

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma ISSN: 2645-8845

${\mathscr I}$ -Cesàro Summability of a Sequence of Order α of Random Variables in Probability

Ömer Kişi^{a*} and Erhan Güler^a

^aDepartment of Mathematics, Bartın University, Bartın, Turkey *Corresponding author

Article Info

Abstract

Keywords: Probability, Lacunary, Ideal

convergence

2010 AMS: 40A35, 40G15 Received: 9 November 2018 Accepted: 29 November 2018 Available online: 25 December 2018 In this paper, we define four types of convergence of a sequence of random variables, namely, \mathscr{I} -statistical convergence of order α , \mathscr{I} -lacunary statistical convergence of order α , strongly \mathscr{I} -lacunary convergence of order α and strongly \mathscr{I} -Cesàro summability of order α in probability where $0 < \alpha < 1$. We establish the connection between these notions.

1. Introduction and background

Theory of statistical convergence was firstly originated by Fast [1]. After Fridy [2] and Šalát [3] statistical convergence became a notable topic in summability theory. Lacunary statistical convergence was defined by using lacunary sequences in [4]. \mathscr{I} -convergence was fistly considered by Kostyrko et al. [5]. Also, Das et al. [6] gave new definitions by using ideal, such as \mathscr{I} -statistical convergence, \mathscr{I} -lacunary statistical convergence. Ulusu et al. [7] also studied asymptotically \mathscr{I} -Cesaro equivalence of sequences of sets.

Statistical convergence of order α ($0 < \alpha < 1$) was introduced using the notion of natural density of order α where n is replaced by n^{α} in [8]. This new type convergence was different in many ways from statistical convergence. Lacunary statistical convergence of order α is studied by Sengöl and M. Et [9], \mathscr{I} -statistical and \mathscr{I} -lacunary statistical convergence of order α is studied by Das and Savas [10].

In probability theory, if for n > 0, a random variable X_n given on space S, a probability function $P: X \to \mathbb{R}$, then we say that $X_1, X_2, ..., X_n, ...$ is a sequence of random variables and it is demonstrated by $\{X_n\}_{n \in \mathbb{N}}$.

It is important that if there exists $c \in \mathbb{R}$ for which $P(|X - c| < \varepsilon) = 1$, where $\varepsilon > 0$ is sufficiently small, that is, it is means that values of X lie in a very small neighbourhood of c.

New concepts have begun to be studied in probability theory by Das et al. [6], and others ([11]-[15]).

2. Main results

Definition 2.1. $\{X_k\}_{k\in\mathbb{N}}$ is said to be \mathscr{I} -statistically convergent of order α in probability to a random variable X if for any ε , δ , $\gamma > 0$

$$\left\{n\in\mathbb{N}:\frac{1}{n^{\alpha}}\left|\left\{k\leq n:P\left(\left|X_{k}-X\right|\geq\varepsilon\right)\geq\delta\right\}\right|\geq\gamma\right\}\in\mathscr{I},$$

and demonstrated by $X_k \stackrel{PS(\mathscr{I})^{\alpha}}{\to} X$.

Definition 2.2. $\{X_n\}_{n\in\mathbb{N}}$ is said to be \mathscr{I} -lacunary statistically convergent of order α in probability to a random variable X if for any $\varepsilon, \delta, \gamma > 0$

$$\left\{r \in \mathbb{N}: \frac{1}{h_{\omega}^{\alpha}} \left| \left\{k \in I_r: P\left(|X_k - X| \geq \varepsilon\right) \geq \delta\right\} \right| \geq \gamma \right\} \in \mathscr{I},$$

and it is demonstrated by $X_k \stackrel{PS_{\theta}(\mathscr{I})^{\alpha}}{\to} X$.