. Appl. 410 (2014) 361-374.
[6] J. Sun, S. Liu, Nontrivial solutions of Kirchhoff type problems, Appl. Math. Lett. 25 (3) (2012) 500-504.

[^181]
A NEW NUMERICAL APPROACH FOR SOLVING TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

Mehmet Giyas SAKAR ${ }^{1}$, Onur SALDIR ${ }^{2}$
${ }^{1,2}$ Yuzuncu Yil University, Van, Turkey

MSC 2000: 26A33

Abstract

In this research, we introduced a new method based on variational iteration method with an auxiliary parameter for solving time-fractional partial differential equations. The convergence of method is showed by using Banach fixed point theorem. Maximum error bound is given. The fractional derivatives are taken in the Caputo sense. Some nonlinear timefractional partial differential equations are solved by proposed method. The numerical results show that a new method is very effective and convenient.

Keywords: Time-fractional partial differential equation, Caputo derivative, variational iteration method, auxiliary parameter.

References

[1] I. Podlubny, Fractional differential equations, Academic Press, New York, 1999.
[2] K. Diethelm, The analysis of fractional differential equations, Berlin Heidelberg, Springer-Verlag, 2010.
[3] Z. M. Odibat, A study on the convergence of variational iteration method, Math. Comp. Modeling 51 (9-10) (2010) 1181-1192.
[4] M. G. Sakar, H. Ergören, Alternative variational iteration method for solving the timefractional Fornberg-Whitham equation, Appl. Math. Model. 39 (14) (2015) 3972-3979.

[^182]
A COMBINATION OF VIM AND ASYMPTOTIC EXPANSION FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM

Onur SALDIR ${ }^{1}$, Mehmet Giyas SAKAR ${ }^{2}$
1,2 Yuzuncu Yil University, Van, Turkey

MSC 2000: 65L10, 34D15, 41A60

Abstract

In this study, the alternative approach of variational iteration method (VIM) with an auxiliary parameter is introduced for solving singularly perturbed convection-diffusion problems. Asymptotic expansion performed on boundary layer region. The regular region is solved by the alternative approach of variational iteration method with an auxiliary parameter. Linear and nonlinear problems are solved by using the presented method. The numerical results show that the presented method is very effective for this type problems.

Keywords: Singularly perturbed, convection-diffusion, variational iteration method, asymptotic expansion.

References

[1] E. P. Doolan, J. J. H. Miller, W. H. A. Schilders, Uniform Numerical Methods for Singular-Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific Publishing Company, Singapore, 1996
[2] F. Geng, S. Qian, S. Li, Numerical solutions of singularly perturbed convectiondiffusion problems, International Journal of Numerical Methods for Heat \& Fluid Flow 24 (2014) 1268-1274.

[^183]
EFFEFTS OF TRANSPIRATION ON G-GITTER FULLY DEVELOPED MIXED CONVECTION FLOW IN A VERTICAL CHANNEL

Ahmad SAMAILA ${ }^{1}$, Basant JHA ${ }^{2}$
${ }^{1}$ Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria
${ }^{2}$ Department of Mathematics, Ahmamadu Bello University, Zaria, Nigeria

Abstract

This paper present an exact solution for fully developed mixed convection flow in a vertical channel induced due to g -jitter by taking into account the effect of suction/injection on the channel walls. The channel walls are maintained at different constant temperatures. The closed form expressions for velocity field, temperature field, skin-friction, and pressure gradient are obtained. The results are presented for various values of controlling parameters. It is found that the presence of transpiration breaks the symmetry of velocity and temperature fields. The results indicate that transpiration can be used as an effective tool to control the flow reversal. Keyword g-jitter, mixed convection, porous plates, suction/injection.

[^184]EULER SPIRALS IN SPACE FORMS

Semra SARAÇOĞLU ÇELİK ${ }^{1}$, Yusuf YAYLI ${ }^{2}$, Erhan GÜLER ${ }^{3}$
${ }^{1}$, 3Bartin University, BARTIN, TURKEY
${ }^{2}$ Ankara University, ANKARA, TURKEY

MSC 2000: 53A04, 53A05.

Abstract

We consider Euler spirals in Euchlidean 3-space and in three dimensional Minkowski space using some different characterizations. Additionally, we show that all Euler spirals are generalized Euler spirals and also all logarithmic spirals are generalized Euler spirals.

Keywords: Curvature, Cornu spiral, Bertrand curve pair.

References

[1] G. Harary, A. Tal, 3D Euler spirals for 3D curve completion, Symposium on Computational Geometry 2010, 107-108.
[2] G. Harary, A. Tal, The natural 3D spiral, Computer Graphics Forum 30 (2) (2011) 237-246.
[3] K. Ilarslan, E. Nesovic, M. Petrovic-Torgasev, Some characterizations of rectifying curves in the Minkowski 3-space, Novi Sad J. Math. 33 (2) (2003) 23-32.

[^185]
CHARACTERIZATIONS OF QUATERNIONIC SOME SURFACES IN MINKOWSKI 3-SPACE

Muhammed Talat SARIAYDIN ${ }^{1}$, Vedat ASIL ${ }^{2}$
${ }^{1,2}$ Firat University, Elazig, Turkey

MSC 2000: 53B30

Abstract

In this paper, we study the bisector of split quaternionic curves in Minkowski 3-space. Moreover, given two rational split quaternionic curves, we show that the bisector surface is rational.

Keywords: Bisector surface, Split quaternion, Minkowski space.

References

[1] G. Elber, The Bisector Surface of Rational Space Curves, Korean Ministry of Science and Technology, 96-NS-01-05-A-02-A.
[2] R. T. Farouki, J. K. Johnstone, The Bisector of a Point and a Plane Parametric Curve, Journal Computer Aided Geometric Design 11 (2) (1994) 117-151
[3] B. O'Neil, Semi Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
[4] M. Ozdemir, A. A. Ergin, The Roots of a Split Quaternion, Applied Mathematics Letters 22 (2009) 258-263.
[5] M. Peternell, Geometric Properties of Bisector Surfaces, Graphical Models 62 (2000) 202-236.
[6] M. T. Sariaydin, 3 Boyutlu Minkowski Uzayında Kuaterniyonik BazıYuzeylerin Karakterizasyonu, Firat Universitesi, Fen Bilimleri Enstitusu, Doktora Tezi.

[^186]
NEW PARAMETRIC REPRESENTATION OF A SURFACE FAMILY WITH COMMON SMARANDACHE ASYMPTOTIC BY USING BISHOP FRAME

Muhammed Talat SARIAYDIN ${ }^{1}$, Vedat ASIL 2

${ }^{1}$ Mus Alparslan University, Mus, Turkey
${ }^{2}$ Firat University, Elazig, Turkey

MSC 2000: 53A35

Abstract

In this paper, we study common smarandache asymptotic curves on a surface in the Euclidean 3 -space. By utilizing the Bishop frame, the surface family can be expressed as a linear combination of the components of the local frame in Euclidean 3-space. With this parametric representation, we derive the necessary and sufficient condition for the given smarandache curve to be the common asymptotic curve on the surface.

Keywords: Asymptotic curve, Bishop frame, Smarandache curve.

References

[1] G.Ş. Atalay, E. Kasap, Surface Family with Common Smarandache Asymptotic Curve, Bol. soc. paran. mat., doi:10.5269/bspm.v34i1.24392, (in press).
[2] L. R. Bishop, There is More Than One Way to Frame a Curve, Amer. Math. Monthly 82 (3) (1975) 246-251.
[3] M. P. Do Carmo, Differential Geometry of Curves and Surfaces, Englewood Cliffs, Prentice Hall, 1976.
[4] T. Körpınar, V. Asil, M.T. Sarıaydın, M. İncesu, A Characterization for Bishop Equations of Parallel Curves According to Bishop Frame in, Bol. Soc. Paran 33 (1) (2015) 33-39.
[5] T. Körpınar, M.T. Sarıaydın, E. Turhan, Associated Curves According to Bishop Frame in Euclidean 3-Space, Ad. Mod. Op. 15 (3) (2013) 713-717.

[^187]
SOME GENERALIZED OSTROWSKI TYPE INEQUALITIES INVOLVING LOCAL FRACTIONAL INTEGRALS AND APPLICATIONS

Mehmet Zeki SARIKAYA ${ }^{1}$, Samet ERDEN ${ }^{2}$, Hüseyin BUDAK ${ }^{3}$
${ }^{1,3}$ Düzce University, Düzce, TURKEY
${ }^{2}$ Bartın University, BARTIN, TURKEY

MSC 2000: 26D07, 26D10, 26D15, 26A33.

Abstract

In this study, we establish the generalized Ostrowski type inequality involving local fractional integrals on fractal sets $R^{\alpha}(0<\alpha \leq 1)$ of real line numbers. Some applications for special means of fractal sets R^{α} are also given. The results presented here would provide extensions of those given in earlier works.

Keywords: Generalized Ostrowski inequality, generalized Hölder's inequality, generalized convex functions.

References

[1] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (5) (1998) 91-95.
[2] H. Mo, X Sui and D Yu, Generalized convex functions on fractal sets and two related inequalities, Abstract and Applied Analysis, Volume 2014, Article ID 636751, 7 pages.
[3] A. M. Ostrowski, "Uber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10 (1938) 226-227.
[4] M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, RGMIA Research Report Collection 18 (2015) Article 62, 11 pp.
[5] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012.

[^188]
GENERALIZED STEFFENSEN INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS

Mehmet Zeki SARIKAYA ${ }^{1}$, Tuba TUNÇ ${ }^{2}$, Samet ERDEN ${ }^{3}$
${ }^{1,2}$ Düzce University, Düzce, TURKEY
${ }^{3}$ Bartın University, Bartın, TURKEY

MSC 2000: 26D15, 26A33.

Abstract

Firstly we give a important integral inequality which is generalized Steffensen's inequality. Then, we establish weighted version of generalized Steffensen's inequality for local fractional integrals. Finally, we obtain several inequalities related these inequalities using the local fractional integral.

Keywords: Steffensen's inequality, local fractional integral, fractal space, generalized convex function.

References

[1] J. Bergh, A generalization of Steffensen's inequality, J. Math. Anal. Appl. 41 (1973) 187-191.
[2] H. Mo, X. Sui, D. Yu, Generalized convex functions on fractal sets and two related inequalities, Abstract and Applied Analysis 2014 Article ID 636751, 7 pages.
[3] J. E. Pečarić, On the Bellman generalization of Steffensen's inequality, J. Math. Anal. Appl. 88 (1982) 505-507.
[4] M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, RGMIA Research Report Collection 18 (2015), Article 62, 11 pp.
[5] S.-H. Wu, H. M. Srivastava, Some improvements and generalizations of Steffensen's integral inequality, Applied Mathematics and Computtaion 192 (2007) 422-428.
[6] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012.

[^189]LEMKE-HOWSON ALGORITHM FOR TWO-PERSON NON-ZERO SUM GAMES

G. Selin SAVASKAN ${ }^{1}$, Aykut OR 2, Yakup H. HACI ${ }^{3}$
${ }^{1,2,3}$ Canakkale Onsekiz Mart University, Canakkale, TURKEY

MSC 2000: 91A05, 91A10

Abstract

Lemke-Howson Algorithm is effective method to find at least one Nash Equilibrium (N.E) in the pure stratejies and mixed stratejies for bimatrix (or two-person non-zero sum) games. The algorithm was first introduced in [1] and algebraic method specifying N.E points was generated for bimatrix games.In this work, bimatrix games are studied and Lemke-Howson Algorithm is investigated to find N.E.

Keywords: Bimatrix games, Nash equilibrium, Lemke-Howson algortihm.

References

[1] C. Lemke, J. Howson Jr., Equilibrium points of bimatrix games, Journal of the Society for Industrial and Applied Mathematics 12 (2) (1964) 413-423.
[2] J. Nash, Non-Cooperative Games, Annals of Mathematics, 54 (2) (1951).
[3] R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, USA, 1979.
[4] E. N. Barron, Game Theory an Introduction, John Wiley\&Sons, Inc., 2008.

[^190]THE INFLUENCE OF THERMAL RADIATION, MASS DIFFUSION AND FRACTIONAL PARAMETERS ON MHD FLOW OVER A VERTICAL PLATE THAT APPLIES TIME DEPENDENT SHEAR TO THE FLUID

Nazish SHAHID ${ }^{1}$
${ }^{1}$ Forman Christian College, A Chartered University, Lahore, Pakistan

MSC 2010: 35Q35, 62P30, 62P35, 65L10

Abstract

Exact expressions for velocity field, temperature and mass concentration corresponding to the radiative flow of an MHD viscous fluid over an infinite plate that applies time dependent shear to the fluid have been calculated. These expressions are obtained by using Laplace transform of corresponding fractional differential equations. The expression of temperature and mass concentration of fluid have been presented in series form. However, velocity field is presented in the form of integral solutions. All exact expressions satisfy initial and boundary conditions. Some significant limiting cases of fluid parameters and of fractional parameters have been discussed. The influence of fluid and fractional parameters on fluid motion have been analyzed through graphical illustrations. Two special cases of shear stress; shear stress in the form of Heaviside function and oscillating shear stress have also been taken into account to compare the behavior of fluid motion graphically.

Keywords: MHD viscous fluid, fractional derivatives, thermal radiation, exact solutions.

References

[1] I. Podlubny, Fractional Differential Equations, Academic press, San Diego, 1999.
[2] S. Wang, M. Xu, Axial Coutte flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear Anal. Real World Appl. 10 (2009) 1087-1096.

[^191]
STABILITY AND ACCURACY OF RBF DIRECT METHOD FOR SOLVING A DYNAMIC INVESTMENT MODEL

Ahmad SHAYGANMANESH ${ }^{1}$, Ahmad SAEEDI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Iran University of Science and Technology, Tehran,Iran. MSC 2000:49Mxx; Secondary 37Mxx.

Abstract

In this paper we consider a Dynamic investment model. In the model, firm's objective is maximizaing discounted sum of profits over an interval of time. The model assumes that firm's capital in time t increases with investment and decreases with depreciation rate that can be expressed by means of differential equation.

We propose a direct method for solving the problem based on Radial Basis Functions(RBFs). The authors describe operational matrices of RBFs and use them to reduce the variational problem to a static optimization problem which can be solved via some optimization techniques. Next, we describe some economic interpretation of the solution. Finally, the accuracy and stability of the Multiquadric (MQ), Inverse Multiquadric (IMQ) RBFs are illustrated by conducting some numerical experiments.

Keywords: RBFs, accuracy, stability, variational problems, dynamic investment problem.

[^192]
APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL IN TERMS OF SIMPSON'S RULE

Ali SIRMA ${ }^{1}$
${ }^{1}$ Department of Mathematics, Yüzüncü Yal University, Van, Turkey

Abstract

Error bounds in approximating the Riemann-Stieltjes integral in terms of Simpson's rule are given. Applications for approximating the Riemann integral of a two-function product are provided as well.

Keywords: The Riemann-Stieltjes integral, Simpson's rule, error bounds.

References

[1] N. S. Barnett and S. S. Dragomir, Some Inequalites of Midpoint and Trapezoid Type for the Riemann-Stieltjes Integral, Nonlinear Anal. 47 (2001) 2321-2332.
[2] Kuei-Lin Tseng, Improments of the Ostrowski Integral Inequality for Mappings of Bounded Variaton II, Apply Math. Comput. 218 (2012) 5841-5847.
[3] S. S. Dragomir, Some Inequalites of Midpoint and Trapezoid Type for the RiemannStieltjes Integral, Nonlinear Anal. 47 (2001) 2333-2340.
[4] S. S. Dragomir, Approximating the Riemann-Stieltjes integral in terms of generalized trapezoidal rules, Nonlinear Anal. 71 (2) (2009) e62-e72.
[5] N. S. Barnett, S. S. Dragomir, Beesack-Darst-Pollard Inequalites and Approximations of the Riemann-Stieltjes Integral, Apply Math. Letters 22 (2009) 58-63.

[^193]
MATRIX REPRESENTATION OF SOFT POINTS AND ITS APPLICATION

Güzide ŞENEL ${ }^{1}$

${ }^{1}$ Amasya University, Amasya, Turkey

MSC 2000: 03G25, 20D05

Abstract

The innovation about soft point in this study is, we define soft point's soft matrix form which was not described before for each set of parameters. The matrix representation of soft points is useful for storing all soft points that can be obtained in all different parameters. We then apply it to some important inequalities in classical set theory and observe them as soft equalities in soft set theory. Finally, we prove that our proposed soft matrix provides every soft point that changes with each parameter that takes place in a soft set and enables detailed examination in application of soft set theory.

Keywords: Soft set, soft point, soft matrix, soft matrix form of soft point.

References

[1] H. Aktas, N. C̣ağman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735.
[2] N. C̣ağman, S. Enginoğlu, Soft matrix theory and its decision making, Comput. Math. Appl. 59(2010) 3308-3314.
[3] S. Das and S. K. Samanta, Soft Real Sets, Soft Real Numbers and Their Properties, J. Fuzzy Math. 20 (3) (2012) 551-576.
[4] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
[5] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19-31.
[6] D. Molodtsov, The Theory of Soft Sets (in Russian), URSS Publishers, Moscow, 2004.
[7] S. Mondal, M. Pal, Soft matrices, African Journal of Mathematics and Computer Science Research 4 (13) (2011) 379-388. .

[^194]
ON WIJSMAN I - LACUNARY STATISTICAL CONVERGENCE OF ORDER α OF SEQUENCES

Hacer ŞENGÜL ${ }^{1}$, Mikail ET 1,2
${ }^{1}$ Department of Mathematics, Siirt University, 56100, Siirt, TURKEY.
${ }^{2}$ Department of Mathematics, Firat University, 23119, Elazig, TURKEY.

MSC 2000: 40A05

Abstract

In this talk, we introduce the concepts of Wijsman I-lacunary statistical convergence of order α, Wijsman I-statistical convergence of order α and Wijsman strongly I-lacunary statistical convergence of order α of sequences of sets and investigated between their relationship.

Keywords: I-convergence, Wijsman convergence, lacunary sequence.

References

[1] R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010, 121-129.
[2] M. Et, H. Altmok, Y. Altm, On generalized statistical convergence of order α of difference sequences, J. Funct. Spaces Appl. 2013, Art. ID 370271, 7 pp.
[3] R. Çolak, Ç. A. Bektaş, λ-statistical convergence of order α, Acta Mathematica Scientia 31 (3) (2011) 953-959.
[4] E. Savas, P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (6) (2011) 826-830.
[5] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139-150.
[6] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361-375.
[7] M. Et, Strongly almost summable difference sequences of order m defined by a modulus, Studia Sci. Math. Hungar 40 (4) (2003) 463-476.

[^195]
ULAM STABILITY OF SOME VOLTERRA EQUATIONS

Sebaheddin ŞEVGİN ${ }^{1}$, Pınar YURDAKUL

1,2 Yüzüncü Yıl University, Van, Turkey

MSC 2000: 45J05, 47H10, 45M10

Abstract

In 1940, Ulam posed the following problem: "Give conditions in order for a linear mapping near an approximately linear mapping to exist" [1]. In 1941, this problem was solved by Hyers [2] in the case of Banach space. In 1978, the result of Hyers was generalized by Rassias [3] for approximately linear mappings. The results obtained by Hyers and Rassias can be applied to the case various differential and integral equations [4, 5, 6].

In this talk, we analyse the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of some Volterra equations.

Keywords: Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Volterra equations.

References

[1] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Wiley, New York, 1964.
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941) 222-224.
[3] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[4] S.-M. Jung, A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory and Applications 2007 (2007) 9 pages.
[5] S.-M. Jung, A fixed point approach to the stability of differential equations, $y^{\prime}=F(x, y)$, Bull. Malays. Math. Sci. Soc. 33 (2010) 47-56.
[6] S.-M. Jung, S. Sevgin, H. Sevli, On the perturbation of Volterra integro-differential equations, Applied Mathematics Letters 26 (2013) 665-669.

[^196]
BLOW UP OF SOLUTIONS FOR A NONLINEAR TIMOSHENKO EQUATION WITH POSITIVE INITIAL ENERGY

Hatice TASKESEN ${ }^{1}$

${ }^{1}$ Yüzüncü Yal University, Van, Turkey

MSC 2000: 74K10,35B99

Abstract

In this work, initial-boundary value problem of a nonlinear Timoshenko equation [1] is investigated. Finite time blow up of solutions with arbitrary positive initial energy is proved under some conditions on the initial data by using potential well method [2] and the method of Levine [3].

Keywords: Timoshenko equation, blow-up, high initial energy.

References

[1] D. Bainov and E. Minchev, Upper estimate of the interval of existence of solutions of a nonlinear Timoshenko equation, Georgian Mathematical J. 4 (1997) 219-222.
[2] D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal. 30 (1968) 148-172.
[3] H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $P u=A u_{t t}+F(u)$, TAMS 192 (1974) 1-21.

[^197]COMPARAISON OF DIFFERENTIAL OPERATORS IN GEVREY SPACE
Mahrouz TAYEB ${ }^{1}$, Chaili RACHID ${ }^{2}$
${ }^{1}$ University of Tiaret, Algeria
${ }^{2}$ UST Oran, Algeria

MSC 2000: 34C10

Abstract

The aim of this work is to find links between the comparaison of differential operators and their areas of Gevrey vectors. We show that if two hypoelliptic differential operators have equally strength, their spaces of Gevrey vectors coincide.

Keywords: Operator of constant strength, hypoelliptic operators, Gevrey spaces vectors.

References

[1] C. Bouzar, R. Chailli, Une généralisation de la propriété des itérés. Archiv Math. 76 (1) (2001) 57-66.
[2] L. Hörmander, On interior regularity of the solutions of partial differential equations, Comm. Pure Appl. Math. 11 (1958) 197-218.
[3] F. Trèves, Linear partial differential equations with constant coefficients, Gordan and breach, 1966.
[4] E. Newberger, Z. Zielezny, The growth of hypoelliptic polynomials and Gevrey classes. Proc.Am. Math.Soc. 39 (1973) 547-552.

[^198]
ALGORITHMS IN MINIMAL FERRER GRAPH CONSTRUCTIONS

Selçuk TOPAL ${ }^{1}$
${ }^{1}$ Bitlis Eren University, Bitlis, Turkey

MSC 2000: 05C85, 05A18, 68R05

Abstract

In this paper, we give some algorithms and tecnichal properties to construct minimal Ferrer graphs [3] coming from Ferrer relation [2] on P_{n} and C_{n} by using set cover method [1].

Keywords: Graph algorithms, partitions of sets, combinatorics

References

[1] H. T. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, Cambridge, Mass. MIT Press and McGraw-Hill, pp. 1033-1038, (2008).
[2] J. Riguet, Les relations de Ferrers, Comptes Rendus des Seances hebdomadaires del Academie des Sciences, Paris 232, (1951).
[3] S. Topal, A Characterization of Ferrer graphs via geodesic distance, Bulletin of the Korean Mathematical Society, (2015) (in review).

[^199]
A COMPUTATIONAL APPROACH TO SYLLOGISTIC ENGLISH SENTENCES WITH DITRANSITIVE VERBS IN FORMAL SEMANTICS

Selçuk TOPAL ${ }^{1}$
${ }^{1}$ Bitlis Eren University, Bitlis, Turkey

MSC 2000: 03B65, 68W01, 03C80

Abstract

In this paper, we give some computational ascepts of entailment tools in natural English sentences with ditransitive verbs which taking a subject, a direct object and a indirect object in formal semantics of natural language as in [2]. We also present some algorithms and an implementation of reasoners for the sentences and generators for quantifiers [1].

Keywords: Logic of natural languages, algorithms (General), logic with extra quantifiers and operators

References

[1] R. Montague, English as a formal language, In: Visentini, B., et al. (eds.), Linguaggi Nella Società e Nella Tecnicá, Edizioni di Comunitá, Milan, (1970) 189-224.
[2] Y. Winter, Elements of formal semantics, Edinburgh University Press, (2013) 224.

[^200]
HYPERBOLIC SMOOTHING METHOD FOR SUM-MAX PROBLEMS

Ali Hakan TOR ${ }^{1}$
${ }^{1}$ Depertmant of Mathematics, Yüzüncü Yal University, Van, Turkey

Abstract

In this study, an approach for solving nonsmooth optimization problem, which includes sum of finite maximums of smooth functions is proposed. Minimum l_{1}-norm approximations is a particular case of this problem. In this approach, the problem is reformulated in order to use the hyperbolic smoothing function and the relationship between the original problem and reformulated problem are proved. This approach allows us to use conventional smooth optimization methods.

Keywords: Hyperbolic smoothing method, sum-max problem, nonsmooth optimization.

References

[1] A. M. Bagirov, A. Al Nuaimat, N. Sultanova, Hyperbolic smoothing function method for minimax problems, Optimization 62 (6) (2013) 759-782.
[2] A. E. Xavier, The hyperbolic smoothing clustering method, Pattern Recognition 43 (3) (2010) $731-737$.
[3] A. E. Xavier, A. A. F. de Oliveira, Optimal covering of plane domains by circles via hyperbolic smoothing, J. Global Optim. 31 (3) (2005) 493-504.
[4] M. Zibulevsky, Smoothing method of multipliers for sum-max problems, Available online: http://iew3.technion.ac.il/ mcib, 2002.

[^201]
TAUBERIAN CONDITIONS FOR THE (C, α) INTEGRABILITY OF FUNCTIONS

Ümit TOTUR ${ }^{1}$, İbrahim ÇANAK ${ }^{2}$
${ }^{1}$ Adnan Menderes University, Department of Mathematics, Aydin, Turkey
${ }^{2}$ Ege University, Department of Mathematics, Izmir Turkey

MSC 2000: 40A10, 40C10, 40D05, 40G05

Abstract

For a real-valued continuous function $f(x)$ on $[0, \infty)$, we define

$$
s(x)=\int_{0}^{x} f(u) d u \text { and } \sigma_{\alpha}(x)=\int_{0}^{x}\left(1-\frac{u}{x}\right)^{\alpha} f(u) d u
$$

for $x>0$. We say that $\int_{0}^{\infty} f(u) d u$ is (C, α) integrable to L for some $\alpha>-1$ if the limit $\lim _{x \rightarrow \infty} \sigma_{\alpha}(x)=L$ exists.

It is known that $\lim _{x \rightarrow \infty} s(x)=L$ implies $\lim _{x \rightarrow \infty} \sigma_{\alpha}(x)=L$ for all $\alpha>-1$. The aim of this paper is twofold. First, we introduce some new Tauberian conditions for (C, α) integrability method under which the converse implication is satisfied and improve classical Tauberian theorems for the (C, α) integrability method. Next, we give short proofs of some classical Tauberian theorems as special cases of some of our results.

Keywords: Divergent integrals, Cesàro integrability, (C, α) integrability, Tauberian theorems.

References

[1] İ. Çanak, Ü. Totur, Alternative proofs of some classical type Tauberian theorems for Cesàro summability of integrals, Math. Comput. Modelling 55 (3) (2012) 1558-1561.
[2] Ü. Totur, İ. Çanak, One-sided Tauberian conditions for $(C, 1)$ summability method of integrals, Math. Comput. Modelling 55 (2012) 1813-1818.
[3] Ü. Totur, 㠵. Çanak, On the $(C, 1)$ summability method of improper integrals, Appl. Math. Comput. 219 (24) (2013) 11065-11070.
[4] İ. Çanak, Ü. Totur, The (C, α) integrability of functions by weighted mean methods, Filomat 26 (6) (2012) 1204-1209.

[^202]THE (C, α, β) INTEGRABILITY OF FUNCTIONS AND A TAUBERIAN THEOREM

Ümit TOTUR ${ }^{1}$, İbrahim ÇANAK ${ }^{2}$
${ }^{1}$ Adnan Menderes University, Aydin, Turkey
${ }^{2}$ Ege University, İzmir, Turkey

MSC 2000: 40A10, 40C10, 40D05, 40E05

Abstract

For a continuous function $f(T, S)$ on $\mathbb{R}_{+}^{2}=[0, \infty) \times[0, \infty)$, we define its integral on \mathbb{R}_{+}^{2} by

$$
F(T, S)=\int_{0}^{T} \int_{0}^{S} f(t, s) d t d s
$$

and its (C, α, β) mean by

$$
\sigma_{\alpha, \beta}(T, S)=\int_{0}^{T} \int_{0}^{S}\left(1-\frac{t}{T}\right)^{\alpha}\left(1-\frac{s}{S}\right)^{\beta} f(t, s) d t d s
$$

where $\alpha>-1$, and $\beta>-1$. We say that $\int_{0}^{\infty} \int_{0}^{\infty} f(t, s) d t d s$ is (C, α, β) integrable to L if $\lim _{T, S \rightarrow \infty} \sigma_{\alpha, \beta}(T, S)=L$ exists.

We prove that if $\lim _{T, S \rightarrow \infty} \sigma_{\alpha, \beta}(T, S)=L$ exists for some $\alpha>-1$ and $\beta>-1$, then $\lim _{T, S \rightarrow \infty} \sigma_{\alpha+h, \beta+k}(T, S)=L$ exists for all $h>0$ and $k>0$.
Next, we prove that if $\int_{0}^{\infty} \int_{0}^{\infty} f(t, s) d t d s$ is $(C, 1,1)$ integrable to L and

$$
T \int_{0}^{S} f(T, s) d s=O(1)
$$

and

$$
S \int_{0}^{T} f(t, S) d s=O(1)
$$

then $\lim _{T, S \rightarrow \infty} F(T, S)=L$ exists.

Keywords: The (C, α, β) integrability, improper double integral, convergence in Pringsheim's sense, Tauberian conditions and theorems.

References

[1] A. Laforgia, A theory of divergent integrals, Appl. Math. Lett. 22 (2009) 834-840.
[2] ̇. Çanak, Ü. Totur, The (C, α) integrability of functions by weighted mean methods, Filomat 26 (6) (2012) 1209-1214.

[^203]ON TAUBERIAN REMAINDER THEOREMS FOR CESÀRO SUMMABILITY METHOD OF NONINTEGER ORDER

Ümit TOTUR ${ }^{1}$, Muhammet Ali OKUR ${ }^{2}$

${ }^{1,2}$ Adnan Menderes University, Aydin, Turkey

MSC 2000: 40E05,40G05
Abstract
Let A_{n}^{α} be defined by the generating function $(1-x)^{-\alpha-1}=\sum_{n=0}^{\infty} A_{n}^{\alpha} x^{n},(|x|<1)$, where $\alpha>-1$. For a real sequence $u=\left(u_{n}\right)$, Cesàro means of the sequence $\left(u_{n}\right)$ of noninteger order α are defined by

$$
\sigma_{n}^{(\alpha)}(u)=\frac{1}{A_{n}^{\alpha}} \sum_{j=0}^{n} A_{n-j}^{\alpha-1} s_{j} .
$$

We say that a sequence $\left(u_{n}\right)$ is (C, α) summable to a finite number s, where $\alpha>-1$ if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma_{n}^{(\alpha)}(u)=s \tag{1}
\end{equation*}
$$

A sequence $\left(u_{n}\right)$ is called λ-bounded by (C, α) method of summability if

$$
\begin{equation*}
\lambda_{n}\left(\sigma_{n}^{(\alpha)}(u)-s\right)=O(1) \tag{2}
\end{equation*}
$$

with $\lim _{n \rightarrow \infty} \sigma_{n}^{(\alpha)}(u)=s$.
In this paper, we prove some Tauberian remainder theorems for Cesàro summability method of noninteger order $\alpha>-1$.

Keywords: Tauberian remainder theorem, λ-bounded series, (C, α) summability.

References

[1] U. Totur, M. A. Okur, Some Tauberian Remainder Theorems For Hölder Summability 20 (2015) 139-147.
[2] O. Meronen, I. Tammeraid, General control modulo and Tauberian remainder theorems for ($C, 1$) summability, Math. Model. Anal. 18 (2013) 97-102.
[3] Y. Erdem, İ. Çanak, A Tauberian theorem for $(A)(C, \alpha)$ summability, Comput. Math. Appl. 60 (2010) 2920-2925.

[^204]
A FINITE DIFFERENCE METHOD FOR SMOOTH SOLUTION OF SYSTEM OF LINEAR WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS

Sedigheh TOUBAEI ${ }^{1}$
${ }^{1}$ Islamic Azad University, Ahvaz Branch, Ahvaz, Iran.

Abstract

In this paper we propose a new numerical method for the smooth solution of a system of linear Volterra integral equations. This method is a generalization of the finite difference method proposed in [3] for scalar linear Volterra integral equations. Error analysis of this method are presented via asymptotic expansion of the absolute error and verification of the accuracy are examined by two illustrative test problems.

Keywords: System of integral equation, linear integral equation, weakly singular Volterra.

References

[1] K. E. Atkinson, W. Han, Theoritical numerical analysis: A functional analysis framework, Springer-Verlag, Third Edition, 2009.
[2] P. B. Baratella, A. P. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comp. Appl. Math. 163 (2004) 401-418.
[3] M. Jalalvand, B. Jazbi, M. R. Mokhtarzadeh, A Finite Difference Method for the Smooth Solution of Linear Volterra Integral Equations, Int. J. Nonlinear Anal. Appl. 4 (2) (2013).

[^205]
STABILITY AND BOUNDEDNESS OF SOLUTIONS OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

Cemil TUNÇ ${ }^{1}$

${ }^{1}$ Yüzüncü Yıl University, Van, Turkey

Abstract

In 2003, Vanualailai and Nakagiri [2] considered the nonlinear Volterra integro-differential equation without delay $$
\begin{equation*} \frac{d}{d t}[x(t)]=A(t) f(x(t))+\int_{0}^{t} B(t, s) g(x(s)) d s, \tag{1} \end{equation*}
$$ where $t \geq 0, \quad x \in \Re, \quad A(t):[0, \infty) \rightarrow(-\infty, 0), \quad f, g: \Re \rightarrow \Re$ are continuous functions, and $B(t, s)$ is a continuous function for $0 \leq s \leq t<\infty$. Vanualailai and Nakagiri [2] studied the stability of solutions of equation (1) by defining a suitable Lyapunov functional.

In this paper, we consider the nonlinear Volterra integro-differential equation with delay $$
\begin{equation*} x^{\prime}(t)=-a(t) f(x(t))+\int_{t-\tau}^{t} B(t, s) g(x(s)) d s+p(t) \tag{2} \end{equation*}
$$ where $t \geq 0, \quad \tau$ is a positive constant, fixed delay, $x \in \Re, \quad a(t):[0, \infty) \rightarrow(0, \infty), \quad p:$ $[0, \infty) \rightarrow \Re, f, g: \Re \rightarrow \Re$ are continuous functions with $f(0)=g(0)=0, \quad B(t, s)$ is a continuous function for $0 \leq s \leq t<\infty$. We investigate the stability of zero solution and boundedness of solutions of equation (2) by defining suitable Lyapunov functionals, when $p(t) \equiv 0$ and $p(t) \neq 0$, respectively.

Keywords: Stability and boundedness, Volterra integro-differential equations, Lyapunov functionals.

References

[1] T. A. Burton, Stability theory for Volterra equations, J. Differential Equations 32 (1) (1979) 101-118.
[2] J. Vanualailai, S. Nakagiri, Stability of a system of Volterra integro-differential equations, J. Math. Anal. Appl. 281 (2) (2003) 602-619.

[^206]
ON THE ASYMPTOTIC BEHAVIORS OF SOLUTIONS CERTAIN NON-LINEAR NEUTRAL EQUATIONS WITH MULTIPLE DEVIATING ARGUMENTS

Cemil TUNÇ ${ }^{1}$, Yener ALTUN ${ }^{2}$
1,2 Yüzüncü Yıl University, Van, Turkey

$$
\begin{aligned}
& \qquad \text { Abstract } \\
& \text { In this paper, we obtain sufficient conditions for all solutions of neutral equation of the form } \\
& \frac{d}{d t}\left[x(t)+\sum_{i=1}^{2} c_{i}(t) x\left(t-\tau_{i}(t)\right)\right]+\sum_{i=1}^{2} p_{i}(t) x(t)+\sum_{i=1}^{2} q_{i}(t) h_{i}(x(t)) x\left(t-\sigma_{i}(t)\right) \\
& +r(t) \int_{t-\delta(t)}^{t} x(s) d s=0
\end{aligned}
$$

to approach zero as $t \rightarrow \infty$. The technique of proof involves defining an appropriate Lyapunov functional. The obtained result includes and improves some results in the literatüre.

Keywords: Non-linear neutral equations, deviating arguments, Lyapunov functional.

References

[1] J.H. Park, LMI optimization approach to asymptotic stability of certain neutral delay differential equation with time-varying coefficients, Appl. Math. Comput. 160 (2005) 355-361.
[2] D. Yue, S. Won, O. Kwon, Delay-dependent stability of neutral systems with time delay: An LMI approach, IEE Proceedings-Control Theory and Applications 150 (2003) 23-27.

[^207]
ON EXPONENTIAL STABILITY OF SOLUTIONS OF NEUTRAL DIFFERENTIAL SYSTEM WITH MULTIPLE VARIABLE DELAYS

Cemil TUNÇ ${ }^{1}$, Melek GÖZEN ${ }^{2}$

1,2 Yüzüncü Yıl University, Van, Turkey

Abstract

In this work, we establish sufficient conditions which guarantee the solutions of neutral delay differential system of the form $$
\left\{\begin{array}{l} \dot{x}(t)=A(t) x(t)+\sum_{i=1}^{n} B_{i}(t) x\left(t-h_{i}(t)\right)+\sum_{i=1}^{n} C_{i}(t) \dot{x}\left(t-h_{i}(t)\right)+f_{1}(t, x(t)) \\ \quad+f_{2}\left(t, x\left(t-h_{1}(t)\right), \ldots, x\left(t-h_{n}(t)\right)\right)+f_{3}\left(t, \dot{x}\left(t-h_{1}(t)\right), \ldots, \dot{x}\left(t-h_{n}(t)\right)\right) \\ x(s)=\phi(s), \dot{x}(s)=\varphi(s), s \in\left[-h_{i}, 0\right],(i=1,2, \ldots, n) \end{array}\right.
$$

are globally exponentially stable. The obtained result includes and improves some results in the literature.

Keywords: Neutral delay differential system, Lyapunov functional, globally exponentially stable.

References

[1] J. Kuang, H. Tian, K. Shan, Asymptotic stability of neutral differential systems with many delays, Appl. Math. Comput. 217 (2011) 10087-10094.
[2] M. Syed Ali, On exponential stability of neutral delay differential system with nonlinear uncertainties, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 2595-2601.

[^208]
ON THE STABILITY AND BOUNDEDNESS OF DIFFERENTIAL EQUATIONS OF THIRD ORDER WITH RETARDED ARGUMENT

Cemil TUNÇ ${ }^{1}$, Sizar Abid MOHAMMED ${ }^{2}$

${ }^{1}$ Yüzüncü Yıl University, Van, Turkey
${ }^{2}$ University of Duhok, Duhok, Iraq

Abstract

In this paper, we study the stability, boundedness and ultimately boundedness of of solutions of the following t vector functional differential equations of third order with retarded argument, $\tau_{1}>0$: $$
X^{\prime \prime \prime}+\Psi\left(X^{\prime}\right) X^{\prime \prime}+G\left(X^{\prime}\right)+c X\left(t-\tau_{1}\right)=P\left(t, X, X^{\prime}, X^{\prime \prime}\right) .
$$

By using the Liapunov-Krasovskii functional approach, new stability, boundedness and ultimately boundedness criteria are obtained for the considered functional differential equation. The obtained results extend and improve some recent results in the literature.

Keywords: Stability and boundedness, retarded argument, Liapunov-Krasovskii functional approach.

References

[1] M. O.Omeike, A. U. Afuwape, New result on the ultimate boundedness of solutions of certain thir d-order vector differential equations, Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 49 (1) (2010) 55-61.
[2] C. Tunc, Uniform ultimate boundedness of the solutions of third-order nonlinear differential equations, Kuwait J. Sci. Engrg. 32 (1) (2005) 39-48.
[3] C. Tunc, Stability and bounded of solutions to non-autonomous delay differential equations of third order, Nonlinear Dynam. 62 (4) (2010) 945-953.
[4] C. Tunç, S.A. Mohammed, On the qualitative properties of differential equations of third order with retarded argument, Proyecciones 33 (3) (2014) 325-347.

[^209]
ON THE EXISTENCE OF PSEUDO ALMOST PERIODIC SOLUTIONS TO A CLASS OF LASOTA-WAZEWSKA MODEL DIFFERENTIAL EQUATION
 Cemil TUNÇ ${ }^{1}$, Ramazan YAZGAN ${ }^{2}$
 1,2 Yüzüncü Yil University, Van, Turkey

Abstract

In this work,we discussed a class of Lasota-Wazewska model differential equation. Using exponential dichotomy method, under suitable conditations,we give certain sufficient conditions which quarentee the existence of positive pseudo almost periodic solutions of this model.By this study we extend and improve some earlier result in the literature.

Keywords: Pseudo almost periodic solution, Lasota-Wazewska model differential equation, exponential dichotomy.

References

[1] J. Shao, Pseudo almost periodic solutions for a Lasota-Wazewska model with an oscillating death rate, Applied Mathematics Letters 43 (2015) 90-95.
[2] C. Zhang, Pseudo almost periodic solutions of some differential equations II , J. Math. Anal. Appl. 192 (1995) 543-561.
[3] Z. Huang, S. Gong, L. Wang, Positive almost periodic solution for a class LasotaWazewska model with multiple time-varying delays, Comput. Math. Appl. 61 (2011) 755-760.
[4] B. Liu, C. Tunç, Pseudo almost periodic solutions for a class of first order differential iterative equations, Appl. Math. Lett. 40 (2015) 29-34.

[^210]
OSCILLATION THEOREMS FOR SECOND-ORDER NONLINEAR DIFFERENTIAL
 EQUATIONS WITH NONLINEAR DAMPING

Ercan TUNÇ ${ }^{1}$, Orhan ÖZDEMIR ${ }^{2}$

1,2 Gaziosmanpasa University, Tokat, Turkey

Abstract

We present new oscillation criteria for certain classes of second-order nonlinear differential equations with nonlinear damping term. The obtained results essentially generalize some existing results and are not covered those of Huang and Meng [Y. Huang, F. Meng, Oscillation of second-order nonlinear ODE with damping, Appl. Math. Comput. 199(2008), 644-652]. Examples are also provided to show the importance of our results.

Keywords: Nonlinear differential equations, second order, oscillation, damping term.

References

[1] Y. Huang, F. Meng, Oscillation of second-order nonlinear ODE with damping, Appl. Math. Comput. 199 (2008) 644-652.
[2] A. Tiryaki, A. Zafer, Oscillation of second-order nonlinear differential equations with nonlinear damping, Math. Comput. Model. 39 (2004) 197-208.
[3] Y.G. Sun, New Kamenev-type oscillation criteria for second-order nonlinear differential equations with damping, J. Math. Analy. Appl. 291 (2004) 341-351.
[4] E. Tunc, Interval oscillation criteria for certain forced second-order differential equations, Carpathian J. Math. 28 (2012) 337-344.

[^211]
ON THE OSCILLATION OF A CLASS OF DAMPED FRACTIONAL DIFFERENTIAL
 EQUATIONS

Ercan TUNÇ ${ }^{1}$, Osman TUNÇ ${ }^{2}$
${ }^{1}$ Gaziosmanpasa University, Tokat, Turkey
${ }^{2}$ Yuzuncu Yil University 7A-8, Van, Turkey

MSC 2000: 34A08, 34C10

Abstract

Using Riccati type transformations, the authors establish some new oscillation criteria for the fractional differential equation $$
\begin{equation*} \left(D_{0^{+}}^{1+\alpha} y\right)(t)+p(t)\left(D_{0^{+}}^{\alpha} y\right)(t)+q(t) f(G(t))=0, \quad t>0 \tag{1} \end{equation*}
$$ where $D_{0^{+}}^{\alpha} y$ is the Riemann-Liouville fractional derivative of order α of $y, G(t)=\int_{0}^{t}(t-s)^{-\alpha} y(s) d s$ and $\alpha \in(0,1)$. Examples are provided to illustrate the relevance of the results.

Keywords: Oscillatory solutions, fractional differential equation, integral averaging technique, Riccati transformation.

References

[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006.
[2] P. Prakash, S. Harikrishnan, J. J. Nieto, J.-H. Kim, Oscillation of a time fractional partial differential equation, Electron. J. Qual. Theory Differ. Equ. 2014 (15) 1-10.
[3] D.-X. Chen, Oscillatory behavior of a class of fractional differential equations with damping, U.P.B. Sci. Bull., Series A 75 (2013) 107-118.
[4] J. Yang, A. Liu, T. Liu, Forced oscillation of nonlinear fractional differential equations with damping term, Adv. Difference Equ. 2015 (1) (2015) 1-7.
[5] H. Kh. Abdullah, A note on the oscillation of second order differential equations, Czech. Math. J. 54 (2004) 949-954.

[^212]
ON GENERALIZED NULL BERTRAND CURVES IN \mathbb{E}_{2}^{4}

Ali UÇUM ${ }^{1}$, Kazım İLARSLAN ${ }^{2}$, Makoto SAKAKI ${ }^{3}$
1,2 Kırıkkale University, Faculty of Sciences and Arts, Department of Mathematics, Kırıkkale-Turkey
${ }^{3}$ Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

MSC 2000: 53C50, 53C40

Abstract

In the present paper, generalized Cartan null Bertrand curves in semi-Euclidean 4-space with index 2 is considered. Because the (1,3)-normal planes of the Cartan null curves is timelike, the $(1,3)$-Bertrand mate curves of the curves can be pseudo null curves, non-null curves or Cartan null curves, respectively. Thus, we give the necessary and sufficient conditions for these three cases to be (1,3)-Bertrand curves and we also give the related examples.

Keywords: Generalized Bertrand curve, Semi-Euclidean Space, Cartan null curve.

References

[1] K. L. Duggal, D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, London, 2007.
[2] H. Matsuda and S. Yorozu, Notes on Bertrand curves, Yokohama Math. J. 50 (2003) 41-58.
[3] M. Sakaki, Null Cartan Curves in \mathbb{R}_{2}^{4}, Toyama Mathematical Journal 32 (2009) 31-39.
[4] A. Uçum, O. Keçilioğlu, K. Ilarslan, Generalized Bertrand curves with timelike (1,3)normal plane in Minkowski space-time, accepted (2014).
[5] A. Uçum, O. Keçilioğlu, K. İlarslan, Generalized Pseudo Null Bertrand curves in SemiEuclidean 4-Space with index 2, to appear (2014).

[^213]A NOTE ON LATTICE MODULE

Gulsen ULUCAK ${ }^{1}$, Unsal TEKIR ${ }^{2}$, Kursat Hakan ORAL ${ }^{3}$

${ }^{1}$ Gebze Technical University, Kocaeli, Turkey
${ }^{2}$ Marmara University, Istanbul, Turkey
${ }^{3}$ Yildiz Technical University, Istanbul, Turkey

MSC 2000: 13C60

Abstract

Let L be a multiplicative lattice and M be a lattice L-module. In this presentation, we acquaint a topology said to be the Zariski topology over $\sigma(M)$, the collection of all prime elements of an L-module M. We investigate some results on the Zariski topology over $\sigma(M)$. Our aim is to characterize the lattice modules whose prime spectrum satisfy some of the separation axioms between T_{0} and T_{1} which are $T(\beta), T\left(\beta^{\prime}\right), T(\varepsilon), T_{E S}, T_{D}, T_{D D}, T_{Y}$ and $T_{Y S}$.

Keywords: Prime spectrum of lattice module, prime element, seperation axiom.

References

[1] N. K. Thakare, C. S. Manjarekar, S. Maeda, Abstract Spectral Theory. II: Minimal Characters And Minimal Spectrums Of Multiplicative Lattices, Acta Math. Sci. 52 (1988) 53-67.
[2] Gulsen Ulucak, Unsal Tekir, Separation Axioms Between T0 And T1 On Lattices And Lattice Modules, The Second International Conference on Mathematics and Statistics, 2015.
[3] Gulsen Ulucak, Fethi Callialp, Unsal Tekir, Spectrum of L-module M, 3. International Eurasian Conference on Mathematical Sciences (IECMSA-2014).
[4] J.A.Avila, Rings That Characterize Some Separation Notions, Algebra Universalis 6 (2006) 131-145.
[5] J.A.Avila, $\operatorname{Spec}(R)$ and Separation Axioms Between T_{0} and T_{1}, Divulg.Math. 13 (2005) 90-98.

[^214]
SYMMETRY GROUPS OF PETRIE POLYGONS

Serhan ULUSAN ${ }^{1}$, Adnan MELEKOĞLU ${ }^{2}$

1,2 Adnan Menderes University, Aydın, Turkey

MSC 2000: 30F10, 05C10, 05C25

Abstract

A regular map \mathcal{M} on a Riemann surface X is an embedding of a finite connected graph \mathcal{G} into X such that the components of $X-\mathcal{G}$ are identical regular, which are called the faces of \mathcal{M}. A Petrie polygon of \mathcal{M} is a polygon such that every two consecutive sides, but no three, belong to a face of \mathcal{M}. In this study we determine the symmetry group of a Petrie polygon of a regular map.

Keywords: Regular map, Petrie polygon, symmetry group.

References

[1] H.S.M. Coxeter, Regular polytopes, Dover Publications, New York, 1973.
[2] H.S.M. Coxeter, W.O.J. Moser, Generators and relations for discrete groups, SpringerVerlag, New York, Berlin, 1980.

[^215]
GENERALIZED SZSZ-MIRAKYAN-DURRMEYER OPERATORS AND THEIR APPRROXIMATION PROPERTIES

Gülsüm ULUSOY ${ }^{1}$, Tuncer ACAR ${ }^{2}$
${ }^{1,2}$ Kirikkale University, Kirikkale, Turkey

MSC 2000: 41A25, 41A35, 41A36

Abstract

In this talk, we consider Durrmeyer modifications of the generalized Szász-Mirakyan operators based on a function ρ which is continuously differentiable ∞ times on $[0, \infty)$, such that $\rho(0)=0$ and $\inf _{x \in[0, \infty)} \rho^{\prime}(x) \geq 1$. We investigate the weighted approximation properties of the operators and uniform convergence of the operators over unbounded intervals is presented. We obtain direct approximation properties of the operators in terms of the moduli of smoothness and a quantitative Voronovskaya theorem is given.

Keywords: Szász-Durrmeyer operators, weighted modulus of continuity, quantitative Voronovskaya theorem.

References

[1] T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, (in press).
[2] A. Aral, D. Inoan, I. Raşa, On the Generalized Szász-Mirakyan Operators, Results in Mathematics 65 (2014) 441-452.
[3] A. Aral, V. Gupta, Generalized Szász Durrmeyer Operators, Lobachevskii J. Math. 32 (1) (2011) 23-31.
[4] D. Cárdenas-Morales, P. Garrancho, I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62 (2011) 158-163.
[5] J. L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: Applications á la théorie de moments, Thése de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.

[^216]
ON GENERALIZED DURRMEYER OPERATORS

Gülsüm ULUSOY ${ }^{1}$, Emre DENİZ ${ }^{2}$, Ali ARAL ${ }^{3}$

1,2,3 Kirikkale University, Kirikkale, Turkey

MSC 2000: 41A25, 41A35, 41A36

Abstract

In this talk, we extend the studies recently introduced sequence of Ibragimov Gadjiev Durrmeyer operators. These operators include well known Durrmeyer operators as Szasz Durrmeyer, Baskakov Durrmeyer and Generalized Baskakov Durrmeyer operators.

We establish a Voronovskaya type theorem in simultaneous approximation. We present rate of convergence of the derivatives of operators. Some special cases of new operators are presented as examples.

Keywords: Ibragimov-Gadjiev-Durrmeyer operators, weighted modulus of continuity, simultaneous approximation

References

[1] P. N. Agrawal, A. R. Gairola, On certain Durrmeyer type operators, Math. Commun, 14 (2) (2009) 307-316.
[2] P. N. Agrawal, V. Gupta, A. S. Kumar, Generalized Baskakov-Durrmeyer type operators, Rend. Circ. Mat. Palermo 63 (2) (2014) 193-209.
[3] A. Aral, T. Acar, On Approximation Properties of Generalized Durrmeyer Operators, (submitted).
[4] A. Aral, Approximation by Ibragimov-Gadjiev Operators in Polynomial Weighted Space, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb 19 (2003) 35-44.
[5] T. Coşkun, On the order of weighted approximation by positive linear operators, Turkish J. Math, 36 (1) (2012) 113-120.

[^217]
\mathcal{I}-CESARO SUMMABILITY OF SEQUENCES OF SETS

Uğur ULUSU ${ }^{1}$, Ömer Kişisi²
${ }^{1}$ Afyon Kocatepe University, Faculty of Science, Department of Mathematics, 03200, Afyonkarahisar, Turkey
${ }^{2}$ Bartın University, Faculty of Science, Department of Mathematics, 74100 Bartın, Turkey
MSC 2010: 40A05; 40A35

Abstract

In this paper, we defined concept of Wijsman \mathcal{I}-Cesàro summability for sequences of sets and investigate the relationship between the concepts of Wijsman strongly \mathcal{I}-Cesàro summability, Wijsman strongly \mathcal{I}-lacunary summability, Wijsman p-strongly \mathcal{I}-Cesàro summability and $\mathrm{W}_{\text {ijsman }} \mathcal{I}$-statistical convergence.

Keywords: Cesàro summability, statistical convergence, lacunary sequence, \mathcal{I}-convergence, sequence of sets, Wijsman convergence.

References

[1] J.-P. Aubin, H. Frankowska, Set-valued analysis, Birkhauser, Boston, 1990.
[2] M. Baronti, P. Papini, Convergence of sequences of sets, In: Methods of functional analysis in approximation theory, ISNM 76, Birkhauser-Verlag, Basel, 1986.
[3] G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc. 31 (1985) 421-432.
[4] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
[5] J. A. Fridy, C. Orhan, Lacunary Statistical Convergence, Pacific J. Math. 160 (1) (1993) 43-51.
[6] Ö. Kişi, F. Nuray, New Convergence Definitions for Sequences of Sets, Abstract and Applied Analysis, 2013 Article ID 852796, 6 pages http://dx.doi.org/10.1155/2013/852796.

[^218]
ASYMPTOTIC NORMALITY OF PARAMETRIC PART IN PARTIALLY LINEAR MODELS IN THE PRESENCE OF MEASUREMENT ERROR

Secil YALAZ TOPRAK ${ }^{1}$, Mujgan TEZ ${ }^{2}$, H.Ilhan TUTALAR ${ }^{3}$
${ }^{1,3}$ Dicle University, Diyarbakir, Turkey
${ }^{2}$ Marmara University, Istanbul, Turkey

Abstract

The interest in study measurement error model is growing with the publication of series of papers on various topics. In literature semiparametric partially linear model relating a response Y to predictors (X, X^{*}) with function $X^{T} \beta+g\left(X^{*}\right)$ when the X^{*} s are unobserved and with additive error is mainly considered with the assumption that the measurement error has a known distribution. Our study gives more detailed answer to the question of "in situation of if independent variable has an unknown distribution in a semiparametric regression model how regression functions and densities predictions could be obtained?". We derived an estimator of β and demonstrated the resulting estimator $\hat{\beta}$ is asymptotically normal. In the application, the performances of $\hat{\beta}$ and $\hat{g}_{n}\left(x^{*}\right)$ are investigated through Monte Carlo experiments.

Keywords: Errors in variables, measurement error, partially linear model, semiparametric regression, unknown error density.

References

[1] J. Fan, Y. K. Truong, Nonparametric regression with errors in variables, Annals of Statistics 21 (1993) 1900-1925.
[2] H. Liang, Asymptotic normality of parametric part in partially linear model with measurement error in the non-parametric part, J. Statist. Plann. Inference 86 (2000) 51-62.
[3] S. M. Schennach, Nonparametric regression in the presence of measurement error, Econometric Theory 20 (2004) 1046-1093.

[^219]
COEFFICIENT ESTIMATES FOR A NEW SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

Tuğba YAVUZ ${ }^{1}$

Gebze Technical University, Kocaeli, TURKEY

MSC 2000: Primary 30C45, Secondary 33C45

Abstract

Let \mathbb{D} be the unit disk $\{z:|z|<1\}, A$ be the class of functions analytic in D, satisfying the conditions $$
\begin{equation*} f(0)=0 \text { and } f^{\prime}(0)=1 \tag{1} \end{equation*}
$$

In this presentation, we will introduce a new subclass of close-to-convex functions denoted by $K Q_{h}(\gamma, \lambda)$ with $\gamma \in \mathbb{C} \backslash\{0\}, \lambda \in[0,1]$. Here $h(z)$ is a convex function which satisfies the conditions $h(0)=1$ and $\operatorname{Re}(h(z))>0(z \in \mathbb{D})$. We will give upper bounds for Taylor coefficients of functions which belong to $K Q_{h}(\gamma, \lambda)$. We will obtain some earlier results as special cases of our parameters.

Keywords: Analytic functions, close-to-convex functions, coefficients estimates.

References

[1] O. Altıntaş, Ö. Özkan, H. M. Srivastava, Neigborhoods of a class of analytic functions with negative coefficients, Applied Mathematics Letters 13 (1995) 63-67.
[2] O. Altıntas, H. Irmak, S. Owa, H. M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Applied Mathematics Letters 20 (2007) 1218-1222.
[3] O. Altıntaş, Ö. Özkan, H. M. Srivastava, Neighbourhoods of certain family of multivalent functions with negative coefficients, Computer and Mathematics with Applications 47 (2004) 1667-1672.
[4] H. S. Amiri, T. S. Fernando, On close-to-convex functions of complex order, International Journal mathematics and Mathematical Sciences 13 (1990) 321-330.
[5] O. S. Known, S. Owa, On quasi convex functions of complex order, Soochow Journal of Mathematics 20 (1994) 241-250.
[6] K. I. Noor, Quasi-convex functions of complex order, Pan American Mathematical Journal 3 (2) (1993) 81-90.
[7] Quing-Hua Xu, Ying-Chun Gui and H. M. Srivatava, Coefficient estimates for certain subclasses for analytic functions of complex order, Taiwanese Journal of Mathematics, 15 (5) (2011) 2377-2386.
[8] Wasim Ul- Haq, Attiye Nazneen, Nasir Rehman, Coefficient estimates for certain subfamilies of close-to-convex functions of complex order, Filomat 28 (6) (2014) 1139-1142.

[^220]
SOME TOPOLOGICAL PROPERTIES OF THE SPACES OF ALMOST NULL AND ALMOST CONVERGENT DOUBLE SEQUENCES

Medine YEŞíLKAYAGİL ${ }^{1}$, Feyzi BAŞAR ${ }^{2}$

${ }^{1}$ Uşak University, Uşak, Turkey
${ }^{2}$ Fatih University, İstanbul, Turkey

MSC 2010: 40C05, 40G10

Abstract

Let $\mathcal{C}_{f_{0}}$ and \mathcal{C}_{f} denote the spaces of almost null and almost convergent double sequences, respectively. We show that $\mathcal{C}_{f_{0}}$ and \mathcal{C}_{f} are BDK-spaces, barrelled and bornological but they are not monotone and so not solid. Additionally, we establish that both of the spaces $\mathcal{C}_{f_{0}}$ and \mathcal{C}_{f} include the space $\mathcal{B S}$ of bounded double series.

Keywords: Double sequence, Pringsheim convergence, almost convergence.

[^221]
ON ALMOST $C(\alpha)$-MANIFOLD SATISFYING SOME CONDITIONS ON THE WEYL PROJECTIVE CURVATURE TENSOR

Ümit YILDIRIM ${ }^{1}$, Mehmet ATÇEKEN ${ }^{2}$, Süleyman DİRİK ${ }^{3}$
1,2 Gaziosmanpasa University, Tokat, Turkey
${ }^{3}$ Amasya University, Amasya, Turkey

MSC 2000: 53C15, 53C44, 53D10.

Abstract

In the present paper, we have studied the curvature tensors of almost $C(\alpha)$-manifolds satisfying the conditions $P(\xi, X) R=0, P(\xi, X) \widetilde{Z}=0, P(\xi, X) P=0, P(\xi, X) S=0$ and $P(\xi, X) \widetilde{C}=0$. According these cases, we classified almost $C(\alpha)$-manifolds, where P is the Weyl projective curvature tensor, \widetilde{Z} is the concircular curvature tensor, S is the Ricci tensor and \widetilde{C} is quasi-conformal curvature tensor.

Keywords: Almost $C(\alpha)$-manifold, Weyl projective curvature tensor, concircular curvature tensor.

References

[1] D. Janssens, L. Vanhecke, Almost contact structure and curvature tensors, Kodai Math. J. 4 (1981), 1-27.
[2] K. Arslan, C. Murathan and C. Özgür, On contact manifolds satisfying certain curvature conditions, An. Univ. Bucuresti Math. 49 (2) (2000) 17-26.
[3] M. Atçeken, On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor, Bulletin of Mathematical Analysis and Applications 6 (1) (2014) 1-8.
[4] M. Atçeken, Ü. Yıldırım, On almost $C(\alpha)$-manifold satisfying certain conditions on the concircular curvature tensor, Pure and Applied Mathematics Journal, Special Issue: Applications of Geometry 4 (1-2) (2015) 31-34.
[5] U. C. De, A. Sarkar, On the Projective curvature tensor of Generalized Sasakian-space forms, Quaestiones Mathematicae 33 (2010) 245-252.

[^222]JOST SOLUTION AND SPECTRUM OF THE DISCRETE STURM-LIOUVILLE EQUATIONS WITH HYPERBOLIC EIGENPARAMETER

Nihal YOKUS ${ }^{1}$, Nimet COSKUN ${ }^{2}$
1,2 Karamanoğlu Mehmetbey University, Karaman, Turkey

MSC: 39A70 47A10 47A75

Abstract

In this paper, we consider the boundary value problem (BVP) for the discrete SturmLiouville equation $$
\begin{gather*} a_{n-1} y_{n-1}+b_{n} y_{n}+a_{n} y_{n+1}=\lambda y_{n}, n \in \mathbb{N} \tag{1}\\ \left(\gamma_{0}+\gamma_{1} \lambda\right) y_{1}+\left(\beta_{0}+\beta_{1} \lambda\right) y_{0}=0 \tag{2} \end{gather*}
$$ where $\left(a_{n}\right)$ and $\left(b_{n}\right), n \in \mathbb{N}$ complex sequences, $\gamma_{i}, \beta_{i} \in \mathbb{C}, i=0,1$. By taking λ as a hyperbolic eigenparameter, we obtain exponantial type Jost solution of this BVP (1)-(2). Discussing the analytical properties and asymptotic behaviour of Jost solution, we prove that this boundary value problem has a continous spectrum filling the segment $[-2,2]$. We also prove that BVP (1)-(2) has finite number of eigenvalues and spectral singularities.

Keywords: Difference equations, eigenparameter, spectral analysis, Jost solution, discrete equations

References

[1] M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of second order on a semi-axis, AMS Transl. 2 (16) (1960) 103-193.
[2] E. Bairamov, N. Yokus, Spectral singularities of Sturm-Liouville problems with eigenvalue dependent boundary conditions, Abstr. Appl. Anal. (2009) 8 pages, Article ID 289596.
[3] R. P. Agarwal, Difference equations and Inequalities: Theory Methods and Applications, Marcel Dekkar Inc., New York, Basel, 2000.

[^223]
ACHIEVING THE LARGEST PRIMES: ALGORITHM AND RELATIONS IN ORDER

Ali ZALNEZHAD ${ }^{1}$, Ghasem SHABANI ${ }^{2}$, Mehdi ZALNEZHAD ${ }^{3}$, Hossein ZALNEZHAD ${ }^{4}$

${ }^{1,3}$ Noshiravani University of Technology, Babol, Iran
${ }^{2}$ University of Tabriz, Tabriz, Iran
${ }^{4}$ Science and Research Branch of Islamic Azad University, Tehran, Iran

MSC 2000: 11N05, 11N32, 11N80

Abstract

Prime numbers are currently attained through an exceptional situation in the area of numbers theory and cryptography. The trend for accessing to the largest prime numbers due to using Mersenne theorem, although resulted in vast development of related numbers, it has reduced the speed of accessing to prime numbers from one to four years. Mersenne primes are prime numbers of the form $2^{n}-1$, where n is necessarily a prime number. This paper focuses on attaining theorems that are more extended than Mersenne theorem with accelerating the speed of accessing to prime numbers. Since the reason for frequently using Mersenne theorem has found an efficient formula for accessing to the largest prime numbers, this paper provides some relations for prime numbers defined in several formulas for attaining prime numbers in any interval. Therefore, according to flexibility of these relations, it could be found a new branch in the field of accessing to great prime numbers through providing an algorithm at the end of this paper for finding the largest prime numbers.

Keywords: Generalization the Mersenne's theorem, relations of prime numbers, algorithm.

References

[1] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Annals of mathematics 160 (2004) 781-793.
[2] P. Ribenboim, The Little Book of Bigger Primes, Second ed, Springer Science \& Business Media, 2004.

[^224]
Abstracts of Posters

LOCAL STABILITY ANALYSIS AND ALLEE EFFECTS IN A NONLINEAR DISCRETE-TIME POPULATION MODEL INVOLVING DELAY

Özlem AK GÜMÜŞ ${ }^{1}$

${ }^{1}$ Adiyaman University, Adiyaman, Turkey

MSC 2000: 39A10; 39A30

Abstract

In this study, I will present the effect of Allee factor on the local stability of equilibrium point of the discrete-time population model involving delay generated for $k=1$ in [1] with a different approach. The results demonstrate that the Allee effect either reduces the local stability of equilibrium point of the population dynamic model or increases.

Keywords: Allee effect, discrete-time models, local stability

References

[1] J.R. Graef, C. Quian, Global Stability in a Nonlinear Difference Equation, Journal of Difference Equations and Applications 5 (1999), 251-270.
[2] H. Merdan, O. Ak Gumus, Stability analysis of a general discrete-time population model involving delay and Allee effects, Applied Mathematics and Computation 219 (2012) 1821-1832.
[3] O. Ak Gumus, H. Kose, On the stability of delay population dynamics related with Allee effects, Mathematical and Computational Applications 17 (1) (2012) 56-67.
[4] O. Ak Gumus, H. Kose, Allee effect on a new delay population model and stability analysis, Journal of Pure and Applied Mathematics: Advances and Applications 7 (1) (2012) 21-31.
[5] W. C. Allee, Animal Aggretions: A Study in General Sociology, University of Chicago Press, Chicago, 1931.

[^225]
AB INITIO INVESTIGATION OF THE PHYSICAL PROPERTIES OF PEROVSKITE RbCdBr3 STRUCTURE

Melike DEDE ${ }^{1}$, Bahattin ERDİNC ${ }^{2}$, Murat AYCİBİN ${ }^{3}$, Mehmet Nurullah SECUK ${ }^{4}$, Sinem Erden GULEBAGLAN ${ }^{5}$, Emel Kilit DOGAN ${ }^{6}$, Harun AKKUS ${ }^{7}$

1,2,3,4,6,7 Yuzuncu Yil University, Department of Physics, Faculty of Science, Van, Turkey
${ }^{5}$ Department of Electric Program, Vacational School of Van, Yuzuncu Yil University, Van, Turkey

Abstract

We investigated the physical properties such as energy band structure, density of states for electrons and optical properties for RbCdBr 3 compound using the density functional theory under local density approximation and the generalized gradient approximation in Abinit and Wien2k package programs. The calculated results show that the energy band structure of this crystal has an indirect band gap of value 2.693 eV from high symmetry point G to a point between T-Z high symmetry points. Besides, the real and imaginary parts of complex dielectric function, refractive index, energy-loss functions for volume and surface, coefficients of extinction, reflectivity and absorption along the crystallographic axes are investigated. The obtained results are in agreement with the experimental ones.

Keywords: DFT, electronic properties, structural properties.

References

[1] R. Demirbilek, A. Celik Bozdogan, M. Caliskan, G. Ozen, Phys. Status Solidi B248 (2011) 17231726.
[2] M. Natarajan Iyer, R. Faggaiani, I. D. Brown, Acta. Cryst. B33 (1977) 127-128.

[^226]
ON THE NOTION OF θ-OPENNESS

Erdal EKİCí ${ }^{1}$, Ayşe Nur TUNÇ ${ }^{2}$
1,2 Departmant of Mathematics, Canakkale Onsekiz Mart University, Çanakkale, Turkey

MSC 2000: 54D15, 54C08, 54C10

Abstract

θ-g δp-continuity which are related to δp-normal spaces are presented. More properties of δp-normal spaces and almost δp-normal spaces are researched.

Keywords: $\theta-g \delta p$-continuity, δp-normal space, $g \delta p$-closed set.

References

[1] E. Ekici, T. Noiri, On a generalization of normal, almost normal and mildly normal spaces-I, Mathematica Moravica 10 (2006), 9-20.
[2] E. Ekici, T. Noiri, On a generalization of normal, almost normal and mildly normal spaces II, Filomat 20 (2) (2006) 67-80.
[3] S. Raychaudhuri, M. N. Mukherjee, On δ-almost continuity and δ-preopen sets. Bull. Inst. Math. Acad. Sinica 21 (4) (1993) 357-366.
[4] M. H. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937) 375-381.
[5] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968) 103-118.

[^227]
AB INITIO CALCULATION OF PHYSICAL PROPERTIES OF RbGeCl3

Fatma ERDİNC ${ }^{1}$, Emel Kilit DOGAN ${ }^{2}$, Mehmet Nurullah SECUK ${ }^{3}$, Bahattin ERDİNC ${ }^{4}$, Murat AYCİBİN ${ }^{5}$, Sinem Erden GULEBAGLAN ${ }^{6}$, Harun AKKUS ${ }^{7}$

1,2,3,4,5,7 Yuzuncu Yil University, Department of Physics, Faculty of Science, Van, Turkey
${ }^{6}$ Department of Electric Program, Vacational School of Van, Yuzuncu Yil University, Van, Turkey

Abstract

We have calculated the structural and electronic properties of RbGeCl 3 compound using the density functional theory within the generalized gradient approximation and the local density approximation. The calculated results for each physical property are presented and then compared with available experimental and previous theoretical data. To our knowledge, structural properties and energy band structure of RbGeCl 3 compound has not been investigated using DFT. Therefore, we investigated the physically properties such as such as structural and volume optimizations, electronic energy band structure and density of states of valance electrons of this crystal.

Keywords: DFT, electronic properties, structural properties.

References

[1] L.-C. Tang, L.-Q. Liu, Y.-C. Chang, J.-h. Yao, J.-Y. Huang, C.-S. Chang, Japanese Jornal of Applied Physics, 48 082001- 082007 (2009).
[2] Dieter Messer, Z. Naturforsch. 33b, 366-369 (1978).

[^228]
CONNECTEDNESS IN MONOTONE ORDERED SPACE

Irem EROGLU ${ }^{1}$, Erdal Guner ${ }^{2}$
${ }^{1,2}$ Ankara University, Ankara, Turkey

MSC 2000: 34C10

Abstract

In this paper, we introduce and study the notion of connectedness in monotone ordered space which is a generalization of monoton spaces.

We study ordered semi-seperated sets and ordered connected sets in monotone ordered space.

Keywords: Monotone ordered space, ordered semi-seperated set, ordered connected sets.

References

[1] A. Kandil, O. Tantany, S. A. El-Sheikh, M. Hosny, Connectedness in (Ideal) Bitopological Ordered Spaces, Gen. Math. Notes, 24 (2) (2014) 37-52.
[2] D. V. Thampuran, Normal neighbourhood spaces, Rend. Sem. Math. Univ. Padova 45 (1971) 95-97.
[3] E. Čech, Topological Spaces, John Wiley And Sons, 1996.
[4] H. Dasgupta, A. Kundu, A note on monotone spaces, Tripura Math. Soc. 3 (2001).
[5] L. Nachbin, Topology and Order, Van Nostrand Mathematical Studies, Princeton, New Jersey, 1965.
[6] S. R. Ghosh, H. Dasgupta, A. Sunitha, Connectedness in Monotone Spaces, Bull. Malaysian Math. Soc. 2 (27) (2004) 129-148.
[7] T. A. Sunitha, Some seperation properties in monotone spaces, Ganita Sandesh, Rajasthan Ganita Parishad (India) 10 (1996) 65-70.

[^229]
GLOBAL OPTIMIZATION PROBLEM OF LIPSCHITZ FUNCTIONS USING
 A-DENSE CURVES

Djaouida GUETTAL ${ }^{1}$, Mohamed RAHAL ${ }^{2}$
${ }^{1,2}$ University Ferhat Abbas Setif 1, Setif, Algeria

MSC 2000: 49M30

Abstract

In this paper, we study a coupling of the Alienor method with the algorithm of PiyavskiiShubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.

Keywords:The Alienor method, algorithm of Piyavskii-Shubert, global optimization method, α-dense curves.

References

[1] Y. Cherruault, Optimisation: Méthodes locales et globales, Presses Universitaire de France, 1999.
[2] R. Horst and H. Tuy, Global Optimization, Deterministic Approach, Springer-Verlag, Berlin, 1993.
[3] A. Torn and A. Silinskas, Global Optimization, Springer-Verlag, New york, 1988.
[4] A.Ziadi and Y. Cherruault, Generation of α-dense curves and application to global optimization, Kybernetes 29 (1) (2000) 71-82.
[5] A.Ziadi and Y. Cherruault and G.Mora, Global Optimization, a New Variant of the Alienor Method, Comp. and math. with Applic. 41 (2001) 63-71.
[6] S. A. Piyavsky, An algorithm for finding the absolute extremum for a function, USSR Comput. Mathem. and Mathem. Phys. 12 (4) (1972) 888-896.
[7] A.Ziadi and Y. Cherruault, Generation of α-dense Curves in a cube of \mathbb{R}^{n}, Kybernetes Vol. 27 (4) (1998) 416-425.
[8] D. Guettal and A. Ziadi, Reducing transformation and global optimization, Applied Mathematics and Computation 218 (2012) 5848-5860.

[^230]
STRUCTURAL AND ELECTRONIC PROPERTIES OF AxD1-xByC1-y QUATERNARY ALLOYS VIA FIRST PRINCIPLES

Sinem Erden GULEBAGLAN ${ }^{1}$, Emel Kilit DOGAN ${ }^{2}$, Mehmet Nurullah SECUK ${ }^{3}$, Murat AYCİBĩ ${ }^{4}$, Bahattin ERDİNC ${ }^{5}$, Harun AKKUS ${ }^{6}$
${ }^{1}$ Department of Electric Program, Vacational School of Van, Yuzuncu Yil University, Van, Turkey
${ }^{2,3,4,5,6}$ Yuzuncu Yil University, Department of Physics, Faculty of Science, Van, Turkey

Abstract

We have investigated the structural and electronic properties of cubic $\mathrm{AB}, \mathrm{AC}, \mathrm{DB}$ and DC compounds and their new AxD1-x ByC1-y quaternary alloys, using the density functional theory. Structural properties of these quaternary alloys are calculated with the Perdew and Wang local-density approximation. The lattice constants of AxD1-x ByC1-y quaternary alloys were computed by Vegards law. The band gap of AxD1-x ByC1-y is related by the compositions x and y . There is no theoretical examining on AxD1-x ByC1-y quaternary alloys and requires experimental confirmation.

Keywords: Structural properties, electronic properties, quaternary alloys.

References

[1] W. E. Pickett, Comput. Phys. Rep. 9 (1989) 115-198.
[2] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, (http://www.pwscf.org).
[3] J. P. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048.

[^231]
STRUCTUAL, DYNAMIC AND TERMODYNAMIC PROPERTIES OF CsPbBr3 COMPOUND IN CUBIC PEROVSKITES VIA FIRST PRINCIPLES

Sinem Erden GULEBAGLAN ${ }^{1}$, Emel Kilit DOGAN ${ }^{2}$, Mehmet Nurullah SECUK ${ }^{3}$, Murat AYCİBİN ${ }^{4}$, Bahattin ERDİNC ${ }^{5}$, Harun AKKUS ${ }^{6}$

${ }^{1}$ Department of Electric Program, Vacational School of Van, Yuzuncu Yil University, Van, Turkey

${ }^{2,3,4,5,6}$ Yuzuncu Yil University, Department of Physics, Faculty of Science, Van, Turkey

Abstract

The electronic, dynamic and termodynamic properties of CsPbBr 3 compound in the cubic perovskite phase are systematically investigated using the first principles calculations. The generalized gradient approximation was used for exchanged and correlation interaction. The theoretically calculated lattice constant and band gap are found to be good in agreement with the other theoretical and experimental results. We studied dynamic and termodynamic properties of CsPbBr 3 in cubic perovskite phase and have not encountered any avaliable data for dynamic and termodynamic properties of CsPbBr 3 in cubic perovskite phase. We calculated the entropy, constant-volume specific heat, Helmholtz free energy for CsPbBr 3 .

Keywords: Electronic properties, dynamic properties, thermodynamic properties.

References

[1] G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqsood, I. Khan, M. Zahid, Opt. Mater. 33 (2011) 553.
[2] S. Moskvin, A. A. Makhnev, L. V. Nomerrovannaya, N. N. Loshareva, A. M. Balbashov, Phys.Rev. B 82 (2010) 035106.
[3] C. Weeks, M. Franz, Phys. Rev. B 82 (2010) 085310.
[4] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

[^232]
FIRST PRINCIPLE CALCULATION OF ELECTROINIC BAND STRUCTURE OF LuRhO3 COMPOUND

Mesut KAVAL ${ }^{1}$, Bahattin ERDİNC ${ }^{2}$, Mehmet Nurullah SECUK ${ }^{3}$, Murat AYCİBİN ${ }^{4}$, Emel Kilit DOGAN ${ }^{5}$, Sinem Erden GULEBAGLAN ${ }^{6}$, Harun AKKUS ${ }^{7}$

1,2,3,4,5,7 Yuzuncu Yil University, Department of Physics, Faculty of Science, Van, Turkey
${ }^{6}$ Department of Electric Program, Vacational School of Van, Yuzuncu Yil University, Van, Turkey

Abstract

The structural and volume optimization, electronic band structure density of states of valance electrons of crystal LuRhO3 have been investigated using the density functional methods, local density approximation and generalized gradient approximation, in Abinit package program. The obtained band structure and calculated density of states of valance electrons for LuRhO3 compound shows that the electronic structure of crystal has a semiconductor state. Besides, the structural and volume optimization has been performed. To our knowledge in literature, the structural and volume optimization, energy band structure and density of states of valance electrons LuRhO3 crystal have not been investigated as either experimentally or theoretically. Therefore, in present work, using density functional theory, we investigated the physical properties such as the structural and volume optimization, energy band structure and density of states of valance of this compound.

Keywords: Structural properties, electronic band structure, density of states.

References

[1] W. Y, Q. Liang, Y. Matsushita, M. Tanaka, X. Hu, A. A. Belik, Jornal of Solid State Chemistry 200 (2013) 271-278.
[2] H. S. Jarrett, A. W. Sleight, H. H. Kung, J. L. Gillson, Appl. Phys. 51 (1980) 3916-3925.

[^233]
ON THE OPTIMAL CONTROL PROBLEM IN A PARABOLIC SYSTEM

Yeşim SARAÇ ${ }^{1}$, S. Şule ŞENER ${ }^{2}$

1,2 Atatürk University, Erzurum, Turkey

MSC 2000: 35K20, 35D30, 49J20

Abstract

Optimal control problems in the parabolic problems for different types of cost functionals have been examined by several authors $[1,2,3,4]$. In this study, we study the optimal control problem governed by on linear parabolic differential equation with Dirichlet boundary conditions. The control function is at the right hand side of the equation. The cost functional consist of deviation in the L_{2}-norm of the solution of the system at the final time from a given target, plus L_{2}-norm of the control. It is proved that the Frechet derivation of the cost functional can be found via the solution of the adjoint parabolic problem. The results are illustrated by an numerical example.

Keywords: Second-order parabolic equations, weak soluations, optimal control.

References

[1] I. Bushuyev, Global uniqueness for inverse parabolic problems with final observation, Inverse Problems (1995) 11-16.
[2] A. Hasanoğlu, Simultaneous determination of the source terms in a linear parabolic problem from the final overdetermination: Weak solution approach, J. Math. Anal. Appl. 330 (2007) 766-779.
[3] A. Münch, F. Periago, Optimal distribution of the internal null control for the onedimensional heat equation, Journal of Differential Equations 250 (2011) 95-111.
[4] H. Yu, Equivalence of minimal time and minimal norm control problems for semi linear heat equation, Sytems and Control Letters 73 (2014) 17-24.

[^234]
STRUCTURAL, DYNAMIC AND OPTICAL PROPERTIES OF DOUBLE-LAYER HEXAGONAL BiTeCl CRYSTAL

Mehmet Nurullah SECUK ${ }^{1}$, Harun AKKUS ${ }^{2}$, Bahattin ERDİNC ${ }^{3}$, Sinem Erden GULEBAGLAN ${ }^{4}$, Murat AYCİBİN ${ }^{5}$, Emel Kilit DOGAN ${ }^{6}$
1,2,3,5,6 Yuzuncu Yil University, Department of Physics, Faculty of Science, Van, Turkey
${ }^{4}$ Department of Electric Program, Vacational School of Van, Yuzuncu Yil University, Van, Turkey

Abstract

The geometric structural optimization, density of states for phonons, phonon band structure and optical features of double-layer hexagonal BiTeCl crystal have been investigated by linearized augmented plane wave method using the density functional theory under the generalized gradient and the local density approximations in this study. Ground state properties of new-type ferroelectric BiTeCl structure were studied. Calculated lattice parameters, ground state properties and experimental results are consistent. Linear dielectric functions and related properties were calculated. The frequency dependent phonon spectrum of hexagonal BiTeCl crystal was calculated using the harmonic approximation model.

Keywords: Structural properties, dynamic properties, optic properties.

References

[1] A. V. Shevelkov, E. V. Dikarev, R. V. Shpachenko, B. A. Popokin, Crystal structures of bismuth tellurohalides, $\operatorname{BiTeX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ from X-ray powder diffraction data, J . Sol.Stat.Chem. 114 (1995) 379-384.
[2] Z. Zhu, Y. Cheng, U. Schwingenschl, Orbital-dependent Rashba coupling in bulk BiTeCl and BiTeI, New Journal of Physics 152013023010.
[3] I. Yu. Sklyadneva, R. Heid, K. P. Bohnen, V. Chis, V. A. Volodin, K. A. Kokh, O. E. Tereshchenko,P. M. Echenique, E. V. Chulkov, Lattice dynamics of bismuth tellurohalides. Physical Review B 86 (2012) 094302.

[^235]
STRSCTURAL, ELASTIC AND THERMODYNAMIC PROPERTIES OF HEXAGONAL BiTeBr CRYSTAL

Mehmet Nurullah SECUK ${ }^{1}$, Rana Eda BİCER ${ }^{2}$, Harun AKKUS ${ }^{3}$, Bahattin ERDİNC ${ }^{4}$, Murat AYCİBİN ${ }^{5}$, Emel Kilit DOGAN ${ }^{6}$, Sinem Erden GULEBAGLAN ${ }^{7}$

1,2,3,4,5,6 Yuzuncu Yil University, Department of Physics, Faculty of Science, Van, Turkey
${ }^{7}$ Department of Electric Program, Vacational School of Van, Yuzuncu Yil University, Van, Turkey

Abstract

The geometric structural optimization, elastic properties and thermodynamic functions of total energy (E) Helmholtz free energy (F), constant volume heat capacity (Cv) and entropy (S) have been investigated by linearized augmented plane wave method using the density functional theory under the generalized gradient and local density approximations for hexagonal BiTeBr crystal in this study. Ground state properties of topographic ferroelectric BiTeBr structure were studied. Calculated lattice parameters, ground state properties and experimental results are consistent with literature. We could not find any experimental data to compare our calculated results for thermodynamic and elastic properties.

Keywords: Structural properties, thermodynamic properties, elastic properties.

References

[1] A. V. Shevelkov, E. V. Dikarev, R. V. Shpachenko, B. A. Popokin, Crystal structures of bismuth tellurohalides. $\operatorname{BiTeX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ from X-ray powder diffraction data, J . Sol.Stat.Chem. 114 (1995) 379-384.
[2] I. Yu. Sklyadneva, R. Heid, K. P. Bohnen, V. Chis, V. A. Volodin, K. A. Kokh, O. E. Tereshchenko, P. M. Echenique, E. V. Chulkov, Lattice dynamics of bismuth tellurohalides. Physical Review B 86 (2012) 094302.

[^236]Mehmet Nurullah SECUK ${ }^{1}$, Rana Eda BİCER ${ }^{2}$, Harun AKKUS ${ }^{3}$, Bahattin ERDİNC ${ }^{4}$, Murat AYCİBİN ${ }^{5}$, Sinem Erden GULEBAGLAN ${ }^{6}$, Emel Kilit DOGAN ${ }^{7}$

1,2,3,4,5,7 Yuzuncu Yil University, Department of Physics, Faculty of Science, Van, Turkey
${ }^{6}$ Department of Electric Program, Vacational School of Van, Yuzuncu Yil University, Van, Turkey

Abstract

The geometric structural optimization, elastic constants and related properties, electronic density of states and energy band structure of hexagonal BiTeI crystal have been investigated by linearized augmented plane wave method using the density functional theory under the generalized gradient and local density approximations in this study. Calculated lattice parameters, ground state properties and experimental results are consistent. Elastic constants and related properties were calculated. No experimental data we could find in literature to be able to compare elastic properties.

Keywords: Structural properties, elastic properties, electronic properties.

References

[1] A. V. Shevelkov, E. V. Dikarev, R. V. Shpachenko, B. A. Popokin, Crystal structures of bismuth tellurohalides, $\operatorname{BiTeX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ from X-ray powder diffraction data. J. Sol.Stat.Chem. 114 (1995) 379-384.
[2] Z. Zhu, Y. Cheng, U. Schwingenschl, Orbital-dependent Rashba coupling in bulk BiTeCl and BiTeI, New Journal of Physics 15 (2013) 023010.
[3] I. Yu. Sklyadneva, R. Heid, K. P. Bohnen, V. Chis, V. A. Volodin, K. A. Kokh, O. E. Tereshchenko, P. M. Echenique, E. V. Chulkov, Lattice dynamics of bismuth tellurohalides, Physical Review B 86 (2012) 094302.

[^237]
CONDITIONS FOR CONVERGENCE AND SUBSEQUENTIAL CONVERGENCE OF REGULARLY GENERATED SEQUENCES

Sefa Anıl SEZER ${ }^{1}$, İbrahim ÇANAK ${ }^{2}$
${ }^{1}$ İstanbul Medeniyet University, İstanbul, Turkey
${ }^{2}$ Ege University, İzmir, Turkey

MSC 2000: 40A05, 40E05.

Abstract

Regularly generated sequences were first introduced in [1]. It is said that $\left(u_{n}\right)$ is regularly generated by a sequence $\alpha=\left(\alpha_{n}\right)$ in some sequence space \mathcal{A} and α is called a generator of $\left(u_{n}\right)$ if $$
u_{n}=\alpha_{n}+\sum_{k=1}^{n} \frac{\alpha_{k}}{k} .
$$

In this work we obtain necessary conditions under which the regularly generated sequence $\left(u_{n}\right)$ converges or converges subsequentially.

Keywords: Subsequential convergence, regularly generated sequences, slowly oscillating sequences, summability by weighted means.

References

[1] Č. V. Stanojević, Analysis of Divergence: Applications to the Tauberian Theory, Graduate Research Seminar, University of Missouri-Rolla, 1999.
[2] M. Dik, F. Dik, İ. Çanak, Classical and neoclassical Tauberian theorems for regularly generated sequences, Far East J. Math. Sci. 13 (2) (2004) 233-240.
[3] İ. Çanak, M. Dik, F. Dik, Conditions for convergence and subsequential convergence, Appl. Math. Lett. 19 (2006) 1042-1045.
[4] İ. Çanak, Ü. Totur, A note on Tauberian theorems for regularly generated sequences, Tamkang J. Math. 39 (2) (2008) 187-191.
[5] İ. Çanak, F. Hasekiler, D. Kebapcı, Some Tauberian theorems for regularly generated sequences, Comput. Math. Appl. 62 (12) (2011) 4486-4491.

[^238]
Other Participants

Oguzhan BAHADIR
KSU, Turkey
oguzbaha@gmail.com

Esra DALAN YILDIRIM
Yaşar University, Turkey
esra.dalan@yasar.edu.tr

Hülya DURUR
Ardahan University, Turkey
hulyadurur@ardahan.edu.tr

Ahmed EL-SHAHAT
Zewail City of Science and Technology, Egypt
s-ahmed.alshahat@zewailcity.edu.eg

Hussin FAYED
Zewail City of Science and Technology, Egypt
s-hussien.fayed@zewailcity.edu.eg

Hakkı GÜNGÖR
Atatürk University, Turkey
hakki.gungor11@ogr.atauni.edu.tr

Hatice Kandamar
Adnan Menderes University, Turkey
hkandamar@adu.edu.tr

Engin ÖZKAN
Erzincan University, Turkey
eozkan@erzincan.edu.tr

Osman TUNÇ
Yuzuncu Yil University, Turkey osmantunc89@gmail.com

Murat SUBAŞI
Atatürk University, Turkey
msubasi@atauni.edu.tr

[^0]: ${ }^{1}$ abdelatyquantum@gmail.com

[^1]: ${ }^{1}$ kabdella@trentu.ca

[^2]: ${ }^{1}$ marat@metu.edu.tr

[^3]: ${ }^{1}$ ersan@metu.edu.tr

[^4]: ${ }^{1}$ fbasar@fatih.edu.tr, feyzibasar@gmail.com

[^5]: ${ }^{1}$ ikucuk@yildiz.edu.tr

[^6]: ${ }^{1}$ merdan@etu.edu.tr

[^7]: ${ }^{1}$ hsmustafayev@yahoo.com

[^8]: ${ }^{1}$ ogata@im.uec.ac.jp
 ${ }^{2}$ hirayama@sd.kanagawa-it.ac.jp

[^9]: ${ }^{1}$ emel.aslankarayigit@marmara.edu.tr
 ${ }^{2}$ khoral@yildiz.edu.tr
 ${ }^{3}$ utekir@marmara.edu.tr

[^10]: 1 abazari.r@gmail.com
 ${ }^{2}$ lakestani@tabrizu.ac.ir

[^11]: ${ }^{1}$ mabdelaty@zewailcity.edu.eg
 ${ }^{2}$ s-mohamed.kamel@zewailcity.edu.eg

[^12]: ${ }^{1}$ ahoumat@gmail.com

[^13]: ${ }^{1}$ qais.mustafa@dpu.edu.krd

[^14]: ${ }^{1}$ Abdullahi.Adem@nwu.ac.za

[^15]: ${ }^{1}$ essaghdassi@yahoo.com

[^16]: ${ }^{1}$ ahmadkhanlu@azaruniv.ac.ir

[^17]: ${ }^{1}$ dashti.ahmed@koyauniversity.org

[^18]: ${ }^{1}$ marat@metu.edu.tr
 ${ }^{2}$ duyguarugaslan@sdu.edu.tr
 ${ }^{3}$ nurcengiz90@gmail.com

[^19]: ${ }^{1}$ mehmetaliakturk@yandex.com
 ²alukashov@fatih.edu.tr

[^20]: ${ }^{1}$ S-ali.alikaraly@zewailcity.edu.eg
 ${ }^{2}$ s-karim.el-kholy@zewailcity.edu.eg

[^21]: ${ }^{1}$ nakari@erciyes.edu.tr
 ${ }^{2}$ stemel@erciyes.edu.tr

[^22]: ${ }^{1}$ apashavand@yahoo.com

[^23]: ${ }^{1}$ hru@uokufa.edu.iq

[^24]: ${ }^{1}$ mna1@yyu.edu.tr
 ${ }^{2}$ zinnur.dikici@avea.com.tr
 ${ }^{3}$ oatan@yyu.edu.tr

[^25]: ${ }^{1}$ nagehanalsoyakgun@yyu.edu.tr

[^26]: ${ }^{1}$ nagehanalsoyakgun@yyu.edu.tr

[^27]: ${ }^{1}$ altintan@selcuk.edu.tr
 ${ }^{2}$ vpurutcu@metu.edu.tr
 ${ }^{3}$ ougur@metu.edu.tr

[^28]: ${ }^{1}$ haouesamrane@hotmail.com
 ${ }^{2}$ zouhir_m@yahoo.fr

[^29]: ${ }^{1}$ kamilari@kmu.edu.tr

[^30]: ${ }^{1}$ oarslan@adu.edu.tr
 ${ }^{2}$ hkandamar@adu.edu.tr

[^31]: ${ }^{1}$ aashyr@fatih.edu.tr
 ${ }^{2}$ semathakturk@gmail.com

[^32]: ${ }^{1}$ sasliyuce@ankara.edu.tr
 ${ }^{2}$ guvenili@science.ankara.edu.tr

[^33]: ${ }^{1}$ arifea@dicle.edu.tr
 ${ }^{2}$ tutalarhi@dicle.edu.tr

[^34]: ${ }^{1}$ mehmet.atceken382@gmail.com
 ${ }^{2}$ umit.yildirim@gop.edu.tr
 ${ }^{3}$ slymndirik@gmail.com

[^35]: ${ }^{1}$ abdelmalekmhd@yahoo.fr

[^36]: ${ }^{1}$ ggaydin@etu.edu.tr
 ${ }^{2}$ merdan@etu.edu.tr
 ${ }^{3}$ a-tridane@uaeu.ac.ae

[^37]: ${ }^{1}$ ozgur.aydogmus@asbu.edu.tr

[^38]: ${ }^{1}$ tayhan002@gmail.com
 ${ }^{2}$ cemtunc@yahoo.com

[^39]: ${ }^{1}$ azimi_azam@ut.ac.ir
 ${ }^{2}$ ghaffari@ibb.ut.ac.ir
 ${ }^{3}$ ghriazi@ibb.ut.ac.ir
 ${ }^{4}$ mtavakol@gmail.com

[^40]: ${ }^{1}$ bajravani@azaruniv.edu

[^41]: ${ }^{1}$ ambaklouti@uqu.edu.sa

[^42]: ${ }^{1}$ hmbaskonus@gmail.com
 ${ }^{2}$ hbulut@firat.edu.tr
 ${ }^{3}$ mirackayhan@yandex.com

[^43]: ${ }^{1}$ senay.baydas@gmail.com
 ${ }^{2}$ bkarakas@mit.edu

[^44]: ${ }^{1}$ aysegulb@yildiz.edu.tr, aaysegulbayram@gmail.com
 ${ }^{2}$ vedatsiap@gmail.com

[^45]: ${ }^{1}$ behmaram@tabrizu.ac.ir

[^46]: ${ }^{1}$ name@university.edu
 ${ }^{2}$ name@university.edu

[^47]: ${ }^{1}$ benaissa.abdallah@yahoo.fr

[^48]: ${ }^{1}$ ns_abd@hotmail.com

[^49]: ${ }^{1}$ ns_abd@hotmail.com
 ²skeskin973@gmail.com

[^50]: ${ }^{1}$ tbilgin@fatih.edu.tr
 ${ }^{2}$ gkelebek@fatih.edu.tr

[^51]: ${ }^{1}$ abasalt.bodaghi@gmail.com

[^52]: ${ }^{1}$ hacer.bozkurt@batman.edu.tr
 ${ }^{2}$ yyilmaz44@gmail.com.tr

[^53]: ${ }^{1}$ buyukarslan@hotmail.com
 ${ }^{2}$ oguzbaha@gmail.com

[^54]: ${ }^{1}$ abdurrahman.giresun@hotmail.com
 ${ }^{2}$ mahpeykero@sakarya.edu.tr

[^55]: ${ }^{1}$ cakirmusa@hotmail.com
 2ayredlanu@gmail.com

[^56]: ${ }^{1}$ cakirmusa@hotmail.com
 ${ }^{2}$ ayredlanu@gmail.com

[^57]: ${ }^{1}$ mcancan@gmail.com
 ${ }^{2}$ suleymanediz@yyu.edu.tr

[^58]: ${ }^{1}$ scebesoy@ankara.edu.tr
 ${ }^{2}$ bairamov@science.ankara.edu.tr
 ${ }^{3}$ yaygar@science.ankara.edu.tr

[^59]: ${ }^{1}$ mcetin@baskent.edu.tr
 ${ }^{2}$ naimtuglu@gazi.edu.tr

[^60]: ${ }^{1}$ aysegul.caksu.guler@ege.edu.tr
 ${ }^{2}$ esra.dalan@yasar.edu.tr

[^61]: ${ }^{1}$ ozgecolakoglu@mersin.edu.tr
 ${ }^{2}$ hmenken@mersin.edu.tr

[^62]: ${ }^{1}$ mdalgebra@gmail.com
 ${ }^{2}$ Jodayree@tabrizu.ac.ir

[^63]: ${ }^{1}$ gopal.d.sati@gmail.com

[^64]: ${ }^{1}$ ldebbi@yahoo.fr
 ${ }^{2}$ zinebarab@yahoo.com

[^65]: ${ }^{1}$ izzettindemir@duzce.edu.tr
 ${ }^{2}$ oya.ozbakir@ege.edu.tr
 ${ }^{3}$ ismetyildiz@duzce.edu.tr

[^66]: ${ }^{1}$ emredeniz-@hotmail.com
 ${ }^{2}$ ulusoygulsum@hotmail.com
 ${ }^{3}$ aliaral73@yahoo.com

[^67]: ${ }^{1}$ ismailhd@yyu.edu.tr

[^68]: ${ }^{1}$ suleyman.dirik@amasya.edu.tr
 ${ }^{2}$ mehmet.atceken@gop.edu.tr
 ${ }^{3}$ umit.yildirim@gop.edu.tr

[^69]: ${ }^{1}$ dsibel@metu.edu.tr
 ${ }^{2}$ agacik.zafer@aum.edu.kw

[^70]: ${ }^{1}$ gncmatematik@hotmail.com
 ${ }^{2}$ ishakaltun@yahoo.com

[^71]: ${ }^{1}$ hakkiduru2002@yahoo.com
 ${ }^{2}$ baratiakbar@yahoo.com

[^72]: ${ }^{1}$ hakkiduru2002@yahoo.com
 ²baratiakbar@yahoo.com

[^73]: ${ }^{1}$ tkdutta2001@yahoo.co.in

[^74]: ${ }^{1}$ suleymanediz@yyu.edu.tr
 ${ }^{2}$ m_cencen@yahoo.com

[^75]: ${ }^{1}$ ekmekci@comu.edu.tr
 ${ }^{2}$ rerturk@hacettepe.edu.tr

[^76]: ${ }^{1}$ s-omar.elbasha@zewailcity.edu.eg
 ${ }^{2}$ s-ahmed.alshahat@zewailcity.edu.eg
 ${ }^{3}$ s-hussien.fayed@zewailcity.edu.eg
 ${ }^{4}$ mabdelaty@zewailcity.edu.eg

[^77]: ${ }^{1}$ s-alaa.elozeiri@zewailcity.edu.eg

[^78]: ${ }^{1}$ eliasi@math.iut.ac.ir

[^79]: ${ }^{1}$ ope_taiwo3216@yahoo.com

[^80]: ${ }^{1}$ erdensmt@gmail.com
 ${ }^{2}$ sarikayamz@gmail.com

[^81]: ${ }^{1}$ ferdogan@yyu.edu.tr
 ${ }^{2}$ keremyamac@yahoo.com
 ${ }^{3}$ giyassakar@hotmail.com

[^82]: ${ }^{1}$ ferdogan@yyu.edu.tr
 ${ }^{2}$ keremyamac@yyu.edu.tr
 ${ }^{3}$ giyassakar@hotmail.com

[^83]: ${ }^{1}$ hergoren@yahoo.com

[^84]: ${ }^{1}$ hergoren@yahoo.com

[^85]: ${ }^{1}$ faghfouri@tabrizu.ac.ir
 ${ }^{2}$ S_mashmouli91@ms.tabrizu.ac.ir

[^86]: ${ }^{1}$ f.fatahi.kntu@gmail.com
 ${ }^{2}$ safakish@iust.ac.ir

[^87]: ${ }^{1}$ f.fatahi.kntu@gmail.com
 ${ }^{2}$ safakish@iust.ac.ir

[^88]: ${ }^{1}$ Ghanbary83@yahoo.com
 ${ }^{2}$ Jafarian5594@yahoo.com

[^89]: ${ }^{1}$ alev.firat@ege.edu.tr
 ²sule.ayar@yasar.edu.tr

[^90]: ${ }^{1}$ ilkergencturk@gmail.com
 ${ }^{2}$ kerimkoca@gmail.com

[^91]: ${ }^{1}$ gulistankayagok@hakkari.edu.tr
 ${ }^{2}$ nursah.mutlu@os.gazi.edu.tr
 ${ }^{3}$ sbuyukkose@gazi.edu.tr

[^92]: ${ }^{1}$ gulistankayagok@hakkari.edu.tr
 ${ }^{2}$ nursah.mutlu@os.gazi.edu.tr
 ${ }^{3}$ sbuyukkose@gazi.edu.tr

[^93]: ${ }^{1}$ gkmstf@gmail.com
 ${ }^{2}$ erdalbeyde@hotmail.com

[^94]: ${ }^{1}$ iclal@adu.edu.tr
 ${ }^{2}$ rasliyan@adu.edu.tr
 3 omerkalfa1@gmail.com

[^95]: ${ }^{1}$ iclal@adu.edu.tr
 ${ }^{2}$ kgunel@adu.edu.tr

[^96]: ${ }^{1}$ igumus@adiyaman.edu.tr
 ${ }^{2}$ o.hirzall@hu.edu.jo

[^97]: ${ }^{1}$ ergler@gmail.com
 ${ }^{2}$ yayli@science.ankara.edu.tr

[^98]: ${ }^{1}$ ergler@gmail.com
 ${ }^{2}$ vhtzmbk@gmail.com

[^99]: ${ }^{1}$ sguler@adu.edu.tr
 2yozdas@adu.edu.tr

[^100]: ${ }^{1}$ igumus@adiyaman.edu.tr
 ${ }^{2}$ o.hirzall@hu.edu.jo

[^101]: ${ }^{1}$ mgungor44@gmail.com
 ${ }^{2}$ ahmt.dmrlp@gmail.com
 ${ }^{3}$ ybulut79@gmail.com
 ${ }^{4}$ mhmd.sml85@gmail.com
 5yusufkirac27@hotmail.com

[^102]: ${ }^{1}$ aysinerkan@itu.edu.tr
 ${ }^{2}$ kaker@metu.edu.tr

[^103]: ${ }^{1}$ aysinerkan@itu.edu.tr
 ${ }^{2}$ kaker@metu.edu.tr

[^104]: ${ }^{1}$ guvenili@science.ankara.edu.tr
 ${ }^{2}$ billurkaymakcalan@gmail.com
 ${ }^{3}$ nesliyeaykir@gmail.com

[^105]: ${ }^{1}$ yhaciyev@comu.edu.tr
 ${ }^{2}$ mcandan@comu.edu.tr

[^106]: ${ }^{1}$ m_benseridi@yahoo.fr

[^107]: ${ }^{1}$ s-youssef.hassan@zewailcity.edu.eg
 ${ }^{2}$ mabdelaty@zewailcity.edu.eg

[^108]: ${ }^{1}$ ahomid86@gmail.com
 ${ }^{2}$ amisaty@gmail.com

[^109]: ${ }^{1}$ nhuseyin@cumhuriyet.edu.tr
 ${ }^{2}$ ahuseyin@cumhuriyet.edu.tr
 ${ }^{3}$ kguseynov@anadolu.edu.tr
 ${ }^{4}$ ushak@imm.uran.ru

[^110]: ${ }^{1}$ ibtissemmaths2000@yahoo.fr

[^111]: ${ }^{1}$ seda.araz@atauni.edu.tr
 ${ }^{2}$ msubasi@atauni.edu.tr
 ${ }^{3}$ hakki.gungor11@ogr.atauni.edu.tr
 ${ }^{4}$ hulyadurur@ardahan.edu.tr

[^112]: ${ }^{1}$ gumusboga_f@ibu.edu.tr
 ${ }^{2}$ zahir@kocaeli.edu.tr

[^113]: ${ }^{1}$ ilmakchi@azaruniv.edu

[^114]: ${ }^{1}$ mjabbar@tabrizu.ac.ir

[^115]: ${ }^{1}$ Jafarian5594@yahoo.com

[^116]: ${ }^{1}$ M.jalalvand@iust.ac.ir
 ${ }^{2} z m r$ _39@yahoo.com
 ${ }^{3}$ amenehsayahi1368@gmail.com

[^117]: ${ }^{1}$ jamshidzadeh_shabnam@yahoo.com
 ${ }^{2}$ nasrineghbali@gmail.com

[^118]: ${ }^{1}$ sunniej@gmail.com
 ${ }^{2}$ seibold@temple.edu
 ${ }^{3}$ pakwing@udel.edu

[^119]: ${ }^{1}$ haticekarabenli@gmail.com
 2aesen@inonu.edu.tr
 ${ }^{3}$ nesligul.aksan@inonu.edu.tr

[^120]: ${ }^{1}$ nazli.kadioglu@atauni.edu.tr
 ${ }^{2}$ isayildirim@atauni.edu.tr

[^121]: ${ }^{1}$ emine.s.karacan@hotmail.com
 ${ }^{2}$ emel.aslankarayigit@marmara.edu.tr
 ${ }^{3}$ utekir@marmara.edu.tr

[^122]: ${ }^{1}$ bkarakas@mit.edu
 ${ }^{2}$ senay.baydas@gmail.com

[^123]: ${ }^{1}$ mkarakas@beu.edu.tr
 ${ }^{2}$ karabudak02@hotmail.com

[^124]: ${ }^{1}$ karakoc.yagmur@hotmail.com

[^125]: ${ }^{1}$ matfonks@gmail.com

[^126]: ${ }^{1}$ ekaraoglu@etu.edu.tr
 ${ }^{2}$ merdan@etu.edu.tr

[^127]: ${ }^{1}$ zykayar@gmail.com

[^128]: ${ }^{1}$ bariskesler29@gmail.com
 ${ }^{2}$ negorentas@yyu.edu.tr

[^129]: ${ }^{1}$ r.keykhaei@math.iut.ac.ir

[^130]: ${ }^{1}$ alirezakhalili2005@gmail.com

[^131]: ${ }^{1}$ h_jabbari@tabrizu.ac.ir
 ${ }^{2}$ R.Makuyi@yahoo.com

[^132]: ${ }^{1}$ mehmetkir04@gmail.com
 ${ }^{2}$ hukmu@atauni.edu.tr

[^133]: ${ }^{1}$ kiris@aku.edu.tr
 ${ }^{2}$ naki.caltiner@gmail.com

[^134]: ${ }^{1}$ akorkmaz@karatekin.edu.tr
 ${ }^{2}$ hakanakmaz@karatekin.edu.tr

[^135]: ${ }^{1}$ korkmazerdal36@hotmail.com
 ²cemtunc@yahoo.com

[^136]: ${ }^{1}$ kucukaslan@ankara.edu.tr

[^137]: ${ }^{1}$ muskud28@yahoo.com
 ${ }^{2}$ gabilamirali@yahoo.com

[^138]: ${ }^{1}$ hkusak@beu.edu.tr
 ${ }^{2}$ ali.caliskan@ege.edu.tr

[^139]: ${ }^{1}$ hkusak@beu.edu.tr
 ${ }^{2}$ ali.caliskan@ege.edu.tr

[^140]: ${ }^{1}$ hkusak@beu.edu.tr
 ${ }^{2}$ serpil-ky@outlook.com

[^141]: ${ }^{1}$ fatihkutlu@yyu.edu.tr
 ${ }^{2}$ tbilgin@yyu.edu.tr

[^142]: ${ }^{1}$ omerkusmus@yyu.edu.tr

[^143]: ${ }^{1}$ omerkusmus@yyu.edu.tr
 ${ }^{2}$ turguthanoymak@gmail.com

[^144]: ${ }^{1}$ mlafci@ankara.edu.tr
 ${ }^{2}$ gseyhan@ankara.edu.tr

[^145]: ${ }^{1}$ lakmeche@yahoo.fr
 ${ }^{2}$ mhelal_abbes@yahoo.fr
 ${ }^{3}$ lakahmed2000@yahoo.fr

[^146]: ${ }^{1}$ Mahdian@tabrizu.ac.ir

[^147]: ${ }^{1}$ Mahdian@tabrizu.ac.ir

[^148]: ${ }^{1}$ hanlar@mersin.edu.tr
 ${ }^{2}$ faycacetinkaya@mersin.edu.tr
 ${ }^{3}$ ozge.akcy@gmail.com

[^149]: ${ }^{1}$ hanlar@mersin.edu.tr
 ${ }^{2}$ ozge.akcy@gmail.com
 ${ }^{3}$ faycacetinkaya@mersin.edu.tr

[^150]: ${ }^{1}$ sh.mehry@basu.ac.ir
 ²smomen94@gmail.com

[^151]: ${ }^{1}$ sh.mehry@basu.ac.ir
 ${ }^{2}$ safakish@iust.ac.ie

[^152]: ${ }^{1}$ sh.mehry@basu.ac.ir
 ${ }^{2}$ safakish@iust.ac.ie
 ${ }^{3}$ sadegh.sadeghi@gmail.com

[^153]: ${ }^{1}$ sh.mehry@basu.ac.ir
 ${ }^{2}$ safakish@iust.ac.ie
 ${ }^{3}$ a.saaidy92@basu.ac.ie

[^154]: ${ }^{1}$ amelekoglu@adu.edu.tr

[^155]: ${ }^{1}$ hmenken@mersin.edu.tr
 ${ }^{2}$ ozgecolakoglun@mersin.edu.tr

[^156]: ${ }^{1}$ aziz.mennouni@yahoo.fr

[^157]: ${ }^{1}$ alev.meral@dicle.edu.tr
 ${ }^{2}$ ougur@metu.edu.tr

[^158]: ${ }^{1}$ merdan@etu.edu.tr
 2 akgumus@adiyaman.edu.tr
 3 ggaydin@etu.edu.tr

[^159]: ${ }^{1}$ tiachachatmeriem@yahoo.fr
 ${ }^{2}$ mmihoubi@usthb.dz

[^160]: ${ }^{1}$ namessaoudi@yahoo.fr
 ${ }^{2}$ benayadi@univ-metz.fr
 ${ }^{3}$ bensa_warda@yahoo.com

[^161]: ${ }^{1}$ g.minak.28@gmail.com
 ${ }^{2}$ ishakaltun@yahoo.com

[^162]: ${ }^{1}$ smoayeri@shirazu.ac.ir

[^163]: ${ }^{1}$ smoayeri@shirazu.ac.ir

[^164]: ${ }^{1}$ zaar1992@yahoo.fr

[^165]: ${ }^{1}$ mbelaidi6@hotmail.com

[^166]: ${ }^{1}$ ahmet_m@comu.edu.tr
 ${ }^{2}$ tekkoyun@comu.edu.tr

[^167]: ${ }^{1}$ dilmorad@gmail.com

[^168]: ${ }^{1}$ moussavi.a@gmail.com
 ${ }^{2}$ alireza.moussavi@gmail.com

[^169]: ${ }^{1}$ hsmustafayev@yahoo.com
 ${ }^{2}$ cesimtemel@yahoo.com

[^170]: ${ }^{1}$ okedoye.akindele@fupre.edu.ng

[^171]: ${ }^{1}$ aykutor@comu.edu.tr
 ${ }^{2}$ yhaciyev@comu.edu.tr

[^172]: ${ }^{1}$ samira.a@hotmail.com

[^173]: ${ }^{1}$ khames@ustm.mr

[^174]: ${ }^{1}$ emos@atauni.edu
 ${ }^{2}$ havvaonalan@yyu.edu

[^175]: ${ }^{1}$ eozkan@erzincan.edu.tr
 ${ }^{2}$ aykut_2057@hotmail.com
 ${ }^{3}$ ipekaltun21@hotmail.com

[^176]: ${ }^{1}$ rukiyeozturk@atauni.edu.tr
 ${ }^{2}$ aydogduali84@gmail.com
 ${ }^{3}$ eozkan@erzincan.edu.tr

[^177]: ${ }^{1}$ alexpijyan@gmail.com

[^178]: ${ }^{1}$ shpetim.math@gmail.com
 ${ }^{2}$ fevzi.berisha@uni-pr.edu
 ${ }^{3}$ egzonaiseini@hotmail.com

[^179]: ${ }^{1}$ gh.fadaei@gmail.com

[^180]: ${ }^{1}$ roomi@azaruniv.edu

[^181]: ${ }^{1}$ abdelmalekmhd@yahoo.fr

[^182]: ${ }^{1}$ giyassakar@hotmail.com
 2 onursaldir@yyu.edu.tr

[^183]: ${ }^{1}$ onursaldir@yyu.edu.tr
 ${ }^{2}$ giyassakar@hotmail.com

[^184]: ${ }^{1}$ ahmadkenga@gmail.com
 ${ }^{2}$ basant777@yahoo.co.uk

[^185]: ${ }^{1}$ semrasaracoglu65@gmail.com
 ${ }^{2}$ yusuf.yayli@science.ankara.edu.tr
 ${ }^{3}$ ergler@gmail.com

[^186]: ${ }^{1}$ talatsariaydin@gmail.com
 ${ }^{2}$ vasil@firat.edu.tr

[^187]: ${ }^{1}$ talatsariaydin@gmail.com
 ${ }^{2}$ vasil@firat.edu.tr

[^188]: ${ }^{1}$ sarikayamz@gmail.com
 ${ }^{2}$ erdensmt@gmail.com
 ${ }^{3}$ hsyn.budak@gmail.com

[^189]: ${ }^{1}$ sarikayamz@gmail.com
 ${ }^{2}$ tubatunc03@gmail.com
 ${ }^{3}$ erdensmt@gmail.com

[^190]: ${ }^{1}$ gselin.savaskan@gmail.com
 ${ }^{2}$ aykutor@comu.edu.tr
 ${ }^{3}$ yhaciyev@comu.edu.tr

[^191]: ${ }^{1} n a s h _s h h d @ h o t m a i l . c o m$

[^192]: ${ }^{1}$ golbabai@iust.ac.ir
 ${ }^{2}$ Saeedi@iust.a.ir

[^193]: ${ }^{1}$ alisirma01@gmail.com

[^194]: ${ }^{1}$ g.senel@amasya.edu.tr

[^195]: ${ }^{1}$ hacer.sengul@hotmail.com
 ${ }^{2}$ mikailet@yahoo.com

[^196]: ${ }^{1}$ ssevgin@yahoo.com

[^197]: ${ }^{1}$ haticetaskesen@yyu.edu.tr

[^198]: ${ }^{1}$ mahrouz78@gmail.com
 ${ }^{2}$ chaili_rachid@yahoo.fr

[^199]: ${ }^{1}$ s.topal@beu.edu.tr

[^200]: ${ }^{1}$ s.topal@beu.edu.tr

[^201]: ${ }^{1}$ hakantor@gmail.com

[^202]: ${ }^{1}$ utotur@adu.edu.tr
 ${ }^{2}$ ibrahim.canak@ege.edu.tr

[^203]: ${ }^{1}$ utotur@adu.edu.tr
 ${ }^{2}$ ibrahim.canak@ege.edu.tr

[^204]: ${ }^{1}$ utotur@adu.edu.tr
 ${ }^{2}$ mali.okur@adu.edu.tr

[^205]: ${ }^{1}$ stoobaei@yahoo.com

[^206]: ${ }^{1}$ cemtunc@yahoo.com

[^207]: ${ }^{1}$ cemtunc@yahoo.com
 ${ }^{2}$ yener_altun@yahoo.com

[^208]: ${ }^{1}$ cemtunc@yahoo.com
 ${ }^{2}$ melekaltun-@hotmail.com

[^209]: ${ }^{1}$ cemtunc@yahoo.com
 ${ }^{2}$ sizar@uod.ac

[^210]: ${ }^{1}$ cemtunc@yahoo.com
 ${ }^{2}$ ryazgan503@gmail.com

[^211]: ${ }^{1}$ ercantunc72@yahoo.com
 ${ }^{2}$ orhanozdemir37@yahoo.com

[^212]: ${ }^{1}$ ercantunc72@yahoo.com
 ${ }^{2}$ osmantunc89@gmail.com

[^213]: ${ }^{1}$ aliucum05@gmail.com
 ${ }^{2}$ kilarslan@yahoo.com
 ${ }^{3}$ sakaki@hirosaki-u.ac.jp

[^214]: ${ }^{1}$ gulsenulucak@gyte.edu.tr
 ${ }^{2}$ utekir@marmara.edu.tr
 ${ }^{3}$ khoral@yildiz.edu.tr

[^215]: ${ }^{1}$ serhan_ulusan@hotmail.com
 ${ }^{2}$ amelekoglu@adu.edu.tr

[^216]: ${ }^{1}$ ulusoygulsum@hotmail.com
 ${ }^{2}$ tunceracar@ymail.com

[^217]: ${ }^{1}$ ulusoygulsum@hotmail.com
 ${ }^{2}$ emredeniz-@hotmail.com
 ${ }^{3}$ aliaral73@yahoo.com

[^218]: ${ }^{1}$ ulusu@aku.edu.tr
 ${ }^{2}$ okisi@bartin.edu.tr

[^219]: ${ }^{1}$ syalaz@dicle.edu.tr
 ${ }^{2}$ mtez@marmara.edu.tr
 ${ }^{3}$ tutalarhi@dicle.edu.tr

[^220]: ${ }^{1}$ tyavuz@gtu.edu.tr

[^221]: ${ }^{1}$ medine.yesilkayagil@usak.edu.tr
 ${ }^{2}$ feyzibasar@gmail.com

[^222]: ${ }^{1}$ umit.yildirim@gop.edu.tr
 ${ }^{2}$ mehmet.atceken382@gmail.com
 ${ }^{3}$ slymndirik@gmail.com

[^223]: ${ }^{1}$ nyokus@kmu.edu.tr
 ${ }^{2}$ cannimet@kmu.edu.tr

[^224]: ${ }^{1}$ ali.zalnejad@stu.nit.ac.ir
 ${ }_{3}^{2}$ ghasemshabani@ymail.com
 ${ }^{3}$ m.zalnezhad.313@gmail.com
 ${ }^{4}$ h.zalnejad@gmail.com

[^225]: ${ }^{1}$ akgumus@adiyaman.edu.tr

[^226]: ${ }^{1}$ melikedede65@gmail.com
 ${ }^{2}$ bahattinerdinc@yyu.edu.tr
 ${ }^{3}$ aycibin@gmail.com
 ${ }^{4}$ nurullahsechuk@gmail.com
 ${ }^{5}$ sinemerden@gmail.com
 ${ }^{6}$ ekilit@yahoo.com
 ${ }^{7}$ physicisthakkus@gmail.com

[^227]: ${ }^{1}$ eekici@comu.edu.tr

[^228]: ${ }^{1}$ fatospoiled@gmail.com
 ${ }^{2}$ ekilit@yahoo.com
 ${ }^{3}$ nurullahsechuk@gmail.com
 ${ }^{4}$ bahattinerdinc@yyu.edu.tr
 ${ }^{5}$ aycibin@gmail.com
 ${ }^{6}$ sinemerden@gmail.com
 ${ }^{7}$ physicisthakkus@gmail.com

[^229]: ${ }^{1}$ ieroglu@ankara.edu
 ${ }^{2}$ erdal.guner@science.ankara.edu

[^230]: ${ }^{1}$ guettald@gmail.com
 ${ }^{2}$ mrahaldz@gmail.com

[^231]: ${ }^{1}$ sinemerden@gmail.com
 ${ }^{2}$ ekilit@yahoo.com
 ${ }^{3}$ nurullahsechuk@gmail.com
 ${ }^{4}$ aycibin@gmail.com
 ${ }^{5}$ bahattinerdinc@yyu.edu.tr
 ${ }^{6}$ physicisthakkus@gmail.com

[^232]: ${ }^{1}$ sinemerden@gmail.com
 ${ }^{2}$ ekilit@yahoo.com
 ${ }^{3}$ nurullahsechuk@gmail.com
 ${ }^{4}$ aycibin@gmail.com
 ${ }^{5}$ bahattinerdinc@yyu.edu.tr
 ${ }^{6}$ physicisthakkus@gmail.com

[^233]: ${ }^{1}$ mesutkaval@mail.yyu.edu.tr
 ${ }^{2}$ bahattinerdinc@yyu.edu.tr
 ${ }^{3}$ nurullahsechuk@gmail.com
 ${ }^{4}$ aycibin@gmail.com
 ${ }^{5}$ ekilit@yahoo.com
 ${ }^{6}$ sinemerden@gmail.com
 ${ }^{7}$ physicisthakkus@gmail.com

[^234]: ${ }^{1}$ ysarac@atauni.edu.tr
 ${ }^{2}$ senersule@atauni.edu.tr

[^235]: ${ }^{1}$ nurullahsechuk@gmail.com
 ${ }^{2}$ physicisthakkus@gmail.com
 ${ }^{3}$ bahattinerdinc@yyu.edu.tr
 ${ }^{4}$ sinemerden@gmail.com
 ${ }^{5}$ aycibin@gmail.com
 ${ }^{6}$ ekilit@yahoo.com

[^236]: ${ }^{1}$ nurullahsechuk@gmail.com
 ${ }^{2}$ redabicer@gmail.com
 ${ }^{3}$ physicisthakkus@gmail.com
 ${ }^{4}$ bahattinerdinc@yyu.edu.tr
 ${ }^{5}$ aycibin@gmail.com
 ${ }^{6}$ ekilit@yahoo.com
 ${ }^{7}$ sinemerden@gmail.com

[^237]: ${ }^{1}$ nurullahsechuk@gmail.com
 ${ }^{2}$ redabicer@gmail.com
 ${ }^{3}$ physicisthakkus@gmail.com
 ${ }^{4}$ bahattinerdinc@yyu.edu.tr
 ${ }^{5}$ aycibin@gmail.com
 ${ }^{6}$ sinemerden@gmail.com
 ${ }^{7}$ ekilit@yahoo.com

[^238]: ${ }^{1}$ sefaanil.sezer@medeniyet.edu.tr
 ${ }^{2}$ ibrahim.canak@ege.edu.tr

