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Several notions of convergence for subsets of metric space appear in the literature. In this paper, we define Wijsman I-convergence
and Wijsman I"-convergence for sequences of sets and establish some basic theorems. Furthermore, we introduce the concepts of

Wijsman I-Cauchy sequence and Wijsman 1*-Cauchy sequence and then study their certain properties.

1. Introduction and Background

The concept of convergence of sequences of points has been
extended by several authors (see [1-9]) to the concept of
convergence of sequences of sets. The one of these such
extensions that we will consider in this paper is Wijsman
convergence. We will define I-convergence for sequences of
sets and establish some basic results regarding these notions.

Let us start with fundamental definitions from the liter-
ature. The natural density of a set K of positive integers is
defined by

S(K) = lim 2 |{k <n:k e K}, )
n—)OOn

where |k < n : k € K| denotes the number of elements of K
not exceeding # ([10]).

Statistical convergence of sequences of points was intro-
duced by Fast [11]. In [12], Schoenberg established some basic
properties of statistical convergence and also studied the
concept as a summability method.

A number sequence x = (x;) is said to be statistically
convergent to the number £ if, for every € > 0,

Jim = [{ke<ns o -8 = e =0, 2)

In this case, we write st —lim x;. = &. Statistical convergence is
a natural generalization of ordinary convergence. If lim x; =
&, then st —lim x;. = &. The converse does not hold in general.

Definition 1 (see [13]). A family of sets I < 2N is called an
ideal on N if and only if

i) 0el
(ii) foreach A,Be€ Ionehas AUB € I;
(iii) for each A € T and each B< Aonehas B € I.

An ideal is called nontrivial if N ¢ I, and nontrivial ideal
is called admissible if {n} € I for eachn € N.

Definition 2 (see [14]). A family of sets F C 2V is a filter in N
if and only if
(i) 0 ¢ F;
(ii) for each A,B € Fonehas AN B ¢ F;
(iii) for each A € F and each B2 A one has B € F.

Proposition 3 (see [14]). I isa nontrivial ideal in N if and only
if

F=F(I)={M=N\A:Acl} 3)
is a filter in N.
Definition 4 (see [14]). Let I be a nontrivial ideal of subsets of

N. A number sequence (x,,),,., is said to be I-convergent to &
(& =1-1lim ) if and only if for each & > 0 the set

(keN:|x —& ¢ (4)

belongs to I. The element & is called the I limit of the number
sequence x = (x,,)
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