

New Sequence Spaces with Respect to a Sequence of Modulus Functions

Ömer Kişi^a*, Erhan Güler^b

^{a,b}Department of Mathematics, Faculty of Science, Bartın University, 74100, Bartın, Turkey ^aEmail: okisi@bartin.edu.tr ^bEmail: eguler@bartin.edu.tr

Abstract

In this paper, we introduce the notions of A^{I} -invariant convergence, $A^{I^{*}}$ -invariant convergence with respect to a sequence of modulus functions and establish some basic theorems. Furthermore, we give some properties of $A^{I\sigma}$ -Cauchy sequence and $A^{I^{*}_{\sigma}}$ -Cauchy sequence. We basically study some connections between A^{I} -invariant statistical convergence and A^{I} -invariant lacunary statistical convergence with respect to a sequence of modulus functions and between strongly A^{I} -invariant convergence and A^{I} -invariant convergence and A^{I} -invariant convergence and A^{I} -invariant convergence and A^{I} -invariant convergence with respect to a sequence of modulus functions. Also, we establish some inclusion relations between new concepts of $I_{\sigma} - \lambda$ statistically convergence and A^{I} -invariant statistically convergence with respect to a sequence of modulus functions.

Keywords: Lacunary invariant statistical convergence; Invariant statistical convergence; modulus function.

1. Introduction

The notion of statistical convergence of sequences of numbers was introduced by Fast [12]. Later on, statistical convergence turned out to be one of the most active areas of research in summability theory after the works of [15,29].

^{*} Corresponding author.