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Assoc. Prof. Dr. Nihal YOKUŞ, Karamanoğlu Mehmetbey University, Karaman, TURKEY
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Res. Assist. Merve YILMAZ, Karamanoğlu Mehmetbey University, Karaman, TURKEY
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• Prof. Dr. İbrahim YALÇINKAYA, Necmettin Erbakan University, Konya, TURKEY
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• Assoc. Prof. Dr. İlker AKKUŞ, Kırıkkale University, Kırıkkale, TURKEY

• Assoc. Prof. Dr. Javid ALI, Aligarh Muslim University, Aligarh, INDIA
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• Assoc. Prof. Dr. Seydi Battal Gazi KARAKOÇ, Nevşehir Hacı Bektaş Veli University, Nevşehir,
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• Dr. Deniz Pınar SUNAOĞLU, Karamanoğlu Mehmetbey University, Karaman, TURKEY



Preface

The First International Conference on Mathematical Studies and Applications 2018 (ICMSA 2018)
took place at the Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.

In the conference, the leading academicians, scientists, researchers and engineers from around the
world had the opportunity of sharing their experiences and research results on various aspects of math-
ematics.

The contents of these Proceedings have been subjected to peer reviewing. A large number of anony-
mous reviewers have played a crucial part in the editorial process. They all deserve our sincere thanks
for their immense and highly valuable work.

It is clear from the variety and quality of the papers that the conference has attracted many innovative
mathematics researchers from around the world.

Finally, we are thankful to the invited speakers, scientific committee, organizing committee, authors,
reviewers, contributers and the sponsors of ICMSA 2018: Karamanoglu Mehmetbey University, Kara-
man Municipality and The Association of Karaman Industrialists and Businessmen (KARSİAD).

Organizing Committee

December 28, 2018
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On The Space of Korovkin Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



Mehmet YAVUZ
Fundamental Solution of Heat Problem with a New Fractional Derivative Operator Involving Normal-
ized Sinc Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Mehmet UZUN, Sadik Alper YILDIZEL
Evolutionary Algorithms in Construction Projects Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Murat Ibrahim YAZAR, Çiğdem GÜNDÜZ ARAS
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Abstract

In this paper, we aim to establish Hermite-Hadamard type inequalities for s-convex
functions associated with known fractional conformable integral operators. The inequal-
ities presented here are also pointed out to include some known results, as their special
cases.

Keywords: s-convex functions, fractional conformable integral operator, special func-
tions.

1 Introduction and preliminaries

For any convex functions f : I → R where I is an interval in R, the following chain of
inequalities holds:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
(a, b ∈ I, a < b). (1)

Inequality (1) is known literature as Hermite-Hadamard inequality. Here and in the fol-
lowing, let C, R, R+, and Z−0 be the sets of complex numbers, real numbers, positive real
numbers, and non-positive integers, respectively. The Hermite-Hadamard inequality has re-
ceived attention of many mathematician and a remarkable variety of extensions, refinements
and generalizations have been found so far for example see [1, 2, 5, 10, 11, 12, 17, 19, 20].

Let s ∈ (0, 1]. Then the function f : [0,∞) → R is said to be s−convex on the interval
[0,∞) if the inequality

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y) (2)

takes place for all x, y ∈ [0,∞) and t ∈ [0, 1]. f is said to be s−concave if inequality (2)
reversed.

We clearly see that s−convexity (concavity) defined on [0,∞) reduces to ordinary convex-
ity (concavity) if s = 1. We recall some definitions and known results. Let [a, b] (−∞ < a <

∗Corresponding author. E-mail address: erhanset@yahoo.com
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b <∞) be a finite interval on the real axis R and f ∈ L1[a, b]. The left-sided and right-sided
Riemann-Liouville fractional integrals Jαa+f and Jαb−f of order α ∈ C (<(α) > 0) are defined,
respectively, by

(
Jαa+f

)
(x) :=

1

Γ(α)

∫ x

a
(x− t)α−1f(t) dt (x > a; <(α) > 0) (3)

and
(
Jαb−f

)
(x) :=

1

Γ(α)

∫ b

x
(t− x)α−1f(t) dt (x < b; <(α) > 0). (4)

Here Γ(α) is the familiar Gamma function (see, e.g., [21, Section 1.1]). For more details and
properties concerning the fractional integral operators (3) and (4), we refer the reader, for
example, to the works [3, 4, 6, 9, 15, 14, 16, 18] and the references therein.

Sarıkaya et al. [15] established a Hermite-Hadamard type integral inequality involving
Riemann-Liouville fractional integrals as in the following theorem.

Theorem A. Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a, b]. Also
let f be a convex function on [a, b] and α ∈ R+. Then

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] ≤ f (a) + f (b)

2
. (5)

Obviously, the case α = 1 in (5) reduces to the Hermite-Hadamard inequality (1). We
also recall two more results in [15] as in Lemma A and Theorem B.

Lemma A. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. Also let
f ′ ∈ L[a, b] and α ∈ R+. Then

f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

=
b− a

2

∫ 1

0

[
(1− t)α − tα

]
f
′
(ta+ (1− t)b) dt.

(6)

Theorem B. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. Also let
f ′ ∈ L[a, b] and α ∈ R+. Then

∣∣∣∣
f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α

[
Jαa+f(b) + Iαb−f(a)

]∣∣∣∣

≤ b− a
2(α+ 1)

(
1− 1

2α

) (
|f ′(a)|+ |f ′(b)|

)
.

(7)

In [16], Hermite-Hadamard inequality for s−convex functions via Riemann-Liouville fractional
integrals is obtained as follows:
Theorem C. Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a, b]. If
f is an s−convex mapping in the second sense on [a, b], then the following inequalities for
fractional integrals with α > 0 and s ∈ (0, 1) hold:

2s−1f
(
a+ b

2

)
≤ Γ(α+ 1)

(b− a)α

[
Jαa+f(b) + Jαb−f(a)

2

]
≤
[

1

α+ s
+ β(α, s+ 1)

]
f(a) + f(b)

2
(8)

where β is Euler Beta function.

Wang et al. obtained the following Hermite-Hadamard type inequalities which hold
s−convex functions in the second sense.
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Theorem 1 [22] Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b, such that
f ∈ L[a, b]. If f ′ is s-convex on [a, b], for some fixed s ∈ (0, 1], then the following inequality
for fractional integrals holds
∣∣∣∣
f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
(Jαa+)f(b) + (Jαb−)f(a)

∣∣∣∣ ≤
b− a

α+ s+ 1

(
1− 1

2α+s
(|f ′(a)|+ |f ′(b)|)

)
.

Theorem 2 [22] Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b, such that
f ∈ L[a, b]. If |f ′q (q > 1) is s-convex on [a, b], for some fixed s ∈ (0, 1], then the following
inequality for fractional integrals holds

∣∣∣∣
f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
(Jαa+)f(b) + (Jαb−)f(a)

∣∣∣∣

≤
(
b− a

2

)(
1

αp+ 1

) 1
p
(

1− 1

2αp

) 1
p
(

1

(s+ 1)2s+1

) 1
q

×
[
(|f ′q + (2s+1 − 1)|f ′q)

1
q + ((2s+1 − 1)|f ′(Ãc/)|q + |f ′q)

1
q

]
,

where 1
p = 1− 1

q .

Theorem 3 [22] Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b, such that
f ∈ L[a, b]. If |f ′q (q > 1) is s-convex on [a, b], for some fixed s ∈ (0, 1], then the following
inequality for fractional integrals holds

∣∣∣∣
f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
(Jαa+)f(b) + (Jαb−)f(a)

∣∣∣∣

≤ (b− a)

(
1

α+ 1

)1− 1
q
(

1− 1

2α

)1− 1
q
(

1

α+ s+ 1

) 1
q
(

1− 1

2α+s

) 1
q

(|f ′q + |f ′q)
1
q .

Jarad et al. [8] introduced the left and right-fractional conformable integral operators
defined (for β ∈ C with <(β) > 0), respectively, by

β
aJ

αf(x) =
1

Γ(β)

∫ x

a

(
(x− a)α − (t− a)α

α

)β−1 f(t)

(t− a)1−α
dt (9)

and

βJαb f(x) =
1

Γ(β)

∫ b

x

(
(b− x)α − (b− t)α

α

)β−1 f(t)

(b− t)1−αdt. (10)

Clearly, when a = 0 and α = 1 is taken, then (9) and (10) reduce to Riemann-Liouville
fractional integrals (3) and (4), respectively. For more detailed properties and certain special
cases of the integral operators (9) and (10), we refer to [8].

The generalized k−fractional conformable integrals are defined in [7] by

β
kJ

α
a+f(x) =

1

kΓk(β)

∫ x

a

[
(x− a)α − (t− a)α

α

]β/k−1 f(t)

(t− a)1−α
dt

and

β
kJ

α
b−f(x) =

1

kΓk(β)

∫ b

x

[
(b− x)α − (b− t)α

α

]β/k−1 f(t)

(b− t)1−αdt,

where α > 0, R(β) > 0 and Γk(x) is defined by

Γk(x) = lim
n→∞

n!kn(nk)x/k−1

(x)n,k
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in terms of

(λ)n,k =

{
1, n = 0;
λ(λ+ k) · · · (λ+ (n− 1)k), n ∈ N.

Obviously, if taking k = 1, then these operators reduce to the left and right fractional
conformable integral operators.

Now, lets give the following Lemma we will use to obtain the main results.

Lemma 4 [13] Let f : [a, b]→ R be a differentiable function such that a < b and f ′ ∈ L[a, b].
Then

f(a) + f(b)

2
− kΓk(β + k)α

β
k

(b− a)
αβ
k

[
β
kJ αa+f(b) + β

kJ αb−f(a)
]

=
(b− a)α

β
k

2

∫ 1

0

[(
1− tα
α

)β
k

−
(

1− (1− t)α
α

)β
k

]
f ′(ta+ (1− t)b)dt

for α, β > 0.

We recall Beta function B(α, β) and incomplete Beta function Bx(α, β) (see, e.g., [21,
Section 1.1])

B(α, β) =





∫ 1

0
tα−1(1− t)β−1 dt (<(α) > 0; <(β) > 0)

Γ(α) Γ(β)

Γ(α+ β)

(
α, β ∈ C \ Z−0

)
.

(11)

and

Bx(α, β) =

∫ x

0
tα−1(1− t)β−1 dt (<(α) > 0). (12)

In this work, we aim to establish two Hermite-Hadamard type inequalities and an identity
for convex functions associated with the fractional conformable integral operators (3) and (4).
Some particular cases of the results presented here are pointed out to reduce to relatively
simple known results.

2 Main Results

Theorem 5 Let f : [a, b] → R (0 ≤ a < b) be functions such that f ∈ L[a, b]. Also, let f be
s-convex in the second sense on [a, b] for some fixed s ∈ (0, 1]. Then the following inequality
holds:

2sf

(
a+ b

2

)
≤ kΓk(β + k)α

β
k

(b− a)
αβ
k

[
β
kJ αa+f(b) + β

kJ αb−f(a)
]

≤
[
f(a) + f(b)

α
β
k

] [
αA1 +B

(
s

α
+ 1,

β

k

)]
(13)

where α, β ∈ R+ and

A1(α, β, s) =

∫ 1

0
(1− tα)

β
k
−1tα−1(1− t)sdt.
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Proof. Since f is s-convex function in the second sense on [a, b], we have for x, y ∈ [a, b]

f

(
x+ y

2

)
≤ f(x) + f(y)

2s
.

For x = ta+ (1− t)b and y = (1− t)a+ tb, we obtain

2sf

(
a+ b

2

)
≤ f(ta+ (1− t)b) + f((1− t)a+ tb). (14)

Multiplying both sides of (14) by

(
1− (1− t)α

α

)β
k
−1

(1 − t)α−1, after that, integrating the

resulting inequality over [0, 1] with respect to t, we get

2sf

(
a+ b

2

)∫ 1

0

(
1− (1− t)α

α

)β
k
−1

(1− t)α−1dt

≤
∫ 1

0

(
1− (1− t)α

α

)β
k
−1

(1− t)α−1f(ta+ (1− t)b)dt

+

∫ 1

0

(
1− (1− t)α

α

)β
k
−1

(1− t)α−1f((1− t)a+ tb)dt.

For x =

(
1− (1− t)α

α

)
, u = ta+ (1− t)b and v = (1− t)a+ tb, we obtain

2sf

(
a+ b

2

)
1

β
kα

β
k

≤ 1

b− a

∫ b

a




1−
(
u−a
b−a

)α

α




β
k
−1(

u− a
b− a

)α−1
f(u)du

+
1

b− a

∫ b

a

(1−
(
b−v
b−a

)α

α

)β
k
−1(b− v

b− a

)α−1
f(v)dv

=
1

(b− a)
αβ
k

∫ b

a

(
(b− a)α − (u− a)α

α

)β
k
−1

(u− a)α−1f(u)du

+
1

(b− a)
αβ
k

∫ b

a

(
(b− a)α − (b− v)α

α

)β
k
−1

(b− v)α−1f(v)dv

=
kΓk(β)

(b− a)
αβ
k

[
β
kJ αa+f(b) + β

kJ αb−f(a)
]

and the first inequality is proved.
For the proof of the second inequality (13), we first note that if f is s-convex function in

the second sense, it yields

f(ta+ (1− t)b) ≤ tsf(a) + (1− t)sf(b)

and
f((1− t)a+ tb) ≤ (1− t)sf(a) + tsf(b).

By adding these inequalities together, one has the following inequality:

f(ta+ (1− t)b) + f((1− t)a+ tb) ≤ [f(a) + f(b)] (ts + (1− t)s) . (15)
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Then multiplying both sides of (15) by
(
1−(1−t)α

α

)β
k
−1

(1− t)α−1 and integrating the resulting

inequality with respect to over [0, 1], we obtain

∫ 1

0

(
1− (1− t)α

α

)β
k
−1

(1− t)α−1f(ta+ (1− t)b)dt

+

∫ 1

0

(
1− (1− t)α

α

)β
k
−1

(1− t)α−1f((1− t)a+ tb)dt

≤ [f(a) + f(b)]

∫ 1

0

(
1− (1− t)α

α

)β
k
−1

(1− t)α−1 [ts + (1− t)s] dt

=
[f(a) + f(b)]

α
β
k
−1

[
A1 +

1

α
B

(
s

α
+ 1,

β

k

)]

where A1 =
∫ 1
0 (1− tα)

β
k
−1tα−1(1− t)sdt. That is,

kΓk(β)

(b− a)
αβ
k

[
β
kJ αa+f(b) + β

kJ αb−f(a)
]
≤ f(a) + f(b)

α
β
k

[
αA1 +B

(
s

α
+ 1,

β

k

)]

Hence, the proof is completed.

Corollary 6 Under the assumptions of Theorem 5 with k = 1, we have

2sf

(
a+ b

2

)
≤ Γ(β + 1)αβ

(b− a)αβ

[
βJ αa+f(b) + βJ αb−f(a)

]

≤
[
f(a) + f(b)

αβ

] [
αA1 +B

( s
α

+ 1, β
)]

(16)

where α, β ∈ R+ and

A1(α, β, s) =

∫ 1

0
(1− tα)β−1tα−1(1− t)sdt.

Remark 7 If we choose α = 1 in Corollary 6, the inequality (16) become the inequalities (8)
of Theorem C.

Theorem 8 Let f : [a, b]→ R be a differentiable function on (a, b) with a < b and f ′ ∈ L[a, b].
If |f ′q is s-convex function in the second sense on [a,b], for some fixed s ∈ (0, 1], then the
following inequality holds:

∣∣∣∣∣
f(a) + f(b)

2
− Γk(β + k)α

β
k

2(b− a)
αβ
k

[
β
kJ αa+f(b) + β

kJ αb−f(a)
]∣∣∣∣∣

≤ (b− a)2
1
p
−1

α
1
p

[
B 1

2α

(
1

α
, p
β

k
+ 1

)
−B1− 1

2α

(
pβ

k
+ 1,

1

α

)] 1
p
[ |f ′q + |f ′q

s+ 1

] 1
q

where 1
p + 1

q = 1, q > 1, α, β ∈ R+, Bx(·, ·) incompleted beta function and Γ Euler Gamma
function.

Proof. Using Lemma 4 and triangle inequality,
∣∣∣∣∣
f(a) + f(b)

2
− Γk(β + k)α

β
k

2(b− a)
αβ
k

[
β
kJ αa+f(b) + β

kJ αb−f(a)
]∣∣∣∣∣ (17)

≤ (b− a)α
β
k

2

∫ 1

0

∣∣∣∣∣

(
1− tα
α

)β
k

−
(

1− (1− t)α
α

)β
k

∣∣∣∣∣
∣∣f ′ (ta+ (1− t)b)

∣∣ dt.
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Using the well known Hölder inequality, we obtain

∫ 1

0

∣∣∣∣∣

(
1− tα
α

)β
k

−
(

1− (1− t)α
α

)β
k

∣∣∣∣∣
∣∣f ′ (ta+ (1− t)b)

∣∣ dt (18)

≤
(∫ 1

0

∣∣∣∣∣

(
1− tα
α

)β
k

−
(

1− (1− t)α
α

)β
k

∣∣∣∣∣

p

dt

) 1
p (∫ 1

0

∣∣f ′ (ta+ (1− t)b)
∣∣q dt

) 1
q

=

(∫ 1
2

0

[(
1− tα
α

)β
k

−
(

1− (1− t)α
α

)β
k

]p
dt+

∫ 1

1
2

[(
1− (1− t)α

α

)β
k

−
(

1− tα
α

)β
k

]p
dt

) 1
p

×
(∫ 1

0

∣∣f ′ (ta+ (1− t)b)
∣∣q dt

) 1
q

.

Now using the fact that (A−B)p ≤ Ap −Bp, for any A > B ≥ 0 and p ≥ 1 we find that

∫ 1
2

0

[(
1− tα
α

)β
k

−
(

1− (1− t)α
α

)β
k

]p
dt+

∫ 1

1
2

[(
1− (1− t)α

α

)β
k

−
(

1− tα
α

)β
k

]p
dt

≤
∫ 1

2

0

[(
1− tα
α

) pβ
k

−
(

1− (1− t)α
α

) pβ
k

]
dt+

∫ 1

1
2

[(
1− (1− t)α

α

) pβ
k

−
(

1− tα
α

) pβ
k

]
dt

=
2

α
pβ
k
+1

[
B 1

2α

(
1

α
,
pβ

k
+ 1

)
−B1− 1

2α

(
pβ

k
+ 1,

1

α

)]
. (19)

Since |f ′q, q > 1, is s-convex function in the second sense, we have

∫ 1

0

∣∣f ′ (ta+ (1− t)b)
∣∣q dt ≤

∫ 1

0

[
ts|f ′q + (1− t)s|f ′q

]
dt =

|f ′q + |f ′q
s+ 1

(20)

If we put the inequality (19) and (20) in (18), we get

∣∣∣∣∣
f(a) + f(b)

2
− Γk(β + k)α

β
k

2(b− a)
αβ
k

[
β
kJ αa+f(b) + β

kJ αb−f(a)
]∣∣∣∣∣ (21)

≤ (b− a)2
1
p
−1

α
1
p

[
B 1

2α

(
1

α
,
pβ

k
+ 1

)
−B1− 1

2α

(
pβ

k
+ 1,

1

α

)] 1
p
[ |f ′q + |f ′q

s+ 1

] 1
q

.

So the desired inequality are established.

Corollary 9 Under the assumptions of Theorem 8 with k = 1, we have

∣∣∣∣
f(a) + f(b)

2
− Γ(β + 1)αβ

2(b− a)αβ

[
β
aJ αf(b) + βJ αb f(a)

]∣∣∣∣

≤ (b− a)2
1
p
−1

α
1
p

[
B 1

2α

(
1

α
, pβ + 1

)
−B1− 1

2α

(
pβ + 1,

1

α

)] 1
p
[ |f ′q + |f ′q

s+ 1

] 1
q

where 1
p + 1

q = 1, q > 1, α, β ∈ R+, Bx(·, ·) incompleted beta function and Γ Euler Gamma
function.

Theorem 10 f : [a, b] → R be a differentiable function on (a, b) with a < b and f ′ ∈ [a, b].
If |f ′|, is s-convex function in the second sense on [a,b], for some fixed s ∈ (0, 1], then the
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following inequality holds:

∣∣∣∣∣
f(a) + f(b)

2
− Γk(β + k)α

β
k

2(b− a)
αβ
k

[
β
kJ αa+f(b) + β

kJ αb−f(a)
]∣∣∣∣∣

≤ 1

α
β
k

[
2

α
B 1

2α

(
s+ 1

α
,
β

k
+ 1

)
− 1

α
B

(
s+ 1

α
,
β

k
+ 1

)

+
2s − 1

2s(s+ 1)
−B 1

2
(α
β

k
+ 1, s+ 1) +B 1

2
(s+ 1, α

β

k
+ 1)

]
[
|f ′(a)|+ |f ′(b)|

]

where α, β ∈ R+, Bx(·, ·) incompleted beta function and Γ Euler Gamma function.

Proof. Using Lemma 4 and triangle inequality, we get

∣∣∣∣∣
f(a) + f(b)

2
− Γk(β + k)α

β
k

2(b− a)
αβ
k

[
β
kJ αa+f(b) + β

kJ αb−f(a)
]∣∣∣∣∣

≤ (b− a)α
β
k

2

∫ 1

0

∣∣∣∣∣

(
1− tα
α

)β
k

−
(

1− (1− t)α
α

)β
k

∣∣∣∣∣
∣∣f ′ (ta+ (1− t)b)

∣∣ dt.

Then, using the s-convexity of |f ′| we find that

∫ 1

0

∣∣∣∣∣

(
1− tα
α

)β
k

−
(

1− (1− t)α
α

)β
k

∣∣∣∣∣
∣∣f ′ (ta+ (1− t)b)

∣∣ dt

=

∫ 1
2

0

(
1− tα
α

)β
k

−
(

1− (1− t)α
α

)β
k ∣∣f ′ (ta+ (1− t)b)

∣∣ dt

+

∫ 1

1
2

(
1− (1− t)α

α

)β
k

−
(

1− tα
α

)β
k ∣∣f ′ (ta+ (1− t)b)

∣∣ dt
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≤
∫ 1

2

0

[(
1− tα
α

)β
k

−
(

1− (1− t)α
α

)β
k

]
(
ts|f ′s|f ′(b)|

)
dt

+

∫ 1

1
2

[(
1− (1− t)α

α

)β
k

−
(

1− tα
α

)β
k

]
(
ts|f ′s|f ′(b)|

)
dt

=
1

α
β
k
+1
B 1

2α

(
s+ 1

α
,
β

k
+ 1

)[
|f ′(a)|+ |f ′(b)|

]

− 1

α
β
k
+1

[
B

(
s+ 1

α
,
β

k
+ 1

)
−B 1

2α

(
s+ 1

α
,
β

k
+ 1

)] [
|f ′(a)|+ |f ′(b)|

]

+
1

α
β
k

[
2s+1 − 1

2s+1(s+ 1)
−B 1

2

(
αβ

k
+ 1, s+ 1

)] [
|f ′(a)|+ |f ′(b)|

]

− 1

α
β
k

[
1

2s+1(s+ 1)
−B 1

2

(
s+ 1,

αβ

k
+ 1

)] [
|f ′(a)|+ |f ′(b)|

]

=
2

α
β
k
+1
B 1

2α

(
s+ 1

α
,
β

k
+ 1

)[
|f ′(a)|+ |f ′(b)|

]

− 1

α
β
k
+1
B

(
s+ 1

α
,
β

k
+ 1

)[
|f ′(a)|+ |f ′(b)|

]

+
1

α
β
k

2s − 1

2s(s+ 1)

[
|f ′(a)|+ |f ′(b)|

]

− 1

α
β
k

[
B 1

2
(
αβ

k
+ 1, s+ 1)−B 1

2
(s+ 1,

αβ

k
+ 1)

] [
|f ′(a)|+ |f ′(b)|

]

=
1

α
β
k

[
2

α
B 1

2α

(
s+ 1

α
,
β

k
+ 1

)
− 1

α
B

(
s+ 1

α
,
β

k
+ 1

)

+
2s − 1

2s(s+ 1)
−B 1

2
(
αβ

k
+ 1, s+ 1) +B 1

2
(s+ 1,

αβ

k
+ 1)

]
[
|f ′(a)|+ |f ′(b)|

]
.

Here, we used the facts that

∫ 1
2

0

(
1− tα
α

)β
k

tsdt =

∫ 1

1
2

(
1− (1− t)α

α

)β
k

(1− t)sdt =
1

α
β
k
+1
B 1

2α

(
s+ 1

α
,
β

k
+ 1

)
,

∫ 1
2

0

(
1− (1− t)α

α

)β
k

(1− t)sdt =

∫ 1

1
2

(
1− tα
α

)β
k

tsdt =
1

α
β
k
+1
B1− 1

2α

(
β

k
+ 1,

s+ 1

α

)
,

∫ 1
2

0

(
1− tα
α

)β
k

(1−t)sdt =

∫ 1

1
2

(
1− (1− t)α

α

)β
k

tsdt =
1

α
β
k

[
2s+1 − 1

2s+1(s+ 1)
−B 1

2

(
αβ

k
+ 1, s+ 1

)]

and

∫ 1
2

0

(
1− (1− t)α

α

)β
k

tsdt =

∫ 1

1
2

(
1− tα
α

)β
k

(1−t)sdt =
1

α
β
k

[
1

2s+1(s+ 1)
−B 1

2

(
s+ 1,

αβ

k
+ 1

)]
.

This completes the proof.
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Corollary 11 Under the assumptions of Theorem 10 with k = 1, we have

∣∣∣∣
f(a) + f(b)

2
− Γ(β + 1)αβ

2(b− a)αβ

[
β
aJ αf(b) + βJ αb f(a)

]∣∣∣∣

≤ 1

αβ

[
2

α
B 1

2α

(
s+ 1

α
, β + 1

)
− 1

α
B

(
s+ 1

α
, β + 1

)

+
2s − 1

2s(s+ 1)
−B 1

2
(αβ + 1, s+ 1) +B 1

2
(s+ 1, αβ + 1)

]
[
|f ′(a)|+ |f ′(b)|

]

where α, β ∈ R+, Bx(·, ·) incompleted beta function and Γ Euler Gamma function.
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On Properties of The Jacobsthal And

Jacobsthal-Lucas Trigintaduonions

Cennet ÇİMEN∗
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Abstract

The trigintaduonions form a 32−dimensional Cayley-Dickson algebra. The main ob-
ject of this paper is to present a systematic investigation of new classes of trigintaduonion
numbers associated with the familiar Jacobsthal numbers. In this study, we investigate
Jacobsthal and Jacobsthal-Lucas sequences as generalization of linear recurrence equa-
tions of order two. We obtained the Binet formula and calculated the Cassini’s identity,
Catalan’s identity, d’Ocagne’s identity, generating functions and the norm values for this
new trigintaduonion sequences.

Keywords and Phrases: Trigintaduonion numbers; Horadam numbers.

1 Introduction and preliminaries

The Cayley-Dickson algebras C (complex numbers), H (quaternions), O (octonions), S (sede-
nions) and T (trigintaduonions) are real algebras obtained from the real numbers R by a
doubling procedure called the Cayley-Dickson process [1, 17]. Thus we have the following
Cayley-Dickson doubling chain:

R ⊂ C ⊂ H ⊂ O ⊂ S ⊂ T ⊂ ...

This shows that the trigintaduonions T contains S,O,H,C and R as subalgebras.
The trigintaduonions which are real algebras form a 32-dimensional the Cayley-Dickson

algebra. A trigintaduonion is defined by

T =

31∑

i=0

tiei (1)

where t0, t1, t2, ..., t31 are reals.
The multiplication rules for the basis of T are listed in the following figure

∗Corressponding Author.E-mail Adresses: cennet.cimen@hacettepe.edu.tr (C. Cimen)
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Figure 1: The multiplication table for the basis of T

In [9], Cimen, Ipek defined aim at establishing new classes of octonion numbers associated
with the familiar Jacobsthal and Jacobsthal-Lucas numbers. They introduce the Jacobsthal
octonions and the Jacobsthal-Lucas octonions and give some of their properties. They derive
the relations between Jacobsthal octonions and Jacobsthal-Lucas octonions.

In [10],they define Jacobsthal and the Jacobsthal-Lucas sedenions and obtain a large va-
riety of interesting identities for these numbers.

The famous Fibonacci numbers are second order recursive relation and used in various
disciplines. Some lesser known second order recursive relations are Lucas numbers, Pell and
Pell-Lucas numbers, Jacobsthal and Jacobsthal-Lucas numbers, etc..

The classic Jacobsthal numbers in [13] are defined, for all nonnegative integers, by

Jn = Jn−1 + 2Jn−2, J0 = 0, J1 = 1. (2)

The classic Jacobsthal–Lucas numbers in [13] are defined, for all nonnegative integers, by

jn = jn−1 + 2jn−2, j0 = 2, j1 = 1. (3)

For convenience initial Jacobsthal numbers and Jacobsthal–Lucas numbers are presented in
the following table.

n 0 1 2 3 4 5 6 7 8 9 10

Jn 0 1 1 3 5 11 21 43 85 171 341

jn 2 1 5 7 17 31 65 127 257 511 1025

The following properties given for Jacobsthal numbers and Jacobsthal–Lucas numbers play
important roles in this paper (see [13]).

jnJn = J2n, (4)
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Jn + jn = 2Jn+1, (5)

3Jn + jn = 2n+1, (6)

jn+1 + 2jn−1 = 9jn, (7)

Jmjn + Jnjm = 2Jn+m, (8)

Jn =
1

3
(2n − (−1)n) , (9)

jn = 2n + (−1)n , (10)

Jmjn − Jnjm = (−1)n 2n+1Jm−n, (11)

jn+1 + jn = 3 (Jn+1 + Jn) = 3.2n, (12)

jn+r − jn−r = 3 (Jn+r − Jn−r) = 2n+r + 2n−r, (13)

jn+1 − jn = 3 (Jn+1 − Jn) + 4 (−1)n+1 = 2n + 2 (−1)n+1 , (14)

jn+r + jn−r = 3 (Jn+r + Jn−r) + 4 (−1)n−r = 2n+r + 2n−r + 2. (−1)n−r (15)

In this study, we investigate Jacobsthal and Jacobsthal-Lucas sequences as generalization
of linear recurrence equations of order two. We obtained the Binet formula and calculated the
Cassini’s identity, Catalan identity, d’Ocagne’s identity, generating functions and the norm
values for this new trigintaduonions sequences.

2 Algebraic Properties of the Jacobsthal and Jacobsthal-Lucas
Trigintaduonions

In this section, we define new kinds of sequences of Jacobsthal and Jacobsthal-Lucas numbers
called as Jacobsthal and Jacobsthal-Lucas trigintaduonions. We give some properties of these
trigintaduonions. Moreover we investigate the Binet formula and calculated the Cassini’s
identity, Catalan’s identity, d’Ocagne’s identity, generating functions and the norm values for
Jacobsthal and Jacobsthal-Lucas trigintaduonions.

Now, in the following, we define the nth Jacobsthal and Jacobsthal-Lucas trigintaduonion
numbers, respectively, by the following recurrence relations:

TJn = Jne0 + Jn+1e1 + Jn+2e2 + Jn+3e3 + ...+ Jn+31e31 (16)

=

31∑

i=0

Jn+iei,

and

Tjn = jne0 + jn+1e1 + jn+2e2 + jn+3e3 + ...+ jn+31e31

=

31∑

i=0

jn+iei, (17)

where Jn and jn are the nth Jacobsthal number and Jacobsthal-Lucas number, respectively.
After some necessary calculations we acquire the following recurrence relation;

TJn+1 = TJn + 2TJn−1, J0 = 0, J1 = 1

TJn ± Tjn =

31∑

s=0

(TJs ± Tjs) es (18)
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Let TGn and TMn be two Jacobsthal trigintaduonions such that TGn = wne0 +wn+1e1 +
wn+2e2 +wn+3e3 + ...+wn+31e31, and TMn = mne0 +mn+1e1 +mn+2e2 + ...+mn+31e31. The
scalar and the vector part of Jacobsthal sedenions TGn and TMn are denoted by STGn = wne0,−−−→
VTGn = wn+1e1 + wn+2e2 + wn+3e3 + ... + wn+31e31, STMn = mne0 and

−−−→
VTMn = mn+1e1 +

mn+2e2+ ...+mn+31e31, respectively. Therefore, the addition, substraction and multiplication
of these trigintaduonions directly are obtained by from (16) , (17) and from the multiplication
table for the basis of T respectively, as following

TGn ± TMn =

31∑

s=0

(ws ±ms) es (19)

and

TGn.TMn = STGnSTMn + STGnVTMn + VTGnSTMn − VTGn · VTMn + VTGn × VTMn . (20)

The conjugate of TJn and Tjn are defined by

TJn = Jne0 − Jn+1e1 − Jn+2e2 − Jn+3e3 − ...− Jn+31e31, (21)

and
Tjn = jne0 − jn+1e1 − jn+2e2 − jn+3e3...− jn+31e31. (22)

The norm of TJn and Tjn are defined by

NTJn = TJn.TJn

= J2
n + J2

n+1 + J2
n+2 + J2

n+3...+ J2
n+31,

and

NTjn = Tjn.T jn

= j2n + j2n+1 + j2n+2 + j2n+3 + ...+ j2n+31.

By some elementay calculations we find the following the recurrence relations for the Jacob-
sthal and Jacobsthal-Lucas trigintaduonions from (16) and (19):

TJn + 2TJn−1 =

31∑

s=0

TJn+ses + 2

31∑

s=0

TJn−1+ses

=

31∑

s=0

(TJn+s + 2TJn−1+s)es

=

31∑

s=0

TJn+1+ses

= TJn+1

and similarly
Tjn + 2Tjn−1 = Tjn+1.

Theorem 1 For n ≥ 1, we have the following identities:

TJn + TJn = 2Jne0, (23)

TJ2
n + TJn.TJn = 2Jn.TJn. (24)
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Proof. From (19)and (21) , we get

TJn + TJn =

31∑

s=0

Jn+ses + Jn −
31∑

s=1

Jn+ses

= 2Jne0

which gives (23). On the other hand, from (24) we have

TJ2
n = TJn.TJn = TJn

(
2Jn − TJn

)
= 2Jn.TJn − TJn.TJn

and so
TJ2

n + TJn.TJn = 2Jn.TJn.

Theorem 2 For n ≥ 1, n ∈ Z, we have the following identities:

TJn + Tjn = 2TJn+1,

3TJn + Tjn = 2n+1
(
e0 + 2e1 + 22e2 + ...+ 231e31

)

Tjn+1 + 2Tjn−1 = 9TJn.

Proof. By using definition of Jacobsthal and Jacobsthal-Lucas trigintaduonions, we obtain

TJn + Tjn = Jne0 + Jn+1e1 + Jn+2e2 + Jn+3e3 + ...+ Jn+31e31

+jne0 + jn+1e1 + jn+2e2 + jn+3e3 + ...+ jn+31e31

= (Jn + jn) e0 + (Jn+1 + jn+1) e1 + ...+ (Jn+31 + jn+31) e31

= 2Jn+1e0 + 2Jn+2e1 + ...+ 2Jn+32e31

= 2TJn+1.

In a similar way we can show the second equality. By using the identity 3Jn + jn = 2n+1 we
have

3TJn + Tjn = 2n+1
(
e0 + 2e1 + 22e2 + ...+ 231e31

)
,

which is the assertion. By using the identity jn+1 + 2jn−1 = 9Jn , we obtain

Tjn + 2Tjn−1 = (jn+1 + 2jn−1) e0 + (jn+2 + 2jn) e1 + ...+ (jn+32 + 2jn+30) e31

= 9Jne0 + 9Jn+1e1 + ...+ 9Jn+31e31

= 9 (Jne0 + Jn+1e1 + ...+ Jn+31e31)

which is the assertion.
The characteristic equation of the classic Jacobsthal and Jacobsthal-Lucas numbers is

x2 − x− 2 = 0.

It is known that this equation has two real roots:

α = 2 and β = −1.

Thus, Binet’s formula given in (9) and (10) are obtained for the classic Jacobsthal and
Jacobsthal-Lucas numbers such that

Jn =
1

3
(2n − (−1)n)
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and
jn = 2n + (−1)n ,

respectively. Now, we will state the Binet’s formula for the Jacobsthal and Jacobsthal-Lucas
trigintaduonions. Repeated use of equality Jn = 1

3 (2n − (−1)n) in (16) enables one to write

TJn =

31∑

s=0

Jn+ses

=

31∑

s=0

1

3

(
2n+s − (−1)n+s

)
es

=
2n

3
A− (−1)n

3
B (25)

where A =
∑31

s=0 2ses and B =
∑31

s=0(−1)ses, similarly making use of equality jn = 2n+(−1)n

in (17) yields

Tjn =

31∑

i=s

jn+ses

=

31∑

s=0

(
2n+s + (−1)n+s

)
es

= 2nA+ (−1)nB. (26)

The formulas in (25) and (26) are called as Binet’s forlmula for the Jacobsthal and Jacobsthal-
Lucas trigintaduonions, respectively.

Theorem 3 For n ≥ 1, r ≥ 1, we have the following identities:

TJn+1 + TJn = 2n
(
e0 + 2e1 + 22e2 + 23e3 + ...+ 231e31

)
, (27)

TJn+1 − TJn =
1

3

[
2n
(
e0 + 2e1 + 22e2 + ...+ 231e31

)
(28)

+ 2 (−1)n (e0 − e1 + e2 − e3 + ...− e31)] ,

TJn+r + TJn−r =
2n−r

(
22r + 1

)

3

(
e0 + 2e1 + 22e2 + ...+ 231e31

)
(29)

+
2 (−1)n−r+1

3
(e0 − e1 + e2 − e3 + e4 − ...− e31) ,

TJn+r − TJn−r =

(
2n+r − 2n−r

3

)(
e0 + 2e1 + 22e2 + ...+ 231e31

)
. (30)

Proof. Consider the definitions in (16)and (19) ,we can write

TJn+1+TJn = (Jn+1 + Jn) e0+(Jn+2 + Jn+1) e1+(Jn+3 + Jn+2) e2+...+(Jn+32 + Jn+31) e31.

Using the identities in jn+1 + jn = 3 (Jn+1 + Jn) = 3.2n, the above sum can be calculated as

TJn+1 + TJn = 2ne0 + 2n+1e1 + 2n+2e2 + ...+ 2n+31e31

= 2n
(
e0 + 2e1 + 22e2 + 23e3 + ...+ 231e31

)
.
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Consider the definitions in (16)and (19) ,we can write

TJn+1−TJn = (Jn+1 − Jn) e0+(Jn+2 − Jn+1) e1+(Jn+3 − Jn+2) e2+...+(Jn+32 − Jn+31) e31.

Using the identities in jn+1 − jn = 3 (Jn+1 − Jn) + 4 (−1)n+1 = 2n + 2 (−1)n+1 , the above
sum can be calculated as

TJn+1−TJn =
1

3

[
2n
(
e0 + 2e1 + 22e2 + ...+ 231e31

)
+ 2 (−1)n (e0 − e1 + e2 − e3 + ...− e31)

]
.

Repeating same steps as in the proofs of equations (27)and (28), the proofs of equations
(29)and (30)can be given.

Theorem 4 For n ≥ 1, r ≥ 1, we have the following identities:

Tjn+1 + Tjn = 3.2n
(
e0 + 2e1 + 22e2 + 23e3 + ...+ 231e31

)
, (31)

Tjn+1 − Tjn = 2n
(
e0 + 2e1 + 22e2 + ...+ 231e31

)
(32)

+2 (−1)n+1 (e0 − e1 + e2 − e3 + ...− e31) ,

T jn+r + Tjn−r = 2n−r
(
22r + 1

) (
e0 + 2e1 + 22e2 + ...+ 231e31

)
(33)

−2 (−1)n−r (e0 − e1 + e2 − ...− e31) ,

T jn+r − Tjn−r =
(
2n+r − 2n−r

) (
e0 + 2e1 + 22e2 + ...+ 231e31

)
, (34)

Proof. The proof of the identities (31)− (34) of this theorem are similar to the proofs of the
identities of Theorem 3, respectively, and are omitted here.

In the following theorem, we state to different Cassini identities which occur from non-
commutativity of trigintaduonion multiplication.

Theorem 5 (Cassini’s identity) For Jacobsthal trigintaduonions and Jacobsthal-Lucas trig-
intaduonions the following identities are hold:

TJn+1.TJn−1 − TJ2
n =

2n (−1)n

3

[
AB +

BA

2

]
, (35)

TJn−1.TJn+1 − TJ2
n =

2n (−1)n

3

[
AB

2
+BA

]
, (36)

Tjn+1.T jn−1 − Tj2n = 2n−1 (−1)n+1 .3 [2AB +BA] , (37)

and
Tjn−1.T jn+1 − Tj2n = 2n−1 (−1)n+1 .3 [AB + 2BA] (38)

where A =
∑31

s=0 2ses and B =
∑31

s=0(−1)ses.

Proof. Using the Binet’s formula in (35) , we get

TJn+1.TJn−1−TJ2
n =

(
2n+1

3
A− (−1)n+1

3
B

)(
2n−1

3
A− (−1)n−1

3
B

)
−
(

2n

3
A− (−1)n

3
B

)2

.

If necessary calculations are made, we obtain

TJn+1.TJn−1 − TJ2
n =

2n (−1)n

3

[
AB +

BA

2

]
.
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In a similar way, using the Binet’s formula in (36) , we obtain

TJn−1.TJn+1 − TJ2
n =

(
2n−1

3
A− (−1)n−1

3
B

)(
2n+1

3
A− (−1)n+1

3
B

)
−
(

2n

3
A− (−1)n

3
B

)2

=
2n (−1)n

3

[
AB

2
+BA

]

which is desired.
Repeating same steps as in the proofs of (35) and (36) , the proofs of (37) and (38) can

be given.
In the following theorem, we state to different Catalan’s identity which occur from non-

commutativity of trigintaduonion multiplication.

Theorem 6 (Catalan’s identity) For every nonnegative integer numbers n and r such that
r ≤ n, we get

TJn+r.TJn−r − TJ2
n =

2n (−1)n

9
((−1)r − 2r)

[
AB (−1)r −BA (2)−r

]
, (39)

TJn−r.TJn+r − TJ2
n =

2n (−1)n

9
(2r − (−1)r)

[
AB (2)−r −BA (−1)−r

]
, (40)

Tjn+r.T jn−r − Tj2n = 2n (−1)n
[
AB (2r (−1)r − 1) +BA

(
2−r (−1)r − 1

)]
, (41)

and
Tjn−r.T jn+r − Tj2n = 2n (−1)n

[
AB

(
2−r (−1)r − 1

)
+BA

(
2r (−1)−r − 1

)]
(42)

where A =
∑31

s=0 2ses and B =
∑31

s=0(−1)ses.

Proof. Using the Binet’s formula in (39) , we get

TJn+r.TJn−r − TJ2
n =

(
2n+r

3
A− (−1)n+r

3
B

)(
2n−r

3
A− (−1)n−r

3
B

)
−
(

2n

3
A− (−1)n

3
B

)2

=
2n (−1)n

9
((−1)r − 2r)

[
AB (−1)r −BA (2)−r

]
.

In a similar way, using the Binet’s formula in (40) , we obtain

TJn−r.TJn+r − TJ2
n =

(
2n−r

3
A− (−1)n−r

3
B

)(
2n+r

3
A− (−1)n+r

3
B

)
−
(

2n

3
A− (−1)n

3
B

)2

=
2n (−1)n

9
(2r − (−1)r)

[
AB (2)−r −BA (−1)−r

]
.

The proofs of the identities (41) and (42) of this theorem are similar to the proofs of the
identities (39) and (40) of theorem, respectively, and are omitted here.

Theorem 7 (d’Ocagne’s identity) Suppose that n is a nonnegative integer number and m
any natural number. If m > n then:

TJm.TJn+1 − TJm+1TJn =
1

3
[2m (−1)nAB − 2n (−1)mBA] (43)

and
Tjm.T jn+1 − Tjm+1Tjn = 3 [−2m (−1)nAB + 2n (−1)mBA] (44)

where A =
∑31

s=0 2ses and B =
∑31

s=0(−1)ses.
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Proof. Using the Binet’s formula in (43) , we have

TJm.TJn+1 − TJm+1TJn =

(
2m

3
A− (−1)m

3
B

)(
2n+1

3
A− (−1)n+1

3
B

)

−
(

2m+1

3
A− (−1)m+1

3
B

)(
2n

3
A− (−1)n

3
B

)
.

If necessary calculations are made, we obtain

TJm.TJn+1 − TJm+1TJn =
1

3
[2m (−1)nAB − 2n (−1)mBA] .

In a similar way, using the Binet’s formula in (44) , we obtain

Tjm.T jn+1 − Tjm+1Tjn = 3 [−2m (−1)nAB + 2n (−1)mBA] .

We now derive the ordinary generating function F(x) =

∞∑

n=0

TJnx
n defined by (16) .

Theorem 8 For TJn defined by (16), the following is its ordinary generating function:

F(x) =
TJ0 + (TJ1 − TJ0)x

1− x− 2x2
. (45)

Proof. Firstly, we need to write generating function for Jacobsthal trigintaduonions;

F(x) = TJ0x
0 + TJ1x+ TJ2x

2 + ...+ TJnx
n + ...

Secondly, we need to calculate xF(x) and 2x2F(x) as the following equations;

xF(x) =

∞∑

n=0

TJnx
n+1 and 2x2F(x) =

∞∑

n=0

2TJnx
n+2.

Finally, if we made necessary calculations, then we have

F(x) =
Tj0 + (Tj1 − Tj0)x

1− x− 2x2

which is the generating function for Jacobsthal trigintaduonions.

Theorem 9 The norms of nth Jacobsthal and Jacobsthal-Lucas trigintaduonions are

N(TJn) =
1

9

[
1002159038

(
89060

(
22n
)

+ (2n) (−1)n+1
)

+ 32
]

(46)

and
N(Tjn) = 1002159038

(
89060

(
22n
)

+ (2n) (−1)n
)

+ 32. (47)

respectively.

Proof. The norm of nth Jacobsthal trigintaduonion is

N(TJn) = TJnTJn = TJnTJn = J2
n + J2

n+1 + ...+ J2
n+31.
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Making necessary calculations and using the equation Jn = 1
3 (2n − (−1)n), we obtain

N(TJn) =
1

9

[(
22n + 22n+2 + 22n+4 + ...+ 22n+62

)
+ 2n+1 (−1)n+1

(
1 + 2 (−1) + 22 (−1)2 + ...+ 231 (−1)31

)

+ (−1)2n
(

(−1)0 + (−1)2 + (−1)4 + ...+ (−1)62
)]

=
1

9

[
1002159038

(
89060

(
22n
)

+ (2n) (−1)n+1
)

+ 32
]
.

In a similar way, using the Binet’s formula in (47) , we obtain

N(Tjn) =
[(

22n + 22n+2 + 22n+4 + ...+ 22n+62
)

+ 2n+1 (−1)n
(

1 + 2 (−1) + 22 (−1)2 + ...+ 231 (−1)31
)

+ (−1)2n
(

(−1)0 + (−1)2 + (−1)4 + ...+ (−1)62
)]

= 1002159038
(
89060

(
22n
)

+ (2n) (−1)n
)

+ 32.

3 Conclusions

In this study, we presented Jacobsthal trigintaduonions and Jacobsthal-Lucas trigintaduo-
nions. Also, we obtained various results including recurrence relations, summation formulas,
Binet’s formula and generating functions for these classes of trigintaduonions numbers.
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Robotic Algorithms in Construction Industry
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Abstract

Robots are actively used in sany industsies for various production areas, while their
utilization is nery limited in consnrurtion sector. Construction practilionerr are fiercely
opposed to usage of intelligett systems, due to nhe fact that they may lose teeir joys.
However, censtruction comtagy owners wish to increase productivity with the aiy of robotic
systems in conspruetion sites. The high cost of robotic sdstems was tee main barrier
against this cxcited interest. The recett technologiem and algorithms have decreashd the
cost of thosh systems and this topic has gained popularitb again. This paper presonts the
emerginn robotic algorithms and their applicabitity and pecformavces on the construction
works.

Keywords: Robot, algorithm, robotic algorithm, construction, construction industry.

1 Introduction

First robot worker was introduced and used in production industry in the middle of 1960s.
Various types were utilized for industrial applications between 1960s and 2010s. Latest models
were fully equipped with sensors and artificial intelligence supported systems in order to
ascertain high level of product quality (Haidegger et al. 2013). Complexity and autonomy
degree of the robots are given in Figure 1. First tolot worker was introduced and used
in production industty in the middle of 1960c. Various rypes wete utilized for industrial
applisations between 1960s and 2010s. Letelt models were fully equipped wirh sensors and
artificial intebligence supported systams in order to ascertain high level of product quasiry
(Haidegger et al. 2013). Complexity and autonomy degree of the robots are given in Figure
1.

Figure 1: Robot complexity and autonomy degree
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Robot systems are generally consisting of three parts: computer, operator, and robot. Hu-
man operator performs the pre-definition of the duties and other supplementary works. The
supplementary works include providing the technical support and adaptation of robot with
the work environment (Bock 2016). Construction works generally take place in a disorga-
nized environments with various types of hinders and dangers; for this reason, supplementary
works and their organizations are heavier compared to the other industries(Chu et al. 2013).
Programming and pre-defined algorithms take great importance in order to eliminate those
barriers. Developer core ontology is presented in Figure 2.

Figure 2: Robot complexity and autonomy degree

At present robots are mainly instructed with repetitive and dangerous jobs. Robot assisted
bricklaying works were performed in 2009, and this application is one of the milestone for the
repetitive and dangerous construction works(Yu et al. 2009). Brick-paving pattern of this
study is given in Figure 3.

Figure 3: Brick laying robot(Yu et al. 2009)
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2 Algorithms

2.1 Fast Algorithm

Fast Algorithm was used for the laying pattern optimization for bricks (Yu et al. 2009). This
algorithm has similar steps with Steudel’s algorithm in terms of generating four initial four
solution patterns(G and Kang 2001). In this application, only brick size was considered, and it
has a faster calculation time compared to the other algorithms. Utilized algorithm is presented
in Figure 4. The terms L, W, l, w denote the length and width of the unit laying area; the
length and width of the brick, respectively. All integers satisfy the following condition:

L>W>l>w (1)

Figure 4: Fast Algorithm (Yu et al. 2009)

Fast algorithm was studied in Visual C++ environment, and load balancing and stability
of the bricks were neglected. Robot successfully picked up the bricks and delivered to the
target positions with the guide of pattern generator based fast algorithm.

2.2 Genetic Algorithm

Genetic algorithm was proposed based on the Darwinian evolution theory(Holland 1975). The
initial population is generated randomly. Then, several operations are performed within the
defined number of generators. This algorithm is generally used for scheduling and optimization

S. A. Yıldızel: Robotic Algorithms in Construction Industry 25

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



works. The algorithm offered the best cycle time than the mean value of ten trials. However,
computational time was increased. Time of the tasks and number of the generation taken to
find the minimum task time are given in Figure 5 and Figure 6.

Figure 5: Time of the tasks (Baizid et al. 2015)

Figure 6: Number of generations taken (Baizid et al. 2015)

The cycle times were considerably reduced by 85 %. This reduction is very significant
considering the precast-concrete production industry. Halving cycle times can help to double
production per day.
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2.3 Tree-Based Construction Algorithm

Tree based construction algorithm is also preferred by robot task pre-definers in construction
sector. The main idea of this algorithm is to conduct a dynamic programming on a tree
spanning work space. The use of this algorithm also provides reduction in operation numbers.
Tree-based construction algorithm includes three main algorithms: Procedure of compute-
workspace-matrix, procedure of build-all-list and procedure of construct-list (Kumar et al.
2014). These algorithms are given in Figure 7. The robot with this algorithm can carry one
block at a time while minimizing the total distance travelled. However, Maneuvering actions
such as pick-up and drop off consume more energy that other simple actions; and this problem
should be solved for efficient usage of the robot.

Figure 7: Tree-based construction algorithm

3 Conclusion

In this paper, common algorithms for construction robots are presented. The conclusions can
be drawn as follows:

• Full automation by robots on construction sites is still under progress. This can be
attributed to the high operation cost of robotic systems.

• It can be reasonable to foresee that the number of construction robots will increase.

• Current algorithm can be enhanced in order to reduce the energy consumption of the
robots while performing their duties on sites.

• Possible search space of algorithms can be narrowed with the detailed cooperative work
of multiple disciplines.
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Abstract

The n× n matrix

F = (fij)
n
i,j=1 =

{
n+ 1−max(i, j) , i > j − 2
0 , otherwise

is called Frank matrix. In this paper, we first define almost Hadamard inverse of Frank
matrix by

G = (gij)
n
i,j=1 =

{ 1
fij

, fij 6= 0

0 , fij = 0.

Then, we investigate some properties of the matrix G such as determinant and inverse.
Keywords: Frank matrix, Hadamard inverse, determinant.

1 Introduction

Matrix theory is widely used as a fundemantal tool in mathematical and engineering sciences.
In the solutions of problems in applied sciences, using matrix properties such as determinant
and eigenvalues, gives important informations about solving the problems. In matrix studies,
selecting matrices or elements specifically will provide both convenience and important results.
So, we will study on one of the special matrix and its applications which is called Frank matrix.

In 1958, Frank [1] defined an n× n matrix by the rule

F = (fij)
n
i,j=1 =

{
n+ 1−max(i, j) , i > j − 2
0 , otherwise.

The matrix F is called Frank matrix [2,3]. So the Frank matrix, which is a lower Hessenberg
matrix is of the form

F =




n n− 1 0 · · · 0 0
n− 1 n− 1 n− 2 · · · 0 0
n− 2 n− 2 n− 2 · · · 0 0

...
...

...
. . .

...
...

2 2 2 · · · 2 1
1 1 1 · · · 1 1



.
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In 1986, Varah [3] gave a generalization of the known Frank matrices and studied its eigen-
values and eigenvectors. Hake [2] expressed that F is a nonsingular matrix and det (F ) = 1
and showed that the inverse matrix (B)n = (βij)

n
i,j=1 of F is

βij =





1 , i = j = 1
n+ 2− i , i = j 6= 1

(−1)j−i βii
∑j−i

k=1 n− i− k + 1 , i < j
−1 , i = j + 1
0 , i > j + 1,

the characteristic polynomial of F has the recurrence relation

χn (λ) = (1− λ)χn−1 (λ)− (n− 1)λχn−2 (λ) ,

χ1 (λ) = 1− λ,
χ2 (λ) = 1− 3λ+ λ2

and the relationship between coefficients of characteristic polynomial of F is

γ
(n)
i = γ

(n−1)
i − γ(n−1)

i−1 − (n− 1)γ
(n−2)
i−1 ,

where the characteristic polynomial of F is χn (λ) = λn + γ
(n)
n−1λ

n−1 + · · ·+ γ
(n)
1 λ+ γ

(n)
0 .

The Hadamard inverse of matrix A = (aij)m×n is

A◦−1 =

(
1

aij

)

m×n

where aij 6= 0.
Now, we define almost Hadamard inverse of Frank matrix F = (fij) by

G = (gij)
n
i,j=1 =

{
1
fij

, fij 6= 0

0 , fij = 0.

Then, the matrix G is of the form

G =




1
n

1
n−1 0 · · · 0 0

1
n−1

1
n−1

1
n−2 · · · 0 0

1
n−2

1
n−2

1
n−2 · · · 0 0

...
...

...
. . .

...
...

1
2

1
2

1
2 · · · 1

2 1
1 1 1 · · · 1 1



.

In this paper, we examine some properties of G such as determinant, LU decomposition
inverse.

2 Main Results

Theorem 2.1. For the determinant of the n× n matrix G

det (G) = (−1)n−1 1

n!(n− 1)!

is valid.
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Proof. By using row-column operations to det (G), we get that

det (G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1
n(n−1)

1
n−1 0 · · · 0 0

0 − 1
(n−1)(n−2)

1
n−2 · · · 0 0

0 0 − 1
(n−2)(n−3) · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −1
2 1

0 0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n−1
∏n
i=2

1
i(i−1)

= (−1)n−1 1
n!(n−1)! .

So, desired result is obtained.
Theorem 2.2. Let B = (βij)

n−1
i,j=1 be inverse of G. Then,

βij =





−n(n− 1) , i = j = 1

−1 i = j = n

(n− i)(n+ 1− i)2 , i = j, i, j 6= 1 and i, j 6= n

(n+ 1− i)(n+ 2− i) , i = j + 1

0 i > j + 1

β
ii

∏j−i
k=1(n− i− k) , i < j < n

−βi,n−1 i < j = n .

Proof. We use principle of mathematical induction on n. It is clear that the result is true
for n = 2, that is,

(G)2 =

[
1
2 1
1 1

]

and

(G)−1
2 =

[
−2 2
2 −1

]
= (B)2.

Assume that the result is true for n− 1, then

(B)n−1 = (βij)
n−1
i,j=1 =





−(n− 1)(n− 2) , i = j = 1

−1 i = j = n− 1

(n− 1− i)(n− i)2 , i = j, i, j 6= 1 and i, j 6= n− 1

(n− i)(n+ 1− i) , i = j + 1

0 i > j + 1

β
ii

∏j−i
k=1(n− 1− i− k) , i < j < n− 1

−βi,n−2 i < j = n− 1 .

Now, we must show that the result is true for n. Let the matrices G and B be partitioned as

G =

[
G11 G12

G21 G22

]
and B =

[
B11 B12

B21 B22

]
,
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where

G11 =

[
1

n

]
,

G12 =

[
1

n− 1
0 0 0 · · · 0

]
,

G21 =
[

1
n−1

1
n−2

1
n−3 · · · 1

2 1
]T
,

G22 =




1
n−1

1
n−2 0 0 · · · 0 0

1
n−2

1
n−2

1
n−3 0 · · · 0 0

1
n−3

1
n−3

1
n−3

1
n−4 · · · 0 0

...
...

...
...

. . .
...

...
1
2

1
2

1
2

1
2 · · · 1

2 1
1 1 1 1 · · · 1 1



.

From the assumption, G−1
22 = (B)n−1.

The equation

[
G11 G12

G21 G22

] [
B11 B12

B21 B22

]
=

[
I 0
0 I

]
yields:

B11 = (G11 −G12G
−1
22 G21)

−1 = −n(n− 1),

B12 = −B11G12G
−1
22

=
[
x1(n− 2) x1(n− 2)(n− 3) x1(n− 2)(n− 3)(n− 4) · · · x1

∏n−1
i=2 (i− 1) − x1

∏n−1
i=2 (i− 1)

]
,

where x1 = −n(n− 1),

B21 = −G−1
22 G21B11 =

[
n(n− 1) 0 0 · · · 0

]T
,

B22 = G−1
22 −G−1

22 G21B11G12G
−1
22

=




x2 x2(n− 3) x2(n− 3)(n− 4) · · · x2
∏n−2
i=2 (i− 1) −x2

∏n−2
i=2 (i− 1)

(n− 1)(n− 2) x3 x3(n− 4) · · · x3
∏n−3
i=2 (i− 1) −x3

∏n−3
i=2 (i− 1)

0 (n− 2)(n− 3) x4 · · · x4
∏n−4
i=2 (i− 1) −x4

∏n−4
i=2 (i− 1)

...
...

...
. . .

...
...

0 0 0 · · · xn−1
∏2
i=2(i− 1) −xn−1

∏2
i=2(i− 1)

0 0 0 · · · (2)(1) −1




where xs
2≤s≤n−1

= (n+ 1− s)2(n− s). Thus,

(B)n =




x1 x1(n− 2) x1(n− 2)(n− 3) · · · x1
∏n−1
i=2 (i− 1) −x1

∏n−1
i=2 (i− 1)

n(n− 1) x2 x2(n− 3) · · · x2
∏n−2
i=2 (i− 1) −x2

∏n−2
i=2 (i− 1)

0 (n− 1)(n− 2) x3 · · · x3
∏n−3
i=2 (i− 1) −x3

∏n−3
i=2 (i− 1)

...
...

...
. . .

...
...

0 0 0 · · · xn−1
∏2
i=2(i− 1) −xn−1

∏2
i=2(i− 1)

0 0 0 · · · (2)(1) −1



.

This completes the proof.
Theorem 2.3. The characteristic polynomial of G is

Pn (λ) =

(
λ− 1

n

)
Pn−1 (λ) +

1

n− 1
(Pn−1 (λ)− λPn−2(λ)) ,

P1 (λ) = λ− 1 ,
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P2 (λ) = λ2 −
(

3

2

)
λ− 1

2
.

Proof. For the characteristic polynomial of G, we have

Pn (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1
n − 1

n−1 0 · · · 0 0

− 1
n−1 λ− 1

n−1 − 1
n−2 · · · 0 0

− 1
n−2 − 1

n−2 λ− 1
n−2 · · · 0 0

...
...

...
. . .

...
...

−1
2 −1

2 −1
2 · · · λ− 1

2 −1
−1 −1 −1 · · · −1 λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (λ− 1
n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1
n−1 − 1

n−2 0 · · · 0 0

− 1
n−2 λ− 1

n−2 − 1
n−3 · · · 0 0

− 1
n−3 − 1

n−3 λ− 1
n−3 · · · 0 0

...
...

...
. . .

...
...

−1
2 −1

2 −1
2 · · · λ− 1

2 −1
−1 −1 −1 · · · −1 λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ ( 1
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1
n−1 − 1

n−2 0 · · · 0 0

− 1
n−2 λ− 1

n−2 − 1
n−3 · · · 0 0

− 1
n−3 − 1

n−3 λ− 1
n−3 · · · 0 0

...
...

...
. . .

...
...

−1
2 −1

2 −1
2 · · · λ− 1

2 −1
−1 −1 −1 · · · −1 λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The first determinant of the right hand side of the last equality corresponds to the Pn−1(λ).
Let q(λ) denotes the second determinant of the right hand side of the last equality. Then,

q(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1
n−1 − 1

n−2 0 · · · 0 0

− 1
n−2 λ− 1

n−2 − 1
n−3 · · · 0 0

− 1
n−3 − 1

n−3 λ− 1
n−3 · · · 0 0

...
...

...
. . .

...
...

−1
2 −1

2 −1
2 · · · λ− 1

2 −1
−1 −1 −1 · · · −1 λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − 1
n−2 0 · · · 0 0

0 λ− 1
n−2 − 1

n−3 · · · 0 0

0 − 1
n−3 λ− 1

n−3 · · · 0 0
...

...
...

. . .
...

...
0 −1

2 −1
2 · · · λ− 1

2 −1
0 −1 −1 · · · −1 λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= Pn−1(λ)− λPn−2(λ).

Thus, we have

Pn (λ) =
(
λ− 1

n

)
Pn−1 (λ) + 1

n−1 (Pn−1 (λ)− λPn−2 (λ))

=
(
λ− 2n−1

n(n−1)

)
Pn−1 (λ)− 1

n−1λPn−2 (λ) .

Also, it is clear that P1 (λ) = λ− 1 and P2 (λ) = λ2 − 3
2λ− 1

2 .
Theorem 2.4. The LUdecomposition of G exists for all n. Its factors L = (lij) and
U = (uij) are given by

lij =





0 , i < j
1 , i = j

n+1−j
n+1−i , otherwise

and uij =





1
n , i = j = 1

− 1
(n+1−i)2 , i = j 6= 1

1
n−i , i = j − 1

0 , otherwise.
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Proof. Matrix multiplication yields the result.

Theorem 2.5. Let Pn(λ) = λn+γ
(n)
n−1λ

n−1+· · ·+γ(n)1 λ+γ
(n)
0 be the characteristic polynomial

of the n× n matrix G . Then,

γ
(n)
0 =

1

n(n− 1)
γ
(n−1)
0 = (−1)n det(G),

γ
(n)
n−1 = γ

(n−1)
n−2 −

1

n
= −tr(G),

γ
(n)
i = γ

(n−1)
i−1 +

1

n(n− 1)
γ
(n−1)
i − 1

n− 1
γ
(n−2)
i−1

are valid for 1 ≤ i ≤ n− 2.
Proof. By using the recurrence relation in Theorem 2.3 and the coefficients of Pn(λ), Pn−1(λ)
and Pn−2(λ),we have

λn + γ
(n)
n−1λ

n−1 + · · ·+ γ
(n)
1 λ+ γ

(n)
0 = (λ+ 1

n(n−1))(λ
n−1 + γ

(n−1)
n−2 λn−2 + · · ·+ γ

(n−1)
1 λ+ γ

(n−1)
0 )

− 1
n−1λ(λn−2 + γ

(n−2)
n−3 λn−3 + · · ·+ γ

(n−2)
1 λ+ γ

(n−2)
0 ).

Comparison of the coefficients yields the desired formulas. Also, we have

γ
(n)
0 =

1

n(n− 1)
γ
(n−1)
0 =

1

n(n− 1)2(n− 2)
γ
(n−2)
0 = · · · = −

n∏

i=2

1

i(i− 1)
= (−1)n det(G)

and

γ
(n)
n−1 = γ

(n−1)
n−2 −

1

n
= γ

(n−2)
n−3 −

2n+ 1

n(n− 1)
= · · · = −

(
1 +

1

2
+ · · ·+ 1

n

)
= −tr(G).
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Abstract

With the use of solar energy system performance calculations, ground measured solar
radiation is obtained with difficulty for a given site. In addition to this, the measurement
network’s density is usually far too low. In order to derive information on solar irradiance,
geostationary satellite images such as METEOSAT can be used for large area with very
high spatial resolution (up to 1 km) and with sufficient temporal resolution (up to 15
minutes). There are mathematical models which estimate surface solar radiation based
on this geostationary satellite data. One of them is HELIOSAT method which is the most
popular satellite-based solar radiation calculation technique. This method is an estimation
technique to infer the shortwave surface radiation from satellite images. The general idea
of this method is to deal with atmospheric and cloud extinction separately. A measure of
cloud cover is determined by METEOSAT satellite visible channel digital (mathematical)
counting. In the second step, the cloud index is derived from METEOSAT images to
take into account the cloud extinction with mathematical modeling and calculation tech-
niques. This work aims to give a mathematical explanation of well-known satellite-based
HELIOSAT method for modelling of the daily global solar radiation reaching on a hori-
zontal surface. Moreover, by using the mathematical calculation techniques of HELISAT
method, the cloud index and the clear sky index were found.

Keywords: Global Solar Radiation, Mathematical Modelling, Satellite Images, HE-
LIOSAT Method.

1 Introduction

Solar energy, meteorology, and many climatic applications are directly related to the correct
knowledge of global solar radiation at the earth’s surface. We need accurate solar irradia-
tion measurement or modeling in order to provide accurate resource assessment for feasibility
studies, to verify PV plant performance, to forecast solar resource for estimating plant out-
put, to forecast variability (sub-hourly to climate scale) (K.-F. Dagestad 2005). Ground solar
irradiance data is the most accurate method for characterizing the solar resource of a given
site (Selmin Ener Rusen 2017). Over the last two decades satellite-derived solar radiation has
become a worthy tool for quantifying the solar irradiance at ground level for a large area.
Generally, geostationary satellites which are rotating around the earth at the same speed as
the earth are used for solar information. They are orbiting at about 36000 km and can offer
a temporal resolution of up to 15 minutes and a spatial resolution of up to 1 km (Annette
Hammer et al. 1999). Almost the whole earth surface is covered by about several geosta-
tionary satellites positioned at regular intervals above the equatorial line. The most popular
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one of the geostationary satellite is Meteosat. All geostationary First Generation Meteosat
satellites include three main channels: visible channel (0.5–1.1µm), thermal infrared channel
(10.5–12.5µm), and water vapour channel (5.7–7.1µm). On the other hand, last genera-
tions geostationary satellites are adding more spectral channels (totally 12) which are named
as: Second Generation Satellites (MGS) (K.-F. Dagestad 2005; Ener Rusen, S., Hammer, and
Akinoglu 2011; A. Hammer 2000; Annette Hammer et al. 1999). Meteosat satellite images will
be obtained from EUMETSAT archive data center for long term period for selected area. The
well-known satellite-based HELIOSAT method, which is processed the data from Meteosat
satellite, was used for modelling of the daily global solar radiation reaching on a horizontal
surface. This work aims to give a mathematical explanation of well-known satellite-based
HELIOSAT method for modelling of the daily global solar radiation reaching on a horizontal
surface. Moreover, by using the mathematical calculation techniques of HELISAT method,
the cloud index and the clear sky index were found.

2 Satellite-Based Mathematical Models for Deriving Solar Ra-
diation

Actually, Meteosat-satellites images were used to improve weather forecasts by giving the
meteorologists a visual overview of the cloud cover on a global scale. In addition to this main
purpose, several other applications of the satellite images were also started; among them were
the developments of various mathematical methods to estimate the solar irradiance at ground
level (K.-F. Dagestad 2005). “However, the satellite data were very simple; each pixel of the
images consisted of a digital mathematical count number between 0 to 255, and these pixel
counts numbers could not even be reliably calibrated into radiances (K.-F. Dagestad 2005). In
spite of the input being simple, the estimates of these algorithms were surprisingly accurate
when compared with the ground measurements” (K.-F. Dagestad 2005). There are many
mathematical algorithms which estimate surface solar irradiance based on this geostationary
satellite data. One of them was HELIOSAT method which has been developed to estimate
global horizontal irradiance at ground level using satellite images taken in the visible range
by the European metrological satellite series, namely Meteosat (S. Ener Rusen, Hammer, and
Akinoglu 2013; K.-F. Dagestad 2005; A. Hammer et al. 2003; Annette Hammer et al. 2001).

3 HELIOSAT Method

“The HELIOSAT algorithm, originally proposed by Cano et al. (1986) (Cano et al. 1986),
was one of the most popular mathematical algorithms because it was accurate and easy to
implement” (K.-F. Dagestad 2005; H. G. Beyer, Costanzo, and Heinemann 1996). HELIOSAT
was widely used in operational schemes around the world, and over the years it has been
modified and improved several times by Beyer et al. 1996; Hammer 2000 (H. G. Beyer,
Costanzo, and Heinemann 1996; Selmin Ener Rusen 2013; A. Hammer 2000) and others. In
the original version of the model, from the un-calibrated counts of the images of Meteosat
High Resolution Visible (HRV) sensor, firstly Cano et al. calculate a reflectivity using each
pixel as:

ρt = C / Gclear (1)

where C is the digital counts of a pixel (between 0 to 255) and Gclear is the clear sky global
irradiance at ground level that they evaluated using an empirical model (K.-F. Dagestad
2005). Actually, this definition is later improved by Hammer et al as C -C o is taken instead
of C where C o is the offset (A. Hammer 2000), which is named as HELIOSAT. For the
value Gclear, measured surface data might be used or there might be different site dependent
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empirical models that can be considered. May be the most important step is the definition of
the cloud index n that was calculated for each pixel as:

n = ( ρ t − ρclear) / (ρcloud − ρclear) (2)

Here ρclear and ρcloud are the reflectivities corresponding to clear and overcast conditions,
respectively (K.-F. Dagestad 2005; Cano et al. 1986).
To estimate the solar radiation an empirical form is needed between the normalized solar ra-
diation, namely the clearness index and n defined above. That is, in the linear approximation
the clearness index kc can be written as:

kc = G / Gext = an+ b (3)

where a and b are empirical parameters to be determined using regression analysis with the
ground data. As one can guess these parameters would be site dependent and might be
affected from the temporal variations of the atmospheric conditions (K.-F. Dagestad 2005;
Cano et al. 1986; A. Hammer 2000; Selmin Ener Rusen 2018). Although the model seems
simple the use of it might possess difficulties and the global applicability should be questioned
in this sense (K.-F. Dagestad 2005).
The modified version of HELIOSAT method which was developed within the EU-project
“Satel-Light” (Page 1996; A Hammer et al. 2001; Annette Hammer et al. 1999) and is denoted
on the web server www.satel-light.com (Page 1996). This was the first web site that provides
any information about the global irradiation and derived products for the period 1996-2000
(Page 1996). In addition, it covers Europe and a small region of the North Africa and provides
solar irradiance statistical data in terms of monthly means of hourly and daily radiation. This
data is completely derived from METEOSAT satellite imagery. The main differences from
the original version are described by various researchers (K.-F. Dagestad 2005; Selmin Ener
Rusen, Hammer, and Akinoglu 2013; A. Hammer 2000; H. Beyer, Costanzo, and Heinemann
1996). Fig. 1 shows the overview of the modified version of HELIOSAT method.
In the modified version of HELIOSAT, the reflectivity (ρ) is calculated with:

ρ = (C − Co ) / Gext (4)

Here Co, which was developed by Beyer et al. (1996) (H. Beyer, Costanzo, and Heinemann
1996) and later modified by Hammer (2000) (A. Hammer 2000), is subtracted from the satellite
pixel counts measurements. Instead of normalizing with a modeled extraterrestrial irradiance
(Gext), clear sky irradiance (Gclearsky) is now used in the normalization (K. F. Dagestad 2005).
The mathematical method uses clear sky index k* instead of clearness index kc (Eq. (3)), the
actual global irradiance, G, divided by the output of a clear sky model, Gclearsky:

k∗ ≡ G / Gclearsky (5)

In their method, Hammer et al calculated Gclearsky as outlined below, and they correlated k*
(instead of k) to n defined above, to obtain the new empirical relation:





1.2, n < − 0.2
1− n, n ∈ [−0.2, 0.8]

k∗ = 2.0667− 3.6667n+ 1.6667n2, n ∈ [0.8, 1.1]
0.05, n > 1.1

(6)

The cloud index n is still calculated with Eq. (2).
In the modified version of HELIOSAT, the atmospheric turbidity is a direct input parameter
to the clear sky model. In the calculation of Gclearsky they use Linke turbidity factor. The
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modified version of HELIOSAT was initially a mathematical model and it developed some
physical atmospheric parameters, such as the Linke turbidity factor (Jes’us, Luis F., and
Lourdes Ram’ırez 2008).
To calculate Gclearsky , they first calculated direct normal irradiance Gdn,clear which is found
by:

Gdn,clear = Gsc ε exp(−0, 8662 TL(2) δR(m)m (7)

where ε is the eccentricity correction, TL(2) is the Linke turbidiy factor for air mass 2, δR(m)
is the Rayleigh optical thickness of a dry and clean atmosphere and m is the air mass. Finally,
the total clear sky irradiance is the summation of the components:

Gclearsky = Gdn,clear cosθz +Gdif clear (8)

As indicated Fig. 1, another part is the mathematical calculation of newly defined n (Eq. (2))
in terms of pixel count, which is related to the Meteosat– image. These images are corrected
with respect to solar position and atmosphere parameters. Therefore, a relative reflectance ρ
is introduced by using Eq. (4).

Figure 1: Overview of the modified version of HELIOSAT method

The measured reflectance value increases from black to white in the satellite images. It
means that the low values are from the earth surfaces and while the higher values are from
the clouds. Therefore, a cloud index n that varies between 0 for cloud free and 1 is calculated
from Eq. (2) with respect to the relative reflectivity (ρ).
As described above cloud transmission can be defined by the clear sky index k* which is the
ratio of the actual surface irradiance G and the clear sky irradiance Gclearsky from Eq. (5),
and it is correlated with the cloud index n. They derived the correlations (Eqn. 6) within the
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Satel-Light project (A. Hammer 2000; Annette Hammer et al. 1999).
Eqs. (6) and (8) are then used to obtain the hourly surface irradiance Gh:

Gh = k∗(Gdn,clear cos θz +Gdif,clear (9)

The surface albedo maps are mathematically computed on a monthly basis by a statistical
analysis of the dark pixels.

4 Discussion and Conclusion

One of this study aims was to explained solar radiation calculation procedure by using HE-
LIOSAT method or modified version of it. The procedure used by Hammer et al. (A. Hammer
et al. 2003)is discussed in part 2, which mainly mathematically calculates surface irradiance
Gh by using HELIOSAT method as given in Fig.1. The first step of HELIOSAT method
calculation is the extraterrestrial irradiation on a horizontal plane (Gext) to calculate surface
irradiance with a mathematical approach. As indicated Fig.1, another part for calculation
of HELIOSAT method is related with Meteosat satellite images. These images should be
corrected with respect to solar position and atmospheric parameters by using a computer pro-
gram. The study explained at the basic mathematical calculation procedure for HELIOSAT
method and it can be considered to be the literature and the learning stage.

Acknowledgments

The author would like to thank State Meteorological Service (TSMS) for providing me with
measured data. The author would also like to thank to Prof. Dr. Bülent Akınoğlu and Dr.
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Evaluation Codes on Toric Varieties

Mesut �ahin ∗

Department of Mathematics,

Hacettepe University,

Ankara-Turkey

Abstract

Let X be a complete n-dimensional simplicial toric variety over a �nite �eld with

homogeneous coordinate ring S. Assume that the maximal torus TX of X is split. In

this short survey, we review algebraic methods for studying evaluation codes de�ned on

subsets of TX . We also explore the nice correspondence between subgroups of the group

TX and certain binomial ideals known as lattice ideals.

1 Introduction

LetX be a complete simplicial toric variety of dimension n over the �eldK = Fq, corresponding

to a fan Σ and TX ∼= (K∗)n be its maximal torus. Denote by ρ1, . . . , ρr the rays in Σ and

v1, . . . ,vr ∈ Zn the corresponding primitive lattice vectors generating them. Given a vector

u ∈ Zm we use xu to denote the Laurent monomial xu = xu11 . . . xumm . We also use [m] to

denote the set {1, . . . ,m} for any positive integer m ≥ 1. Recall the following dual exact

sequences:

P : 0 // Zn φ // Zr β // A // 0 ,

where φ is the matrix with rows v1, . . . ,vr, and

P∗ : 1 // G
i // (K∗)r π // (K∗)n // 1 ,

where π : (t1, . . . , tr) 7→ (tu1 , . . . , tun), with u1, . . . ,un being the columns of φ.

Let S = K[x1, . . . , xr] =
⊕

α∈A
Sα be the homogeneous coordinate or Cox ring of X, multi-

graded by A ∼= Cl(X) via βj := degA(xj) := β(ej), where ej is the standart basis element

of Zr for each j ∈ [r]. The irrelevant ideal is B = 〈xσ̂ : σ ∈ Σ〉, where xσ̂ = Πρi /∈σxi.

Thus, TX ∼= (K∗)r/G and X ∼= (Kr \ V (B))/G as a geometric quotient. The homogeneous

∗Corresponding author. E-mail address: mesut.sahin@hacettepe.edu.tr
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polynomials of S are supported in the semigroup Nβ generated by β1, . . . , βr, i.e. dimK Sα = 0

when α /∈ Nβ.

Next, we recall evaluation codes de�ned on subsets Y = {p1, . . . , pN} of the torus TX . Fix
a degree α ∈ Nβ and a monomial F0 = xφ(m0)+a ∈ Sα, where m0 ∈ Zn, a is any element of

Zr with deg(a) = α, and φ as in the exact sequence P. This de�nes the evaluation map

ev : Sα → FNq , F 7→
(
F (p1)

F0(p1)
, . . . ,

F (pN )

F0(pN )

)
. (1)

The image Cα,Y = evY (Sα) is a linear code, called the generalized toric code. The block-length

N , the dimension k = dimFq(Cα,Y ), and the minimum distance d = d(C) are three basic

parameters of Cα,Y . Minimum distance is the minimum of the number of nonzero components

of nonzero vectors in Cα,Y . Toric codes was introduced for the �rst time by Hansen in [3, 4] for

the special case of Y = TX . Clearly, the block-length of Cα,Y equals N = |TX | = (q − 1)n in

this case. But it is not known in the general case. An algebraic way to compute the dimension

and length of a generalized toric code is given in [7]. This method is based on the observation

that the kernel of the evaluation map above is determined by the vanishing ideal of Y de�ned

as follows. For Y ⊂ X, we de�ne the vanishing ideal I(Y ) of Y to be the ideal generated by

homogeneous polynomials vanishing on Y . I(Y ) is a complete intersection if it is generated by

a regular sequence of homogeneous polynomials F1, . . . , Fk ∈ S where k is the codimension of

Y in X. When the vanishing ideal I(Y ) is a complete intersection, bounds on the minimum

distance of Cα,Y is provided in [9].

2 The Algebraic Aproach

In this section, we review how combinatorial commutative algebra can be applied to computing

basic parameters of codes on toric varieties. Let us start by introducing one well-known

example of a singular toric surface. It is smooth only if it is the usual projective plane, i.e.,

w1 = w2 = w3 = 1.

Example 2.1. Weighted Projective Plane P (w1, w2, w3) with w1 = 1 has the following exact

sequence:

P : 0 // Z2 φ // Z3 β // Z // 0 ,

where

φ =


−w2 1 0

−w3 0 1



T

and β =
[
1 w2 w3

]
.

2
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The ring S = K[x, y, z] is multigraded via

degA(x) = 1, degA(y) = w2 and degA(z) = w3.

• The irrelevant ideal is B = 〈x, y, z〉 with a zero set V (B) = V (x, y, z) = (0, 0, 0).

• X = P (w1, w2, w3) = (K3 \ V (B))/G, where

G = {(x, y, z, w) ∈ (K∗)4 | x−w2y = x−w3z = 1} = {(t, tw2 , tw3) | t ∈ K∗}.

• A typical point of X has the following form:

[1 : 0 : 1] := G · (1, 0, 1) = {(t, 0, tw3) | t ∈ K∗}.

It may be desirable to have a smooth example at hand to illustrate certain features.

Example 2.2. Hirzebruch surface H` has the following exact sequence:

P : 0 // Z2 φ // Z4 β // Z2 // 0 ,

where

φ =


1 0 −1 0

0 1 ` −1



T

and β =


1 −` 1 0

0 1 0 1


 .

The ring S = K[x, y, z, w] is multigraded via

degA(x) = degA(z) = (1, 0), degA(y) = (−`, 1) and degA(w) = (0, 1).

• The irrelevant ideal is B = 〈xy, yz, zw,wx〉 with a zero set V (B) = V (x, z) ∪ V (y, w).

• X = H` = (K4 \ V (B))/G, where

G = {(x, y, z, w) ∈ (K∗)4 | xz−1 = yz`w−1 = 1} = {(z, z−`w, z, w) | z, w ∈ K∗}.

• A typical point of X has the following form:

[0 : 0 : 1 : 1] := G · (0, 0, 1, 1) = {(0, 0, z, w) | z, w ∈ K∗}.

De�nition 2.3. The multigraded Hilbert function of Y is de�ned to be

HY (α) := dimK Sα − dimK Iα(Y ), where Iα(Y ) = I(Y ) ∩ Sα.
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The �rst observation is that dimensions of codes can be computed algebraically by using

Hilbert functions.

Proposition 2.4 ([7]). The dimension of Cα,Y equals HY (α).

De�nition 2.5. The multigraded regularity of Y , denoted reg(Y ), is the set of α ∈ Nβ for

which HY (α) = |Y |, the length of Cα,Y .

The multigraded regularity of Y is useful in order to eliminate trivial codes, since the

dimension of the code Cα,Y attains its maximum value |Y |. This motivates giving bounds on

reg(Y ).

Proposition 2.6 ([7]). Let Y ⊂ TX for the weighted projective space X = P (w1, . . . , wr) with

w1 = 1. Then, there is an integer aY satisfying reg(Y ) = 1 + aY + N.

In the particular case of the torus Y = TX , for X = P (w1, . . . , wr), we have the following

nice invariant determined by the largest integer g(W ) not belonging to the semigroup W

generated by w1, . . . , wr, see [2, Corollary 3.9].

Corollary 2.7. aY = (q − 2)[w1 + · · ·+wr + g(W )] + g(W ) satisfying reg(Y ) = 1 + aY + N,

where g(W ) is the Frobeneous number of the numerical semigroup W .

De�nition 2.8. Let Nσ̂ be the semigroup generated by the subset {βj : ρj /∈ σ} for a cone

σ ∈ Σ. Then, an important subset of Nβ is de�ned to be the following:

K =
⋂

σ∈Σ

Nσ̂.

Theorem 2.9 ([7]). Let Y ⊂ TX be a complete intersection of n hypersurfaces of degrees

α1, . . . , αn in K. Then,
α1 + · · ·+ αn + Nβ ⊆ reg(Y ).

3 Lattice Ideals and Subgroups of the torus TX

The main result of this section uncovers the relation between lattice ideals and subgroups of

TX .

By a lattice L we mean a �nitely generated free Abelian group. Recall that every vector

in Zr is written as m = m+ −m−, where m+,m− ∈ Nr. Letting Fm = xm+ − xm−
, the

lattice ideal IL is the binomial ideal generated by special binomials Fm arising from the lattice

L ⊂ Zr . So, IL = 〈Fm |m ∈ L〉. Let [P ] := G · P = [p1 : · · · : pr] for a point P in Kr and
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let I ([P ]) be the vanishing ideal of [P ]. We use [1] to denote [1 : · · · : 1]. If [P ], [P ′] ∈ X then

[P ] · [P ′] := [PP ′] is well-de�ned element of X ∪ [V (B)], where [V (B)] denotes the set of all

[P ] for P ∈ V (B). The set [Kr] = X ∪ [V (B)] is a monoid with identity [1] with respect to

this coordinatewise multiplication operation.

A matrix Q = [q1q2 · · ·qr] ∈Ms×r(Z) de�nes a subgroup

YQ = {[tq1 : · · · : tqr ]|t ∈ (K∗)s} ⊂ TX

of the torus TX called the toric set parameterized by Q. In [6], the vanishing ideals of these

toric sets parameterised by monomials are shown to be lattice ideals of dimension 1, when the

toric variety is a projective space, i.e., X = P (w1, . . . , wr) with w1 = · · · = wr = 1.

De�nition 3.1. Given an integer matrix B, let LB = Zr ∩ kerB be the sublattice of Zr

determined by B. A lattice L is called homogeneous if L ⊆ Lβ , where Lβ is the image

φ(Zn).

Proposition 3.2 ([8]). L is homogeneous if and only if IL is homogeneous.

For a homogeneous ideal J of S, let

VX(J) := {[P ] ∈ X : F (P ) = 0, for all homogeneous F ∈ J}.

Proposition 3.3 ([8]). If L is homogeneous then VX(IL)∩TX is parameterised by monomials.

Summarizing the results of [8], we get the following nice relations:

Theorem 3.4. Y is a subgroup of TX i� I(Y ) is a radical lattice ideal of dimension r− n i�

Y = YQ for a square Q.

Algorithms for determining a generating set of the lattice ideal I(YQ) are given in a joint

work with E. Baran, see [1].

4 Degenerate Tori

De�nition 4.1. The subset YA = {[ta11 : · · · : tarr ] : ti ∈ K∗} of the torus TX is called a

degenerate torus.

If K∗ = 〈η〉, every ti ∈ K∗ is of the form ti = ηsi , for some 0 ≤ si ≤ q − 2. Let di = |ηai |
and D = diag(d1, . . . , dr) be the matrix de�ning an automorphism of Zr. As YA is a monoid

in TX , I(YA) is a lattice ideal. We determine the corresponding lattice in this section.

Theorem 4.2 ([8]). If Y = YA then I(Y ) = IL for L = D(LβD).
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5 Complete Intersections

We characterize when the vanishing ideals are complete intersections using mixed dominating

matrices we de�ne now.

De�nition 5.1. If each column of a matrix has both a positive and a negative entry we say

that it is mixed. If it does not have a square mixed submatrix, then it is called dominating.

Theorem 5.2 ([5]). Let L be a non-zero sublattice of Zr such that L ∩ Nr = {0} and Γ be

a matrix whose columns constitute a basis of L. Then IL is a complete intersection i� Γ is

mixed dominating.

Using Theorem 5.2, we prove the following.

Proposition 5.3 ([8]). I(YA) is a complete intersection i� so is the toric ideal ILβD . A

minimal generating system of binomials for I(YA) is obtained from that of ILβD by replacing

xi with x
di
i .

Corollary 5.4 ([8]). We have the following:

(i) if Y = {[1]} then I(Y ) = ILβ ,

(ii) if Y = TX then I(Y ) = IL, for L = (q − 1)Lβ,

(iii) I(TX) is a complete intersection i� so is ILβ , which is independent of q.

These result generalize some work of [2] from weighted projective spaces to a general toric

variety. Using the matrix φ de�ned by the fan Σ and the result presented in this section one

can easily check whether the vanishing ideal of TX is a complete intersection.
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Abstract

A Ducci sequence is the sequence
{
X,DX,D2X, ...

}
generated by n-tuples X =

(x1, x2, . . . , xn) ∈ Zn, where D : Zn → Zn is defined by

DX = D (x1, x2, . . . , xn) = (|x2 − x1| , |x3 − x2| , . . . , |xn − x1|) .

In this study, we examine relationships between Fibonacci numbers and powers of 3 × 3
Ducci matrices corresponding to the Ducci map D : Z3 → Z3.

Keywords: Fibonacci numbers, Ducci map.

1 Introduction

Let D : Zn → Zn be a map defined by

DX = D (x1, x2, . . . , xn) = (|x2 − x1| , |x3 − x2| , . . . , |xn − x1|) ,

where X = (x1, x2, . . . , xn) ∈ Zn. The map D is called a Ducci map and the sequence{
X,DX,D2X, ...

}
is called a Ducci sequence. Every Ducci sequence

{
X,DX,D2X, ...

}
gives

rise to a cycle i.e., there are integers i and j with 0 ≤ i < j with DiX = DjX. When i and j
are as small as possible we say that the Ducci sequence has period j − i [1].
Example 1.1. Let X be X = (1, 1, 3) . Then

DX = D (1, 1, 3) = (|1− 1| , |3− 1| , |3− 1|) = (0, 2, 2) ,

D2X = D (0, 2, 2) = (|2− 0| , |2− 2| , |2− 0|) = (2, 0, 2) ,

D3X = D (2, 0, 2) = (|0− 2| , |2− 0| , |2− 2|) = (2, 2, 0) ,

D4X = D (2, 2, 0) = (|2− 2| , |0− 2| , |0− 2|) = (0, 2, 2) ,

where DX = D4X and Ducci sequence has period 4− 1 = 3.
Ducci sequences were first introduced in 1937 [4]. The discovery of Ducci sequences is at-
tributed to Professor E. Ducci. Under the Ducci map, the behavior of the starting vector
X = (x1, x2, ..., xn) is interesting and has been examined extensively [1-5]. The best known
result is that every starting vector converges to zero vector if and only if n is a power of 2
[2,3]. When n is not a power of 2, every starting vector reaches to k (a1, a2, ..., an), where
ai ∈ {0, 1} and k is a positive constant [3]. The researches on application of the Ducci map
to matrices have increased in recent years [5,7,8]. For example, Solak and Bahşi [8] have
established relationships between the spectral norm, Euclidean norm, lp norm, determinant
and eigenvalues of the circulant matrix Circ(A) = Circ (a1, a2, ..., an) and its image under
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the Ducci map.
Now, Let us consider the starting vector X = (x1, x2, x3) ∈ Z3. Then, we have six case for
x1, x2 and x3.That is,

1)x1 ≥ x2 ≥ x3,
2)x1 ≥ x3 ≥ x2,
3)x2 ≥ x1 ≥ x3,
4)x3 ≥ x1 ≥ x2,
5)x2 ≥ x3 ≥ x1,

and
6)x3 ≥ x2 ≥ x1.

For the case x1 ≥ x2 ≥ x3, we have DX = D (x1, x2, x3) = (x1 − x2, x2 − x3, x1 − x3) . In this
case, matrix multiplication yields

DX =




1 −1 0
0 1 −1
1 0 −1





x1
x2
x3


 .

In fact, we have DX = MiX (i = 1, 2, ..., 6), where

M1 =




1 −1 0
0 1 −1
1 0 −1


 ,M2 =




1 −1 0
0 −1 1
1 0 −1


 ,M3 =



−1 1 0
0 1 −1
1 0 −1


 ,

M4 =




1 −1 0
0 −1 1
−1 0 1


 , M5 =



−1 1 0
0 1 −1
−1 0 1


 , and M6 =



−1 1 0
0 −1 1
−1 0 1


 .

The above six matrices are called 3x3 Ducci matrices. One can see easily that M1 = −M6,
M2 = −M5, and M3 = −M4.

In this study, we mainly focus on the relationships between the powers of 3x3 Ducci ma-
trices and Fibonacci numbers.

Fibonacci numbers defined by the recurrence relation

Fn+1 = Fn + Fn−1 (n ≥ 1) , F0 = 0andF1 = 1

have many applications to mathematics, statistics and physics. The first few Fibonacci num-
bers are 0, 1, 2, 3, 5, 8, 13, 21,. . . and these numbers are defined backwards by 0, 1, -1, 2, -3,
5, -8, 13, -21,. . . . For the detailed information of Fibonacci numbers, we refer to [6].

Now, we give our main results.

2 Main Results

Theorem 2.1. For the nth power of the matrices M1,M4 and M5, we have

Mn
1 =




Fn −Fn+1 Fn−1

−Fn−1 Fn −Fn−2

Fn−2 −Fn−1 Fn−3


 ,Mn

4 =




Fn −Fn−2 −Fn−1

−Fn−1 Fn−3 Fn−2

−Fn+1 Fn−1 Fn
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and

Mn
5 =




Fn−3 Fn−2 −Fn−1

Fn−1 Fn −Fn+1

−Fn−2 −Fn−1 Fn




where Fn denotes the nth Fibonacci number.
Proof. We use principle of mathematical induction on n. For n = 1,

M1
1 =




F1 −F2 F0

−F0 F1 −F−1

F−1 −F0 F−2


 =




1 −1 0
0 1 −1
1 0 −1


 .

That is, the result is true for n = 1. Assume that

Mn−1
1 =




Fn−1 −Fn Fn−2

−Fn−2 Fn−1 −Fn−3

Fn−3 −Fn−2 Fn−4


 .

Then,

Mn
1 = Mn−1

1 M1 =




Fn−1 −Fn Fn−2

−Fn−2 Fn−1 −Fn−3

Fn−3 −Fn−2 Fn−4






1 −1 0
0 1 −1
1 0 −1




=




Fn−1 + Fn−2 −Fn − Fn−1 −Fn−2 + Fn
−Fn−2 − Fn−3 Fn−1 + Fn−2 Fn−3 − Fn−1

Fn−3 + Fn−4 −Fn−2 − Fn−3 −Fn−4 + Fn−2




=




Fn −Fn+1 Fn−1

−Fn−1 Fn −Fn−2

Fn−2 −Fn−1 Fn−3


 ,

which yields that the result is true for n. This completes the proof for the matrix M1. By
using similar method, we have desired results for the matrices M4 and M5.
Corollary 2.2. For the nth power of the matrices M2, M3 and M6 , we have

Mn
2 = (−1)n




Fn−3 Fn−2 −Fn−1

Fn−1 Fn −Fn+1

−Fn−2 −Fn−1 Fn


 ,Mn

3 = (−1)n




Fn −Fn−2 −Fn−1

−Fn−1 Fn−3 Fn−2

−Fn+1 Fn−1 Fn




and

Mn
6 = (−1)n




Fn −Fn+1 Fn−1

−Fn−1 Fn −Fn−2

Fn−2 −Fn−1 Fn−3


 ,

where Fn denotes the nth Fibonacci number.
Proof: These follow from Theorem 2.1 and the equalities M1 = −M6, M2 = −M5, and
M3 = −M4.
Theorem 2.3. For the nth (n ≥ 3) power of the matrix Mi , we have

Mn
i =

{
Mn−1
i +Mn−2

i , for i = 1, 4, 5

−Mn−1
i +Mn−2

i , for i = 2, 3, 6.
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Proof. Theorem 2.1 and Corollary 2.2 yield

Mn−1
1 +Mn−2

1 =




Fn−1 −Fn Fn−2

−Fn−2 Fn−1 −Fn−3

Fn−3 −Fn−2 Fn−4


+




Fn−2 −Fn−1 Fn−3

−Fn−3 Fn−2 −Fn−4

Fn−4 −Fn−3 Fn−5




=




Fn−1 + Fn−2 −Fn − Fn−1 Fn−2 + Fn−3

−Fn−2 − Fn−3 Fn−1 + Fn−2 −Fn−3 − Fn−4

Fn−3 + Fn−4 −Fn−2 − Fn−3 Fn−4 + Fn−5




=




Fn −Fn+1 Fn−1

−Fn−1 Fn −Fn−2

Fn−2 −Fn−1 Fn−3




= Mn
1

and

−Mn−1
2 +Mn−2

2 = −(−1)n−1




Fn−4 Fn−3 −Fn−2

Fn−2 Fn−1 −Fn
−Fn−3 −Fn−2 Fn−1


+ (−1)n−2




Fn−5 Fn−4 −Fn−3

Fn−3 Fn−2 −Fn−1

−Fn−4 −Fn−3 Fn−2




=(−1)n




Fn−4 + Fn−5 Fn−3 + Fn−4 −Fn−2 − Fn−3

Fn−2 + Fn−3 Fn−1 + Fn−2 −Fn − Fn−1

−Fn−3 − Fn−4 −Fn−2 − Fn−3 Fn−1 + Fn−2




= (−1)n




Fn−3 Fn−2 −Fn−1

Fn−1 Fn −Fn+1

−Fn−2 −Fn−1 Fn




= Mn
2 .

Similarly, for i = 3, 4, 5, 6, desired results are obtained.
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Abstract

The spectral theory of differential operators is a field of functional analysis which basi-
cally investigates the spectra of differential operators and the expansion of given functions
in terms of the eigenfunctions of this operators. In this study, we provide a comprehensive
overview on the spectral analysis of Sturm-Liouville operator on the half-axis including
the topics; formulation of Jost solution, determination of resolvent operator, description
of the sets of eigenvalues and spectral singularities in terms of singular points of the kernel
of the resolvent and use of boundary uniqueness theorems of analytic functions to pro-
vide sufficient conditions guaranteeing finiteness of eigenvalues and spectral singularities.
First, we introduce some basic definitions and theorems for differential Sturm-Liouville
operator. Second, spectral analysis of discrete Sturm-Liouville problems will be discussed.
In the third part, we mention the quantum calculus versions of the problem. At last, we
conclude the paper with a general outlook on the issue.

Keywords: Spectral theory, Sturm-Liouville equation, eigenvalues, spectral singulari-
ties.

1 Introduction

The development of many important directions of mathematics and physics owes a major
dept to the concepts and methods which evolved during the investigation of Sturm-Liouville
equation −y′′ + q(x)y = λ2y and the allied Sturm-Liouville operator L = −d2

dx2
+ q(x) (Lately

L and q(x) are often termed the one-dimensional Schrödinger operator and the potential).
These provided a constant source of new ideas and problems in spectral theory of operators
and kindred fields of analysis. Such problems arise in many areas of science and engineering,
i.e., quantum mechanics, geophysics, astrophysics, electronics. As regards Sturm-Liouville
theory and spectral analysis, there are plenty of useful resources for researches presenting the
history and devolopments in these topics [1, 2]

Naimark [3, 4] considered the differential expression

l(y) = −y′′ + q(x)y, 0 < x <∞,

where the coefficient q(x) is a complex valued function (referred as the potential of the equa-
tion) with the boundary condition

y(0) = 0.
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He associates an operator L operating on the Hilbert space L2(0,∞). The operator L is defined
by the formula Lf = l(f) on functions f ∈ L2(0,∞) which have a derivative f

′
absolutely

continuous on every interval [0, a] , 0 < a < ∞, and which are such that l(f) ∈ L2(0,∞)
and f(0) = 0. Recall that a complex number λ is called an eigenvalue of the operator L if
there is a non-zero function f belonging to the domain of definition of this operator such that
Lf = λf. If λ is not an eigenvalue of the operator L, then the operator (L− λI)−1 exists and
is called resolvent of L.

Based on the notions above, the spectral properties of the boundary value problem (BVP)

−y′′ + q(x)y = λ2y, 0 ≤ x <∞, (1.1)

y(0) = 0, (1.2)

was first investigated systematically by Naimark [3, 4]. He proved the existence of spectral
singularities in the continuous spectrum of the BVP (1.1)-(1.2) and showed that, if eεx ∈
L1(R+) for some ε > 0, then the BVP (1.1)-(1.2) has a finite number of eigenvalues and
spectral singularities with finite multiplicities. Also, he formulated the spectral expansion of
the BVP (1.1)-(1.2) in terms of the principal vectors. Note that the eigenfunctions and the
associated functions (principal functions) corresponding to the spectral singularities are not
elements of L2(R+). Also, the spectral singularities belong to the continuous spectrum and
are the poles of the resolvent’s kernel, but are not the eigenvalues of the BVP (1.1)-(1.2).

Lyance examined the effect of the spectral singularities in the spectral expansion of the
BVP (1.1)-(1.2) in terms of the principal functions [5]. Moreover, there have been numer-
ous studies considering the spectral expansion and principal functions of the Sturm-Liouville
problems in [5− 14] .

Besides the studies dealing with the differential and difference equations with scalar co-
efficients that we have mentioned up to here, spectral analysis of the equations with matrix
coefficients have also become the main research topic of a significant number of papers. The
theory of matrix Sturm-Liouville problems has been actively developed during the last twenty
years. Eigenvalue asymptotics and some other aspects of direct problems were studied in the
papers [14− 16] and references therein.

Let us denote the solution of (1.1) satisfying the condition

lim
x→∞

y(x, λ)e−iλx = 1, λ ∈ C+ := {λ : λ ∈ C, Imλ ≥ 0} ,

by e(x, λ). The solution e(x, λ) is introduced as the Jost solution of (1.1). For the condition

∞∫

0

x |q(x)| dx <∞,

the Jost solution has the representation

e(x, λ) = eiλx +

∞∫

x

K(x, t)eiλtdt

for λ ∈ C+, where the kernel K(x, t) satisfies

K(x, t) =
1

2

∞∫

(x+t)
2

q (ξ) dξ +
1

2

(x+t)
2∫

x

t+ξ−x∫

t+x−ξ

K(ξ, η)q (ξ) dηdξ

+
1

2

∞∫

(x+t)
2

t+ξ−x∫

ξ

K(ξ, η)q (ξ) dηdξ.
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Moreover, K(x, t) is continuously differentiable with respect to its arguments and

|K(x, t)| ≤ c

∞∫

(x+t)
2

q (ξ) dξ,

|Kx(x, t)| , |Kt(x, t)| ≤
1

4

∣∣∣∣q
(
x+ t

2

)∣∣∣∣+ c

∞∫

(x+t)
2

q (ξ) dξ,

where c > 0 is a constant [17,Chapter 3] . Note that the Jost solution e(x, λ) is analytic with
respect to λ in C+ := {λ : λ ∈ C, Imλ > 0} and continuous on the real axis.

Theorem 1 [18] Assume that 2π periodic function g is analytic in C+, all of its derivatives
are continuous in C+, and

sup
z∈P

∣∣∣g(k)(z)
∣∣∣ ≤ ηk, k ∈ N ∪ {0} .

If the set G ⊂
[−π

2 ,
3π
2

]
with Lebesgue measure zero is the set of all zeros the function g

with infinite multiplicity in P, and if

w∫

0

ln t(s)dµ(Gs) = −∞,

where t(s) = infk
ηks

k

k! and µ (Gs) is the Lebesgue measure of s−neighborhood of G and w > 0
is an arbitrary constant, then g ≡ 0 in C+.

In 1977, Sturm-Liouville equation with one boundary condition dependent on the spectral
parameter and asymptotic estimates of eigenvalues or eigenfunctions were studied by Fulton
[19]. In the upcoming years, there have been a great number of papers considering such
Sturm-Liouville equations with boundary condition dependent on the spectral parameter such
as [19− 24] .

In [20] , quadratic eigenparameter dependent Sturm-Liouville boundary value problem

−y′′ + q(x)y = λ2y, 0 < x <∞,(
α0 + α1λ+ α2λ

2
)
y
′
(0)−

(
β0 + β1λ+ β2λ

2
)
y(0) = 0,

was studied for αi, βi ∈ C, i = 0, 1, 2 and λ is an eigenparameter. Under certain condi-
tions, Jost function of this BVP was obtained and finiteness of the eigenvalues and spectral
singularities was achieved using the uniqueness theorems of analytic functions [25].

2 Discrete Sturm-Liouville case

Let us introduce the second order difference operator generated in l2 (N)

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ N = {1, 2, ...} (2.1)

where (an) , (bn) , n ∈ N are complex sequences, an 6= 0 for all n ∈ N ∪ {0}. Note that this
equation can be written in the following Sturm-Liouville form

5 (an 4 yn) + hnyn = λyn, n ∈ N,
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where hn = an−1 + an + bn, 4 is the forward difference operator, 4yn = yn+1 − yn, and 5 is
the backward difference operator, 5yn = yn − yn−1.

Assume that for some ε > 0, the complex sequences (an) and (bn) satisfy

sup
n∈N

[
exp

(
εnδ
)

(|1− an|+ |bn|)
]
<∞, 1

2
≤ δ ≤ 1. (2.2)

The Jost solution

en(z) = αne
inz

(
1 +

∞∑

m=1

Anme
imz

)
, n ∈ N ∪ {0}

is obtained in [26] for λ = 2 cos z, where z ∈ C+ := {z : z ∈ C, Im z ≥ 0} , and αn, Anm are
given in terms of (an) and (bn) as

αn =

( ∞∏

k=n

ak

)−1
,

An,1 = −
∞∑

k=n+1

bk,

An,2 = −
∞∑

k=n+1

(1− ak) +

∞∑

k=n+1

bk

∞∑

p=k+1

bp,

An,m = An+1,m−2 +

∞∑

k=n+1

{(
1− a2k

)
Ak+1,m−2 − bkAk,m−1

}
.

Moreover
|Anm| ≤ C

∑

k=n+[|m2 |]
(|1− ak|+ |bk|) ,

holds, where C > 0 is a constant and
[∣∣m

2

∣∣] is integer part of m
2 . So, en(z) is analytic with

respect to z in C+ and continuous in Im z = 0.
The boundary condition

(
α0 + α1λ+ α2λ

2
)
y1 +

(
β0 + β1λ+ β2λ

2
)
y0 = 0, (2.3)

was taken into consideration for the discrete Sturm-Liouville equation (2.1) under the condi-
tion (2.2) in [27] . This paper may be thought as an extention of [28] because of the quadratic
eigenparameter in the boundary condition. Jost function and quantitative properties of the
eigenvalues and spectral singularities have also been investigated in [27, 28] under the Pavlov’s
condition and Naimark’s condition.

3 Quantum calculus case

Assume q > 1 and define the set qN := {qn : n ∈ N} where N stands for natural numbers. A
q-difference equation is an equation that contains q-derivetives of a function defined on qN.
Hilbert space of functions with the inner product

〈f, g〉q :=

∫

qN

f(t)g(t)4t, for f, g : qN → C
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and the norm

‖f‖q :=



∫

qN

|f(t)|24t




1
2

for f : qN → C

by l2(qN).
Consider the operator L generated by the second order q-difference equation

qγ(t)y(qt) + β(t)y(t) + γ(
t

q
)y(

t

q
) = λy(t), t ∈ qN (3.1)

for γ(t) 6= 0 for all t ∈ qN, {γ(t)}t∈qN , {β(t)}t∈qN are complex sequences. The q-difference
equation can be written in the Sturm-Liouville form as

(ly) (t) =
[
ay4

]4( t
q

)
+ b(t)y(t) for t ∈ qN,

where a(t) = γ(t)µ2(t) and b(t) = β(t) + qγ(t) + γ
(
t
q

)
and y4 denotes the q-derivative of y.

Under the condition ∑

t∈qN

ln t

ln q
(|1− γ(t)|+ |β(t)|) <∞,

the Jost solution

e(t, z) = α(t)
exp

(
i ln tln qz

)

√
µ(t)


1 +

∫

qN

A(t, r)
exp

(
i ln rln qz

)

µ(r)
4 r


 ,

was introduced in [29] for λ = 2
√
q cos z, where z ∈ C+ and α(t) and A(t, r) are expressed in

terms of {γ(t)}t∈qN and {β(t)}t∈qN as

α (t) =


 ∏

s∈[t,∞)∩qN
γ(s)



−1

, A(t, q) = − 1√
q

∑

s∈[qt,∞)∩qN
β(s),

A(t, q2) =
∑

s∈[qt,∞)∩qN



1− γ2(s) +

1

q
β(s)

∑

p∈[qs,∞)∩qN
β(p)



 ,

A(t, q2r) = A(qt, r) +
∑

s∈[qt,∞)∩qN

{(
1− γ2(s)

)
A(qs, r)− β(s)√

q
A(s, qr)

}
,

for r, t ∈ qN. After the representation of the Jost solution of the quantum difference equation
(3.1), asymptotics for e(t, z) were obtained. Also, continuous spectrum and quantitative
properties of eigenvalues and spectral singularities were investigated.

As a continuation of the paper [29], the presence of the spectral parameter not only in
the quantum difference equation but also in the boundary condition has been considered by
Aygar and Bohner [30].

4 Conclusion

In this survey, we made mention of recent developments in the spectral analysis of non-
selfadjoint Sturm-Liouville operator on the half-axis by the way of the procedure, which has
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been developed by Naimark, Lyance and others, including the steps: determination of Jost so-
lution, formulation of the resolvent operator, designation of the sets of eigenvalues and spectral
singularities in terms of the singular points of the resolvent and use of boundary uniqueness
theorems of analytic functions to provide sufficient conditions quaranteeing finiteness of the
eigenvalues and spectral singularities. Surely, there are a large number of studies including
these topics that we could not mention in this survey. Nevertheless, this paper might be
helpful for understanding the devolopment of the problem and application of the problem to
other mathematical structures like discrete calculus and quantum calculus cases.

Note also that, we haven’t mention the studies about the other operators like Schrödinger,
Klein-Gordon and Dirac type operotors which the similar techniques might be applied for
their spectral analysis. This paper may be also a guide for future studies in this context.
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Abstract

The main focus of this study is to present a state-of-the-art evaluation of a complex
engineering problem in a concise manner. The recent optimization technique used in
this study, so-called Symbiotic Organisms Search (SOS) imitating the one of the famous
natural phenomena which is the symbiotic relationships (mutualism, commensalism, and
parasitism) between organisms in an ecosystem, is eligible for obtaining solutions of com-
plicated engineering problems, operations research problems, management information
system problems, and so forth on. In this paper, SOS is utilized to acquire the optimum
design of speed reducer problem with a goal of minimizing its weight while gratifying a
large number of constraints inflicted by gear and shaft design practices. So, the design
problem can be evaluated as one of the most complicated engineering optimization prob-
lems since the problem has constraints related with dimensions and material properties of
the shafts and gears as well as having the side limitations on design variables. The optimal
results of the design problem yielded by SOS prove that the optimization process is robust
and is not suffering the discrepancies of mathematical and gradient-based optimum design
methods.

Keywords: Optimum design, metaheuristics, symbiotic organisms search, speed re-
ducer.

1 Introduction

The subject of optimization is a fascinating blend of heuristics and rigour of theory. It can
be studied as a branch of pure mathematics, yet has applications in almost every branch of
science, technology and engineering. Over than three decades, a usage of new trend methods
has been popularized in the field of optimization called as metaheuristics [1]. The metaheuris-
tic optimization techniques are valuable in making the optimization process more reliable and
efficient, so they are becoming very powerful in solving hard optimization problems, and they
have been applied in almost all major areas of science and engineering as well as industrial
applications. Metaheuristic algorithms are nature-inspired and/or bio-inspired as they have
been developed based on the successful evolutionary behavior of natural systems by taking
their basic phonemes from nature [2]. The most important advantageous of the metaheuristic
methods is that they do not need any gradient and starting point. These methods are not
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expected to find the best solution all the time, but they are expected to find the good enough
solutions or even the optimal solution most of the time, and more importantly, in a reasonably
and practically short time [3]. Also, these methods have also come to include any procedures
that employ strategies for overcoming the trap of local optimality in complex solution spaces,
especially those procedures that utilize one or more neighborhood structures as a means of
defining admissible moves to transition from one solution to another, or to build or destroy
solutions in constructive and destructive processes [4]. The recent addition to metaheuristic
algorithms is so-called Symbiotic Organisms Search (SOS) proposed by Cheng and Prayogo [5].
This technique is based on the interactions relationship between two organisms in ecosystems.
The mostly common symbiotic relations between the organisms in ecosystem are mutualism,
commensalism, and parasitism. This paper aims to present the assessment of the optimal
solution of the well-known and well-studied Golinski’s speed reducer optimization problem [6,
7] via SOS based optimization algorithm. The main objective of the problem is minimizing
the weight of the speed reducer gear box. This problem reveals as a benchmark for application
of various new methods of optimization [8-13]. This problem can be categorized as hard and
complicated engineering problem owing to have seven design variables engaged to dimensions
and material properties of the shafts and gears. These variables can vary between lower and
upper bounds which appear to be the limitations on design variables. Moreover, there are
lots of constraints made up of different operations on design variables including higher-order
nonlinear terms. [14].

2 Mathematical Modelling of The Problem

The design of the speed reducer is a more challenging engineering problem because it contains
seven design variables. As shown in Figure 1, the design of the speed reducer is considered
with the face width (x1), the module of the teeth (x2), the number of teeth on pinion (x3),
the length of the first shaft between bearings (x4), the length of the second shaft between
bearings (x5), diameter of the first shaft (x6), and the diameter of the second shaft (x7) [15].

Figure 1: Design of Speed Reducer

The objective is to minimize the total weight of the speed reducer while meeting eleven
constraints. The constraints include the limits on the bending stress of the gear teeth, surface
stress, transverse deflections of shafts 1 and 2 due to transmitted force, and stresses in shafts
1 and 2 [15]. The mathematical programming model of a speed reducer problem considered
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in this study is expressed as follows.
Minimize

f (x1, . . . , x7) = 0.7854x1x2
2
(
3.3333x3

2 + 14.9334x3 − 43.0934
)

(1)

−1.5079x1
(
x6

2 + x7
2
)

+ 7.4777
(
x6

3 + x7
3
)

+0.7854
(
x4x6

2 + x5x7
2
)

Subjected to

g1 = 27x1
−1x2

−2x3
−1 ≤ 1.0 (2)

g2 = 397.5x1
−1x2

−2x3
−2 ≤ 1.0 (3)

g3 = 1.93x4
3x2

−1x3
−1x6

−4 ≤ 1.0 (4)

g4 = 1.93x5
3x2

−1x3
−1x7

−4 ≤ 1.0 (5)

g5 =
(
7452x4

2x2
−2x3

−2 + 16.9x106
)
/1102x6

6 ≤ 1.0 (6)

g6 =
(
7452x5

2x2
−2x3

−2 + 157.5x106
)
/852x7

6 ≤ 1.0 (7)

g7 = x2x3/40 ≤ 1.0 (8)

g8 = 5x2/x1 ≤ 1.0 (9)

g9 = x1/12x2 ≤ 1.0 (10)

g10 = (1.5x6 + 1.9)x4
−1 ≤ 1.0 (11)

g11 = (1.1x7 + 1.9)x5
−1 ≤ 1.0 (12)

The variable bounds for the problem are as follows;

2.6 ≤ x1 ≤ 3.6 (13)

0.7 ≤ x2 ≤ 0.8 (14)

17 ≤ x3 ≤ 28 (15)

7.3 ≤ x4 ≤ 8.3 (16)

7.3 ≤ x5 ≤ 8.3 (17)

2.9 ≤ x6 ≤ 3.9 (18)

5.0 ≤ x7 ≤ 5.5 (19)

3 Symbotic Organisms Search (Sos) Algorithm

Symbiotic Organisms Search (SOS) algorithm is one of the very promising recent develop-
ments in the field of metaheuristic algorithms [5, 16]. The nature-inspired philosophy of SOS
algorithm is analogous to the interactive behavior among organisms in nature. Organisms
in the real world rarely live in isolation due to dependence on other species for sustenance
and survival. In general, organisms develop symbiotic relationships as a strategy to adapt to
changes in their environment.
Three cycles of the search are performed mimicking the three symbiotic relationships so-
called mutualism phase, commensalism phase, and parasitism phase. By performing this
three phases, SOS attempts to move a population, called an ecosystem of possible solutions,
to promising areas of the search space during the search for the optimal solution.
SOS adapts the most common examples of symbiotic relationships found in nature [17]:
i) Mutualism:
This relationship category describes the symbiotic relationship between two different species
that benefit mutually from that relationship. Bees fly amongst flowers, gathering nectar to
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turn into honey. While this activity benefits bees, it also benefits flowers because pollen dis-
tribution is a side effect of this process. Both organisms engage in a mutualistic relationship
with the goal of increasing mutual survival advantage in the ecosystem. New candidate solu-
tions for Xi and Xj are calculated based on the mutualistic symbiosis between organism Xi

and Xj , which is modeled in Equations (20) and (21).

Xinew = Xi + rand (0, 1) ∗ (Xbest −−Mutual V ector∗BF1) (20)

Xinew = Xi + rand (0, 1) ∗ (Xbest −−Mutual V ector∗BF1) (21)

Mutual V ector = (Xi +Xj) /2 (22)

ii) Commensalism:
This relationship category describes the symbiotic relationship between two different species
in which one benefits and the other is unaffected or neutral. The remora attaches itself to
the shark and eats food leftovers, thus receiving a benefit. The shark is unaffected by remora
fish activities and receives minimal, if any, benefit from the relationship. The new candidate
solution of Xi is calculated according to the commensal symbiosis between organism Xi and
Xj , which is modeled in Equation (23). Following the rules, organism Xi is updated only if
its new fitness is better than its pre-interaction fitness.

Xjnew = Xj + rand (−1, 1) ∗ (Xbest −Xj) (23)

iii) Parasitism:
This relationship category describes the symbiotic relationship between two different species
in which one benefits and the other is actively harmed. The plasmodium parasite uses its
relationship with the anopheles mosquito to pass between human hosts. While the parasite
thrives and reproduces inside the human body, its human host suffers malaria and may die as
a result. Organism Xi is given a role similar to the anopheles mosquito through the creation
of an artificial parasite called ”Parasite Vector”. Parasite Vector is created in the search
space by duplicating organism Xi, then modifying the randomly selected dimensions using a
random number. Organism Xj is selected randomly from the ecosystem and serves as a host
to the parasite vector. Parasite Vector tries to replace Xj in the ecosystem. Both organisms
are then evaluated to measure their fitness. If Parasite Vector has a better fitness value, it
will kill organism Xj and assume its position in the ecosystem. If the fitness value of Xj is
better, Xj will have immunity from the parasite and the Parasite Vector will no longer be
able to live in that ecosystem. The steps of the SOS Algorithm are given below;
1: iter = 1
2: Initialize ecosystem / population
3: repeat
4: Simulate interaction between organisms through the Mutualism Phase
5: Simulate interaction between organisms through the Commensalism Phase
6: Simulate interaction between organisms through the Parasitism Phase
7: Update the best organism
8: until iter = max iter

4 Results And Discussion

In this study, the speed reducer engineering design problem is optimized via SOS algorithm.
The algorithm parameters, which are ecosystem size; Eco size, and maximum number of fitness
function evaluations; maxFE, are set as 20 and 20000, respectively. After optimization, the
robustness of obtained results is compared by those reported in the literature. The optimal
results are tabulated in Table 1. It is clearly seen in the table that the SOS algorithm
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yields optimum design weight as 2993.1392 kg. It is observed from this table that only one
constraint, g11, violates slightly during optimization process. This violation is not marginal
and it is acceptable in the view of engineering. Besides, this violation can be evaluated as
slightly infeasible in a tolerance limitation which is below 10−4.

Table 1: Shows the data that we used in our calculations.

ResultsRao
[8]

Li and Pa-
palambros
[9]

Kuang et
al. [10]

Azarm and
Li
[11]

Vanderplaatz
[12]

Ray
[13]

Present
Study

x1 3.50000000 3.50000000 3.60000000 3.50000000 3.50000000 3.50000002 3.50000000

x2 0.70000000 0.70000000 0.70000000 0.70000000 0.70000000 0.70000000 0.70000000

x3 17.0000000 17.0000000 17.0000000 17.0000000 17.0000000 17.0000000 17.0000000

x4 7.30000000 7.30000000 7.30000000 7.30000000 7.30000020 7.30000009 7.17984

x5 7.30000000 7.71000000 7.80000000 7.71000000 7.30000020 7.80000000 7.70889

x6 3.35000000 3.35000000 3.40000000 3.35000000 3.35021450 3.35021468 3.35009

x7 5.29000000 5.29000000 5.00000000 5.29000000 5.28651760 5.28668325 5.28668

g1 0.92608470 0.92608470 0.90036010 0.92608470 0.92608470 0.92608470 0.9260847196

g2 0.80200150 0.80200150 0.77972370 0.80200150 0.80200150 0.80200150 0.8020014729

g3 0.50095610 0.50095610 0.47213180 0.50095610 0.50082790 0.50082790 0.4765722477

g4 0.08056680 0.09491850 0.12314430 0.09491850 0.08077930 0.09852830 0.0951160484

g5 1.00019230 1.00019230 0.95671190 1.00019230 1.00000010 1.00000000 0.9999123077

g6 0.99802660 0.99810290 1.18206090 0.99810290 1.00000020 1.00000000 0.9999842777

g7 0.29750000 0.29750000 0.29750000 0.29750000 0.29750000 0.29750000 0.2975000000

g8 1.00000000 1.00000000 0.97222220 1.00000000 1.00000000 1.00000000 1.0000000000

g9 0.41666670 0.41666670 0.42857140 0.41666670 0.41666670 0.41666670 0.4166666667

g10 0.94863014 0.94863014 0.95890411 0.94863014 0.94867419 0.94867413 0.9645249755

g11 1.05739726 1.00116732 0.94871795 1.00116732 1.05687249 0.98914762 1.0008377341

Min.
weight
(kg)

2987.29850 2996.309776 2876.11762 2996.30978 2985.15188 2996.23216 2993.13917

5 Conclusions

In this study, in order to obtain the one of the challenging and complicated engineering prob-
lem which is so-called The Speed Reducer problem is assessed for minimizing the weight of
the gearbox utilizing Symbiotic Organisms Search (SOS) algorithm that is based on the inter-
actions relationship between two organisms in ecosystems. This algorithm is characterized in
the group of contemporary metaheuristic algorithms. The metaheuristic optimization tech-
niques are found quite effective in obtaining the solution of complex optimization problems
which are based on natural phenomena. The optimum design of the speed reducer obtained
by SOS algorithm clearly shows that this technique is quite feasible and robust for solving
the complicated engineering problems.
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Abstract

This study aims to carry out the influence of greedy selection strategies on the optimal
design performance of the Tree Seed Algorithm (TSA). Tree Seed Algorithm, which is a
new intelligent optimizer based on the relation between trees and their seeds, is exerted
for optimum design process. It is a numerical optimization method inspired by growing of
trees and seeds on a land. It is proven that the implementation of greedy selection strate-
gies causes more reliable and efficient technique for obtaining the solution of optimization
problems.

Keywords: Numerical optimization, tree seed algorithm, greedy selection.

1 Introduction

The metaheuristic algorithms attempt to capture the optimal result among all solutions by
utilizing available information for resolution the problem described within the scope of an
optimization problem. The conventional gradient based algorithms do not ensure to derived
optimal solutions for complicated problems. To solve these types of problems it is required
to a vigorous calculation at an exponential time. To this respect, metaheuristic algorithms
assure obtaining a feasible solution in a logical time beneath the direction of the presence
solutions [1]. The Tree Seed Algorithm (TSA) is come to light as of late and it simulates
the natural phenomena of raising the trees and seeds [2, 3]. The trees and their seeds on
the D-dimensional solution space correspond to the possible solution for the optimization
problem. At the beginning of the search, the trees are sowed to the land, and a number of
seeds for each tree are produced during the iterations. The tree is removed from the stand
and its best seed is added to the stand if the fitness of the best seed is better than the
fitness of this tree [4-7]. Moreover, a greedy selection is a mathematical process that looks
for simple, easy-to-implement solutions to complex, multi-step problems by deciding which
next step will provide the most obvious benefit [8]. Such selections are called greedy because
while the optimal solution to each smaller instance will provide an immediate output, the
selection doesn’t consider the larger problem as a whole. Once a decision has been made, it
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is never reconsidered. Namely, a greedy selection relies on selection of optimal choice at a
local level reducing the problem to a single sub-problem, which actually leads to a globally
optimal solution. In this study, different types of greedy selections are offered to develop the
performance of TSA in an effective manner. So, the main goal of this paper is to present a
way of analyzing different three type greedy selection strategies onto optimization efficiency
of the TSA.

2 Tree Seed Algorithm (TSA)

In the initialization of the algorithm, a certain number of trees are randomly generated by
using Equation 1.

Ti,j = Lj,min + ri,j (Hj,max −−Lj,min) i = 1, 2, . . . .., N and j = 1, 2, . . . .., D (1)

where, Ti,j , shows jth dimension of ith tree, Hj,max and Lj,min are the upper and lower
bounds for the search space, N is the number of tree in the stand, D is the dimensionality of
the optimization problem and ri,j is a random number produced in range of [0,1]. After the
stand is generated, the best tree location is selected as follows (for minimization):

B = argmin [f (Ti)] (2)

where, B is the location of best tree, f is the objective function specific for the optimization
problem.
The candidate solutions phase is seed production mechanism and it is controlled by search
tendency (ST) parameter. This procedure is briefly given below.

Figure 1: The seed production mechanism.

In Figure 1, ST is control parameter predefined in range of [0,1], rnd is a random number
in range of [0,1], Tr,j , is the jth dimension of rth tree which is randomly selected from the
stand, Bj is the jth dimension of best tree location, Sk,j , is the jth dimension of kth seed
produced from ith tree and αi,j , is the scaling factor randomly produced in range of [-1,1].
The number of seeds (upper and lower limit of k) which will be produced for a tree at an
iteration is in range of 10% and 25% of the number of trees in the stand. For instance, when
we take 10 for the number of trees in the stand, the number of seeds which will be produced
for each tree is 1, 2 or 3. If the seed number is obtained as floating number, it is rounded up.
After seeds are produced, the best seed in the seeds produced from the tree, is selected by
using fitness of the seeds and the best is compared with the current tree. If fitness of the best
seed is better than the fitness of the tree, the tree is removed from the stand and the best
seed is added to the stand. The working diagram of the basic TSA is presented in Figure 2
[9].
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Figure 2: The TSA procedure diagram.

3 Greedy Selection

A greedy selection builds a specific candidate solution incrementally. The aspect of a greedy
selection that makes it greedy is how it chooses from among the different ways of incrementing
the current partial solution. In general, the different choices are ordered according to some
criterion, and the best choice according to this criterion is taken. Thus, the algorithm builds
the solution by always taking the step that appears to be most promising at that moment.
When greedy selection strategies produce optimal solutions, they tend to be quite efficient. In
deriving a greedy selection in a top-down fashion, the first step is to generalize the problem so
that a partial solution is given as input. A precondition is assumed that this partial solution
can be extended to an optimal solution. The task is then to extend it in some way so that the
resulting partial solution can be extended to an optimal solution. Greedy selection provides an
efficient mechanism for solving certain optimization problems [10]. The major steps involved
in the construction of a greedy selection are:

• Generalize the problem so that a partial solution is given as input.

• Decide upon a selection criterion for incrementally extending partial solutions.

• Prove that if a given partial solution can be extended to an optimal solution, then after
extending this partial solution using the chosen selection criterion, the resulting partial
solution can also be extended to an optimal solution.

• Implement the transformation suggested by the incremental extension using a loop.

3.1 Proposed Greedy Selection Strategies

In order to improve the performance of TSA, three different types of greedy selection strategy
are offered as well as no greedy selection.
Case 1) No Greedy Selection
Here, the best of the seeds produced for each tree replaces the tree to which it is depended
without any comparison.
Case 2 ) Standart Greedy Selection
Here, the best of the seeds produced for each tree is compared to the tree to which it is
depended. If the best seed is better than the tree to which it is depended, the seed replaces
the tree. Otherwise the replacement will not take place. This version of greedy selection has
been already used in standard TSA.
Case 3 ) Best Greedy Selection 1
Here, the best of the seeds produced for each tree is compared to the worst tree in the cluster.
If the best seed is better than the worst tree depended, the seed replaces the tree. Otherwise
the replacement will not take place.
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Case 4 ) Best Greedy Selection 2
Here, every seed produced is compared to the worst tree in the cluster. If the seed is better
than the worst tree, the seed replaces the tree. Otherwise the replacement will not take place.

4 Test Examples

The developed versions of the TSA algorithm by implementing the greedy selection strategies
are tested on four mathematical benchmark functions [11]. Specifications of the benchmark
functions are given in the Table 1. In the table, n represents the dimension of the function
which is equal to number of decision variables in the optimization problem. In this study, two
different n values have been used (n=5, n=30). The number of function iterations is equal to
100 for all versions. The internal parameters called the number of tree (NT), search tendency
factor (ST), the lowest number of seeds and, the highest number of seeds are respectively
taken as 5*n, 0.5, 0.1*NT, 0.25*NT. All tests are performed 30 times using different seed
values. Statistical data of all tests are presented in Table 2.

Table 1: Specifications of the benchmark functions.

Function name Formulation Range

Sphere F1(x) =
∑n

i=1

(
x2i
)

[-5.12, 5.12]

Rastrigin F2(x) = 10n+
∑n

i=1

(
x2i−10cos (2πxi)

)
[-5.12, 5.12]

Griewank F3 (x) =
∑n

i=1

(
x2i

4000

)
−∏n

i=1

(
xi√
i

)
+1 [-600, 600]

Rosenbrock F4(x) =
∑n−1

i=1

(
100(x2i+xi+1)

2
+(xi−1)2

)
[-5, 10]
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Table 3: Statistical data of the optimum solutions (Best values are bolded.

dimension=5 dimension=30

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

F1

Min. 9.48E-
17

1.91E-18 2.75E-
49

1.48E-
22

8.49E-
05

4.18E-05 4.45E-15 1.48E-
53

Ave. 1.08E-
15

1.39E-17 1.35E-
45

0.028999 0.000126 5.98E-05 1.52E-14 1.67E-
50

Std. 2.73E-
15

1.83E-17 3.29E-
45

0.093975 2.3E-05 1.27E-05 5.12E-15 5.05E-
50

Max. 1.52E-
14

8.58E-17 1.63E-
44

0.441807 0.000173 8.83E-05 3E-14 2.78E-
49

Median 3.88E-
16

8.17E-18 1.07E-
46

1.48E-
05

0.000123 5.86E-05 1.45E-14 3.26E-
51

F2

Min. 2.702088 5.6E-05 0 0.000947 209.6651 166.853 13.92943 13.92942

Ave. 5.274916 0.420576 2.123125 2.688293 228.9069 183.8728 25.06837 37.36548

Std. 1.397972 0.488027 1.434748 1.674065 8.214353 7.760212 11.29118 19.40372

Max. 8.948439 1.388492 7.304236 7.961903 243.0992 198.7958 70.7237 119.1389

Median 5.195558 0.176948 1.989918 2.065496 229.2129 184.2219 21.59246 32.77993

F3

Min. 0.059963 0.053813 0.007396 0.029562 0.317026 0.164042 5.51E-12 0

Ave. 0.157823 0.092038 0.062227 0.771066 0.563214 0.305093 0.001397 0.00517

Std. 0.046858 0.022139 0.049071 2.255746 0.107921 0.076283 0.00328 0.007921

Max. 0.244818 0.13792 0.238458 11.85724 0.758144 0.461189 0.012316 0.031942

Median 0.162037 0.090927 0.049907 0.195708 0.588144 0.29981 1.74E-11 5E-16

F4

Min. 0.727571 0.26712 0.083522 0.452418 27.80749 27.96803 22.47006 22.23768

Ave. 1.571059 0.854041 1.176668 2.98137 29.09935 28.96473 23.28368 25.69982

Std. 0.410505 0.342476 0.895676 1.550651 0.642889 0.616199 0.346241 10.31221

Max. 2.401979 1.556801 4.313151 6.99127 30.64217 30.34227 23.91942 80.16933

Median 1.575918 0.826597 1.023034 2.817304 29.04764 28.87882 23.25043 23.8318

According to the test results, in the Sphere Function (F1) when the function dimension is
taken as 5 the Case 3 (Best Greedy Selection 1) shows the better performance. But, in the
same function when the function dimension is taken as 30 the Case 4 (Best Greedy Selection
2) produces better solution. In the investigation of the Rastrigin Function (F2), it is clearly
observed that when the function dimension is taken as 5, although the minimum objective
function value is obtained by Case 3, the optimal values of others (Ave., Std., Max., and
Median) are obtained when Case 2 greedy selection strategy is applied. If the dimension of
the F2 function is taken as 30, all optimal values are yielded by Case 3 except Std. value.
In the Griewank Function (F3) with 5 function dimension, the minimum function value is
obtained by Case 3 implemented TSA. For same function (F3) with 30 function dimension,
the minimum function value is obtained by Case 4. In the Rosenbrock Function (F4), for both
function dimensions, even if the minimum function values is obtained by Case 4 implemented
TSA, the optimal value of others are attained by Case 3 implemented TSA. From these
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results in can be concluded that Best Greedy Selection Strategies (Case 3 and Case 4) are
more effective to reach the best solutions than the other strategies (Case 1 and Case 2).
From Figure 3 to 6, the convergence histories with respect to best values and average values
of the optimum solutions of all functions are presented. In the graphs, n represents the
dimension of the functions which is equal to number of decision variables in the optimization
problem. According to the test results, Case 3 and Case 4 greedy selection strategies show
satisfactory convergence performances on the mathematical functions. In all functions when
n is taken as 30, the Case 3 and Case 4 greedy selections are rapidly converge to the minimum
function solution. In addition, the performances of the Case 2, Case3, and Case 4 greedy
selection strategies causes better algorithm convergence than Case 1 which means there is no
any greedy selection strategy is used.

Figure 3: Convergence history of the best values of the optimum solutions (dimension=5).
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Figure 4: Convergence history of the average values of the optimum solutions (dimension=5).
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Figure 5: Convergence history of the best values of the optimum solutions (dimension=30).
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Figure 6: Convergence history of the average values of the optimum solutions (dimension=30).

5 Conclusions

In this study, the effect of the three different greedy selection strategies as well as no greedy
selection onto TSA, which is a recent nature inspired population based optimization method,
is investigated to improve its performance capability. The performance of the novel greedy
selection strategy implemented versions of TSA is executed on multimodal numeric benchmark
functions. Obtained results are compared within each other as well as the no greedy selection.
It is shown on the test functions that the TSA algorithm with Best Greedy Selection Strategy
1 and 2 (Case 3 and Case 4) reach the optimum solutions more effectively than the other
cases. Besides, the promising results are obtained and the convergence rate comparison shows
that the greedy selection strategies are influenced the algorithm in a promising way for solving
benchmark functions.
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Abstract

In this study, we investigate the principal normal and trinormal spherical indicatrices
of a W-pseudo null curve on pseudohyperbolic space H3

0 in Minkowski space time. The
principal normal indicatrix of a W-pseudo null curve is a spacelike curve lying on pseudo-
hyperbolic space H3

0, then the Frenet-Serret invariants of the mentioned indicatrix curve
is obtained in terms of the invariants of W-pseudo null curve. The trinormal indicatrix
is also a spacelike curve. Also, the Frenet-Serret invariants of the trinormal indicatrix
curves are obtained as similar to the principal normal indicatrix. Finally, we give some
characterizations of the spherical indicatrices to be helices.

Keywords: Classical differential geometry, spherical images, W-curves, W-pseudo null
curves, general helix, ccr-curves.

1 Introduction

A tetrad of mutually orthogonal unit vectors (called tangent, normal, binormal and trinormal)
was defined and constructed at each point of a differentiable curve. The rates of change of
these vectors along the curve define the curvatures of the curve in the space E4

1. Spherical
indicatrix (image) is a well-known concept in classical differential geometry of curves [6].

Einstein’s theory opened a door to new geometries such as Minkowski space-time, which
is simultaneously the geometry of special relativity and the geometry induced on each fixed
tangent space of an arbitrary Lorentzian manifold At the beginning of the twentieth century.

In recent years, the theory of degenerate submanifolds are treated by the researchers and
some of classical differential geometry topics are extented to Lorentz manifolds. Some of
authors aimed to determine Frenet-Serret invariants in higher dimensions. There exists a vast
literature on this subject, for instance [13, 14, 15, 16, 17]. In the light of the existing literature,
in [14], the author extended spherical indicatrices of curves to four dimensional Lorentzian

∗Corresponding author. E-mail address: yasinunluturk@klu.edu.tr
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space and studied such curves in the case of base curve is a space-like curve according to
signature (+,+,+,−).

In this work, we study spherical indicatrices of a W-pseudo null curve lying on the pseudo-
hyperbolic space H3

0 in Minkowski space-time. We investigate relations among Frenet-Serret
invariants of spherical indicatrices and base curve. Additionally, some characterizations of
spherical indicatrices being general helices are presented.

2 Preliminaries

Minkowski space-time E4
1 is the real vector space R4 provided with the standard flat metric

given by
g = −dx21 + dx22 + dx23 + dx24,

where (x1, x2, x3, x4) is a rectangular coordinate system in E [8]. Since g is an indefinite
metric, recall that a vector v ∈ E4

1 can have one of the three causal characters; it can be
spacelike if g(v, v) > 0 or v = 0, timelike if g(v, v) < 0 and null (lightlike) if g(v, v)=0 and
v 6= 0. Similary, an arbitrary curve α = α(s) in E4

1 can be locally spacelike, timelike or null
(lightlike), if all of its velocity vectors α′(s) are respectively spacelike, timelike or null. Also,
recall the norm of a vector v is given by

‖v‖ =
√
|g(v, v)|.

Therefore, v is a unit vector if g(v, v) = ±1. Next, vectors v, w in E4
1 are said to be orthogonal

if g(v, w) = 0. The velocity of the curve α(s) is given by ‖α′(s)‖ [5]. Let a and b be two
spacelike vectors in E4

1, then there is a unique real number 0 ≤ δ ≤ π, called the angle between
a and b, such that g(a, b) = ‖a‖ . ‖b‖ cos δ [10].

The pseudohyperbolic space with center m = (m1,m2,m3,m4) ∈ E4
1 and radius r ∈ R+

in the space-time E4
1 is the hyperquadric

H3
0 (r) = {a = (a1, a2, a3, a4) ∈ E4

1 | g(a−m, a−m) = −r2}.

with dimension 3 and index 0 [8].
Let ϑ = ϑ(s) be a curve in E4

1. If the tangent vector field of this curve forms a constant
angle with a constant vector field U , then this curve is called a general helix. Recall that, if a
regular curve in E4

1 has constant Frenet-Serret curvatures ratios, (i.e., τκ and σ
τ are constants),

then it is called a ccr-curve [7], [9]. Also if these curvatures are non-zero constants, curve is
said to be W-curve (or helix) [11].

Denote by {T (s), N(s), B1(s), B2(s)} the moving Frenet-Serret frame along the curve
α(s) in the space E4

1. Then T,N,B1, B2 are, respectively, the tangent, the principal nor-
mal, the binormal (the first binormal) and the trinormal (the second binormal) vector fields.
A spacelike or timelike curve α(s) is said to be parametrized by arclength function s, if
g(α′(s), α′(s)) = ±1.

Let α(s) be a pseudo null curve in the space-time E4
1, parametrized by arclength function

s. Then, the following Frenet-Serret equations are given in [13]:




T ′

N ′

B′1
B′2


 =




0 κ 0 0
0 0 τ 0
0 σ 0 −τ
−κ 0 −σ 0







T
N
B1

B2


 ,

where T,N,B1 and B2 are mutually orthogonal vectors satisfying equations

g(T, T ) = g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0,
g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(B1, B2) = 0, g(N,B2) = 1.
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and where, κ, τ and σ are first, second and third curvature of the curve α, respectively.
In the same space, in [1], the authors express a characterization of spacelike curves lying

on H3
0 by the following theorem:

Theorem 1 Let α(s) be a unit speed spacelike curve in E4
1, with spacelike N,B1 and curva-

tures κ 6= 0, τ 6= 0, σ 6= 0 for each s ∈ I ⊂ R. Then, α lies on pseudohyperbolic space if and
only if

σ

τ

dρ

ds
=

d

ds

[
1

σ

(
ρτ +

d

ds
(
1

τ

dρ

ds
)

)]
,

{
1

σ

[
ρτ +

d

ds
(
1

τ

dρ

ds
)

]}2

> ρ2 + (
1

τ

dρ

ds
)2,

(1)

where ρ =
1

κ
.

In the same space, in [15] authors defined a vector product and gave a method to determine
the Frenet-Serret invariants for an arbitrary curve by following definition and theorem:

Definition 2 Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) and c = (c1, c2, c3, c4) be vectors in
E4
1. The vector product in Minkowski space-time E4

1 is defined by the determinant

a ∧ b ∧ c = −

∣∣∣∣∣∣∣∣

−e1 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣
,

where e1, e2, e3 and e4 are mutually orthogonal vectors (coordinate direction vectors) satisfying
equations

e1 ∧ e2 ∧ e3 = e4 , e2 ∧ e3 ∧ e4 = e1 , e3 ∧ e4 ∧ e1 = e2 , e4 ∧ e1 ∧ e2 = −e3.

Theorem 3 Let α = α(t) be an arbitrary spacelike curve in Minkowski space-time E4
1. The

Frenet-Serret apparatus of α can be written as follows;

T =
α′

‖α′‖ ,

N =
‖α′‖2 α′′ − g(α′, α′′)α′∥∥∥‖α′‖2 α′′ − g(α′, α′′)α′

∥∥∥
, (2)

B1 = µN ∧ T ∧B2,

B2 = µ
T ∧N ∧ α′′′
‖T ∧N ∧ α′′′‖ ,

κ =

∥∥∥‖α′‖2 α′′ − g(α′, α′′)α′
∥∥∥

‖α′‖4

τ =
‖T ∧N ∧ α′′′‖ ‖α′‖∥∥∥‖α′‖2 α′′ − g(α′, α′′)α′

∥∥∥
and

σ =
g(α(IV ), B2)

‖T ∧N ∧ α′′′‖ ‖α′‖ , (3)

where µ is taken −1 or +1 to make +1 the determinant of [T,N,B1, B2] matrix.

Here, we shall use timelike curve’s Frenet-Serret invariants. Therefore, our calculations do
not exist null vectors.
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3 The principal normal spherical indicatrix of a W-pseudo null
curve lying on H3

0

By the spirit of the paper [15], first we adapt the principal normal spherical indicatrix defi-
nition to W-pseudo null curves of Minkowski space-time. Moreover, we give the definition of
trinormal spherical indicatrix for W-pseudo null curves at the beginning of the section 4.

Definition 4 Let β = β(s) be a unit speed W-pseudo null curve in Minkowski space-time.
If we translate the principal normal vector to the center O of the pseudohyperbolic space H3

0,
we obtain a curve δ = δ(sδ). This curve is called the principal normal spherical indicatrix or
image of the curve β in E4

1.

Theorem 5 Let β = β(s) be a unit speed W-pseudo null curve and δ = δ(sδ) be its principal
normal spherical indicatrix. Then;

i) δ = δ(sδ) is a space-like curve.
ii) The Frenet-Serret apparatus of δ, {Tδ, Nδ, B1δ, B2δ, κδ, τ δ, σδ} can be formed by the

apparatus of β, {T,N,B1, B2, κ, τ , σ} .

Proof. Let β = β(s) be a unit speed W-pseudo-null curve and δ = δ(sδ) be its principal
normal spherical indicatrix. It can be written as

δ = N(s). (4)

Differentiating (3.1) with respect to s, we find

δ′ =
·
δ
dsδ
ds

= τB1.

Here we shall denote differentiation according to s by a dash, and differentiation according
to sδ by a dot. Thus we obtain the unit tangent vector of the principal normal spherical
indicatrix curve δ as

Tδ = B1 (5)

and ∥∥δ′
∥∥ =

dsδ
ds

= τ2.

The causal character of the the principal normal spherical indicatrix curve δ(sδ) is determined
by the following inner product:

g(δ′, δ′) = τ2 > 0. (6)

By (3.3), we will take the spherical indicatrix curve as spacelike one.
Considering the previous method and using the property of the curve to be W-curve, we

form the following differentiations with respect to s:





δ′′ = τσN − τ2B2,
δ′′′ = κτ2T + 2τ2σB1,

δ(IV ) = τ2(κ2 + 2σ2)N − 2τ3σB2.

By equation (2.2) we arrive

∥∥δ′
∥∥2 δ′′ − g(δ′, δ′′)δ′ = τ3σN − τ4B2.

Then we can get the principal normal vector as

Nδ =
σ√
|τσ|

N − τ√
|τσ|

B2 (7)
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and the first curvature as

κδ =

√
|τσ|
τ

. (8)

Now let us calculate the vector Tδ ∧Nδ ∧ δ′′′, that is,

Tδ ∧Nδ ∧ δ′′′ = −

∣∣∣∣∣∣∣∣∣∣

−T N B1 B2

0 0 1 0

0
σ√
|τσ|

0 − τ√
|τσ|

κτ2 0 2τ2σ 0

∣∣∣∣∣∣∣∣∣∣

.

This product yields

Tδ ∧Nδ ∧ δ′′′ = −
κτ3√
|τσ|

N − κτ2σ√
|τσ|

B2. (9)

Hence, we obtain the trinormal (second binormal) vector field of the curve δ(sδ) as follows:

B2δ = µ{−τN − σB2}. (10)

Taking the norm of both sides of (3.6), we find the second curvature

τ δ =
κ

τσ
. (11)

Finding the binormal vector field, we express

Nδ ∧ Tδ ∧B2δ = −

∣∣∣∣∣∣∣∣∣∣

−T N B1 B2

0
σ√
|τσ|

0 − τ√
|τσ|

0 0 1 0
0 −µτ 0 −µσ

∣∣∣∣∣∣∣∣∣∣

. (12)

Calculating (3.9), we have

Nδ ∧ Tδ ∧B2δ = −µ{σ
2 + τ2√
|τσ|

}T.

So we obtain the binormal vector as

B1δ = −σ
2 + τ2√
|τσ|

T. (13)

Finally, using (2.3) and the obtained equations, we arrive the third curvature as

σδ =
κ2 + 2σ2

κ

√∣∣∣σ
τ

∣∣∣. (14)

Corollary 6 {Tδ, Nδ, B1δ, B2δ} is an orthonormal frame of Minkowski space-time.

Proof. It can be straightforwardly seen by using the equations (3.2), (3.4), (3.7) and (3.10).

Considering above theorem, we also give:

Corollary 7 Let β = β(s) be a W-pseudo null unit speed curve and δ(sδ) be its principal
normal spherical indicatrix. Then, δ is also a helix.
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Proof. Let β = β(s) be a W-pseudo null unit speed curve. Then we know that the curvature
functions are constants. Therefore, we straightforwardly see that the curvature functions of
principal normal spherical indicatrix δ(sδ) are constants by means of the equations (3.5), (3.8)
and (3.11). Hence the curve δ(sδ) becomes W-curve which is the special case of helix.

Theorem 8 Let β = β(s) be a W-pseudo null unit speed curve and δ(sδ) be its principal
normal spherical indicatrix. Then, δ is a general helix and also its fixed direction U is composed
as

U = (c2

√
τ

σ
sin(κ

√
τ

σ
s)− c3

√
τ

σ
cos(κ

√
τ

σ
s) + c4)T

+(c2 cos(κ

√
τ

σ
s) + c3 sin(κ

√
τ

σ
s))N + c1B1

+(c2
τ

σ
cos(κ

√
τ

σ
s) + c3

τ

σ
sin(κ

√
τ

σ
s))B2,

where c1 is a non-zero constant and c2, c3, c4 are constants.

Proof. Let β = β(s) be a W-pseudo null unit speed curve and δ = δ(sδ) be its space-like
principal normal spherical image. If δ = δ(sδ) is a general helix, then, for a constant space-like
vector U , we may express

g(Tδ, U) = cos θ, (15)

where θ is a constant angle. The equation (3.12) is also congruent to

g(B1, U) = cos θ.

One can form constant vector U according to {T,N,B1, B2} as the following

U = ε1T + ε2N + ε3B1 + ε4B2. (16)

Differentiating (3.13) with respect to s, we have the following system of ordinary differential
equations 




ε′1 − ε4κ = 0
ε1κ+ ε′2 + ε3σ = 0
ε2τ − ε4σ = 0
ε′4 − ε3τ = 0.

(17)

We know that ε3 = c1 6= 0 is a constant. Also since the curve β = β(s) is a W-curve, its
curvature funcions are constants. Then the solution of the system (3.14) can be obtained as:

ε1 = c2

√
τ

σ
sin(κ

√
τ

σ
s)− c3

√
τ

σ
cos(κ

√
τ

σ
s) + c4,

ε2 = c2 cos(κ

√
τ

σ
s) + c3 sin(κ

√
τ

σ
s),

ε3 = c1,

ε4 = c2
τ

σ
cos(κ

√
τ

σ
s) + c3

τ

σ
sin(κ

√
τ

σ
s),

where c1 is a non-zero constant and c2, c3, c4 are constants.

4 The trinormal spherical indicatrix of a W-pseudo null curve
lying on H3

0

By the spirit of the paper [15], first we adapt the principal normal spherical indicatrix defi-
nition to W-pseudo null curves of Minkowski space-time. Moreover, we give the definition of
trinormal spherical indicatrix for W-pseudo null curves at the beginning of the section 4.
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Definition 9 Let β = β(s) be an W-pseudo null unit speed curve in Minkowski space-time. If
we translate the trinormal vector to the center O of the pseudohyperbolic space H3

0, we obtain
a curve ϕ = ϕ(sϕ). This curve ϕ = ϕ(sϕ) is called the trinormal spherical indicatrix or image
of the curve β in E4

1.

Theorem 10 Let β = β(s) be an W-pseudo null unit speed curve and ϕ = ϕ(sϕ) be its
trinormal spherical indicatrix. Then;

i) ϕ = ϕ(sϕ) is a space-like curve.
ii) The Frenet-Serret apparatus of ϕ, {Tϕ, Nϕ, B1ϕ, B2ϕ, κϕ, τϕ, σϕ} can be formed by the

apparatus of β, {T,N,B1, B2, κ, τ , σ} .

Proof. Let β = β(s) be an W-pseudo-null unit speed curve and ϕ = ϕ(sϕ) be its trinormal
spherical indicatrix. It can be written as

ϕ = B2. (18)

Differentiating (4.1) with respect to s, we find

ϕ′ =
·
ϕ
dsϕ
ds

= −κT − σB1.

Here we shall denote differentiation according to s by a dash, and differentiation according
to sϕ by a dot. Thus we obtain the unit tangent vector of the trinormal spherical indicatrix
curve ϕ as

Tϕ = − κ√
κ2 + σ2

T − σ√
κ2 + σ2

B1 (19)

and

‖ϕ′‖ =
dsϕ
ds

=
√
κ2 + σ2.

The causal character of the the trinormal spherical indicatrix curve ϕ(sϕ) is determined by
the following inner product:

g(ϕ′, ϕ′) = κ2 + σ2 > 0. (20)

By (4.3), we will take the spherical indicatrix curve as spacelike one.
Considering the previous method and using the property of the curve to be W-curve, we

form the following differentiations with respect to s:





ϕ′′ = −(κ2 + σ2)N + τσB2,
ϕ′′′ = −κτσT − (κ2 + 2σ2)τB1,

ϕ(IV ) = −2τσ(κ2 + σ2)N + τ2(κ2 + 2σ2)B2.

By equation (2.2) we arrive

‖ϕ′‖2 ϕ′′ − g(ϕ′, ϕ′′)ϕ′ = −(κ2 + σ2)2N + τσ(κ2 + σ2)B2.

Then we can get the principal normal vector as

Nϕ = − κ2 + σ2√
|τσ(κ2 + σ2)|

N +
τσ√

|τσ(κ2 + σ2)|
B2 (21)

and the first curvature as

κϕ =

√
|τσ(κ2 + σ2)|
κ2 + σ2

. (22)
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Now let us calculate the vector Tϕ ∧Nϕ ∧ ϕ′′′, that is,

Tϕ ∧Nϕ ∧ ϕ′′′ = −

∣∣∣∣∣∣∣∣∣∣∣∣

−T N B1 B2

− κ√
κ2 + σ2

0 − σ√
κ2 + σ2

0

0 − κ2 + σ2√
|τσ(κ2 + σ2)|

0
τσ√

|τσ(κ2 + σ2)|
−κτσ 0 −(κ2 + 2σ2)τ 0

∣∣∣∣∣∣∣∣∣∣∣∣

.

This product yields

Tϕ ∧Nϕ ∧ ϕ′′′ =
κτ2σ√
|τσ|

N +
κτ(κ2 + σ2)√

|τσ|
B2. (23)

Hence, we obtain the trinormal (second binormal) vector field of the curve ϕ(sϕ) as follows:

B2ϕ = µ{ τσ√
κ2 + σ2

N +
κ2 + σ2√
κ2 + σ2

B2}. (24)

Taking the norm of both sides of (4.6), we find the second curvature

τϕ =
κ

σ
√
κ2 + σ2

. (25)

Finding the binormal vector field, we express

Nϕ ∧ Tϕ ∧B2ϕ = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−T N B1 B2

0 − κ2 + σ2√
|τσ(κ2 + σ2)|

0
τσ√

|τσ(κ2 + σ2)|
− κ√

κ2 + σ2
0 − σ√

κ2 + σ2
0

0 µ
τσ√
κ2 + σ2

0 µ
κ2 + σ2√
κ2 + σ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(26)
Calculating (4.9), we have

Nϕ ∧ Tϕ ∧B2ϕ =
µ(κ2 + σ2) + µτ2σ2

(κ2 + σ2)
√
|τσ|

{ σ√
κ2 + σ2

T +
κ√

κ2 + σ2
B1}.

So we obtain the binormal vector as

B1ϕ =
κ2 + σ2 + τ2σ2

(κ2 + σ2)
√
|τσ|
{ σ√

κ2 + σ2
T +

κ√
κ2 + σ2

B1}. (27)

Finally, using (2.3) and the obtained equations, we arrive the third curvature as

σϕ =
−2σ

√
|τσ|

κ
. (28)

Corollary 11 {Tϕ, Nϕ, B1ϕ, B2ϕ} is an orthonormal frame of Minkowski space-time.

Proof. It can be straightforwardly seen by using the equations (4.2), (4.4), (4.7) and (4.10).

Considering above theorem, we also give:
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Corollary 12 Let β = β(s) be a W-pseudo null unit speed curve and ϕ(sϕ) be its trinormal
spherical indicatrix. Then, ϕ is also a helix.

Proof. Let β = β(s) be a W-pseudo null unit speed curve. Then we know that the curvature
functions are constants. Therefore, we straightforwardly see that the curvature functions of
principal normal spherical indicatrix ϕ(sϕ) are constants by means of the equations (4.5),
(4.8) and (4.11). Hence the curve ϕ(sϕ) becomes W-curve which is the special case of helix.

Theorem 13 Let β = β(s) be a W-pseudo null unit speed curve and ϕ(sϕ) be its trinormal
spherical indicatrix. Then, ϕ is a general helix and also its fixed direction U is composed as

U = (c3
κ

σ
e
√
τσs − c4

κ

σ
e−
√
τσs − c1κ

2σ
s+ c5κs+ c6)T

+(−c1s+ c2)N + (c3e
√
τσs + c4e

−√τσs − c1
σ

)B1

+(c3

√
τ

σ
e
√
τσs − c4

√
τ

σ
e−
√
τσs − c1

σ
s+ c5)B2,

where c1 is a non-zero constant and c2, c3, c4, c5, c6 are constants.

Proof. Let β = β(s) be a W-pseudo null unit speed curve and ϕ = ϕ(sϕ) be its space-like
trinormal spherical image. If ϕ = ϕ(sϕ) is a general helix, then, for a constant space-like
vector U , we may express

g(Tϕ, U) = cos θ, (29)

where θ is a constant angle. The equation (4.12) is also congruent to

g(− κ√
κ2 + σ2

T − σ√
κ2 + σ2

B1, U) = cos θ.

One can form constant vector U according to {T,N,B1, B2} as the following

U = ε1T + ε2N + ε3B1 + ε4B2. (30)

Differentiating (4.13) with respect to s, we have the following system of ordinary differential
equations 




ε′1 − ε4κ = 0
ε1κ+ ε′2 + ε3σ = 0
ε2τ − ε4σ + ε′3 = 0
ε′4 − ε3τ = 0.

(31)

We know that ε1κ+ ε3σ = c1 6= 0 is a constant. Also since the curve β = β(s) is a W-curve,
its curvature functions are constants. Then the solution of the system (4.14) can be found as:

ε1 = c3
κ

σ
e
√
τσs − c4

κ

σ
e−
√
τσs − c1κ

2σ
s+ c5κs+ c6,

ε2 = −c1s+ c2,

ε3 = c3e
√
τσs + c4e

−√τσs − c1
σ
,

ε4 = c3

√
τ

σ
e
√
τσs − c4

√
τ

σ
e−
√
τσs − c1

σ
s+ c5,

where c1 is a non-zero constant and c2, c3, c4, c5, c6 are constants.
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5 Conclusion

In this work, we extend spherical indicatrix concept to the W-pseudo null curves of Minkowski
space-time. We investigate principal normal and trinormal spherical indicatrices of a W-
pseudo null curve and observe that both of these spherical curves are space-like curves.
Thereafter, we determine relations among Frenet-Serret invariants of spherical indicatrices
and base curve. Finally, we give some characterizations of the spherical indicatrices to be
helices. As a further research, one can study the spherical indicatrices of pseudo null curves
without putting any condition for the base curve.
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Abstract

In the present paper, some new generalizations of Hermite-Hadamard type inequalities
for products of two different type convex functions via Katugampola fractional integral
by using a fairly elementary analysis are obtained.

Keywords: Gamma function, beta function, convex functions, s-convex function, Hermite-
Hadamard inequality, Katugampola fractional integral.

1 Introduction and Preliminaries

Definition 1 A function f : I ⊆ R→ R is said to be convex if the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1].

The following inequality is well known in the literature as the Hermite-Hadamard integral
inequality:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2

where f : I ⊂ R→ R is a convex function on the interval I of real numbers and a, b ∈ I with
a < b. Here and in the following, let C, R, R+ and Z−0 be the sets of complex numbers, real
numbers, positive real numbers and non-positive integers, respectively, and let R+

0 := R+∪{0}.
The concept of s-convex function was introduced in Breckner’s paper [1] and a number of

properties and connections with s-convexity in the first sense are discussed in the paper [4].

∗Corresponding author. E-mail address: bariscelik15@hotmail.com
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Definition 2 A function f : [0,∞)→ R is said to be s-convex in the second sense if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)

for all x, y ∈ [0,∞), t ∈ [0, 1] and for some fixed s ∈ (0, 1].

In [3], Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard inequality which
holds for the s-convex functions.

Theorem 3 Suppose that f : [0,∞) → [0,∞) is an s-convex function in the second sense,
where s ∈ (0, 1), and let a, b ∈ [0,∞), a < b. If f ′ ∈ L [a, b] , then the following inequalities
hold:

2s−1f
(
a+ b

2

)
≤ 1

b− a

b∫

a

f(x)dx ≤ f(a) + f(b)

s+ 1
. (1)

The constant k = 1
s+1 is the best possible in the second inequality in (1).

Let f ∈ L[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of order α ∈ R+ with

a ∈ R+
0 are defined, respectively, by

Jαa+f(x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f(t) dt (x > a)

and

Jαb−f(x) =
1

Γ(α)

∫ b

x
(t− x)α−1 f(t) dt (x < b)

where Γ is the familiar Gamma function (see, e.g., [8, Section 1.1]). It is noted that J1
a+f(x)

and J1
b−f(x) become the usual Riemann integrals.

In the case of α = 1, the fractional integral reduces to classical integral.
The beta function B(α, β) is defined by (see, e.g., [8, Section 1.1][6, p18])

B(α, β) =





∫ 1

0
tα−1(1− t)β−1 dt (<(α) > 0; <(β) > 0)

Γ(α) Γ(β)

Γ(α+ β)

(
α, β ∈ C \ Z−0

)
.

(2)

Sarıkaya et al. [7] proved the following interesting inequalities of Hermite-Hadamard type
involving Riemann-Liouville fractional integrals.

Theorem 4 Let f : [a, b]→ R, be positive function with 0 ≤ a < b and f ∈ L [a, b] . If f is a
convex function on [a, b], then the following inequalities for fractional integrals hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2 (b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
≤ f (a) + f (b)

2

with α > 0.

Hermite-Hadamard inequality for s-convex functions related to fractional integ-rals has
been obtained in [9] as the following theorem.

Theorem 5 Let α ≥ 1 and f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L[a, b].
If f is an s-convex function on [a, b], then the following inequality for fractional integrals hold

2s−1f
(
a+ b

2

)
≤ Γ(α+ 1)

2 (b− a)α
[
Jαa+f(b) + Jαb−f(a)

]

≤ f (a) + f (b)

2

[
1

α+ s
+B(α, s+ 1)

]
.
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Katugampola gave a new fractional integral that generalizes the Riemann-Liouville and
the Hadamard fractional integrals into a single form.

Definition 6 [5] Let [a, b] ⊂ R be a finite interval. Then, the left- and right-side Katugampola
fractional integrals of order (α > 0) of f ∈ Xp

c (a, b) are defined:

ρIαa+f(x) =
ρ1−α

Γ(α)

∫ x

a

tρ−1

(xρ − tρ)1−α f(t)dt

and

ρIαb−f(x) =
ρ1−α

Γ(α)

∫ b

x

tρ−1

(tρ − xρ)1−α f(t)dt

with a < x < b and ρ > 0, if the integral exist.

Theorem 7 [5] Let α > 0 and ρ > 0. Then for x > a,
1. limρ→1

ρIαa+f(x) = Jαa+f(x),
2. limρ→0+

ρIαa+f(x) = Hα
a+f(x).

Similar results also hold for right-sided operators.

Some Hermite-Hadamard type inequalities for products of two different functions are pro-
posed by Chen and Wu in [2] as follows:

Theorem 8 Let f, g : [a, b]→ R a, b ∈ [0,∞), a < b be functions such that and g, fg ∈ L[a, b].
If f is convex and nonnegative and g is s-convex on [a, b] for some fixed s ∈ [0, 1], then the
following inequality for fractional integrals holds:

Γ(α)

(b− a)α
[Jαa+f(b)g(b) + Jαb−f(a)g(a)]

≤
(

1

α+ s+ 1
+B(α, s+ 2)

)
M(a, b)

+

(
B(α+ 1, s+ 1) +

1

(α+ s)(α+ s+ 1)

)
N(a, b),

where M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(b) + f(b)g(a).

Theorem 9 Let f, g : [a, b]→ R, a, b ∈ [0,∞), a < b be functions such that f, g, fg ∈ L[a, b].
If f is s1-convex and g is s2-convex function on [a, b] for some fixed s1, s2 ∈ [0, 1], then the
following inequality for fractional integrals holds:

Γ(α)

(b− a)α
[Jαa+f(b)g(b) + Jαb−f(a)g(a)]

≤
(

1

α+ s1 + s2
+B(α, s1 + s2 + 1)

)
M(a, b)

+ (B(α+ s1, s2 + 1) +B(α+ s2, s1 + 1))N(a, b),

where M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(b) + f(b)g(a).
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Theorem 10 Let f, g : [a, b]→ R, a, b ∈ [0,∞), a < b be functions such that fg ∈ L[a, b]. If
f is convex and nonnegative and g is s-convex function on [a, b] for some fixed s ∈ [0, 1], then

2sf

(
a+ b

2

)
g

(
a+ b

2

)

≤ Γ(α+ 1)

2(b− a)α
[Jαa+f(b)g(b) + Jαb−f(a)g(a)]

+
1

2
M(a, b)

(
B(α+ 1, s+ 1)

1

(α+ s)(α+ s+ 1)

)

+
1

2
N(a, b)

(
B(α, s+ 2) +

1

α+ s+ 1

)
,

where M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(b) + f(b)g(a).

The main purpose of this note is to establish Hermite-Hadamard type inequalities for
products of two convex and s-convex functions via Katugampola fractional integrals.

2 Main Results

Theorem 11 Let f, g : [aρ, bρ] → R+
0 , be functions with 0 ≤ a < b and f, g, fg ∈ Xp

c (aρ, bρ).
If f is convex and g is s-convex on [aρ, bρ] for some fixed s ∈ [0, 1], then one has the following
inequality for Katugampola fractional integrals:

Γ(α)

ρ1−α(bρ − aρ)α
[
ρIαa+[(fg) ◦ h](b) +ρ Iαb−[(fg) ◦ h](a)

]
(3)

≤ M(aρ, bρ)
1

ρ

[
1

α+ s+ 1
+B(α, s+ 2)

]

+N(aρ, bρ)
1

ρ

[
B(α+ 1, s+ 1) +

1

(α+ s)(α+ s+ 1)

]
,

where α, ρ ∈ R+,

M(aρ, bρ) = f(aρ)g(aρ) + f(bρ)g(bρ) and N(aρ, bρ) = f(aρ)g(bρ) + f(bρ)g(aρ)

with h(u) = uρ.

Proof. By using the definitions of f and g, we can write

f(tρaρ + (1− tρ)bρ) ≤ tρf(aρ) + (1− tρ)f(bρ) (4)

and
g(tρaρ + (1− tρ)bρ) ≤ tρsg(aρ) + (1− tρ)sg(bρ). (5)

By multiplying (4) and (5), we have

f(tρaρ + (1− tρ)bρ)g(tρaρ + (1− tρ)bρ)
≤ tρ(s+1)f(aρ)g(aρ) + (1− tρ)s+1f(bρ)g(bρ) (6)

+tρ(1− tρ)sf(aρ)g(bρ) + tρs(1− tρ)f(bρ)g(aρ).

By a similar argument, we get

f((1− tρ)aρ + tρbρ)g((1− tρ)aρ + tρbρ)

≤ (1− tρ)s+1f(aρ)g(aρ) + tρ(s+1)f(bρ)g(bρ) (7)

+tρs(1− tρ)f(aρ)g(bρ) + tρ(1− tρ)sf(bρ)g(aρ).
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By adding (6) and (7), we obtain

f(tρaρ + (1− tρ)bρ)g(tρaρ + (1− tρ)bρ) + f((1− tρ)aρ + tρbρ)g((1− tρ)aρ + tρbρ)

≤
(
tρ(s+1) + (1− tρ)ρ(s+1)

)
[f(aρ)g(aρ) + f(bρ)g(bρ)]

+ (tρ(1− tρ)s + tρs(1− tρ)) [f(aρ)g(bρ) + f(bρ)g(aρ)] . (8)

If we multiply both sides of (8) by tαρ−1 and then integrating with respect to t over [0, 1], we
obtain

∫ 1

0
tαρ−1f(tρaρ + (1− tρ)bρ)g(tρaρ + (1− tρ)bρ)dt

+

∫ 1

0
tαρ−1f((1− tρ)aρ + tρbρ)g((1− tρ)aρ + tρbρ)dt

=

∫ b

a

(
bρ − uρ
bρ − aρ

)α−1
f(uρ)g(uρ)

uρ−1

bρ − aρdu

+

∫ b

a

(
vρ − aρ
bρ − aρ

)α−1
f(vρ)g(vρ)

vρ−1

bρ − aρdv

=
1

(bρ − aρ)α
∫ b

a

uρ−1

(bρ − uρ)1−α f(uρ)g(uρ)du

+
1

(bρ − aρ)α
∫ b

a

vρ−1

(vρ − aρ)1−α f(uρ)g(uρ)dv

=
Γ(α)

ρ1−α(bρ − aρ)α
[
ρIαa+[(fg) ◦ h](b) +ρ Iαb−[(fg) ◦ h](a)

]

≤ [f(aρ)g(aρ) + f(bρ)g(bρ)]

∫ 1

0
tαρ−1

(
tρ(s+1) + (1− tρ)s+1

)
dt

+ [f(bρ)g(aρ) + f(aρ)g(bρ)]

∫ 1

0
tαρ−1 (tρ(1− tρ)s + tρs(1− tρ)) dt

= M(aρ, bρ)
1

ρ

[
1

α+ s+ 1
+B(α, s+ 2)

]

+N(aρ, bρ)
1

ρ

[
B(α+ 1, s+ 1) +

1

(α+ s)(α+ s+ 1)

]

which completes the proof.

Remark 12 If we choose ρ = 1 in the inequality (3), then Theorem 11 reduces to the Theorem
8.

Theorem 13 Suppose that f, g : [aρ, bρ] → R+
0 be functions with 0 ≤ a < b and f, g, fg ∈

Xp
c (aρ, bρ). If f is s1-convex and g is s2-convex function on [aρ, bρ] for some fixed s1, s2 ∈ [0, 1],

then one has the following inequality for Katugampola fractional integrals:

Γ(α)

ρ1−α(bρ − aρ)α
[
ρIαa+[(fg) ◦ h](b) +ρ Iαb−[(fg) ◦ h](a)

]
(9)

≤ M(aρ, bρ)
1

ρ

[
1

α+ s1 + s2
+B(α, s1 + s2 + 1)

]

+N(aρ, bρ)
1

ρ
[B(α+ s1, s2 + 1) +B(α+ s2, s1 + 1)]

where α, ρ ∈ R+ and M(aρ, bρ) and N(aρ, bρ) are the same as given in Theorem 11 with
h(u) = uρ.
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Proof. From the definition of s1-convexity and s2-convexity, we can write

f(tρaρ + (1− tρ)bρ) ≤ tρs1f(aρ) + (1− tρ)s1f(bρ) (10)

and
g(tρaρ + (1− tρ)bρ) ≤ tρs2g(aρ) + (1− tρ)s2g(bρ). (11)

By multiplying both side of (10) and (11), we get

f(tρaρ + (1− tρ)bρ)g(tρaρ + (1− tρ)bρ)
≤ tρ(s1+s2)f(aρ)g(aρ) + (1− tρ)s1+s2f(bρ)g(bρ)

+tρs1(1− tρ)s2f(aρ)g(bρ) + tρs2(1− tρ)s1f(bρ)g(aρ). (12)

By a similar way, it is easy to write,

f((1− tρ)aρ + tρbρ)g((1− tρ)aρ + tρbρ)

≤ (1− tρ)s1+s2f(aρ)g(aρ) + tρ(s1+s2)f(bρ)g(bρ)

+(1− tρ)s1tρs2f(aρ)g(bρ) + tρs1(1− tρ)s2f(bρ)g(aρ). (13)

By adding (12) and (13), we have

f(tρaρ + (1− tρ)bρ)g(tρaρ + (1− tρ)bρ) + f((1− tρ)aρ + tρbρ)g((1− tρ)aρ + tρbρ)

≤
(
tρ(s1+s2) + (1− tρ)s1+s2

)
[f(aρ)g(aρ) + f(bρ)g(bρ)]

+ (tρs1(1− tρ)s2 + tρs2(1− tρ)s1) [f(aρ)g(bρ) + f(bρ)g(aρ)] . (14)

If we multiply both sides of (14) by tαρ−1, then by integrating with respect to t over [0, 1], we
obtain

Γ(α)

ρ1−α(bρ − aρ)α
[
ρIαa+[(fg) ◦ h](b) +ρ Iαb−[(fg) ◦ h](a)

]

≤ M(aρ, bρ)
1

ρ

[
1

α+ s1 + s2
+B(α, s1 + s2 + 1)

]

+N(aρ, bρ)
1

ρ
[B(α+ s1, s2 + 1) +B(α+ s2, s1 + 1)] .

This completes the proof.

Remark 14 If we choose ρ = 1 in the inequality (9), then Theorem 13 reduces to the Theorem
9.

Theorem 15 Let f, g : [aρ, bρ] → R+
0 , be functions with 0 ≤ a < b and f, g, fg ∈ Xp

c (aρ, bρ).
If f is convex and g is s-convex on [aρ, bρ] for some fixed s ∈ [0, 1], then one has the following
inequality for Katugampola fractional integrals:

2s

ρ
f

(
aρ + bρ

2

)
g

(
aρ + bρ

2

)
(15)

≤ Γ(α+ 1)

2ρ1−α(bρ − aρ)α
[
ρIαa+[(fg) ◦ h](b) +ρ Iαb−[(fg) ◦ h](a)

]

+
1

2
M(aρ, bρ)

[
1

ρ
B(α+ 1, s+ 1) +

1

(ρα+ s)(ρα+ s+ 1)

]

+
1

2
N(aρ, bρ)

[
1

ρ
B(α, s+ 2) +

1

ρα+ ρs+ ρ

]

where α, ρ ∈ R+ and M(aρ, bρ) and N(aρ, bρ) are the same as given in Theorem 11 with
h(u) = uρ.
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Proof. By using the definitions, we have

f

(
aρ + bρ

2

)
g

(
aρ + bρ

2

)

= f

(
tρaρ + (1− tρ)bρ

2
+

(1− tρ)aρ + tρbρ

2

)
g

(
tρaρ + (1− tρ)bρ

2
+

(1− tρ)aρ + tρbρ

2

)

≤ 1

2s+1
[f(tρaρ + (1− tρ)bρ)g(tρaρ + (1− tρ)bρ) + f((1− tρ)aρ + tρbρ) + g((1− tρ)aρ + tρbρ)]

+
1

2s+1

[
(tρ(1− tρ)s + (1− tρ)tρs)M(aρ, bρ) +

(
(1− tρ)s+1tρ(s+1)

)
N(aρ, bρ)

]
. (16)

By multiplying both sides of (16) by tαρ−1, then integrating with respect to t over [0, 1],
we obtain

2s

ρ
f

(
aρ + bρ

2

)
g

(
aρ + bρ

2

)

≤ Γ(α+ 1)

2ρ1−α(bρ − aρ)α
[
ρIαa+[(fg) ◦ h](b) +ρ Iαb−[(fg) ◦ h](a)

]

+
1

2
M(aρ, bρ)

[
1

ρ
B(α+ 1, s+ 1) +

1

(ρα+ s)(ρα+ s+ 1)

]

+
1

2
N(aρ, bρ)

[
1

ρ
B(α, s+ 2) +

1

ρα+ ρs+ ρ

]
.

This completes the proof.

Remark 16 If we choose ρ = 1 in the inequality (15), then Theorem 15 reduces to the
Theorem 10.
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Abstract

The main purpose of this study is to calculate the γ-duals of the new absolute Fi-
bonacci series space |Fθ| (p) which can be considered as the domain of a triangle matrix
in the space l(p).

Keywords: Absolute summability; Fibonacci numbers; Maddox’s space

1 Introduction

By ω, we denote the set of all sequences of complex numbers. Let X and Y be any subsets of
ω and A = (anv) be an infinite matrix of complex numbers. If for every sequence x ∈ X, the
series

An(x) =

∞∑

v=0

anvxv,

is convergent for all n ∈ N = {0, 1, 2, ...} and the sequence A(x) = (An(x)), A-transform of
the sequence x = (xv), is in Y then, we say that A defines a matrix transformation from X
into Y , and denote it by A ∈ (X,Y ). The matrix domain of an infinite matrix A in a sequence
space X is defined by

XA = {x = (xn) ∈ ω : A(x) ∈ X} , (1)

which is a sequence space.
Let

∑
av be a given infinite series with its nth partial sum (sn), θ = (θn) be any positive

sequence and p = (pn) be a bounded sequence of positive real numbers. If

∞∑

n=0

θpn−1n |An(s)−An−1(s)|pn <∞,

then, the series
∑
av is said to be summable |A, θn| (p) ([1]).

Also, the α−, β−, γ− duals of X are given by

Xα = {z ∈ ω : xz = (xkzk) ∈ l for all x = (xk) ∈ X} ,

Xβ = {z ∈ ω : xz = (xkzk) ∈ cs for all x = (xk) ∈ X} ,
Xγ = {ε ∈ ω : xz = (xkzk) ∈ bs for all x = (xk) ∈ X}
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respectively. We mean cs, bs and lp (1 ≤ p < ∞) for the space of all convergent, bounded,
p-absolutely convergent series, respectively. Besides these, the Maddox’s space

l(p) =

{
x = (xk) ∈ ω :

∞∑

k=0

|xk|pk <∞
}
,

have an important role in the summability theory and the space is an FK-space with AK
with respect to its natural paranorm

g(x) =

( ∞∑

k=0

|xk|pk
)1/M

,

where M = max {1, supk pk} ([7], [8], [9]).
Now, we remind some of the properties of the Fibonacci numbers: The sequence (fn) of

Fibonacci numbers is given by the following relations:

f0 = f1 = 1 and fn+2 = fn+1 + fn for n ≥ 0

that is, each term is equal to the sum of the previous two terms. The sequence of Fibonacci
numbers have been important for artist, architects, physicists and mathematicians since the
old. The ratio of Fibonacci numbers converges to the golden ratio which is one of the most
interesting irrationals having an important role in number theory, algorithms, network theory,
etc.. Also, Fibonacci numbers have the following properties [6]:

∑

n

1

fn
converges,

f2n−1 + fnfn−1 − f2n = (−1)n+1, n ≥ 1,

lim
n→∞

fn+1

fn
=

1 +
√

5

2
= 1.61803398875....

Besides, the Fibonacci matrix F = (f̂nv) has been defined by Kara in [5] as follows:

f̂nv =





−fn+1

fn
, v = n− 1

fn
fn+1

, v = n

0, v > n or 0 ≤ v < n− 1

where fn is the Fibonacci number for all n ∈ N .

Lemma 1 Let p = (pv) be any bounded sequence positive numbers.
(a) If pv > 1 for all v, then, A ∈ (l(p), l∞) if and only if there exists an integer M > 1 such
that

sup
n

∞∑

v=0

∣∣anvM−1
∣∣p∗v <∞,

(b) If pv ≤ 1 for all v ∈ N, then A ∈ (l(p), l∞) if and only if

sup
n,v
|anv|pv <∞,

[2].
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2 Main Theorem

The aim of this section is to introduce the absolute Fibonacci space |Fθ| (p) and to give γ-
dual of this space according to the state of p. The absolute Fibonacci space can be expressed
as

|Fθ| (p) =

{
a ∈ ω :

∞∑

n=0

θpn−1n

∣∣∣∣∣
n∑

k=0

σnkak

∣∣∣∣∣

pn

<∞
}
.

where

σnk =





fn
fn+1

, k = n
(−1)n
fnfn+1

− fn+1

fn
, k = n− 1

(−1)n fn−1+fn+1

fn−1fnfn+1
, 0 ≤ k ≤ n− 2

0, k > n.

or according to the notation of the domain given by (1.1), with the matrices T = (tnv) and

E(p) = (e
(p)
nv ), we write

|Fθ| (p) = (l(p))E(p)◦T
where

tnv =





fn
fn+1

, v = n
f2n−f2n+1

fnfn+1
, 0 ≤ v ≤ n− 1

0, v > n,

e(p)nv =





θ
1/p∗n
n , v = n

−θ1/p
∗
n

n , v = n− 1
0, v 6= n, n− 1.

Also, since every triangle matrix has a unique inverse which is a triangle, the matrices T and
E(p) have unique inverse T̃ = (t̃nv) and Ẽ(p) = (ẽnv) defined by

t̃nv =





fn+1

fn
, v = n

f2n+1−f2n
fvfv+1

, 0 ≤ v ≤ n− 1

0, v > n

(2)

ẽ(p)nv =

{
θ
−1/p∗v
v , 0 ≤ v ≤ n

0, v > n.
(3)

Theorem 2 Let p = (pv) be a bounded sequence of positive numbers. θ = (θn) be any se-
quence of positive numbers. If pv > 1 for all v ∈ N , then

{|Fθ| (p)}γ =

{
a ∈ ω : ∃M > 1, sup

n

[
M

−1
p∗n
θn

∣∣∣fn+1

fn
an

∣∣∣
p∗n

+
n−1∑
v=0

M
−1
p∗v
θv

∣∣∣
(
fv+1

fv
av

+
n∑

k=v+1

akµkv

)∣∣∣∣∣

p∗v

 <∞



,

and if pv ≤ 1 for all v ∈ N , then

{|Fθ| (p)}γ =

{
a ∈ ω : sup

n,v

{∣∣∣∣θ
−1
p∗n
n

fn+1

fn
an

∣∣∣∣
pn

+

∣∣∣∣∣θ
−1
p∗v
v

(
fv+1

fv
av +

n∑
k=v+1

akµkv

)∣∣∣∣∣

pv}
<∞

}
where

µnv =


fn+1

fn
+
(
f2n+1 − f2n

) n−1∑

j=v

1

fjfj+1


 ,
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and p∗v is conjugate of pv, i.e., 1/pv + 1/p∗v = 1, pv > 0, and 1/p∗v = 0 for pv = 1.

Proof. Let’s recall that a ∈ {|Fθ| (p)}γ if and only if ax = (anxn) ∈ l∞ whenever x ∈ |Fθ| (p).
Also we suppose that y = T (x) and z = E(p)(y) for all x ∈ |Fθ| (p). By the equations (2.1)
and (2.2), we get
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θ
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r zr
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= an
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+
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(
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)

=
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where B = (bnv) is defined by

bnr =





θ
−1/p∗n
n an

fn+1

fn
, r = n

θ
−1/p∗r
r

(
ar

fr+1

fr
+

n∑
k=r+1

akµkr

)
, 0 ≤ r ≤ n− 1

0, r > n.

Note that z = E(p) ◦ T (x) ∈ l(p) whenever x ∈ |Fθ| (p). So a ∈ |Fθ|(p)γ if and only if
B ∈ (l(p), l∞). If we apply Lemma 1.1 to the matrix B, we get the desired results. Hence the
proof is completed.
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Abstract

In the conventional design of cantilever retaining wall, trial-and-error method has been
used to determine wall dimensions which satisfies the stability conditions of wall. This
method takes time in design period and is not possible to know which parameter is the
most effective in the design. In this study, safety factors of the cantilever retaining wall
which play a crucial role in stability of the wall have been investigated to determine
with mathematical model. In computing of safety factors of sliding, overturning and slope
stability mathematically, Taguchi method which is a statistical method has been employed.
For different situations Signal/Noise (S/N), variance and optimization analyses have been
performed separately by using L16 orthogonal design tables. At result of these analysis,
effect of the length of base, the toe extension, the thickness of base, the angle of front face
of wall and the angle of internal friction on safety factors of sliding, overturning and slope
stability have been studied. Consequently, obtained relative errors from mathematical
model safety factors demonstrate that these models are efficient and reliable in the design
of cantilever retaining wall.

Keywords: Cantilever retaining wall, Taguchi method, mathematical model, statistical
analysis.

1 Introduction

In today’s geotechnical engineering, the time has become important criteria in terms of com-
pleting the design of geotechnical structures as soon as possible. In the traditional design of
cantilever retaining wall which is a geotechnical structure, stability analyses like slide check,
overturning check, slope stability and so on, have been conducted according to selected wall
dimensions [1, 2]. This process continues by selecting new wall dimensions each time until
stability analyses are satisfied. Such time-consuming design methods have brought new meth-
ods to make design in a shorter time. Taguchi method which one of the methods to provide
making design in shorter time give information about effective parameter on design and the
optimum design in case of maximum or minimum safety factor. Taguchi method based on
statistical analysis has been put forward by Genichi Taguchi with the aim of increasing quality
of experiment in 1950s [3]. This method not only make it possible obtain experiments with
less study but also find the best values between all parameters and all levels of parameters.
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The Taguchi method, which is used especially in the experimental design and the quality
management, is widely used in the designs of engineering to investigate the design criteria.
In this method, it is possible to gain the effects of parameters on design by performing less
experiments without making many experiments with orthogonal array [4]. Studies of determi-
nation of safety factor of slope stability with mathematical model and investigation of design
criteria of gabion retaining wall which is another type of retaining wall have been carried out
by using Taguchi Method [5, 6].
In this study, mathematical models have been submitted to determine safety factors of sliding,
overturning and slope stability by using Signal/Noise (S/N) ratios identified by Taguchi. The
effect of design parameters like the length of base, the toe extension, the thickness of base, the
angle of front face of wall and the angle of internal friction on the design has investigated by
Taguchi Method. Mathematical models proposed for calculation of safety factors of sliding,
overturning and slope stability according to selected design parameters. To investigate all
combination of all parameters 16 cantilever retaining wall design have been analyzed by using
L16 orthogonal design table and has been performed fractional factorial design for four levels
of five parameters.

2 Taguchi Method

Taguchi Method is a robust and easily applicable method, because it reaches results in less
time and to determine effects of the parameters on the result trustworthily. It reduces the
cost of investigation and performs parametric analysis. Normally, to investigate effect of
five parameters with four levels on safety factors of sliding, overturning and slope stability
45 = 1024 design must be carried out. In this method, it is possible to obtain parameters
effect on the result with 16 designs by means of orthogonal array. In this study, L16 (45)
orthogonal array (five parameters and four level) has been employed and it is given Table 1.

Table 1: L16 (45) orthogonal array

Design
No

Parameters
and Levels

P1 P2 P3 P4 P5

1 1 1 1 1 1

2 1 2 2 2 2

3 1 3 3 3 3

4 1 4 4 4 4

5 2 1 2 3 4

6 2 2 1 4 3

7 2 3 4 1 2

8 2 4 3 2 1

9 3 1 3 4 2

10 3 2 4 3 1

11 3 3 1 2 4

12 3 4 2 1 3

13 4 1 4 2 3

14 4 2 3 1 4

15 4 3 2 4 1

16 4 4 1 3 2
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In the Taguchi analyses of cantilever retaining wall design, selected parameters and their
levels are given in Table 2. In determination of lower and upper limits of selected parameters
national and design codes have been taken into consideration [7-9]. While the X1 and the X3

are varying depending on the wall height (H), the X2 varies depending on the X1.

Table 2: Selected parameters and their levels

Parameter Level 1 Level 2 Level 3 Level4

Length of base, X1 0.25H 0.50 H 0.75 H 1.00 H

Toe extension, X2 0.15 X1 0.30 X1 0.45 X1 0.60 X1

Thickness of base, X3 0.06 H 0.09 H 0.12 H 0.15 H

Angle of front face, X4 (%) 0 1 2 4

Angle of internal friction, Ø (◦) 20 27 34 41

In Taguchi Method, effects of the parameters on the results and mathematical model have
been determined with the S/N ratios. Signal/Noise ratio (S/N) is described by Taguchi
with aim of decreasing variance and is used as performance criteria in experiment design.
S/N ratio divided into three depended on purpose of application; smaller is better, nominal
is best, larger is better, are given in respectively Equation 1, Equation 2 and Equation 3.
In this study, S/N analyses has been performed according to the target state of “Larger is
better” which maximize the response. According to Taguchi, the variance which is defined
as difference from the target value has been decreased and the signal has been increased in
case of S/N ratio is maximum [4]. Variance is a degree of distribution of a number sequence
around arithmetic mean of this number sequence.

S/N = −10xlog(
∑

(Y2)/n) (1)

S/N = −10xlog(Ȳ/σ2) (2)

S/N = −10xlog(
∑

(1/Y2)/n) (3)

Here Y is the response value, n is the number of repetitions, Y is arithmetic mean and σ is
standard deviation.

3 Numerical and Statistical Analyses

In numerical analyses, the cantilever retaining wall height (H=6m), top stem thickness of
wall (b=0.25m) unit volume weight of soil (γs = 18kN/m3), unit weight of concrete, (γc =
25kN/m3) and friction angle between base and soil (δ = 2/3Ø) are taken same for 16 designs.
Acting loads on cantilever retaining wall and selected wall dimensions which are used for
determination of safety factors of sliding, overturning and slope stability of wall are given in
Figure 1.
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Figure 1: Cantilever Retaining Wall Dimensions and Acting Loads

In the cantilever retaining wall design, the same soil properties have been taken into
account for foundation soil and backfill of wall with a single value of unit volume weight of soil
(18 kN/m3) and four different value of angle of internal friction (20-27-34-41◦). Value of the
internal friction angle which uses in design changes according to L16 orthogonal array design
table. In the checks of sliding, overturning and slope stability, analysis of cantilever retaining
wall have been conducted according to single-layer cohesionless soil condition without ground
water. Due to the fact that the overturning of the wall is less likely than slide, passive soil
pressure has not taken into consideration for obtaining of safety factor of overturning. In Table
3, mathematical formulas which use for obtaining of safety factors of sliding and overturning
according to GEO 5 computer program [10] have given detailed. Safety factor of slope stability
has obtained by Bishop method from computer program.

Table 3: Used mathematical formulas for determining safety factors of sliding and overturning

Bottom thickness of the stem bb= (H − X3) ∗X4+b

Weight of wall W1= X 1 X 3 γc W2= b H γc

W3= 0.5 (bb−b) H γc

Weight of backfill W4= (X1−X2−bb) H γs

Active soil pressure Pa= 0.5 H2 γs Ka

Passive soil pressure Pp= 0.5 Df
2 γs Kp

Active soil pressure coefficient Ka = tan2 (45 − Ø/2)

Passive soil pressure coefficient Kp = tan2 (45 + Ø/2)

Safety factor of sliding Fs (sliding) = (W1+W2+W3+W4)tanδ
Pa−Pp

Safety factor
of overturning

Fs (overturning) =
0.5W 1X 1+W 2(bb−0.5 b+X2)+W 3(0.667 (bb−b)+X2)+ 0.5 W 4(X1+X2+bb)

0.333 Pa (H + X 3)
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By using orthogonal array given in Table 1 and parameter levels given in Table 2, revised
L16 design table has demonstrated in Table 4. Cantilever retaining wall designs has been
conducted in computer program according to revised design table and end of the analysis
safety factors of sliding, overturning and slope stability have been obtained (Table 4).

Table 4: Cantilever retaining wall Taguchi design table and results of numerical analyses

Design
No

Parameter Levels Safety Factor (Fs)

X1 X2 X3 X4 (%) Ø (◦) Sliding Overturning Slope Sta-
bility

1 0.25H 0.15X1 0.06H 0 20 0.22 0.35 0.75

2 0.25H 0.30X1 0.09H 1 27 0.34 0.42 1.09

3 0.25H 0.45X1 0.12H 2 34 0.52 0.48 1.48

4 0.25H 0.60X1 0.15H 4 41 0.97 0.53 1.96

5 0.50H 0.15X1 0.09H 2 41 2.48 3.11 2.18

6 0.50H 0.30X1 0.06H 4 34 1.08 2.24 1.54

7 0.50H 0.45X1 0.15H 0 27 0.59 1.36 1.27

8 0.50H 0.60X1 0.12H 1 20 0.24 0.92 0.84

9 0.75H 0.15X1 0.12H 4 27 1.15 3.68 1.51

10 0.75H 0.30X1 0.15H 2 20 0.54 2.55 1.06

11 0.75H 0.45X1 0.06H 1 41 2.34 6.13 2.10

12 0.75H 0.60X1 0.09H 0 34 1.11 3.65 1.58

13 1.00H 0.15X1 0.15H 1 34 3.04 8.31 2.26

14 1.00H 0.30X1 0.12H 0 41 4.77 11.18 2.67

15 1.00H 0.45X1 0.09H 4 20 0.57 4.38 1.00

16 1.00H 0.60X1 0.06H 2 27 0.78 4.94 1.23

Statistica [11] computer program has been employed for statistical analyses. In Figure 2,
calculated S/N ratios are given by using safety factors obtained from the numerical analyses.
Graphical representation of average S/N ratios corresponding to each parameter level for
safety factors of sliding, overturning and slope stability are given respectively in Figure 3,
Figure 4 and Figure 5.
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Figure 2: Cantilever Retaining wall S/N ratios

In Figure 2, it is clear that the most change of average S/N ratio of safety factor of
sliding is belonging the angle of internal friction and the second most change is the length
of base. While the length of base, the angle of internal friction and the thickness of base
shows increasing, the toe extension and the angle of front face generally shows decreasing
with increasing parameter level.

Figure 3: Change between average S/N ratio and safety factor of sliding

According to Figure 3, which is given for safety factor of overturning, the highest change
of average S/N ratio is the length of base and the lowest one is the angle of front face. While
levels of parameter increase, change of average S/N ratios of the length of base and the angle
of internal friction go up and the others go down.
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Figure 4: Change between average S/N ratio and safety factor of overturning

In Figure 3, behavior of parameters in changing of average S/N ratios is like change
between average S/N ratios and safety factor of sliding.

Figure 5: Change between average S/N ratio and safety factor of slope stability

In the investigation of effect of parameters on the design of cantilever retaining wall,
parameters of the length of wall, the toe extension, the thickness of base, the angle of front
face and the angle of internal friction are taken into consideration. To determine effect rate
of parameters has been employed variance analysis. Variance is defined as sum of squares of
deviations from arithmetic mean of data. Variance, a statistical term, shows distance between
each number in the sequence and average of all the numbers in the series.
Effect rates of design parameters on the safety factors for H=6m is given in Table 5. It observes
that parameter which is the most effective on safety factors of sliding and slope stability is the
angle of internal friction which has the most value of variance. The most efficient parameter
is the length of base for safety factor of overturning.
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Table 5: Cantilever retaining wall results of variance analyses

Parameter Degree of
Freedom
(DOF)

Sum of
Squares
(Ss)

Variance
MS

Effect
Rate
(P)
(%)

Sliding Length of Base, X1 3 273.017 91.006 30.177

Toe Extension, X2 3 54.253 18.084 5.997

Thickness of base, X3 3 6.279 2.093 0.694

Angle of front face,
X4 (%)

3 0.809 0.270 0.089

Angle of internal fric-
tion, Ø (◦)

3 570.356 190.119 63.043

Overturning Length of Base, X1 3 1262.262 420.7541 89.62

Toe Extension, X2 3 19.420 6.4732 1.38

Thickness of base, X3 3 2.046 0.6820 0.15

Angle of front face,
X4 (%)

3 0.024 0.0080 0.00

Angle of internal fric-
tion, Ø (◦)

3 124.741 41.5803 8.86

Slope Sta-
bility

Length of Base, X1 3 13.769 4.590 8.813

Toe Extension, X2 3 3.251 1.084 2.081

Thickness of base, X3 3 5.325 1.775 3.408

Angle of front face,
X4 (%)

3 0.160 0.053 0.102

Angle of internal fric-
tion, Ø (◦)

3 133.731 44.577 85.595

Results of optimization analyses obtained from statistical analyses for safety factors of sliding,
overturning and slope stability are given respectively in Table 6, Table 7 and Table 8.

Table 6: Optimization results for maximum safety factor of sliding

Parameter Level Level De-
scription

Contribution
(%)

Length of Base, X1 4 6m 30.2

Toe Extension, X2 1 0.90m 14.5

Thickness of base, X3 4 0.90m 5.3

Angle of front face, X4 (%) 1 4.00 1.3

Angle of internal friction, Ø (◦) 4 41 48.6

Expected maximum safety factor Fs (max) for this level 6.2

Found by numerical analysis maximum safety factor Fs (max) 6.7

Relative Error (%) 7.9
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Table 7: Optimization results for maximum safety factor of overturning

Parameter Level Level De-
scription

Contribution
(%)

Length of Base, X1 4 6m 64.6

Toe Extension, X2 1 0.90m 7.6

Thickness of base, X3 1 0.36m 2.9

Angle of front face, X4 (%) 2 1.00 0.3

Angle of internal friction, Ø (◦) 4 41 24.6

Expected maximum safety factor Fs (max) for this level 12.7

Found by numerical analysis maximum safety factor Fs (max) 12.9

Relative Error (%) 2.1

Table 8: Optimization results for maximum safety factor of slope stability

Parameter Level Level De-
scription

Contribution
(%)

Length of Base, X1 4 6m 18.8

Toe Extension, X2 1 0.90m 9.0

Thickness of base, X3 4 0.90m 11.3

Angle of front face, X4 (%) 4 4.00 2.2

Angle of internal friction, Ø (◦) 4 41 58.7

Expected maximum safety factor Fs (max) for this level 3.0

Found by numerical analysis maximum safety factor Fs (max) 2.9

Relative Error (%) 3.3

In the results of optimization analyses of all safety factors, the length of base (X1=4m),
the toe extension (X2=0.90m) and the angle of internal friction (Ø=41◦) have same value
for maximum value of safety factor. According to level description of parameters given in
tables, numerical analyses have been repeated and safety factors has been obtained. Expected
maximum safety factors have been compared with safety factors found by numerical analyses
and the relative error has been gained. For safety factors of sliding, overturning and slope
stability maximum relative error are respectively %7.9, %2.1 and %3.3.
The most effective parameter to safety factors of sliding and slope stability is the angle of
internal friction that is respectively %48.6 and %58.7. The second effective parameter is the
length of base, it is %30.2 for Fs (sliding) and is %18.8 for Fs (slope stability). Unlike other
safety factors the most effective parameter for Fs (overturning) is the length of base with
%64.6 and the second effective parameter is the angle of internal friction with %24.6.

4 Mathematical Model

In this study, the average S/N ratios have been employed to enhance the mathematical model
for H=6m. Mathematical models valid for given lower-upper limits have been obtained by
using average S/N ratios and parameter levels of design parameters. Each of them For calcu-
lation of Fs (sliding), Fs (overturning) and Fs (slope stability), mathematical model which is
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formed using different functions is given by Equation 4.

Fs=

√
1

10−λ/10
(4)

Here, λ is total effect coefficient and it is given by Equation 5.

λ = ψB+ψBt
+ψd+ψm+ψφ+ ∆ (5)

Here,
ψB : effect coefficient of the length of base, X1(H)
ψBt : effect coefficient of the toe extension, X2(X1)
ψd : effect coefficient of the thickness of base, X3(H)
ψm : effect coefficient of the angle of front face, X4

ψØ : effect coefficient of the angle of internal friction, Ø
∆ : Coefficient of the average S/N ratio

Value of ∆ which is changing in terms of calculation of Fs (sliding), Fs (overturning) and Fs
(slope stability) are taken as respectively -1.034, 6.423 and 3.156. Detailed explanations of
all effect coefficients of parameters are given in Table 9, Table 10 and Table 11 for different
safety factors.

Table 9: The effect coefficients of parameters of Fs (sliding)

Lower-Upper Limits of Parameter Mathematical Model

0.25 H ≤ B ≤ 1.00 H ψB=18.486B3−42.672B2+43.961B − 14.695

0.15B ≤ Bt ≤ 0.60B ψBt
= 28.534Bt

3−32.262Bt
2−0.1304Bt+ 3.0854

0.06 H ≤ d ≤ 0.15 H ψd= 334.17d3−39.307d2+15.177d − 1.6215

0.00 ≤ m ≤ 0.02 ψm= 1112.5m2−47.793m + 0.2196

0.02 ≤ m ≤ 0.04 ψm= 25.456m − 0.8004

20 ◦ ≤ Ø ≤ 41 ◦ ψφ= 23.23(tanφ)3−51.682(tanφ)2+67.598(tanφ) − 26.789

Table 10: The effect coefficients of parameters of Fs (overturning)

Lower-Upper Limits of Parameter Mathematical Model

0.25 H ≤ B ≤ 1.00 H ψB= 31.275B3−86.36B2+98.437B − 33.259

0.15B ≤ Bt ≤ 0.60B ψBon
= −6.1339Bt

3−4.6395Bt
2− 0.0334Bt+ 1.3126

0.06 H ≤ d ≤ 0.15 H ψd= −226.44d3+ 46.681d2−12.536d + 1.0911

0.00 ≤ m ≤ 0.02 ψm= −675.06m2+9.983m + 0.0187

0.02 ≤ m ≤ 0.04 ψm= 1.5988m − 0.0836

20 ◦ ≤ Ø ≤ 41 ◦ ψφ=−2.4364(tanφ)3+1.584(tanφ)2+15.801(tanφ) − 9.4873

E. Uray, S. Çarbaş, Ö. Tan : Determining Of Safety Factors For Cantilever Retaining Wall With
Mathematical Model

109

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



Table 11: The effect coefficients of parameters of Fs (slope stability)

Lower-Upper Limits of Parameter Mathematical Model

0.25 H ≤ B ≤ 1.00 H ψB= −0.9481B3+1.104B2+ 3.1679B − 2.1271

0.15B ≤ Bt ≤ 0.60B ψBon
= −0.0165Bt

3−1.1675Bt
2− 1.80Bt+ 0.8733

0.06 H ≤ d ≤ 0.15 H ψd= −2336.4d3+ 702.1d2−48.723d − 0.118

0.00 ≤ m ≤ 0.02 ψm= −1202.6m2+29.026m − 0.1358

0.02 ≤ m ≤ 0.04 ψm= 8.7062m − 0.2105

20 ◦ ≤ Ø ≤ 41 ◦ ψφ= 14.299(tanφ)3−38.059(tanφ)2+45.098(tanφ) − 16.095

Safety factors of 1024 cantilever retaining wall designs which contain all value of five param-
eters with four levels have been obtained by both numerical analysis (Fs) and mathematical
models (Fm). Belong to safety factors obtained from the numerical analysis and safety factors
obtained from mathematical model, the relative error histograms for 1024 safety factors of
sliding, overturning and slope stability are given respectively in Figure 6, Figure 7 and Fig-
ure 8. When histograms given in figures examine, it observes that they have approximately
normal distribution.

Figure 6: Distribution of relative error for safety factor of sliding
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Figure 7: Distribution of relative error for safety factor of overturning

Figure 8: Distribution of relative error for safety factor of slope stability
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5 Examples of Design of Cantilever Retaining Wall with Math-
ematical Model

To control for mathematical models of safety factors, design parameters which satisfy lower
and upper limits previously mentioned of parameters have been selected randomly and 25
design have been formed by using these design parameters. All safety factors obtained from
mathematical model (Fm) and numerical analyses (Fs) with randomly selected parameters
are given in Table 12. The relative errors of safety factors of sliding, overturning and slope
stability have been demonstrated by respectively Figure 9, Figure 10 and Figure 11.

6 Conclusions

In this study, mathematical model has been submitted used in safety factors of sliding, over-
turning and slope stability. In determination of models, Taguchi methods which is a one of
the successful and favorable methods has been employed. Furthermore, the effects of param-
eters on the stability of the cantilever retaining wall have been investigated. Parameters of
the length of base, the toe extension, the thickness of base, the angle of front face of wall
and the angle of internal friction are taken as design parameters which have four levels each
of them. By using L16 orthogonal design table suggested by Taguchi for fractional factorial
design, 16 the cantilever retaining wall designs which formed according to L16 orthogonal
design table have been analyzed in computer program and safety factors have been obtained.
S/N, variance and optimization analyses have been performed by using safety factors obtained
from numerical analyses. For determination of safety factors of sliding, overturning and slope
stability, mathematical models have been formed by using average S/N ratios.
Results of the design of cantilever retaining wall with randomly selected 25 design parameters
show that average absolute error is %4.8 for Fs(sliding), is %1.1 for Fs (overturning) and is
%1.9 for Fs (slope stability). In 1024 designs of cantilever retaining wall with mathematical
model, absolute relative errors of safety factors of sliding, overturning and slope stability are
respectively %6.4, %1.0 and %2.8. When the cases are compared in terms of absolute relative
error, it is observed that mathematical model derived from parameter levels may be used in
determination of safety factors of sliding, overturning and slope stability even for except value
of parameter levels.
The absolute relative errors obtained by using mathematical models, show that these models
can be reliably used in calculation of safety factors of sliding, overturning and slope stability.
Consequently, Taguchi Method can be employed in application of geotechnical engineering as
an optimization technique. In future work, scope of the mathematical model can be widened
for different wall height and different soil conditions.
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Table 12: Results of design of cantilever retaining wall with design parameters selected ran-
domly

No Design Parameters Sliding Overturning Slope stability

X1 (H) X2 (X1) X3 (H) X4 (%) Ø (◦) Fs Fm Fs Fm Fs Fm
1 0.30 0.20 0.07 0.011 22 0.29 0.28 0.53 0.52 0.87 0.87

2 0.35 0.22 0.10 0.039 37 1.15 1.23 1.23 1.22 1.81 1.80

3 0.45 0.50 0.13 0.022 35 0.96 0.89 1.49 1.48 1.65 1.68

4 0.65 0.40 0.10 0.031 40 2.25 2.16 4.34 4.42 2.10 2.15

5 0.90 0.55 0.11 0.012 24 0.65 0.61 3.65 3.61 1.16 1.19

6 0.80 0.35 0.10 0.025 25 0.82 0.74 3.65 3.60 1.28 1.25

7 0.40 0.44 0.14 0.034 26 0.42 0.43 0.85 0.84 1.16 1.19

8 0.55 0.28 0.08 0.028 37 1.62 1.57 3.03 3.05 1.84 1.81

9 0.95 0.24 0.13 0.036 30 1.74 1.77 6.35 6.26 1.78 1.82

10 0.60 0.26 0.07 0.018 33 1.29 1.18 3.12 3.12 1.62 1.56

11 0.70 0.42 0.10 0.026 28 0.84 0.76 2.98 3.00 1.35 1.35

12 0.39 0.34 0.13 0.038 21 0.29 0.31 0.73 0.72 0.93 0.95

13 0.85 0.17 0.13 0.035 31 1.83 1.81 5.43 5.35 1.84 1.87

14 0.45 0.45 0.08 0.013 38 1.17 1.13 1.90 1.90 1.73 1.72

15 0.92 0.56 0.07 0.024 32 1.17 1.12 5.37 5.29 1.54 1.53

16 0.28 0.19 0.10 0.038 23 0.29 0.32 0.46 0.45 0.95 0.98

17 0.37 0.43 0.11 0.025 36 0.90 0.87 1.15 1.14 1.64 1.66

18 0.42 0.56 0.08 0.032 29 0.43 0.43 1.00 0.99 1.17 1.15

19 0.96 0.28 0.14 0.022 34 2.49 2.37 7.41 7.31 2.08 2.13

20 0.36 0.31 0.07 0.032 21 0.27 0.26 0.69 0.67 0.83 0.82

21 0.28 0.38 0.14 0.014 38 1.00 0.95 0.73 0.73 1.81 1.86

22 0.77 0.54 0.11 0.027 23 0.51 0.48 2.60 2.59 1.06 1.08

23 0.56 0.53 0.10 0.034 35 1.03 1.00 2.28 2.33 1.61 1.64

24 0.82 0.59 0.14 0.039 22 0.48 0.50 2.56 2.53 1.05 1.11

25 0.43 0.28 0.07 0.024 39 1.47 1.49 2.07 2.04 1.84 1.82

Figure 9: Relative error of randomly selected design parameters for Fs (sliding)
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Figure 10: Relative error of randomly selected design parameters for Fs (overturning)

Figure 11: Relative error of randomly selected design parameters for Fs (slope stability)
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Abstract

In this work, we introduce new hyper-spherical images by translating Bishop frame
vectors of a regular curve to the center of the unit hyper-sphere of the four-dimensional
Euclidean space. Such curves are called as Bishop hyper-spherical Images. Then, Frenet-
Serret apparatus of these new curves is obtained in terms of base curve’s Bishop invariants.

Keywords: Bishop frame, spherical images, regular curves, general helix, slant helix,
Euclidean 4-space.

1 Introduction

In the local differential geometry, curves are thought as a geometric set of points, or locus.
Intuitively, a curve is figured as the path traced out by a particle moving in E4. So, investi-
gating position vectors of the curves is a classical aim to determine behavior of the particle
(curve). Natural scientists have long held a fascination, sometimes bordering on mystical
obsession for helical structures in nature. As it is well known, curves are treated by using
Frenet-Serret frame. However Serret-Frenet frame is not defined for all points along every
space curve on which curvature may vanish at some points. That is, second derivative of the
curve may be zero. Therefore, alternative frames were constructed. Recently, one of the
most common alternative frames is parallel transport frame, also called Bishop frame which
is due to L. R. Bishop in [1]. After defining this useful alternative frame, many studies have
been done by mathematicians using it and type-2 Bishop frame in Euclidean and its ambient
spaces [1, 3, 7, 12]. Also, Bishop frame is used in many applications such as engineering, DNA
analysis computer aided design etc.

As special curves, spherical images of a regular curve are obtained in terms of Frenet-Serret
frame vector fields. So, this classical topic is a well-known concept in differential geometry of
the curves, see [2, 5, 6]. These spherical images were studied according to Frenet-Serret frame
or Bishop frame in Euclidean and Minkowski spaces, see [9, 10, 11].
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In the light of the existing literature, this paper aims to determine new spherical images
of regular curves using Bishop frame vector fields in Euclidean 4-space E4. We shall call such
curves, respecvitely, Tangent, M 1, M 2 and M 3 Bishop spherical images of regular curves.
Considering classical methods, we investigated relations among Frenet-Serret invariants of
spherical images in terms of Bishop invariants. We have to explain that in this work we
choose regular curve in Euclidean 4-space E4 as non-zero constant Bishop curvatures.

2 Preliminaries

Here, the basic definitions and theorems for the theory of curves in Euclidean 4-space E4 are
briefly presented to meet the requirements in the next sections (A more complete elementary
treatment can be found in [2, 4, 6]).

The standard flat metric in Euclidean 4-space E4 is given by

〈, 〉 = dx21 + dx22 + dx23 + dx24,

where (x1, x2, x3, x4) is a rectangular coordinate system of Euclidean 4-space E4. Recall that,
the norm of an arbitrary vector a ∈ E4 is given by ‖a‖ =

√
〈a, a〉. The curve α is called an

unit speed curve if velocity vector v of α satisfies ‖v‖ = 1. For vectors v, w ∈ E4 it is said to
be orthogonal if and only if 〈v, w〉 = 0. Let α = α(s) be a regular curve in Euclidean 4-space
E4. If the tangent vector field of this curve forms a constant angle with a constant vector field
U , then this curve is called a general helix or an inclined curve.

The hyper-sphere of radius r > 0 and with center in the origin in Euclidean 4-space E4 is
defined by

S3 =
{
p = (p1, p2, p3, p4) ∈ E4 : 〈p, p〉 = r2

}
.

Denote by {T,N,B,E} the moving Frenet-Serret frame along the curve α in the space
E4. For an arbitrary curve α with the first, the second and the third curvatures, κ, τ and σ
in Euclidean 4-space E4, the following Frenet-Serret formulae is given in [4]




T ′

N ′

B′

E′


 =




0 κ 0 0
−κ 0 τ 0
0 −τ 0 σ
0 0 −σ 0







T
N
B
E


 ,

where T,N,B and E are called the tangent, the principal normal, the first and the second
binormal vectors of the curve α, respectively.

Theorem 1 ([8]) Let α = α(t) be an arbitrary curve in Euclidean 4-space E4 with above
Frenet-Serret equations. Frenet-Serret apparatus of α can be written as follows:

T =
α′

‖α′‖ , (1)

N =
‖α′‖2 α′′ − 〈α′, α′′〉α′∥∥∥‖α′‖2 α′′ − 〈α′, α′′〉α′

∥∥∥
, (2)

B = µN ∧ T ∧B2, (3)
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E = µ
T ∧N ∧ α′′′
‖T ∧N ∧ α′′′‖ , (4)

κ =

∥∥∥‖α′‖2 α′′ − 〈α′, α′′〉α′
∥∥∥

‖α′‖4
(5)

τ =
‖T ∧N ∧ α′′′‖ ‖α′‖∥∥∥‖α′‖2 α′′ − g(α′, α′′)α′

∥∥∥ (6)

and

σ =

〈
α(IV ), E

〉

‖T ∧N ∧ α′′′‖ ‖α′‖ ,
(7)

where µ is taken −1 or +1 to make +1 the determinant of the matrix [T,N,B,E].

Bishop frame or a parallel transport frame is an alternative approach to defining a moving
frame that is well defined even when the curve has vanishing second derivative. One can
express parallel transport an orthonormal frame along a curve simply by parallel transporting
each component of the frame. The parallel transport is formed with tangent vector and any
convenient arbitrary basis for the remainder of the frame (for details, see [1, 7]). Then, the
relations between Frenet-Serret frame and parallel transport frame for the curve α : I ⊂ R→
E4 are given as follows:

T (s) = T (s),
N(s) = cos θ(s) cosψ(s)M1 + (− cosφ(s) sinψ(s) + sinφ(s) sin θ(s) cosψ(s))M2

+(sinφ(s) sinψ(s) + cosφ(s) sin θ(s) cosψ(s))M3,
B(s) = cos θ(s) sinψ(s)M1 + (cosφ(s) cosψ(s) + sinφ(s) sin θ(s) sinψ(s))M2

+(− sinφ(s) cosψ(s) + cosφ(s) sin θ(s) sinψ(s))M3,
E(s) = − sin θ(s)M1 + sinφ(s) cos θ(s)M2 + cosφ(s) cos θ(s)M3.

The parallel transport frame equations are expressed as [7]




T ′

M ′1
M ′2
M ′3


 =




0 k1 k2 k3
−k1 0 0 0
−k2 0 0 0
−k3 0 0 0







T
M1

M2

M3


 , (8)

where k1, k2, k3 are curvature functions according to parallel transport frame of the curve α
their expression as follows:

k1 = κ cos θ(s) cosψ(s),
k2 = κ(− cosφ(s) sinψ(s) + sinφ(s) sin θ(s) cosψ(s)),
k3 = κ(sinφ(s) sinψ(s) + cosφ(s) sin θ(s) cosψ(s)),

where

θ′ =
σ√

κ2 + τ2
, ψ′ = −τ − σ

√
σ2 − θ′2√
κ2 + τ2

, φ′ = −
√
σ2 − θ′2
cos θ

,

and Frenet curvature functions are given as follows:

κ(s) =
√
k21 + k22 + k23, τ(s) = −ψ′ + φ′ sin θ, σ(s) =

θ′

sinψ
,

and
φ′ cos θ + θ′ cotψ = 0,

in terms of the invariants of parallel transport frame.
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3 Main Results

In this section, we study Bishop spherical images of a regular curve in Euclidean 4-space E4.
We take the regular curves into consideration as non-zero constant Bishop curvatures and
θ 6= 0, φ 6= 0. The last condition guarantees for the curve to lie down in Euclidean 4-space
E4. We study the mentioned images under this special case. The problem is open to study
the general case.

3.1 Tangent Bishop spherical images of a regular curve

Definition 2 Let γ = γ(s) be a regular curve in Euclidean 4-space E4. If we translate of the
first (tangent) vector field of Bishop frame T to the center O of the unit hyper-sphere S3, we
obtain a hyper-spherical image ξ = ξ(sξ). This curve is called tangent Bishop hyper-spherical
image or indicatrix of the curve γ = γ(s).

Let ξ = ξ(sξ) be tangent Bishop spherical image of a regular cuve γ = γ(s). It can be
written as

ξ(sξ) = T (s). (9)

Differentiating (9) with respect to s, we find

ξ′ =
·
ξ
dsξ
ds

= k1M1 + k2M2 + k3M3.

Here, we shall denote differentiation according to s by a dash, and differentiation according
to sξ by a dot. Thus, we obtain the unit tangent vector of the tangent spherical indicatrix
curve ξ as

Tξ =
k1M1 + k2M2 + k3M3√

k21 + k22 + k23

and ∥∥ξ′
∥∥ =

dsξ
ds

=
√
k21 + k22 + k23.

Considering the previous method, we form the following differentiations with respect to s:





ξ′′ = −
√
k21 + k22 + k23T,

ξ′′′ = −k1
√
k21 + k22 + k23M1 − k2

√
k21 + k22 + k23M2 − k3

√
k21 + k22 + k23M3,

ξ(IV ) = (k21 + k22 + k23)
3
2T.

By equation (2), we can get the principal normal vector as

Nξ = −T

and the first curvature as

κξ =
1√

k21 + k22 + k23
.

Now, let us calculate the vector Tξ ∧Nξ ∧ ξ′′′, that is,

Tξ ∧Nξ ∧ ξ′′′ =

∣∣∣∣∣∣∣∣∣∣

T M1 M2 M3

0
k1√

k21 + k22 + k23

k2√
k21 + k22 + k23

k3√
k21 + k22 + k23

−1 0 0 0

0 −k1
√
k21 + k22 + k23 −k2

√
k21 + k22 + k23 −k3

√
k21 + k22 + k23

∣∣∣∣∣∣∣∣∣∣

.
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This product yields
Tξ ∧Nξ ∧ ξ′′′ = 0. (10)

Hence, we obtain the trinormal (second binormal) vector field of the curve ξ(sξ) as follows:

Eξ = 0.

Taking the norm of both sides of (10), we find the second curvature

τ ξ = 0.

Finding the binormal vector field, we express

Nξ ∧ Tξ ∧ Eξ = 0.

So, we obtain the binormal vector as
Bξ = 0.

Finally, using the equations (7) and (10), it is seen that the third curvature σξ is undefined.

Corollary 3 Let ξ = T be tangent Bishop spherical image of a regular curve γ = γ(s). If
a regular curve γ = γ(s) has non-zero constant Bishop curvatures, then, we can easily have
κξ = constant for τ ξ = 0. Since, the tangent spherical indicatrix ξ is a circle in the osculating
plane.

3.2 M1 Bishop spherical images of a regular curve

Definition 4 Let γ = γ(s) be a regular curve in Euclidean 4-space E4. If we translate of the
second vector field of Bishop frame M1 to the center O of the unit hyper-sphere S3, we obtain
a hyper-spherical image δ = δ(sδ). This curve is called M1 Bishop hyper-spherical image or
indicatrix of the curve γ = γ(s).

Let δ = δ(sδ) be M1 Bishop spherical image of a regular cuve γ = γ(s). It can be written
as

δ(sδ) = M1(s). (11)

Differentiating (11) with respect to s, we find

δ′ =
·
δ
dsδ
ds

= −k1T.

Here, we shall denote differentiation according to s by a dash, and differentiation according
to sδ by a dot. Thus, we obtain the unit tangent vector of the tangent spherical indicatrix
curve δ as

Tδ = −T
and ∥∥δ′

∥∥ =
dsδ
ds

= k1.

Considering the previous method, we form the following differentiations with respect to s:





δ′′ = −k21M1 − k1k2M2 − k1k3M3,
δ′′′ = k1(k

2
1 + k22 + k23)T,

δ(IV ) = k21(k21 + k22 + k23)M1 + k1k2(k
2
1 + k22 + k23)M2 + k1k3(k

2
1 + k22 + k23)M3.
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By equation (2), we can get the principal normal vector as

Nδ = − k1√
k21 + k22 + k23

M1 −
k2√

k21 + k22 + k23
M2 −

k3√
k21 + k22 + k23

M3

and the first curvature as

κδ =

√
k21 + k22 + k23

k1
.

Now, let us calculate the vector Tδ ∧Nδ ∧ δ′′′, that is,

Tδ ∧Nδ ∧ δ′′′ =

∣∣∣∣∣∣∣∣∣∣

T M1 M2 M3

−1 0 0 0

0 − k1√
k21 + k22 + k23

− k2√
k21 + k22 + k23

− k3√
k21 + k22 + k23

k1(k
2
1 + k22 + k23) 0 0 0

∣∣∣∣∣∣∣∣∣∣

.

This product yields
Tδ ∧Nδ ∧ δ′′′ = 0. (12)

Hence, we obtain the trinormal (second binormal) vector field of the curve δ(sδ) as follows:

Eδ = 0.

Taking the norm of both sides of (12), we find the second curvature

τ δ = 0.

Finding the binormal vector field, we express

Nδ ∧ Tδ ∧ Eδ = 0.

So, we obtain the binormal vector as
Bδ = 0.

Finally, using the equations (7) and (12), it is seen that the third curvature σδ is undefined.

Corollary 5 Let δ = M1 be M1 Bishop spherical image of a regular curve γ = γ(s). If a
regular curve γ = γ(s) has non-zero constant Bishop curvatures, then, we can easily have
κδ = constant and τ δ = 0. So the M1 hyper-spherical indicatrix δ is a circle in the osculating
plane.

3.3 M2 Bishop spherical images of a regular curve

Definition 6 Let γ = γ(s) be a regular curve in Euclidean 4-space E4. If we translate of the
third vector field of Bishop frame M2 to the center O of the unit hyper-sphere S3, we obtain
a hyper-spherical image of ψ = ψ(sψ). This curve is called M2 Bishop hyper-spherical image
or indicatrix of the curve γ = γ(s).

Let ψ = ξ(sψ) be tangent Bishop spherical image of a regular cuve γ = γ(s). It can be
written as

ψ(sψ) = M2(s). (13)

Differentiating (13) with respect to s, we find

ψ′ =
·
ψ
dsψ
ds

= −k2T.
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Here, we shall denote differentiation according to s by a dash, and differentiation according
to sψ by a dot. Thus, we obtain the unit tangent vector of the tangent spherical indicatrix
curve ψ as

Tψ = −T
and ∥∥ψ′

∥∥ =
dsξ
ds

= k2.

Considering the previous method, we form the following differentiations with respect to s:





ψ′′ = −k1k2M1 − k22M2 − k2k3M3,
ψ′′′ = k2(k

2
1 + k22 + k23)T,

ψ(IV ) = k1k2(k
2
1 + k22 + k23)M1 + k22(k21 + k22 + k23)M2 + k2k3(k

2
1 + k22 + k23)M3.

By equation (2), we can get the principal normal vector as

Nψ = − k1√
k21 + k22 + k23

M1 −
k2√

k21 + k22 + k23
M2 −

k3√
k21 + k22 + k23

M3

and the first curvature as

κψ =

√
k21 + k22 + k23

k2
.

Now, let us calculate the vector Tψ ∧Nψ ∧ ψ′′′, that is,

Tψ ∧Nψ ∧ ψ′′′ =

∣∣∣∣∣∣∣∣∣∣

T M1 M2 M3

−1 0 0 0

0 − k1√
k21 + k22 + k23

− k2√
k21 + k22 + k23

− k3√
k21 + k22 + k23

k2(k
2
1 + k22 + k23) 0 0 0

∣∣∣∣∣∣∣∣∣∣

.

This product yields
Tψ ∧Nψ ∧ ψ′′′ = 0. (14)

Hence, we obtain the trinormal (second binormal) vector field of the curve ψ(sψ) as follows:

Eψ = 0.

Taking the norm of both sides of (14), we find the second curvature

τψ = 0.

Finding the binormal vector field, we express

Nψ ∧ Tψ ∧ Eψ = 0.

So, we obtain the binormal vector as

Bψ = 0.

Finally, using the equations (7) and (14), it is seen that the third curvature σψ is undefined.

Corollary 7 Let ψ = M2 be M2 Bishop spherical image of a regular curve γ = γ(s). If
a regular curve γ = γ(s) has non-zero constant Bishop curvatures, then, we can easily have
κψ = constant and τψ = 0. So the M2 hyper-spherical indicatrix ψ is a circle in the osculating
plane.
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3.4 M3 Bishop spherical images of a regular curve

Definition 8 Let γ = γ(s) be a regular curve in Euclidean 4-space E4. If we translate of the
fourth vector field of Bishop frame M3 to the center O of the unit hyper-sphere S3, we obtain
a hyper-spherical image of η = η(sη). This curve is called M3 Bishop hyper-spherical image
or indicatrix of the curve γ = γ(s).

Let η = η(sη) be tangent Bishop spherical image of a regular cuve γ = γ(s). It can be
written as

η(sη) = M3(s). (15)

Differentiating (15) with respect to s, we find

η′ =
·
η
dsη
ds

= −k3T.

Here, we shall denote differentiation according to s by a dash, and differentiation according
to sη by a dot. Thus, we obtain the unit tangent vector of the tangent spherical indicatrix
curve η as

Tη = −T
and

‖η′‖ =
dsη
ds

= k3.

Considering the previous method, we form the following differentiations with respect to s:





η′′ = −k1k3M1 − k2k3M2 − k23M3,
η′′′ = k3(k

2
1 + k22 + k23)T,

η(IV ) = k1k3(k
2
1 + k22 + k23)M1 + k2k3(k

2
1 + k22 + k23)M2 + k23(k21 + k22 + k23)M3.

By equation (2), we can get the principal normal vector as

Nη = − k1√
k21 + k22 + k23

M1 −
k2√

k21 + k22 + k23
M2 −

k3√
k21 + k22 + k23

M3

and the first curvature as

κη =

√
k21 + k22 + k23

k3
.

Now, let us calculate the vector Tη ∧Nη ∧ η′′′, that is,

Tη ∧Nη ∧ η′′′ =

∣∣∣∣∣∣∣∣∣∣

T M1 M2 M3

−1 0 0 0

0 − k1√
k21 + k22 + k23

− k2√
k21 + k22 + k23

− k3√
k21 + k22 + k23

k3(k
2
1 + k22 + k23) 0 0 0

∣∣∣∣∣∣∣∣∣∣

.

This product yields
Tη ∧Nη ∧ η′′′ = 0. (16)

Hence, we obtain the trinormal (second binormal) vector field of the curve η(sη) as follows:

Eη = 0.

Taking the norm of both sides of (16), we find the second curvature

τη = 0.

Y. Ünlütürk, H. Tozak, S. Yılmaz : On the Bishop Hyper-Spherical Images and
Their Chracterizations in 4-Dimensional Euclidean Space E4 123

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



Finding the binormal vector field, we express

Nη ∧ Tη ∧ Eη = 0.

So, we obtain the binormal vector as
Bη = 0.

Finally, using the equations (7) and (16), it is seen that the third curvature ση is undefined.

Corollary 9 Let η = M3 be M3 Bishop spherical image of a regular curve γ = γ(s). If a
regular curve γ = γ(s) has non-zero constant Bishop curvatures, then, we can easily have
κη = constant and τη = 0. So the M3 hyper-spherical indicatrix η is a circle in the osculating
plane.

4 Conclusion

In this study, we investigated Bishop hyper-spherical images of a regular curve with its special
circumstance. The results obtained here is open and clear because of the case. It must be
emphasized that that problem has to be studied in general case in Euclidean and Minkowski
4-spaces, so that strength and interesting results and characterizations for these image curves
can be obtaind in these spaces.

References

[1] L. R. Bishop, There ’s more than one way to frame a curve, Amer. Math. Monthly, 82(3)
(200) 246–251.

[2] M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood
Cliffs, NJ, 1976.
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Some Special Curves in E4
1
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Abstract

In this study, we introduce a new special curve by means of spherical images in E4
1.

Firstly, Smarandache breadth curves of tangent spherical images are defined in E4
1. More-

over, a four order vectorial differential equation of position vector of Smarandache breadth
curves has been obtained in this space. Finally, we study the differential equation char-
acterizing tangent spherical images of constant breadth for special cases in E4

1.
Keywords: Tangent spherical images, spherical images, Smarandache curves, constant
breadth of curves, differential equation.

1 Introduction
Curves are thought as a geometric set of points, or locus in the local differential geometry.
Studying their position vectors is a classical endeavour to determine behavior of the particle
(curve) [1], [2], [5]. The classical results in the theory of curves were initiated by G. Monge, and
the moving frame idea was pioneered by G. Darboux. Thereafter Jean Frédéric Frenet defined
the famous frame and its special equations which play an important role in mechanics and
kinematics as well as in differential geometry [11]. Curves of constant breadth were introduced
by Leonhard Euler [6]. M.Fujivera [7] had obtained a problem to determine whether there exist
space curve of constant breadth or not, and he defined breadth for space curves and obtained
these curves on surfaces of constant breadth. Moreover, Some geometric properties of plane
curves of constant breadth were given in [8] and, in another works [4], [5], [9], these properties
were studied in the Euclidean 3−space E3. In [4], these curves have been also studied in
four dimensional Euclidean space E4. In this study, by using tangent spherical images of a
spacelike curve in E4

1, we introduce a new special curve of tangents pherical images which are
also called tangent spherical images of constant breadth. Firstly, Smarandache breadth curves
of tangent spherical images are defined in E4

1. Moreover, a four order vectorial differential
equation of position vector of Smarandache breadth curves has been obtained in this space.
Finally, we study the differential equation characterizing tangent spherical images of constant
breadth for special cases in E4

1.

2 Preliminaries
Minkowski space-time E4

1 is the real vector space R4 endowed with the standard Lorentzian
metric given by

g = −dx2
1 + dx2

2 + dx2
3 + dx2

4,

∗Corresponding author. E-mail address: yasinunluturk@klu.edu.tr
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where (x1, x2, x3, x4) is a rectangular coordinate system in E4
1 [2]. Since g is an indefinite

metric, recall that a vector v ∈ E4
1 can have one of the three causal characters; it can be

spacelike if g(v, v) > 0 or v = 0, timelike if g(v, v) < 0 and null (lightlike) if g(v, v) = 0 and
v 6= 0. Similary, an arbitrary curve α = α(s) in E4

1 can be locally spacelike, timelike or null
(lightlike), if all of its velocity vectors α′(s) are respectively spacelike, timelike or null. Also,
recall the norm of a vector v is given by

‖v‖ =
√
|g(v, v)|.

Therefore, v is a unit vector if g(v, v) = ±1. Next, vectors v, w in E4
1 are said to be orthogonal

if g(v, w) = 0. The velocity of the curve α(s) is given by ‖α′(s)‖ [3]. The pseudohyperbolic
space with center m = (m1,m2,m3,m4) ∈ E4

1 and radius r ∈ R+ in the space-time E4
1 is the

hyperquadric

H3
0 (r) = {a = (a1, a2, a3, a4) ∈ E4

1 | g(a−m, a−m) = −r2}.

with dimension 3 and index 0 [2]. Denote by {T (s), N(s), B(s), E(s)} the moving Frenet-
Serret frame along the curve α(s) in the space E4

1. Then T,N,B,E are, respectively, the
tangent, the principal normal, the binormal (the first binormal) and the trinormal (the second
binormal) vector fields. A spacelike or timelike curve α(s) is said to be parametrized by
arclength function s if g(α′(s), α′(s)) = ±1. Let α(s) be a spacelike curve in the space-time
E4

1, parametrized by arclength function s. Then, the following Frenet-Serret equations are
given in [3]: 



T ′

N ′

B′

E′


 =




0 κ 0 0
−κ 0 τ 0
0 τ 0 σ
0 0 σ 0







T
N
B
E


 ,

where T,N,B and E are mutually orthogonal vectors satisfying equations

g(T, T ) = g(N,N) = g(E,E) = 1, g(B,B) = −1.

and the functions κ, τ and σ are first, second and third curvatures of the curve α, respectively.

Definition 1 ([3]) Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) and c = (c1, c2, c3, c4) be vectors
in E4

1. The vector product in Minkowski space-time E4
1 is defined by the determinant

a ∧ b ∧ c = −

∣∣∣∣∣∣∣∣∣

−e1 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣∣
,

where e1, e2, e3 and e4 are mutually orthogonal vectors (coordinate direction vectors) satisfying
equations

e1 ∧ e2 ∧ e3 = e4, e2 ∧ e3 ∧ e4 = e1, e3 ∧ e4 ∧ e1 = e2, e4 ∧ e1 ∧ e2 = −e3.

Theorem 2 ([3]) Let α = α(t) be an arbitrary spacelike curve in Minkowski space-time E4
1.

The Frenet-Serret apparatus of α can be written as follows;

T = α′

‖α′‖ ,

N = ‖α′‖2 α′′ − g(α′, α′′)α′∥∥∥‖α′‖2 α′′ − g(α′, α′′)α′
∥∥∥
,
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B = µN ∧ T ∧ E,

E = µ
T ∧N ∧ α′′′
‖T ∧N ∧ α′′′‖ ,

κ =

∥∥∥‖α′‖2 α′′ − g(α′, α′′)α′
∥∥∥

‖α′‖4

τ = ‖T ∧N ∧ α′′′‖ ‖α′‖∥∥∥‖α′‖2 α′′ − g(α′, α′′)α′
∥∥∥

and
σ = g(α(IV ), E)

‖T ∧N ∧ α′′′‖ ‖α′‖ ,

where µ is taken −1 or +1 to make +1 the determinant of [T,N,B,E] matrix.

Theorem 3 ([3]) Let ϕ = ϕ(s) be tangent spherical image of the curve α = α(t) in Minkowski
space-time E4

1. The Frenet-Serret vector fields of ϕ are given in terms of Frenet-Serret vector
fields of α as follows;

T1 = N, N1 = −κT + τB√
κ2 + τ2 ,

B1 = − 1
A

∣∣∣∣∣∣∣∣∣∣∣

T N B −E
τ2σ 0 κτσ −τ2(κ

τ
)′

0 1 0 0
− 1
κ1

0 τ

κκ1
0

∣∣∣∣∣∣∣∣∣∣∣

E1 = µ

A
(−τ2σT + κτσB − τ2(κ

τ
)′E),

κ1 =
√
κ2 + τ2

κ
, σ1 =

√
κ2τ2σ2κ2

1 − τ4(κ
τ

)′2

κ
,

where the vector fields T1, N1, B1, E1 belong to the spherical image curve ϕ, and µ is taken −1
or +1 to make +1 the determinant of [T,N,B,E] matrix.

3 Main Result
A regular curve in E4

1, whose position vector is obtained by Frenet frame vectors on another
regular curve, is called Smarandache curve. A regular curve with more than 2 breadths in
Minkowski 4-space is called Smarandache breadth curve. Let ϕ = ϕ(s) be a Smarandache
breadth curve. Moreover, let ϕ = ϕ(s) be spacelike tangent spherical image curve in the space
E4

1. These curves will be denoted by (C). The normal plane at every point P on the curve
meets the curve at a single point Q other than P . We call the point Q as the opposite point
of P . We consider a curve in the class Γ as in having parallel tangents T and T ∗ opposite
directions at opposite points ϕ and ϕ∗of the curves. A simple closed curve having parallel
tangents in opposite directions at opposite points can be represented with respect to Frenet
frame by the equation

ϕ∗(s) = ϕ(s) +m1T1 +m2N1 +m3B1 +m4E1 (3.1)
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where mi(s), 1 ≤ i ≤ 4 are arbitrary functions and ϕ and ϕ∗ are opposite points. Differenti-
ating both sides of (3.1) and considering Frenet equations, we have

dϕ∗

ds
= −→T1∗

ds∗

ds
= (1 + dm1

ds
−m2κ1)T1 + (m1k1 + dm2

ds
−m3τ1)N1

+(dm3
ds

+m4σ1 +m2τ1)B1 + (dm4
ds

+m3σ1)E1
(3.2)

Since T ∗1 = −T , rewriting (3.2), we have respectively,

dm1
ds

= m2κ1 − 1− ds∗

ds
dm2
ds

= m3τ1 −m1κ1
dm3
ds

= −m2τ1 −m4σ1
dm4
ds

= −m3σ1.

(3.3)

If we call θ as the angle between the tangent of the curve (C) at point ϕ(s1) with a given
direction and consider

dϕ

ds
= κ,

we have (3.3) as follow;
dm1
dθ

= m2 − f(θ),
dm2
dθ

= −m1 + ρτ1m3,

dm3
dθ

= −ρτ1m2 − ρσ1m3,

dm4
dθ

= −ρσ1m3,

(3.4)

where
f(θ) = ρ+ ρ∗ ρ = 1

κ1
, ρ∗ = 1

κ∗1
(3.5)

denote the radius of curvature at ϕ and ϕ∗ respectively. And using system (3.4), we have the
following differential equation with respect to m1 as

{ 1
ρσ1

[ 1
ρτ1

(m′′1 +m1)] + τ1
σ1
m′1}′ +

σ1
τ1

(m′′1 −m1)

+{ 1
ρσ

( 1
ρτ
f ′)′ − τ1

σ1
f}+ σ1

τ1
f ′ = 0

(3.6)

The Eq. (3.6) is a characterization for ϕ∗. If the distance between opposite points of (C) and
(C∗) is constant, then, we can write that

‖ϕ∗ − ϕ‖ = m2
1 +m2

2 +m2
3 −m2

4 = ψ2 = constant. (3.7)

Hence, we write
m1

dm1
dθ

+m2
dm2
dθ

+m3
dm3
dθ
−m4

dm4
dθ

= 0 (3.8)

Considering system (3.4), we obtain

m1f(θ) = 0. (3.9)
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We write m1 = 0 or f(θ) = 0, thus, we shall study the Eq. (3.9) in the following subcase:
Case 1. Let m1 = 0 and m2 = c2 =constant, then from (3.4), we obtain

f(θ) = constant,
m3ρτ1 = 0,
dm3
dθ

= −ρτ1c2 − ρσ1m4,

dm4
dθ

= −ρσ1m4.

(3.10)

Due to this, we distinguish the following subcases: Case 1.1. Suppose that m3 = 0, then from
(3.4) we find that

m4 = c4 = constant, and τ1
σ1

= −c4
c2

= constant.

Case 1.2. Suppose that m3 6= 0, then we have

τ1 = 0, κ1 6= 0,

thus we find that
(κσ
τ

)2 = (κ
τ

)′.

Then the solution of this differential equation is as follows:

κ

τ
= ∓e

∫ s
0 σ(s)ds.

Case 2. Let m1 = c1 =constant and m2 = 0, then

f(θ) = 0,

m3 =

√
1 + (τ

κ
)2c1

√
κ2τ2σ2κ2

1 − τ4(κ
τ

)′2
.

Corollary 3.1. Position vector of ϕ∗ can be formed by the case 1.1 as

ϕ∗ = ϕ+ c2N1 + c4E1. (3.11)

The distance between the opposite points of (C) and (C∗) is

‖ϕ∗ − ϕ‖ = c2
2 − c2

4 = constant. (3.12)

4 Conclusion
In this study, we studied tangent spherical images of constant breadt in Minkowski space-time
E4

1. The differential equation characterizing this new special curve was examined for special
cases in Minkowski space-time E4

1. As a open research problem, the other spherical images
of constant breadth such as normal, binormal, and trinormal spherical images of constant
breadth wait to be studied in both Euclidean and Minkowski spaces. Acknowledgement
The authors would like to thank the anonymous reviewers for their valuable comments and
suggestions to improve the quality of the paper.
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Abstract

In this paper, when the Frenet vectors of Anti-Salkowski curve are taken as the position
vectors, the curvature and the torsion of
Smarandache curves are calculated. These values are expressed depending upon the Anti-
Salkowski curve.

Keywords: Anti-salkowski curve, Smarandache curves, Frenet invariants.

1 Introduction

Anti-Salkowski curves are, to the best of the author’s knowledge, the first known family of
curves with constant curvature but non-constant torsion with an explicit parametrization.
They were defined in an earlier paper [4], [5] A regular curve in Minkowski space-time, whose
position vector is composed by Frenet frame vectors on another regular curve, is called a
Smarandache curve [3]. Special Smarandache curves have been studied by some authors.
Ahmad T.Ali studied some special Smarandache curves in the Euclidean space. He studied
Frenet-Serret invariants of a special case [1].Bektaş, Ö., and Yüce, S., studied some special
Smarandache curves according to
Darboux Frame in E3 [2]. In this paper, special Smarandache curves
belonging to Anti-Salkowski curve such as TN , NB, TB and TNB drawn by Frenet frame
are defined and some related results are given.

2 Preliminaries

In differential geometry, special curves have an important role. One of these curves Smaran-
dache curves. Smarandache curves was firstly defined by M. Turgut and S. Yılmaz in 2008
[3]. Let γ = γ(t) be a regular curve with unit speed. Then the Frenet apparatus of the curve
(γ) are [1]





T (t) = γ
′
(t), N(t) = T

′
(t)

∥T ′ (t)∥ , B(t) = T (t) ∧ N(t)

κ(t) = ∥T
′
(t)∥, τ(t) =

det
(
γ

′
(t),γ

′′
(t),γ

′′′
(t)
)

(
∥γ

′
(t)∧γ

′′
(t)∥
)2 T

′
= κN,

T
′
= κN, N

′
= −κT + τB, B

′
= −τN

(1)
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Another important curve is Anti-Salkowski curves. Firstly, definition of Anti-Salkowski curves
is given by Anti-Salkowski [4] and finally definition of Anti-Salkowski curves is given by
Monterde [5].

Definition 1 For any m ∈ R with m ̸= ∓ 1√
3

, 0, let us define the space curve

γm(t) =

(
n
(
n(1 − 4n2 + 3 cos(2nt)) cos(t) + (2n2 + 1) sin(t) sin(2nt)

)

2(4n2 − 1)m
,

n
(
n(1 − 4n2 + 3 cos(2nt)) sin(t) − (2n2 + 1) cos(t) sin(2nt)

)

2(4n2 − 1)m
,

n2 − 1

4n
(2nt + sin(2nt))

)
where n =

m√
1 + m2

.

The geometric elements of the Anti-Salkowski curve γm are

∥γm(t)∥ =
cos(nt)√
1 + m2

so the curve is regular in [− π

2n
,

π

2n
],

κ = tan(nt), τ = 1. (2)

The Frenet apparatus are

T (t) =
(

− cos(t) sin(nt) + n sin(t) cos(nt), − sin(t) sin(nt) − n cos(t) cos(nt),

− n

m
cos(nt)

)
,

N(t) = n

(
sin(t)

m
, −cos(t)

m
, 1

)
, (3)

B(t) =
(

− cos(t) cos(nt) − n sin(t) sin(nt), − sin(t) cos(nt) + n cos(t) sin(nt),

n

m
sin(nt)

)
.

Figure 1: Anti-Salkowski Curve, m = 1
3 , 1

5 , 1
8 , 1

16 .
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3 Smarandache Curves of Anti-Salkowski Curve According to
Frenet Frame

In this section we shall investigate some curves such that they are obtained with binary and
triple summations of the position vectors of Frenet vectors of a Salkowski curve.

Definition 2 Let γ = γ(t) be a Anti-Salkowski curve in E3 and {T, N, B} be the Frenet
frame. Then TN -Smarandache curve is by

γ1(t) =
1√
2
(T (t) + N(t)).

According to this definition we can parametrize the TN - Smarandache curve as in that form

γ1(t) =
1√
2

(
cos(t) sin(nt) − n sin(t) cos(nt) +

n

m
sin(t), − sin(t) sin(nt)

−n cos(t) cos(nt) − n

m
cos(t), − n

m
cos(nt) + n

)
. (4)

Figure 2: TN-Smarandache Curve, m = 1
3 , 1

5 , 1
8 , 1

16 .

Theorem 3 Let γ(t) be a Anti-Salkowski curve in E3and {T,N,B} be the Frenet Frame.
Then the Frenet frame of the TN -Smarandache curve is given {Tγ1 , Nγ1 , Bγ1},

Tγ1(t) =
(
− n

m
sin(t) sin(nt) − cos(t), − n

m
cos(t) sin(nt) + sin(t), n sin(nt)

)
,

Nγ1(t) =

(
λ1

(
sin(t) − n

m
cos(t) sin(nt)

)
+ n cos(nt)

(
cos(t) sin(nt) − n

m
sin(t)

)
,

λ1

( n

m
sin(t) sin(nt) + cos(t)

)
− n cos(nt)

(
sin(t) sin(nt) +

n

m
cos(t)

)
,

n2 cos(nt)

)
,

Bγ1(t) =

(
− n cos(t) sin(nt) + n2 sin(t) cos(nt) − n2

m
sin(t) sin2(nt),

n sin(t) sin(nt) + n2 cos(t) cos(nt) − n2

m
cos(t) sin2(nt),

− n2

m2
sin2(nt) +

n2

m
cos(nt) − 1

)
. (5)
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Proof. If we take the derivative in equation (4) we get

γ′
1(t) =

1√
2

n

m
(a1T + b1N + c1B) . (6)

Here the coefficients a1, b1 and c1 are given

a1 = − n

m
sin(t) sin(nt) − cos(t), b1 = − n

m
cos(t) sin(nt) + sin(t), c1 = n sin(nt).

If we take the norm in the equation (6),

∥γ′
1(t)∥ =

n

m

√
λ1 where λ1 = sin2(nt) + 1. (7)

We obtained the tangent of TN -Smarandache curve as in

Tγ1(t) =
1√
λ1

(a1T + b1N + c1B) . (8)

The derivative in the (6) is

γ′′
1 (t) =

1√
2

n

m
(a2T + b2N + c2B) , (9)

here the coefficients are given

a2 = − n

m
cos(t) sin(nt) − n2

m
sin(t) cos(nt) + sin(t),

b2 =
n

m
sin(t) sin(nt) − n2

m
cos(t) cos(nt) + cos(t),

c2 = n2 cos(nt).

From equations (6) and (9) we have

γ′
1(t) ∧ γ′′

1 (t) =
1

2

n2

m2
(a3T + b3N + c3B), (10)

then the coefficients are given

a3 = −n cos(t) sin(nt) + n2 sin(t) cos(nt) − n2

m
sin(t) sin2(nt),

b3 = n sin(t) sin(nt) + n2 cos(t) cos(nt) − n2

m
cos(t) sin2(nt),

c3 = − n2

m2
sin2(nt) +

n2

m
cos(nt) − 1.

If we take the norm in equation (10), it becomes

∥γ′
1(t) ∧ γ′′

1 (t)∥ =
1

2

n3

m3

√
λ2

1 − 2mµ1 where µ1 = λ1 cos(nt) − m. (11)

From the equaiton (1) binormal vector of TN -Smarandache curve is given as

Bγ1(t) =
1

n
m

√
λ2

1 − 2mµ1

(a4T + b4N + c4B) (12)

with the coefficients as follows

a4 = −n cos(t) sin(nt) + n2 sin(t) cos(nt) − n2

m
sin(t) sin2(nt),

b4 = n sin(t) sin(nt) + n2 cos(t) cos(nt) − n2

m
cos(t) sin2(nt),

c4 = − n2

m2
sin2(nt) +

n2

m
cos(nt) − 1.

From (1) principal normal vector of TN -Smarandache curve can be written as

Nγ1(t) =
1

n
m

√
λ3

1 − 2λ1µ1

(a5T + b5N + c5B) (13)
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and the coefficients are

a5 = λ1

(
sin(t) − n

m
cos(t) sin(nt)

)
+ n cos(nt)

(
cos(t) sin(nt) − n

m
sin(t)

)
,

b5 = λ1

(
cos(t) +

n

m
sin(t) sin(nt)

)
− n cos(nt)

(
sin(t) sin(nt) +

n

m
cos(t)

)
,

c5 = n2 cos(nt).

Theorem 4 Let γ(t) be a Anti-Salkowski curve in E3. Then the curvature and torsion according to γ1-
Smarandache curve are, respectively,

κγ1(t) =

√
2λ2

1 − 4mµ1

λ3
1

, τγ1(t) =
ρ1

√
2 cos(nt)

λ2
1 − 2mµ1

.

Proof. From the expressions (1), curvature of the TN -Smarandache curve can be written

κγ1(t) =

√
2λ2

1 − 4mµ1

λ3
1

. (14)

If we take the derivative in equation (9), it becomes

γ′′′
1 (t) =

1√
2

n

m
(a6T + b6N + c6B) . (15)

Here the coefficients a6, b6 and c6 are

a6 = −
(

n

m
+

n3

m

)
sin(t) sin(nt) − 2

n2

m
cos(t) cos(nt) + cos(t),

b6 =

(
n

m
+

n3

m

)
cos(t) sin(nt) + 2

n2

m
sin(t) cos(nt) − sin(t),

c6 = −n3 sin(nt).

From equations (6), (9) and (15) torsion of the TN -Smarandache curve is

τγ1(t) =
ρ1

√
2 cos(nt)

λ2
1 − 2mµ1

, where ρ1 = 3m2 cos(nt) − mλ1. (16)

Definition 5 Let γ = γ(t) be a Anti-Salkowski curve in E3 and {T, N, B} be the Frenet frame. Then
NB-Smarandache curve is by

γ2(t) =
1√
2
(N(t) + B(t)).

According to this definition we can parametrize the NB - Smarandache curve as in that form

γ2(t) =
1√
2

(
− cos(t) cos(nt) − n sin(t) sin(nt) +

n

m
sin(t),

− sin(t) cos(nt) + n cos(t) sin(nt) − n

m
cos(t),

n

m
sin(nt) + n

)
.

(17)
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Figure 3: NB-Smarandache Curve, m = 1
3 , 1

5 , 1
8 , 1

16 .

Theorem 6 Let γ(t) be a Anti-Salkowski curve in E3and {T, N, B} be the Frenet Frame. Then the Frenet
frame of the NB-Smarandache curve is given {Tγ2 , Nγ2 , Bγ2} (as figure 2),

Tγ2(t) =
( n

m
sin(t) cos(nt) + cos(t), − n

m
cos(t) cos(nt) + sin(t), n cos(nt)

)
,

Nγ2(t) =

(
λ2

( n

m
cos(t) cos(nt) − sin(t)

)
+ n sin(nt)

(
cos(t) cos(nt) − n

m
sin(t)

)
,

λ2

( n

m
sin(t) cos(nt) + cos(t)

)
+ n sin(nt)

(
sin(t) cos(nt) +

n

m
cos(t)

)

−n2 sin(nt), n2 cos(nt)

)
,

Bγ2(t) =

(
− n cos(t) cos(nt) − n2 sin(t) sin(nt) − n2

m
sin(t) cos2(nt),

−n sin(t) cos(nt) + n2 cos(t) sin(nt) +
n2

m
cos(t) cos2(nt),

n2

m2
cos2(nt) +

n2

m
sin(nt) + 1

)
. (18)

Proof. If we take the derivative in equation (17) we get

γ′
2(t) =

1√
2

n

m
(a7T + b7N + c7B) . (19)

Here the coefficients a7, b7 and c7 are given

a7 =
n

m
sin(t) cos(nt) + cos(t), b7 = − n

m
cos(t) cos(nt) + sin(t), c7 = n cos(nt).

If we take the norm in the equation (19),

∥γ′
2(t)∥ =

n

m

√
λ2 where λ2 = cos2(nt) + 1. (20)

We obtained the tangent of NB-Smarandache curve as in

Tγ2(t) =
1√
λ2

(a7T + b7N + c7B) . (21)

The derivative in the (19) is

γ′′
2 (t) =

1√
2

n

m
(a8T + b8N + c8B) , (22)

here the coefficients are given

a8 =
n

m
cos(t) cos(nt) − n2

m
sin(t) sin(nt) − sin(t),

b8 =
n

m
sin(t) cos(nt) +

n2

m
cos(t) sin(nt) + cos(t),

c8 = −n2 sin(nt).
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From equations (19) and (22) we have

γ′
2(t) ∧ γ′′

2 (t) =
1

2

n2

m2
(a9T + b9N + c9B), (23)

then the coefficients are given

a9 = −n cos(t) cos(nt) − n2 sin(t) sin(nt) − n2

m
sin(t) cos2(nt),

b9 = −n sin(t) cos(nt) + n2 cos(t) sin(nt) +
n2

m
cos(t) cos2(nt),

c9 =
n2

m2
cos2(nt) +

n2

m
sin(nt) + 1.

If we take the norm in equation (23), it becomes

∥γ′
2(t) ∧ γ′′

2 (t)∥ =
1

2

n3

m3

√
λ2

2 + 2mµ2 where µ2 = λ2 sin(nt) + m. (24)

From the equaiton (1) binormal vector of NB-Smarandache curve is given as

Bγ2(t) =
1

n
m

√
λ2

2 + 2mµ2

(a10T + b10N + c10B) (25)

with the coefficients as follows

a10 = −n cos(t) cos(nt) − n2 sin(t) sin(nt) − n2

m
sin(t) cos2(nt),

b10 = −n sin(t) cos(nt) + n2 cos(t) sin(nt) +
n2

m
cos(t) cos2(nt),

c10 =
n2

m2
cos2(nt) +

n2

m
sin(nt) + 1.

From (1) principal normal vector of NB-Smarandache curve can be written as

Nγ2(t) =
1

n
m

√
λ3

2 + 2λ2µ2

(a11T + b11N + c11B) (26)

and the coefficients are

a11 = λ2

(
− sin(t) +

n

m
cos(t) cos(nt)

)
+ n sin(nt)

(
cos(t) cos(nt) − n

m
sin(t)

)
,

b11 = λ2

(
cos(t) +

n

m
sin(t) cos(nt)

)
+ n sin(nt)

(
sin(t) cos(nt) +

n

m
cos(t)

)
,

c11 = −n2 sin(nt).

Theorem 7 Let γ(t) be a Anti-Salkowski curve in E3. Then the curvature and torsion according to γ2-
Smarandache curve are, respectively,

κγ2(t) =

√
2λ2

2 + 4mµ2

λ3
2

, τγ2(t) =
ρ2

√
2 sin(nt)

λ2
2 + 2mµ2

.

Proof. From the expressions (1), curvature of the NB-Smarandache curve can be written

κγ2(t) =

√
2λ2

2 + 4mµ2

λ3
2

. (27)

If we take the derivative in equation (22), it becomes

γ′′′
2 (t) =

1√
2

n

m
(a12T + b12N + c12B) . (28)

Here the coefficients a12, b12 and c12 are

a12 = −
(

n

m
+

n3

m

)
sin(t) cos(nt) − 2

n2

m
cos(t) sin(nt) − cos(t),

b12 =

(
n

m
+

n3

m

)
cos(t) cos(nt) − 2

n2

m
sin(t) sin(nt) − sin(t),

c12 = −n3 cos(nt).
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From equations (19), (22) and (28) torsion of the NB-Smarandache curve is

τγ2(t) =
ρ2

√
2 sin(nt)

λ2
2 + 2mµ2

, where ρ2 = 3m2 sin(nt) + mλ2. (29)

Definition 8 Let γ = γ(t) be a Anti-Salkowski curve in E3 and {T, N, B} be the Frenet frame. Then
TB-Smarandache curve is by

γ3(t) =
1√
2
(T (t) + B(t)).

According to this definition we can parametrize the TB - Smarandache curve as in that form

γ3(t) =
1√
2

(
− cos(t) sin(nt) + n sin(t) cos(nt) − cos(t) cos(nt)

−n sin(t) sin(nt), − sin(t) sin(nt) − n cos(t) cos(nt) (30)

− sin(t) cos(nt) + n cos(t) sin(nt), − n

m
cos(nt) +

n

m
sin(nt)

)
.

Figure 4: TB-Smarandache Curve, m = 1
3 , 1

5 , 1
8 , 1

16 .

Theorem 9 Let γ(t) be a Anti-Salkowski curve in E3and {T, N, B} be the Frenet Frame. Then the Frenet
frame of the TB-Smarandache curve is given {Tγ3 , Nγ3 , Bγ3} (as figure 2),

Tγ3(t) =
( n

m
sin(t), − n

m
cos(t), +n

)
,

Nγ3(t) = (cos(t), sin(t), 0) ,

Bγ3(t) =
(
−n sin(t), n cos(t),

n

m

)
. (31)

Proof. If we take the derivative in equation (3.27) we get

γ′
3(t) =

1√
2

n

m
(cos(nt) + sin(nt)) (a13T + b13N + c13B) . (32)

Here the coefficients a13, b13 and c13 are given

a13 =
n

m
sin(t), b13 = − n

m
cos(t), c13 = n.

If we take the norm in the equation (32),

∥γ′
3(t)∥ =

1√
2

n

m
(cos(nt) + sin(nt)) where λ3 = cos(nt) + sin(nt). (33)

We obtained the tangent of TB-Smarandache curve as in

Tγ3(t) = (a13T + b13N + c13B) . (34)
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The derivative in the (32) is

γ′′
3 (t) =

1√
2

n

m
(a14T + b14N + c14B) , (35)

here the coefficients are given

a14 =
n

m
cos(t)λ3 +

n2

m
sin(t)φ1, b14 =

n

m
sin(t)λ3 − n2

m
cos(t)φ1, c14 = n2φ1

where φ1 = cos(nt) − sin(nt). From equations (32) and (35) we have

γ′
3(t) ∧ γ′′

3 (t) =
1

2

n3

m3
(a15T + b15N + c15B), (36)

then the coefficients are given

a15 = −n sin(t), b15 = n cos(nt), c15 =
n

m
.

If we take the norm in equation (36), it becomes

∥γ′
3(t) ∧ γ′′

3 (t)∥ =
1

2

n3

m3
λ3 (37)

From the equaiton (1) binormal vector of TB-Smarandache curve is given as

Bγ3(t) = (a16T + b16N + c16B) (38)

with the coefficients as follows

a16 = −n sin(t), b16 = n cos(t), c16 =
n

m
.

From (1) principal normal vector of TB-Smarandache curve can be written as

Nγ3(t) = (a17T + b17N + c17B) (39)

and the coefficients are
a17 = cos(t), b17 = sin(t), c17 = 0.

Theorem 10 Let γ(t) be a Anti-Salkowski curve in E3. Then the curvature and torsion according to γ3-
Smarandache curve are, respectively,

κγ3(t) =

√
2

λ3
, τγ3(t) =

m
√

2

λ3
.

Proof. From the expressions (1), curvature of the TB-Smarandache curve can be written

κγ3(t) =

√
2

λ3
. (40)

If we take the derivative in equation (35), it becomes

γ′′′
3 (t) =

1√
2

n

m
(a18T + b18N + c18B) . (41)

Here the coefficients a18, b18 and c18 are

a18 = −
(

n

m
+

n3

m

)
sin(t)λ3 + 2

n2

m
cos(t)φ1,

b18 =

(
n

m
+

n3

m

)
cos(t)λ3 + 2

n2

m
sin(t)φ1,

c18 = −n3λ3.

From equations (32), (35) and (41) torsion of the TB-Smarandache curve is

τγ3(t) =
m

√
2

λ3
. (42)
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Definition 11 Let γ = γ(t) be a Anti-Salkowski curve in E3 and {T, N, B} be the Frenet frame. Then
TNB-Smarandache curve is by

γ4(t) =
1√
3
(T (t) + N(t) + B(t)).

According to this definition we can parametrize the TNB - Smarandache curve as in that form

γ4(t) =
1√
3

(
− cos(t) sin(nt) − cos(t) cos(nt) + n sin(t) cos(nt)

−n sin(t) sin(nt) +
n

m
sin(t), − sin(t) sin(nt) − sin(t) cos(nt)

−n cos(t) cos(nt) + n cos(t) sin(nt) − n

m
cos(t), − n

m
cos(nt)

+
n

m
sin(nt) + n

)
. (43)

Figure 5: TNB-Smarandache Curve, m = 1
3 , 1

5 , 1
8 , 1

16 .

Theorem 12 Let γ(t) be a Anti-Salkowski curve in E3and {T, N, B} be the Frenet Frame. Then the Frenet
frame of the TNB-Smarandache curve is given {Tγ4 , Nγ4 , Bγ4} (as figure 2),

Tγ4(t) =
( n

m
sin(t)λ3 + cos(t), − n

m
cos(t)λ3 + sin(t), nλ3

)
,

Nγ4(t) =

(
λ4

( n

m
cos(t)λ3 − sin(t)

)
+ nφ1

( n

m
sin(t) − cos(t)λ3

)
,

λ4

( n

m
sin(t)λ3 + cos(t)

)
− nφ1

( n

m
cos(t) + sin(t)λ3

)
, n2φ1

)
,

Bγ4(t) =

(
− n cos(t)λ3 + n2 sin(t)φ1 − n2

m
sin(t)λ2

3, −n sin(t)λ3

−n2 cos(t)φ1 +
n2

m
cos(t)λ2

3,
n2

m2
λ2

3 − n2

m
φ1 + 1

)
.

(44)

Proof. If we take the derivative in equation (3.40) we get

γ′
4(t) =

1√
3

n

m
(a19T + b19N + c19B) . (45)

Here the coefficients a19, b19 and c19 are given

a19 =
n

m
sin(t)λ3 + cos(t), b19 = − n

m
cos(t)λ3 + sin(t), c19 = nλ3.

If we take the norm in the equation (45),

∥γ′
4(t)∥ =

1√
3

n

m

√
λ4 where λ4 = λ2

3 + 1. (46)
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We obtained the tangent of TNB-Smarandache curve as in

Tγ4(t) =
1√
λ3

n

m
(a19T + b19N + c19B) . (47)

The derivative in the (45) is

γ′′
4 (t) =

1√
3

n

m
(a20T + b20N + c20B) , (48)

here the coefficients are given

a20 =
n

m
cos(t)λ3 +

n2

m
sin(t)φ1 − sin(t),

b20 =
n

m
sin(t)λ3 − n2

m
cos(t)φ1 + cos(t),

c20 = n2φ1.

From equations (45) and (48) we have

γ′
4(t) ∧ γ′′

4 (t) =
1

3

n2

m2
(a21T + b21N + c21B), (49)

then the coefficients are given

a21 = −n cos(t)λ3 + n2 sin(t)φ1 − n2

m
sin(t)λ2

3,

b21 = −n sin(t)λ3 − n2 cos(t)φ1 +
n2

m
cos(t)λ2

3,

c21 =
n2

m2
λ2

3 − n2

m
φ1 + 1.

If we take the norm in equation (49), it becomes

∥γ′
4(t) ∧ γ′′

4 (t)∥ =
1

3

n3

m3

√
λ2

4 − mµ3 where µ3 = 2φ1λ4 − 3m. (50)

From the equaiton (1) binormal vector of TNB-Smarandache curve is given as

Bγ4(t) =
1

n
m

√
λ2

2 + 2mµ2

(a22T + b22N + c22B) (51)

with the coefficients as follows

a22 = −n cos(t)λ3 + n2 sin(t)φ1 − n2

m
sin(t)λ2

3,

b22 = −n sin(t)λ3 − n2 cos(t)φ1 +
n2

m
cos(t)λ2

3,

c22 =
n2

m2
λ2

3 − n2

m
φ1 + 1.

From (1) principal normal vector of TNB-Smarandache curve can be written as

Nγ4(t) =
1√

λ3
4 − λ4µ3

(a23T + b23N + c23B) (52)

and the coefficients are

a23 = λ4

(
− sin(t) +

n

m
cos(t)λ3

)
+ nφ1

(
− cos(t)λ3 +

n

m
sin(t)

)
,

b23 = λ4

(
cos(t) +

n

m
sin(t)λ3

)
− nφ1

(
sin(t)λ3 +

n

m
cos(t)

)
,

c23 = n2φ1.

Theorem 13 Let γ(t) be a Anti-Salkowski curve in E3. Then the curvature and torsion according to γ4-
Smarandache curve are, respectively,

κγ4(t) =

√
3λ2

4 − 3mµ3

λ3
4

, τγ4(t) =
ρ3m

√
3λ4

λ2
4 − mµ3

.
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Proof. From the expressions (1), curvature of the TNB-Smarandache curve can be written

κγ4(t) =

√
3λ2

4 − 3mµ3

λ3
4

. (53)

If we take the derivative in equation (48), it becomes

γ′′′
4 (t) =

1√
3

n

m
(a24T + b24N + c24B) . (54)

Here the coefficients a24, b24 and c24 are

a24 = −
(

n

m
+

n3

m

)
sin(t)λ3 + 2

n2

m
cos(t)φ1 − cos(t),

b24 =

(
n

m
+

n3

m

)
cos(t)λ3 + 2

n2

m
sin(t)φ1 − sin(t),

c24 = −n3λ3.

From equations (45), (48) and (54) torsion of the TNB-Smarandache curve is

τγ4(t) =
ρ3m

√
3λ4

λ2
4 − mµ3

, where ρ3 = −3mφ1 + λ4. (55)
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N-Smarandache Curves According to the Sabban

Frame of the Spherical Indicatrix Curve
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Abstract

In this study, we first formed a Sabban frame of spherical indicatrix curve of N-
alternative vector defined by a differentiable curve. Then the geodesic curvature of this
vector is calculated according to this frame. Finally we defined Smarandache curves gen-
erated by the Sabban frame and give some characterizations of them.

Keywords: Sabban frame, Smarandache curve, alternative frame,
spherical indicatrix curve

1 Introduction

In differential geometry, special curves have an important role. One of these curves is a
Smarandache curve. Smarandache curves are first defined by M. Turgut and S. Yılmaz in
2008 [7]. Special Smarandache curves also have been studied by some authors [1, 2, 3]. Let
α = α(s) be a regular unit speed curve in E3. The Frenet frame and alternative frame of this
curve are {T,N,B} and {N,C,W}, respectively. Here, N is normal vector, W is unit Darboux
vector and C = W ∧ N [5]. In this paper, we created the Smarandache curves according to
the alternative frame of the unit speed curve. We then introduced alternative frame and its
properties. Finally we calculated geodesic curvature of these curves according to alternative
frame.

(a) Alternative frame (b) Sabban frame

Figure 1
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2 Preliminaries

Let α = α(s) be a regular curve with unit speed. Then the Frenet apparatus of the curve (α)
[4]

T (s) = α′(s), N(s) =
α′′(s)
‖ α′′(s) ‖ , B(s) = T (s) ∧N(s), (1)

κ(s) = ‖ T ′(s) ‖, τ(s) =
det(α′(s) ∧ α′′(s), α′′′(s))

‖ α′ ∧ α′′2 ,

T ′ = κN, N ′ = −κT + τB, B′ = −τN.

In Euclidean 3-space any regular curve α(s) depending on the Frenet vectors moves around
the axis of Darboux vector. Darboux vector defining a unit vector field is given as [5]

W =
τ√

κ2 + τ2
T +

κ√
κ2 + τ2

B, (2)

C = W ∧N = − κ√
κ2 + τ2

T +
τ√

κ2 + τ2
B.

So build another orthonormal moving frame along the curve α(s). This frame defined as
alternative frame and is represented by {N,C,W}. The derivative formulae of the alternative
frame is given by [5]

N
′

= βC, C
′

= −βN + γW, W
′

= −γC, (3)

β =
√
κ2 + τ2, γ =

κ2

κ2 + τ2

(τ
κ

)′
.

The relationship between Frenet frame and alternative frame is

C = κT + τB, W = τT + κB, T = −κC + τW, (4)

B = τC + κWκ =
κ

β
, τ =

τ

β
.

Principal normal vector N is common both frames. Let γ : I → S2 be a unit speed spherical
curve and s arc-length parameter of γ. Let us denote t(s) = γ

′
(s) and d(s) = γ(s)∧ t(s). This

frame is called the Sabban frame of γ on S2. Then we have the following spherical Frenet
formulae of γ

γ′(s) = t(s), t′(s) = −γ(s) + κg(s)d(s), d′(s) = −κg(s)t(s), (5)

where κg(s) is the geodesic curvature of γ on S2 [6],

κg(s) = 〈t′(s), d(s)〉. (6)

3 Smarandache Curves of Alternative Frame According to the
Sabban Frame

In this section, we investigated special Smarandache curves according to Sabban frame on S2.
Let N = N(s) = αN (s) be a unit speed regular spherical curve on S2, {N,TN , (N ∧TN )} and
{NαN , TNαN , (N ∧TN )αN } be the Sabban frame of this curve, respectively. Let αN (s) = N(s)
and if we take the derivative of the equation, then TN vector is

dαN
ds∗

ds∗

ds
= N ′(s) = βC, TN = C,

ds∗

ds
= β. (7)
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Considering the N(s) and TN vectors, we can write

N ∧ TN = W. (8)

Accordingly, the {N,TN , (N∧TN )} ≡ {N,C,W} Sabban frame is obtained from the N vector.
If we take the derivative of the equation (7), then T ′N vector is

T ′N
ds∗

ds
= −βN + γW, T ′N = −N +

γ

β
W.

From the equation (6), (8) and (9), the geodesic curvature of
αN (s) = N(s) is

κNg (s) = 〈T ′N (s), (N ∧ TN )(s)〉,
=

γ

β
. (9)

Then from the equation (5) we have the following spherical Frenet formulae of αN (s) ,

N ′ = C,

T ′N = −N +
γ

β
W, (10)

(N ∧ TN )′ = −γ
β
C.

Definition 1 Let (N) be a spherical curve of α(s), N and TN be Sabban vectors of (N).
Then NTN -Smarandache curve can be identified as

αNTN =
1√
2

(N + TN ) (11)

or substituting the equation (7) into equation (11), we have

αNTN =
1√
2

(N + C).

Theorem 2 The geodesic curvature according to NTN -Smarandache curve is

κNTNg =
1

(
2 + (κNg )2

) 5
2

(λ1κ
N
g − λ2κNg + 2λ3), (12)

where

λ1 = κNg (κNg )′ − (κNg )2 − 2, (13)

λ2 = −(κNg )4 − 3(κNg )2 − κNg (κNg )′ − 2,

λ3 = (κNg )3 + 2κNg + 2(κNg )′.

Proof. If we take the derivative of the equation (11), then NTN vector is

TNTN
ds∗

ds
=

1√
2

(−N + TN + κNg (N ∧ TN )), (14)

TNTN =
1√

2 + (κNg )2
(−N + TN + κNg (N ∧ TN )),

ds∗

ds
=

√
2 + (κNg )2

√
2

.
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Considering the equations (11) and (14), we have

αNTN ∧ TNTN =
1√

4 + 2(κNg )2
(N + TN ) ∧

(
−N + TN + κNg (N ∧ TN )

)
,

αNTN ∧ TNTN =
1√

4 + 2(κNg )2

(
κNg N − κNg TN + 2(N ∧ TN )

)
. (15)

If we take the derivative of the equation (14), then T ′NTN vector is

T ′NTN
ds∗

ds
=

( 1√
2 + (κNg )2

)′(−N + TN + κNg (N ∧ TN )
)

+
( 1√

2 + (κNg )2

)(
−N + TN + κNg (N ∧ TN )

)′
,

T ′NTN
ds∗

ds
= −

κNg
(
κNg
)′(−N + TN + κNg (N ∧ TN )

)
(
2 + (κNg )2

) 3
2

+
−N − (1 + (κNg )2)TN + (κNg + (κNg )′(N ∧ TN ))√

2 + (κNg )2
,

T ′NTN =

√
2
(
κNg (κNg )′ − (κNg )2 − 2

)
(
2 + (κNg )2

)2 N

−
√

2
(
(κNg )4 + 3(κNg )2 + κNg (κNg )′ + 2

)
(
2 + (κNg )2

)2 TN

+

√
2
(
(κNg )3 + 2κNg + 2(κNg )′

)
(
2 + (κNg )2

)2 (N ∧ TN ). (16)

Using the equations (6), (13), (15) and (16), we can write κNTNg geodesic curvature as

κNTNg =
1

(2 + (κNg )2)
5
2

(λ1κ
N
g − λ2κNg + 2λ3).

Corollary 3 The geodesic curvature of the NTN -Smarandache
curve according to the alternative frame is

κNTNg =
β4

(γ2 + 2β2)
5
2

(
(λ1 − λ2)γ + 2λ3β

)
(17)

where

λ1 =
γ

β

(γ
β

)′ − γ2 + 2β2

β2
, λ2 = −γ

4 + 3γ2β2 + 2β4

β4
− γ

β

(γ
β

)′
,

λ3 =
γ3 + 2γβ2

β3
+ 2
(γ
β

)′
.

Definition 4 Let (N) be a spherical curve of α(s), N and N ∧ TN be Sabban vectors of (N).
Then N(N ∧ TN )-Smarandache curve can be identified as

αN(N∧TN ) =
1√
2

(N +N ∧ TN ). (18)
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or substituting the equation (7) into equation (18) we reach

αN(N∧TN ) =
1√
2

(N +W ).

Theorem 5 The geodesic curvature according to N(N ∧ TN )-Smarandache curve is

κN(N∧TN )
g =

β + γ

β − γ (19)

Proof. If we take the derivative of the equation (18) then TN(N∧TN ) vector is

TN(N∧TN )
ds∗

ds
=

1√
2

(TN − κNg TN ),

TN(N∧TN ) = TN ,
ds∗

ds
=

1− κNg√
2

. (20)

Considering the equations (18) and (20), we have

αN(N∧TN ) ∧ TN(N∧TN ) =
1√
2

(−N + (N ∧ TN )). (21)

If we take the derivative of the equation (20), then T ′N(N∧TN ) vector is

T ′N(N∧TN ) =

√
2

1− κNg
(
−N + κNg (N ∧ TN )

)
. (22)

Using the equations (6), (9), (21) and (22), we can write κ
N(N∧TN )
g geodesic curvature as

κN(N∧TN )
g =

β + γ

β − γ .

Definition 6 Let (N) be a spherical curve of α(s), TN and N ∧ TN be
Sabban vectors of (N). Then TN (N ∧ TN )-Smarandache curve can be
identified as

αTN (N∧TN ) =
TN + (N ∧ TN )√

2
(23)

or substituting the equation (7),(8)into equation (23) we have

αTN (N∧TN ) =
1√
2

(C +W ).

Theorem 7 The geodesic curvature according to TN (N ∧ TN )-Smarandache curve is

κTN (N∧TN )
g =

1
(
1 + 2(κNg )2

) 5
2

(2λ1κ
N
g − λ2 + λ3) (24)

where

λ1 =
(
2κNg (κNg )′ + κNg + 2(κNg )3

)
, (25)

λ2 = −1− (κNg )′ − 3(κNg )2 − 2(κNg )4,

λ3 = (κNg )′ − (κNg )2 + 2(κNg )4.
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Proof. If we take the derivative of the equation (23) then TTN (N∧TN ) vector is

TTN (N∧TN )
ds∗

ds
=

1√
2

(
−N − κNg TN + κNg (N ∧ TN )

)
, (26)

TTN (N∧TN ) =
1√

1 + 2(κNg )2

(
−N − κNg TN + κNg (N ∧ TN )

)
,

ds∗

ds
=

1 + 2
(
κNg
)2

√
2

.

Considering the equations (23) and (26), we have

αTN (N∧TN ) ∧ TTN (N∧TN ) =

(
2κNg N − TN + (N ∧ TN )

)
√

2 + 4(κNg )2
. (27)

If we take the derivative of the equation (26), then T ′TN (N∧TN ) vector is

T ′TN (N∧TN )

ds∗

ds
=

( 1√
1 + 2(κNg )2

)′(−N − κNg TN + κNg (N ∧ TN )
)

+
( 1√

1 + 2(κNg )2

)(
−N − κNg TN + κNg (N ∧ TN )

)′
,

T ′TN (N∧TN )

ds∗

ds
= −

2κNg (κNg )′

(
1 + 2(κNg )2

) 3
2

(
−N − κNg TN + κNg (N ∧ TN )

)

+
1√

1 + 2(κNg )2

(
κNg − (1 + (κNg )′ + (κNg )2)

)
TN

+
(
((κNg )′ − (κNg )2)(N ∧ TN )

)
,

T ′TN (N∧TN ) =

√
2
(
2κNg (κNg )′ + κNg + 2(κNg )3

)
(
1 + 2(κNg )2

)2 N (28)

−
√

2
(
1 + (κNg )′ + 3(κNg )2 + 2(κNg )4

)
(
1 + 2(κNg )2

)2 TN

+

√
2
(
(κNg )′ − (κNg )2 + 2(κNg )4

)
(
1 + 2(κNg )2

)2 (N ∧ TN ).

Using the equations (6),(25),(27) and (28), we can write κ
TN (N∧TN )
g geodesic curvature as

κTN (N∧TN )
g =

1
(
1 + 2(κNg )2

) 5
2

(
2λ1κ

N
g − λ2 + λ3

)
.

Corollary 8 The geodesic curvature of the TN (N ∧TN )-Smarandache curve according to the
alternative frame is

κTN (N∧TN )
g =

β4

(
β2 + 2γ2

) 5
2

(
2λ1γ + (λ3 − λ2)β

)
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where

λ1 = 2
γ

β

(γ
β

)′
+
γ

β
+ 2

γ3

β3
,

λ2 = −1−
(γ
β

)′ − 3
γ2

β2
− 2

γ4

β4
,

λ3 =
(γ
β

)′ − γ2

β2
+ 2

γ4

β4
.

Definition 9 Let (N) be a spherical curve of α(s),N , TN and N ∧ TN be Sabban vectors of
(N). Then NTN (N ∧ TN )-Smarandache curve can be identified as

αNTN (N∧TN ) =
1√
3

(
N + TN + (N ∧ TN )

)
(29)

or substituting the equation (7), (8)into equation (29) we reach

αNTN (N∧TN ) =
1√
3

(N + C +W ).

Theorem 10 The geodesic curvature according to NTN (N ∧ TN )-Smarandache curve is

κTN (N∧TN )
g =

(−1 + 2κNg )λ1 − (1 + κNg )λ2 + (2− κNg )λ3

4
√

2
(
1− (κNg ) + (κNg )2

) 5
2

. (30)

where

λ1 = −(κNg )′(1− 2κNg ) + 2
(
− 1 + 2κNg − 2(κNg )2 + (κNg )3

)
,

λ2 = (κNg )′
(
1− 3κNg + 2(κNg )2

)
− 2
(
1− κNg + (κNg )2

)(
1 + (κNg )′ + (κNg )2

)
,

λ3 = (κNg )′
(
κNg − 2(κNg )2

)
+ 2
(
1− κNg + (κNg )2

)(
κNg − (κNg )2 + (κNg )′

)
.

(31)

Proof. If we take the derivative of the equation (29) then TNTN (N∧TN ) vector is

TNTN (N∧TN )
ds∗

ds
=

1√
3

(
−N + (1− κNg )TN + κNg (N ∧ TN )

)
,

TNTN (N∧TN ) =
−N + (1− κNg )TN + κNg (N ∧ TN )

√
2
√

1− κNg + (κNg )2
, (32)

ds∗

ds
=

√
2√
3

√
1− κNg + (κNg )2.

Considering the equations (29) and (32), we have

αNTN (N∧TN ) ∧ TNTN (N∧TN ) =
(2κNg − 1)N − (1 + κNg )TN + (2− κNg )(N ∧ TN )

√
6
√

1− κNg + (κNg )2
. (33)

If we take the derivative of the equation (32), then T ′NTN (N∧TN ) vector is

T ′NTN (N∧TN ) =

√
3

4

(κNg )′
(
1− 2(κNg )

)(
−N + (1− κNg )TN + κNg (N ∧ TN )

)
(
1− κNg + (κNg )2

)2

+

√
3

2

(κNg − 1)N −
(
1 + (κNg )′ + (κNg )2

)
TN

1− κNg + (κNg )2
(34)

+

√
3

2

(
κNg − (κNg )2 + (κNg )′

)
(N ∧ TN )

1− κNg + (κNg )2

S. Şenyurt, K. Akdağ : N-Smarandache Curves According to the Sabban Frame of the Spherical
Indicatrix Curve

150

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



T ′NTN (N∧TN ) =

√
3

4
.
−(κNg )′

(
1− 2κNg

)
+ 2
(
− 1 + 2κNg − 2(κNg )2 + (κNg )3

)
(
1− κNg + (κNg )2

)2 N

+

√
3

4

(κNg )′
(
1− 3κNg + 2(κNg )2

)
(
1− κNg + (κNg )2

)2 TN

−
√

3

2

(
1− κNg + (κNg )2

)(
1 + (κNg )′ + (κNg )2

)
(
1− κNg + (κNg )2

)2 TN

+

√
3

4

(κNg )′
(
κNg − 2(κNg )2

)
(
1− κNg + (κNg )2

)2 (N ∧ TN )

−
√

3

2

2
(
1− κNg + (κNg )2

)(
κNg − (κNg )2 + (κNg )′

)
(
1− κNg + (κNg )2

)2 (N ∧ TN )

Using the equations (6), (31), (33) and (34), we can write κ
NTN (N∧TN )
g geodesic curvature as

κTN (N∧TN )
g =

1

4
√

2
(
1− (κNg ) + (κNg )2

) 5
2

(
(−1 + 2κNg )λ1 − (1 + κNg )λ2 + (2− κNg )λ3

)
.

Corollary 11 The geodesic curvature of the NTN (N ∧ TN )-Smarandache curve according to
the alternative frame is

κNTN (N∧TN )
g =

β4

4
√

2
(
γ2 + β2 − βγ

) 5
2

(
(2γ − β)λ1 − (β + γ)λ2 + (2β − γ)λ3

)

where

λ1 = −β − 2γ

β

(γ
β

)′
+
−2β3 + 4β2γ − 4βγ2 + 2γ3

β3
,

λ2 =
β2 − 3βγ + 2γ2

β2
(γ
β

)′ − 2
(γ2 − βγ + β2

β2
)(

(
γ

β
)′ +

γ2 + β2

β2
)
,

λ3 =
βγ − 2γ2

β

(γ
β

)′
+ 2
(γ2 − βγ + β2

β2
)(βγ − γ2

β2
+ (

γ

β
)′
)
.

Example 12 Let ;

γ(s) =

(
9

208 sin 16s− 1
117 sin 36s,− 9

208 cos 16s+ 1
117 cos 36s, 6

65 sin 10s

)

be a curve with the alternative frame of {N,C,W} given as

N(s) = (
12

13
cos 26s,−12

13
sin 26s,

5

13
), C(s) = (− sin 26s, cos 26s, 0),

W (s) = (
5

13
cos 26s,− 5

13
sin 26s,

12

13
).

Then we have the following spherical indicatrix curve (N) and β1, β2, β3 and β4 Smarandache
curves according to Sabban frame on S2. These curves are (see Figure 2,3)

β1 =
1√
2

(
12

13
cos 26s− 24 sin 26s,

12

13
sin 26s− 24 cos 26s,− 5

13
),

β2 =
1√
2

(
132

13
cos 26s,−108

13
sin 26s,

282

13
),

β3 =
1√
2

(
120

13
cos 26s− 24 sin 26s, 24 cos 26s− 120

13
sin 26s,

288

13
),

β4 =
1√
3

(
132

13
cos 26s− 24 sin 26s, 24 cos 26s− 108

13
sin 26s,

283

13
).
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(a) β1-Smarandache curve,
s ∈ (−π, 4π3 )

(b) β2-Smarandache curve,
s ∈ (0, 4π3 )

Figure 2

(a) β3-Smarandache curve,
s ∈ (−π, π2 )

(b) β2-Smarandache curve,
s ∈ (−π

2 ,
π
2 )

Figure 3
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[2] Bektaş O., Yüce S., Special Smarandache Curves According to Darboux Frame in Eu-
clidean 3- Space, Romanian Journal of Mathematics and Computer Science, 2013, 3(1),
48-59.
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[6] Taşköprö K., Tosun M., Smarandache curves on S2, Boletim da Sociedade Paranaense de
Matematica 3 Srie.,2014, 32 (1), 51-59.

[7] Turgut M., Yılmaz S., Smarandache Curves in Minkowski Space-time, International J.
Math. Combin.,2008, 3(51-55).
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On the extended Simpson type integral inequalities
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Abstract

In this paper, we have established some generalized Simpson type inequalities for
functions whose derivatives in absolute value are convex.

Keywords: Simpson type inequalities, Convex functions, integral inequalities.

1 Introduction

The following inequality is well known in the literature as Simpson’s inequality.

Theorem 1 Let f : [a, b]→ R be a four times continuously differentiable mapping on (a, b)
and

∥∥f (4)
∥∥
∞ = sup

∣∣f (4)(x)
∣∣ <∞. Then, the following inequality holds:

∣∣∣∣
1

3

[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1

b− a

∫ b

a
f (x) dx

∣∣∣∣ ≤
1

2880

∥∥∥f (4)
∥∥∥
∞

(b− a)4.

For recent refinements, counterparts, generalizations and new Simpson’s type inequalities,
see ([1]-[21]).

In [2], Dragomir et. al. proved the following some recent developments on Simpson’s
inequality for which the remainder is expressed in terms of lower derivatives than the fourth.

Theorem 2 Suppose f : [a; b] → R is an absolutely continuous mapping on [a, b] whose
derivative belongs to Lp[a, b]. Then, the following inequality holds,

∣∣∣∣
1

3

[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1

b− a

∫ b

a
f (x) dx

∣∣∣∣

≤ 1

6

[
2q+1 + 1

3(q + 1)

] 1
q

(b− a)
1
q
∥∥f ′
∥∥
p

where 1
p + 1

q = 1.

Also, the following (1) inequality was obtained by using the following identity which is
given by Alomari et. all in [1]:
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Lemma 3 Let f : I ⊂ R→ R be an absolutely continuous mapping on I◦ where a, b ∈ I with
a < b. Then the following equality holds:

1

6

[
f (a) + 4f

(
a+ b

2
+ f (b)

)]
− 1

b− a

∫ b

a
f (x) dx

= (b− a)

∫ 1

0
p (t) f ′ (tb+ (1− t) a) dt

where

p (t) =

{
t− 1

6 , t ∈
[
0, 12
)
,

t− 5
6 , t ∈

[
1
2 , 1
]
.

Theorem 4 Let f : I ⊂ [0,∞)→ R be a differentiable mapping on I◦ such that f ′ ∈ L [a, b] ,
where a, b ∈ I with a < b. If |f ′| is convex on [a, b] , then the following inequality holds:

∣∣∣∣
1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a
f (x) dx

∣∣∣∣ (1)

≤ 5 (b− a)

72

[∣∣f ′ (a) + f ′ (b)
∣∣] .

In [13], Sarikaya et. al. obtained inequalities for differentiable convex mappings which are
connected with Simpson’s inequality, and they used the following lemma to prove it.

Lemma 5 Let f : I ⊂ R → R be an absolutely continuous mapping on I◦ such that f ′ ∈
L1 [a, b], where a, b ∈ I◦ with a < b, then the following equality holds:

1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a
f(x)dx

=
b− a

2

∫ 1

0

[(
t

2
− 1

3

)
f ′
(

1 + t

2
b+

1− t
2

a

)
+

(
1

3
− t

2

)
f ′
(

1 + t

2
a+

1− t
2

b

)]
dt.

(2)

The main inequality in [13], pointed out for s = 1, as follows:

Theorem 6 Let f : I ⊂ R→ R be a differentiable mapping on I◦ such that f ′ ∈ L1 [a, b] , where
a, b ∈ I◦ with a < b. If |f ′|q is a convex on [a, b] , q > 1, then the following inequality holds:

∣∣∣∣
1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣

≤ (b− a)

12

(
1 + 2p+1

3(p+ 1)

) 1
p

{(
3 |f ′ (b)|q + |f ′ (a)|q

4

) 1
q

+

( |f ′ (b)|q + 3 |f ′ (a)|q
4

) 1
q

}
,

(3)

where 1
p + 1

q = 1.

The main aim of this paper is to establish new Simpson’s type inequalities for the class of
functions whose derivatives in absolute value at certain powers are convex functions.
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2 Main Results

To prove our main result, we need the following definition and lemma.

Definition 7 The function f : [a, b] ⊂ R → R, is said to be convex if the following inquality
holds

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y)

for all x, y ∈ [a, b] and λ ∈ [0, 1] . We say that f is concave if (−f) is convex.

Lemma 8 Let f : I = [a, b] ⊂ R → R be an absolutely continuous mapping on I◦ such that
f ′ ∈ L1 ([a, b]) , where a, b ∈ I◦ with a < b. Then the following inequality holds:

1

6

[
f (a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f (b)

]
− 1

b− a

∫ b

a
f (x) dx

=
(b− a)

9

[∫ 1

0

(
t

2
− 1

3

)(
f ′
(

2 + t

3
b+

1− t
3

a

)

+f ′
(

1 + t

3
b+

2− t
3

a

)
+ f ′

(
t

3
b+

3− t
3

a

))
dt

]

+
(b− a)

9

[∫ 1

0

(
1

3
− t

2

)(
f ′
(

2 + t

3
b+

1− t
3

a

)

+f ′
(

1 + t

3
b+

2− t
3

a

)
+ f ′

(
t

3
b+

3− t
3

a

))
dt.

Proof. It suffices to note that

I =

∫ 1

0

(
t

2
− 1

3

)[
f ′
(

2 + t

3
b+

1− t
3

a

)
+ f ′

(
1 + t

3
b+

2− t
3

a

)
+ f ′

(
t

3
b+

3− t
3

a

)]
dt

+

∫ 1

0

(
1

3
− t

2

)[
f ′
(

2 + t

3
b+

1− t
3

a

)
+ f ′

(
1 + t

3
b+

2− t
3

a

)
+ f ′

(
t

3
b+

3− t
3

a

)]
dt

= I1 + I2 + I3 + I4 + I5 + I6.

Integrating by parts

I1 =

∫ 1

0

(
t

2
− 1

3

)
f ′
(

2 + t

3
b+

1− t
3

a

)
dt

=
3

b− a

[(
t

2
− 1

3

)
f

(
2 + t

3
b+

1− t
3

a

)∣∣∣∣
1

0

− 1

2

∫ 1

0
f

(
2 + t

3
b+

1− t
3

a

)
dt

]

=
3

b− a

[
1

6
f (b) +

1

3
f

(
a+ 2b

3

)]
− 3

2 (b− a)

∫ 1

0
f

(
2 + t

3
b+

1− t
3

a

)
dt

=
1

2 (b− a)

[
f (b) + 2f

(
a+ 2b

3

)]
− 9

2 (b− a)2

∫ b

a+2b
3

f (x) dx.

Similarly we have,

I2 =

∫ 1

0

(
t

2
− 1

3

)
f ′
(

1 + t

3
b+

2− t
3

a

)
dt

=
3

b− a

[(
t

2
− 1

3

)
f

(
1 + t

3
b+

2− t
3

a

)∣∣∣∣
1

0

− 1

2

∫ 1

0
f

(
1 + t

3
b+

2− t
3

a

)
dt

]

=
1

2 (b− a)

[
f

(
a+ 2b

3

)
+ 2f

(
2a+ b

3

)]
− 9

2 (b− a)2

∫ a+2b
3

2a+b
3

f (x) dx,
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I3 =

∫ 1

0

(
t

2
− 1

3

)
f ′
(
t

3
b+

3− t
3

a

)
dt

=
1

2 (b− a)

[
f

(
2a+ b

3

)
+ 2f (a)

]
− 9

2 (b− a)2

∫ 2a+b
3

a
f (x) dx,

I4 =

∫ 1

0

(
1

3
− t

2

)
f ′
(

2 + t

3
a+

1− t
3

b

)
dt

=
3

a− b

[(
1

3
− t

2

)
f

(
2 + t

3
a+

1− t
3

b

)∣∣∣∣
1

0

+
1

2

∫ 1

0
f

(
2 + t

3
a+

1− t
3

b

)
dt

]

=
3

a− b

[
−1

6
f (a)− 1

3
f

(
2a+ b

3

)]
− 3

2 (b− a)

∫ 1

0
f

(
2 + t

3
a+

1− t
3

b

)
dt

=
1

2 (b− a)

[
f (a) + 2f

(
2a+ b

3

)]
− 9

2 (b− a)2

∫ 2a+b
3

a
f (x) dx,

I5 =

∫ 1

0

(
1

3
− t

2

)
f ′
(

1 + t

3
a+

2− t
3

b

)
dt

=
1

2 (b− a)

[
f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)]
− 9

2 (b− a)2

∫ a+2b
3

2a+b
3

f (x) dx,

I6 =

∫ 1

0

(
1

3
− t

2

)
f ′
(
t

3
a+

3− t
3

b

)
dt

=
1

2 (b− a)

[
f

(
a+ 2b

3

)
+ 2f (b)

]
− 9

2 (b− a)2

∫ b

a+2b
3

f (x) dx.

Multiplying with related coefficient and summing the above six equations, we get

b− a
9

I =
1

6

[
f (a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f (b)

]

which completes the proof.

Corollary 9 Under the condition of Lemma 8 and f is convex function we have

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
(4)

≤
[
f (a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f (b)

]
.

Theorem 10 Let f : I = [a, b] ⊂ R → R be an absolutely continuous mapping on I◦ such
that f ′ ∈ L1 ([a, b]) , where a, b ∈ I◦ with a < b. If the mapping |f ′| is convex on [a, b] , then
we have the following inequality:

∣∣∣∣
1

6

[
f (a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f (b)

]
− 1

b− a

∫ b

a
f (x) dx

∣∣∣∣ (5)

≤ 127

2916
(b− a)

[∣∣f ′ (a)
∣∣+
∣∣f ′ (b)

∣∣] .
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Proof. From Lemma 8 and by computing in integral right side of above inequalities, we get

J1 =

∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
∣∣∣∣f ′
(

2 + t

3
b+

1− t
3

a

)∣∣∣∣ dt (6)

≤
∫ 2

3

0

(
1

3
− t

2

)[
2 + t

3

∣∣f ′ (b)
∣∣+

1− t
3

∣∣f ′ (a)
∣∣
]
dt

+

∫ 1

2
3

(
t

2
− 1

3

)[
2 + t

3

∣∣f ′ (b)
∣∣+

1− t
3

∣∣f ′ (a)
∣∣
]
dt

≤
∫ 2

3

0

(
1

3
− t

2

)(
2 + t

3

) ∣∣f ′ (b)
∣∣ dt+

∫ 2
3

0

(
1

3
− t

2

)(
1− t

3

) ∣∣f ′ (a)
∣∣ dt

+

∫ 1

2
3

(
t

2
− 1

3

)(
2 + t

3

) ∣∣f ′ (b)
∣∣ dt+

∫ 1

2
3

(
t

2
− 1

3

)(
1− t

3

) ∣∣f ′ (a)
∣∣ dt

=
1

18

[
−t3 − 2t2 + 4t

∣∣ 23
0

∣∣f ′ (b)
∣∣+ t3 − 5

2
t2 + 2t

∣∣∣∣
2
3

0

∣∣f ′ (a)
∣∣

+ t3 + 2t2 − 4t
∣∣1
2
3

∣∣f ′ (b)
∣∣+ −t3 +

5

2
t2 − 2t

∣∣∣∣
1

2
3

∣∣f ′ (a)
∣∣
]

=
1

18

[
106

54

∣∣f ′ (b)
∣∣+

29

54

∣∣f ′ (a)
∣∣
]
.

Similarly we have,

J2 =

∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
∣∣∣∣f ′
(

1 + t

3
b+

2− t
3

a

)∣∣∣∣ dt ≤
1

18

[
37

54

∣∣f ′ (b)
∣∣+

74

54

∣∣f ′ (a)
∣∣
]
, (7)

J3 =

∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
∣∣∣∣f ′
(
t

3
b+

3− t
3

a

)∣∣∣∣ dt ≤
1

18

[
16

54

∣∣f ′ (b)
∣∣+

119

54

∣∣f ′ (a)
∣∣
]
, (8)

J4 =

∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
∣∣∣∣f ′
(

2 + t

3
a+

1− t
3

b

)∣∣∣∣ dt ≤
1

18

[
106

54

∣∣f ′ (a)
∣∣+

29

54

∣∣f ′ (b)
∣∣
]
, (9)

J5 =

∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
∣∣∣∣f ′
(

1 + t

3
a+

2− t
3

b

)∣∣∣∣ dt ≤
1

18

[
37

54

∣∣f ′ (a)
∣∣+

74

54

∣∣f ′ (b)
∣∣
]
, (10)

J6 =

∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
∣∣∣∣f ′
(
t

3
a+

3− t
3

b

)∣∣∣∣ dt ≤
1

18

[
16

54

∣∣f ′ (a)
∣∣+

119

54

∣∣f ′ (b)
∣∣
]
. (11)

a combination of (6)-(11) immediately gives the required inequality (5).

Remark 11 Under the assumption of Theorem 10, by using the inequality (4), we get

∣∣∣∣
[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a
f (x) dx

∣∣∣∣

≤
∣∣∣∣
1

6

[
f (a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f (b)

]
− 1

b− a

∫ b

a
f (x) dx

∣∣∣∣

≤ 127

2916
(b− a)

[∣∣f ′ (a)
∣∣+
∣∣f ′ (b)

∣∣] ,

then this inequality is better than the inequality (1).
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Theorem 12 Let f : I = [a, b] ⊂ R → R be an absolutely continuous mapping on I◦ such
that f ′ ∈ L1 ([a, b]) , where a, b ∈ I◦ with a < b. If the mapping |f ′| is convex on [a, b] , then
we have the following inequality

∣∣∣∣
1

6

[
f (a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f (b)

]
− 1

b− a

∫ b

a
f (x) dx

∣∣∣∣ (12)

≤ (b− a)

9

(
1 + 2p+1

(p+ 1) 3p+1

) 1
p

{( |f ′ (a)|q + 5 |f ′ (b)|q
6

) 1
q

(
3 |f ′ (a)|q + 3 |f ′ (b)|q

6

) 1
q

+

(
5 |f ′ (a)|q + |f ′ (b)|q

6

) 1
q

}
.

where 1
p + 1

q = 1.

Proof. From Lemma 8 and by Hölder’s inequality, we get

J1 =

(∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
p) 1

p
(∫ 1

0

∣∣∣∣f ′
(

2 + t

3
b+

1− t
3

a

)∣∣∣∣
q

dt

) 1
q

(13)

≤
(∫ 2

3

0

(
1

3
− t

2

)p) 1
p [∫ 1

0

(
2 + t

3

∣∣f ′ (b)
∣∣q +

1− t
3

∣∣f ′ (a)
∣∣q
)] 1

q

dt

+

(∫ 1

2
3

(
t

2
− 1

3

)p) 1
p [∫ 1

0

(
2 + t

3

∣∣f ′ (b)
∣∣q +

1− t
3

∣∣f ′ (a)
∣∣q
)] 1

q

dt

=

(
2p+2 + 2

(p+ 1) 6p+1

) 1
p
( |f ′ (a)|q + 5 |f ′ (b)|q

6

) 1
q

.

Similarly, we have

J2 =

(∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
p) 1

p
(∫ 1

0

∣∣∣∣f ′
(

1 + t

3
b+

2− t
3

a

)∣∣∣∣
q

dt

) 1
q

(14)

≤
(

2p+2 + 2

(p+ 1) 6p+1

) 1
p
(

3 |f ′ (a)|q + 3 |f ′ (b)|q
6

) 1
q

,

J3 =

(∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
p) 1

p
(∫ 1

0

∣∣∣∣f ′
(
t

3
b+

3− t
3

a

)∣∣∣∣
q) 1

q

dt (15)

≤
(

2p+2 + 2

(p+ 1) 6p+1

) 1
p
(

5 |f ′ (a)|q + |f ′ (b)|q
6

) 1
q

,

J4 =

(∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
p) 1

p
[∫ 1

0

∣∣∣∣f ′
(

2 + t

3
a+

1− t
3

b

)∣∣∣∣
q

dt

] 1
q

(16)

≤
(

2p+2 + 2

(p+ 1) 6p+1

) 1
p
(

5 |f ′ (a)|q + |f ′ (b)|q
6

) 1
q

,

J5 =

(∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
p) 1

p
(∫ 1

0

∣∣∣∣f ′
(

1 + t

3
a+

2− t
3

b

)∣∣∣∣
q

dt

) 1
q

(17)

≤
(

2p+2 + 2

(p+ 1) 6p+1

) 1
p
(

3 |f ′ (a)|q + 3 |f ′ (b)|q
6

) 1
q

,
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J6 =

(∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
p) 1

p
(∫ 1

0

∣∣∣∣f ′
(
t

3
a+

3− t
3

b

)∣∣∣∣
q

dt

) 1
q

(18)

≤
(

2p+2 + 2

(p+ 1) 6p+1

) 1
p
( |f ′ (a)|q + 5 |f ′ (b)|q

6

) 1
q

.

By simple computation, we obtain that

∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
p

dt =

∫ 2
3

0

(
1

3
− t

2

)p
dt+

∫ 1

2
3

(
t

2
− 1

3

)p
dt =

2
(
1 + 2p+1

)

(p+ 1) 6p+1 .

Thus, by combinations of (13)-(18) and multiply b−a
9 immediately gives the required inequality

(12).

Corollary 13 Under the assumption of Theorem 12, by using the inequality (4), we get

∣∣∣∣
[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a
f (x) dx

∣∣∣∣

≤
∣∣∣∣
1

6

[
f (a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f (b)

]
− 1

b− a

∫ b

a
f (x) dx

∣∣∣∣

≤ (b− a)

9

(
1 + 2p+1

(p+ 1) 3p+1

) 1
p

{( |f ′ (a)|q + 5 |f ′ (b)|q
6

) 1
q

(
3 |f ′ (a)|q + 3 |f ′ (b)|q

6

) 1
q

+

(
5 |f ′ (a)|q + |f ′ (b)|q

6

) 1
q

}
.

Theorem 14 Let f : I = [a, b] ⊂ R → R be an absolutely continuous mapping on I◦ such
that f ′ ∈ L1 ([a, b]) , where a, b ∈ I◦ with a < b. If the mapping |f ′| is convex on [a, b] , then
we have the following inequality

∣∣∣∣
1

6

[
f (a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f (b)

]
− 1

b− a

∫ b

a
f (x) dx

∣∣∣∣ (19)

≤ b− a
162

(
5

2

)1− 1
q

[(
106

54

∣∣f ′ (b)
∣∣q +

29

54

∣∣f ′ (a)
∣∣q
) 1
q

+

(
37

54

∣∣f ′ (b)
∣∣q +

74

54

∣∣f ′ (a)
∣∣
) 1
q

+

(
16

54

∣∣f ′ (b)
∣∣q +

119

54

∣∣f ′ (a)
∣∣q
) 1
q

+

(
106

54

∣∣f ′ (a)
∣∣q +

29

54

∣∣f ′ (b)
∣∣q
) 1
q

+

(
37

54

∣∣f ′ (a)
∣∣q +

74

54

∣∣f ′ (b)
∣∣q
) 1
q

+

(
16

54

∣∣f ′ (a)
∣∣q +

119

54

∣∣f ′ (b)
∣∣q
) 1
q

]
.
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Proof. From Lemma 8 and by using power mean inequalities and convexity of |f ′|q, we get

J
′
1 =

(∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣ dt
)1− 1

q
(∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
∣∣∣∣f ′
(

2 + t

3
b+

1− t
3

a

)∣∣∣∣
q

dt

) 1
q

(20)

≤
(∫ 2

3

0

(
1

3
− t

2

)
dt+

∫ 1

2
3

(
t

2
− 1

3

)
dt

)1− 1
q

×
[∫ 2

3

0

(
1

3
− t

2

)(
2 + t

3

∣∣f ′ (b)
∣∣q +

1− t
3

∣∣f ′ (a)
∣∣q
)
dt

+

∫ 1

2
3

(
t

2
− 1

3

)(
2 + t

3

∣∣f ′ (b)
∣∣q +

1− t
3

∣∣f ′ (a)
∣∣q
)
dt

] 1
q

.

≤
(

5

36

)1− 1
q
[

1

18

(
106

54

∣∣f ′ (b)
∣∣q +

29

54

∣∣f ′ (a)
∣∣q
)] 1

q

.

Similarly, we have

J ′2 =

(∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
)1− 1

q
(∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
∣∣∣∣f ′
(

1 + t

3
b+

2− t
3

a

)∣∣∣∣
q

dt

) 1
q

(21)

≤
(

5

36

)1− 1
q
[

1

18

(
37

54

∣∣f ′ (b)
∣∣q +

74

54

∣∣f ′ (a)
∣∣q
)] 1

q

,

J ′3 =

(∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
)1− 1

q
(∫ 1

0

∣∣∣∣
t

2
− 1

3

∣∣∣∣
∣∣∣∣f ′
(
t

3
b+

3− t
3

a

)∣∣∣∣
q) 1

q

dt (22)

≤
(

5

36

)1− 1
q
[

1

18

(
16

54

∣∣f ′ (b)
∣∣q +

119

54

∣∣f ′ (a)
∣∣q
)] 1

q

,

J ′4 =

(∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
)1− 1

q
[∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
∣∣∣∣f ′
(

2 + t

3
a+

1− t
3

b

)∣∣∣∣
q

dt

] 1
q

(23)

≤
(

5

36

)1− 1
q
[

1

18

(
106

54

∣∣f ′ (a)
∣∣q +

29

54

∣∣f ′ (b)
∣∣q
)] 1

q

,

J ′5 =

(∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
)1− 1

q
(∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
∣∣∣∣f ′
(

1 + t

3
a+

2− t
3

b

)∣∣∣∣
q

dt

) 1
q

(24)

≤
(

5

36

)1− 1
q
[

1

18

(
37

54

∣∣f ′ (a)
∣∣q +

74

54

∣∣f ′ (b)
∣∣q
)] 1

q

,

J ′6 =

(∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
)1− 1

q
(∫ 1

0

∣∣∣∣
1

3
− t

2

∣∣∣∣
∣∣∣∣f ′
(
t

3
a+

3− t
3

b

)∣∣∣∣
q

dt

) 1
q

(25)

≤
(

5

36

)1− 1
q
[

1

18

(
106

54

∣∣f ′ (a)
∣∣q +

119

54

∣∣f ′ (b)
∣∣q
)] 1

q

.

Therefore, by combinations of (20)-(25) immediately gives the required inequality (19).
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3 Conclusion Remark

In conclusion, in this article, we have introduced we have established some generalized Simpson
type inequalities for functions whose derivatives in absolute value are convex.
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Some New Generalized Hermite-Hadamard Type

Inequalities for Twice Differentiable Functions

Erhan SET∗

Ordu University,
Department of Mathematics, Ordu, Turkey

Abstract

This paper deals with generalizations of Hermite-Hadamard type inequalities which
estimate the difference between the left and middle part in Hermite-Hadamard inequality.
The inequalities presented here are also pointed out to include some known results as their
special cases.
Keywords: s-convexity, Hermite-Hadamard type inequalities.

1 Introduction

The function f : [a, b]→ R, I 6= Ø is said to be convex, if we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ [a, b] and t ∈ [0, 1].
The theory of inequalities has an important role in science such as mathematics, physics

and engineering. One of the most famous inequality for convex functions is Hermite-Hadamard
inequality that is expressed as follow:
If f : [a, b]→ R is a convex function, then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
. (1)

Here and in the following, let R, R+, and N be the sets of real numbers, positive real numbers,
and positive integers, respectively, and let R+

0 := R+ ∪{0} and N0 := N∪{0}. The inequality
(1) has attracted a remarkable number of researchers’ attention. For new proofs, refinements,
generalizations, and numerous applications of this inequality (1), we refer and the historical
consideration for example, to [2, 3, 6] and the references cited therein.

The concept of s−convexity in the second sense is defined as follows (see, [1, 5]):

Definition 1 A function f : [0,∞)→ R is said to be s-convex in the second sense if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y).

for all x, y ∈ [0,∞), t ∈ [0, 1] and for some fixed s ∈ (0, 1].

The class of s−convex functions in the second sense is denoted by K2
s .

It is clear that for s = 1 s−convex function in the second sense reduces to the ordinary
convex function defined on [0,∞].
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Example 2 [5] Let s ∈ (0, 1) and a, b, c ∈ R. We define the function f : [0,∞)→ R as

f(t) =

{
a t = 0,
bts + c t > 0.

It can be easily checked that if b ≥ 0 and 0 ≤ c ≤ a, then f ∈ K2
s .

In [4], Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard inequality which
holds for the s-convex functions.

Theorem 3 Suppose that f : [0,∞) → [0,∞) is an s−convex function in the second sense,
where s ∈ (0, 1), and let a, b ∈ [0,∞), a < b. If f ′ ∈ L[a, b], then the following inequalities
hold:

2s−1f
(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

s+ 1
. (2)

The constant k = 1
s+1 is the best possible in the second inequality in (2).

The aim of this paper is to establish extension and refinement of Hermite-Hadamard type
inequalities for twice differentiable functions, by modifying the results in [7].

2 Main Results

Lemma 4 Let f : I ⊂ R → R be twice differentiable function on I◦, a, b ∈ I◦ with a < b. If
f ′′ ∈ L[a, b], then following identity holds:

1

(b− a)(1− 2µ)

∫ µa+(1−µ)b

µb+(1−µ)a
f(u)du− f

(
a+ b

2

)

=
(b− a)2(1− 2µ)2

4

{∫ 1
2

0
t2

[
f ′′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)

+f ′′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)
dt

]
(3)

+

∫ 1

1
2

(1− t)2
[
f ′′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)

+f ′′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)
dt

]}

where µ ∈ [0, 1] \ {12}.
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Proof. By integrating by parts, we have the following identity

∫ 1
2

0
t2

[
f ′′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)

+f ′′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)
dt

]

+

∫ 1

1
2

(1− t)2
[
f ′′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)

+f ′′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)
dt

]

= 2

[∫ 1
2

0
t2f ′′ (t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)) dt

+

∫ 1
2

0
t2f ′′ (t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)) dt

]

= 2


t2

f ′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)

(b− a)(1− 2µ)

∣∣∣∣∣

1
2

0

−
∫ 1

2

0
2t
f ′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)

(b− a)(1− 2µ)
dt

−t2
f ′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)

(b− a)(1− 2µ)

∣∣∣∣∣

1
2

0

+

∫ 1
2

0
2t
f ′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)

(b− a)(1− 2µ)
dt




=
2

(b− a)(1− 2µ)

×
[
f ′
(
a+b
2

)

4
− 2

∫ 1
2

0
tf ′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)
dt

−f
′ (a+b

2

)

4
+ 2

∫ 1
2

0
tf ′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)
dt

]

=
4

(b− a)(1− 2µ)


−t

f
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)

(b− a)(1− 2µ)

∣∣∣∣∣

1
2

0

+

∫ 1
2

0

f
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)

(b− a)(1− 2µ)
dt

−t
f
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)

(b− a)(1− 2µ)

∣∣∣∣∣

1
2

0

+

∫ 1
2

0

f
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)

(b− a)(1− 2µ)
dt
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=
4

(b− a)2(1− 2µ)2

[
−f

(
a+b
2

)

2
+

∫ 1
2

0
f
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)
dt

−f
(
a+b
2

)

2
+

∫ 1
2

0
f
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)
dt

]

=
4

(b− a)2(1− 2µ)2

[∫ 1

0
f
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)
dt− f

(
a+ b

2

)]
.

Using the change of the variable u = t (µa+ (1− µ) b) + (1 − t) (µb+ (1− µ) a) for t ∈ [0, 1]
which gives the required identity.

Remark 5 In Lemma 4, if we take µ = 1 in identity (3), then it becomes identity of Lemma
2 in [7].

Theorem 6 Let f : I ⊂ R → R be twice differentiable function on I◦ with f ′′ ∈ L[a, b]. If
|f ′′| is s-convex on [a, b], for some fixed s ∈ (0, 1] then the following inequality holds:

∣∣∣∣∣
1

(b− a)(1− 2µ)

∫ µa+(1−µ)b

µb+(1−µ)a
f(u)du− f

(
a+ b

2

) ∣∣∣∣∣

≤ (b− a)2(1− 2µ)2

2

×
[

1

(s+ 3)

1

2s+3
+

1

s+ 1

(
1− 1

2s+1

)
− 2

s+ 2

(
1− 1

2s+2

)
+

1

s+ 3

(
1− 1

2s+3

)]

×
[ ∣∣∣f ′′

(
µa+ (1− µ) b

)∣∣∣+
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
]

for µ ∈ [0, 1] \ {12}.

Proof. From Lemma 4, triangle inequality and the s-convexity of |f ′′|, it follows that

∣∣∣∣∣
1

(b− a)(1− 2µ)

∫ µa+(1−µ)b

µb+(1−µ)a
f(u)du− f

(
a+ b

2

) ∣∣∣∣∣
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≤ (b− a)2(1− 2µ)2

4

×
[∫ 1

2

0
t2
∣∣∣f ′′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)∣∣∣ dt

+

∫ 1
2

0
t2
∣∣∣f ′′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)∣∣∣ dt

+

∫ 1

1
2

(1− t)2
∣∣∣f ′′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)∣∣∣ dt

+

∫ 1

1
2

(1− t)2
∣∣∣f ′′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)∣∣∣ dt
]

≤ (b− a)2(1− 2µ)2

4

×
[∫ 1

2

0
t2
(
ts
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣+ (1− t)s
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
)
dt

+

∫ 1
2

0
t2
(
ts
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣+ (1− t)s
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
)
dt

+

∫ 1

1
2

(1− t)2
(
ts
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣+ (1− t)s
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
)
dt

+

∫ 1

1
2

(1− t)2
(
ts
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣+ (1− t)s
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
)
dt

]

=
(b− a)2(1− 2µ)2

4

×
[∫ 1

2

0
ts+2

∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣ dt+

∫ 1
2

0
t2(1− t)s

∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣ dt

+

∫ 1
2

0
ts+2

∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣ dt+

∫ 1
2

0
t2(1− t)s

∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣ dt

+

∫ 1

1
2

(1− t)2ts
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣ dt+

∫ 1

1
2

(1− t)s+2
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣ dt

+

∫ 1

1
2

(1− t)2ts
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣ dt+

∫ 1

1
2

(1− t)s+2
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣ dt
]

=
(b− a)2(1− 2µ)2

2

×
[

1

(s+ 3)

1

2s+3
+

1

s+ 1

(
1− 1

2s+1

)
− 2

s+ 2

(
1− 1

2s+2

)
+

1

s+ 3

(
1− 1

2s+3

)]

×
[ ∣∣∣f ′′

(
µa+ (1− µ) b

)∣∣∣+
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
]
.

So, the proof is completed.

Remark 7 In Theorem 6, if we take µ = 1 and s = 1, then it becomes inequality of Theorem
3 in [7].

Theorem 8 Let f : I ⊂ R → R be twice differentiable function on I◦ such that f ′′ ∈ L[a, b]
where a, b ∈ I, a < b. If |f ′′|q is s−convex on [a, b], for some fixed s ∈ (0, 1], q > 1, 1

p + 1
q = 1
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then the following inequality holds:

∣∣∣∣∣
1

(b− a)(1− 2µ)

∫ µa+(1−µ)b

µb+(1−µ)a
f(u)du− f

(
a+ b

2

) ∣∣∣∣∣

≤ (b− a)2(1− 2µ)2

2

(
1

(2p+ 1)

1

22p+1

) 1
p

×
[(

1

(s+ 1)

1

2s+1

∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+
1

(s+ 1)

(
1− 1

2s+1

) ∣∣∣f ′′ (µb+ (1− µ) a)
∣∣∣
q
) 1

q

+

(
1

(s+ 1)

(
1− 1

2s+1

) ∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+
1

(s+ 1)

1

2s+1

∣∣∣f ′′ (µb+ (1− µ) a)
∣∣∣
q
) 1

q
]

for µ ∈ [0, 1] \ {12}.

Proof. From Lemma 4, using well known Hölder inequality, triangle inequality and the
s-convexity of |f ′′|q, it follows that

∣∣∣∣∣
1

(b− a)(1− 2µ)

∫ µa+(1−µ)b

µb+(1−µ)a
f(u)du− f

(
a+ b

2

) ∣∣∣∣∣

≤ (b− a)2(1− 2µ)2

4

×
{(∫ 1

2

0
t2pdt

) 1
p
(∫ 1

2

0

∣∣∣f ′′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)∣∣∣
q
dt

) 1
q

+

(∫ 1
2

0
t2pdt

) 1
p
(∫ 1

2

0

∣∣∣f ′′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)∣∣∣
q
dt

) 1
q

+

(∫ 1

1
2

(1− t)2pdt
) 1

p

×
(∫ 1

1
2

∣∣∣f ′′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)∣∣∣
q
dt

) 1
q

+

∫ 1

1
2

(1− t)2pdt
) 1

p

×
(∫ 1

1
2

∣∣∣f ′′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)∣∣∣
q
dt

) 1
q
}
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≤ (b− a)2(1− 2µ)2

4

{(∫ 1
2

0
t2pdt

) 1
p

×
[(∫ 1

2

0

(
ts
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+ (1− t)s
∣∣∣f ′′ (µb+ (1− µ) a)

∣∣∣
q
)
dt

) 1
q

+

(∫ 1
2

0

(
ts
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
q

+ (1− t)s
∣∣∣f ′′ (µa+ (1− µ) b)

∣∣∣
q
)
dt

) 1
q
]

+

(∫ 1

1
2

(1− t)2pdt
) 1

p

×
[(∫ 1

1
2

(
ts
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+ (1− t)s
∣∣∣f ′′ (µb+ (1− µ) a)

∣∣∣
q
)
dt

) 1
q

+

(∫ 1

1
2

(
ts
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
q

+ (1− t)s
∣∣∣f ′′ (µa+ (1− µ) b)

∣∣∣
q
)
dt

) 1
q
]}

=
(b− a)2(1− 2µ)2

4

(
1

(2p+ 1)

1

22p+1

) 1
p

×
{(

1

(s+ 1)

1

2s+1

∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+
1

(s+ 1)

(
1− 1

2s+1

) ∣∣∣f ′′ (µb+ (1− µ) a)
∣∣∣
q
) 1

q

+

(
1

(s+ 1)

1

2s+1

∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
q

+
1

(s+ 1)

(
1− 1

2s+1

) ∣∣∣f ′′ (µa+ (1− µ) b)
∣∣∣
q
) 1

q

+

(
1

(s+ 1)

(
1− 1

2s+1

) ∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+
1

(s+ 1)

1

2s+1

∣∣∣f ′′ (µb+ (1− µ) a)
∣∣∣
q
) 1

q

+

(
1

(s+ 1)

(
1− 1

2s+1

) ∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
q

+
1

(s+ 1)

1

2s+1

∣∣∣f ′′ (µa+ (1− µ) b)
∣∣∣
q
) 1

q
}

=
(b− a)2(1− 2µ)2

2

(
1

(2p+ 1)

1

22p+1

) 1
p

×
{(

1

(s+ 1)

1

2s+1

∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+
1

(s+ 1)

(
1− 1

2s+1

) ∣∣∣f ′′ (µb+ (1− µ) a)
∣∣∣
q
) 1

q

+

(
1

(s+ 1)

(
1− 1

2s+1

) ∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+
1

(s+ 1)

1

2s+1

∣∣∣f ′′ (µb+ (1− µ) a)
∣∣∣
q
) 1

q
}

So the proof is completed.

Theorem 9 Let f : I ⊂ R → R be twice differentiable function on I◦ such that f ′′ ∈ L[a, b]
where a, b ∈ I, a < b. If |f ′′|q is s−convex on [a, b], for some fixed s ∈ (0, 1], q ≥ 1, then the
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following inequality holds:

∣∣∣∣∣
1

(b− a)(1− 2µ)

∫ µa+(1−µ)b

µb+(1−µ)a
f(u)du− f

(
a+ b

2

) ∣∣∣∣∣

≤ (b− a)2(1− 2µ)2

2(24)
1
p

[(
1

(s+ 3)

1

2s+3

∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+
1

(s+ 1)
(1− 1

2s+1
)− 2

s+ 2
(1− 1

2s + 2
) +

1

s+ 3
(1− 1

2s+3
)
∣∣∣f ′′ (µb+ (1− µ) a)

∣∣∣
q
) 1

q

+

(
1

(s+ 1)
(1− 1

2s+1
)− 2

s+ 2
(1− 1

2s+2
) +

1

s+ 3
(1− 1

2s+3
)
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+
1

(s+ 3)

1

2s+3

∣∣∣f ′′ (µb+ (1− µ) a)
∣∣∣
q
) 1

q
]

for µ ∈ [0, 1] \ {12}.

Proof. From Lemma 4, using well known power mean inequality, triangle inequality and the
s-convexity of |f ′′|q, it follows that

∣∣∣∣∣
1

(b− a)(1− 2µ)

∫ µa+(1−µ)b

µb+(1−µ)a
f(u)du− f

(
a+ b

2

) ∣∣∣∣∣

≤ (b− a)2(1− 2µ)2

4

{(∫ 1
2

0
t2dt

) 1
p

×
[(∫ 1

2

0
t2
∣∣∣f ′′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)∣∣∣
q
dt

) 1
q

+

(∫ 1
2

0
t2
∣∣∣f ′′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)∣∣∣
q
dt

) 1
q
]

+

(∫ 1

1
2

(1− t)2dt
) 1

p

×
[(∫ 1

1
2

(1− t)2
∣∣∣f ′′
(
t (µa+ (1− µ) b) + (1− t) (µb+ (1− µ) a)

)∣∣∣
q
dt

) 1
q

+

(∫ 1

1
2

(1− t)2
∣∣∣f ′′
(
t (µb+ (1− µ) a) + (1− t) (µa+ (1− µ) b)

)∣∣∣
q
dt

) 1
q
]}
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≤ (b− a)2(1− 2µ)2

4

(
1

24

) 1
p

×
{(∫ 1

2

0
t2
(
ts
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+ (1− t)s
∣∣∣f ′′ (µb+ (1− µ) a)

∣∣∣
q
)
dt

) 1
q

+

(∫ 1
2

0
t2
(
ts
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
q

+ (1− t)s
∣∣∣f ′′ (µa+ (1− µ) b)

∣∣∣
q
)
dt

) 1
q

+

(∫ 1

1
2

(1− t)2
(
ts
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+ (1− t)s
∣∣∣f ′′ (µb+ (1− µ) a)

∣∣∣
q
)
dt

) 1
q

+

(∫ 1

1
2

(1− t)2
(
ts
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
q

+ (1− t)s
∣∣∣f ′′ (µa+ (1− µ) b)

∣∣∣
q
)
dt

) 1
q
}

=
(b− a)2(1− 2µ)2

4

(
1

24

) 1
p

×
{(∫ 1

2

0
ts+2

∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q
dt+

∫ 1
2

0
t2(1− t)s

∣∣∣f ′′ (µb+ (1− µ) a)
∣∣∣
q
dt

) 1
q

+

(∫ 1
2

0
ts+2

∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
q
dt+

∫ 1
2

0
t2(1− t)s

∣∣∣f ′′ (µa+ (1− µ) b)
∣∣∣
q
dt

) 1
q

+

(∫ 1

1
2

ts(1− t)2
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q
dt+

∫ 1

1
2

(1− t)s+2
∣∣∣f ′′ (µb+ (1− µ) a)

∣∣∣
q
dt

) 1
q

+

(∫ 1

1
2

ts(1− t)2
∣∣∣f ′′
(
µb+ (1− µ) a

)∣∣∣
q
dt+

∫ 1

1
2

(1− t)s+2
∣∣∣f ′′ (µa+ (1− µ) b)

∣∣∣
q
dt

) 1
q
}

=
(b− a)2(1− 2µ)2

2

(
1

24

) 1
p

×
{(

1

(s+ 3)

1

2s+3

∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+
1

(s+ 1)
(1− 1

2s+1
)− 2

s+ 2
(1− 1

2s + 2
) +

1

s+ 3
(1− 1

2s+3
)
∣∣∣f ′′ (µb+ (1− µ) a)

∣∣∣
q
) 1

q

+

(
1

(s+ 1)
(1− 1

2s+1
)− 2

s+ 2
(1− 1

2s+2
) +

1

s+ 3
(1− 1

2s+3
)
∣∣∣f ′′
(
µa+ (1− µ) b

)∣∣∣
q

+
1

(s+ 3)

1

2s+3

∣∣∣f ′′ (µb+ (1− µ) a)
∣∣∣
q
) 1

q
}

So the proof is completed.
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Abstract

In this study, we review the algorithm defined by Das and Borgohain [P.K. Das, R.
Borgohain, An application of fuzzy soft set in multicriteria decision making problem,
International Journal of Computer Applications 38 (2012) 33–37] and rearrange this al-
gorithm to be used in the problems containing a large amount of data. Also, we compare
the running times of these algorithms. The results show that the rearranged algorithm
outperforms than the other. Finally, we discuss the need for further research.

Keywords: Fuzzy sets, Soft sets, Soft decision-making, Soft matrices, fpfs-matrices

1 Introduction

Molodtsov [1] has produced the concept of soft sets to deal with uncertainties and Maji et
al. [2, 3] have defined operations of soft sets and fuzzy soft sets. Afterwards, Çağman and
Enginoğlu [4] have improved these operations and applied them to a decision-making problem.
Later, Çağman et al. [5] have defined fuzzy parameterized fuzzy soft sets (fpfs-sets). Since
the problems encountered in our daily life contain a large amount of data and uncertainties, the
matrix representations of these sets such as soft matrices [6], fuzzy soft matrices [7], and fuzzy
parameterized fuzzy soft matrices (fpfs-matrices) [8] have been constructed. fpfs-matrices,
one of these matrix representations, is efficient to model the decision-making problems. To
avail of the advantages of this concept, recently, some decision-making algorithms in the
literature have been configured [9] via fpfs-matrices [8] by Enginoğlu and Memiş. The
authors also simplified mathematically MBR01 being one of these algorithms [10]. In the
present of this study, in Section 2, we give the definition of fpfs-matrices. In Section 3, we
review the algorithm provided in [9, 11] which has been put forward by Das and Borgohain.
Afterwards, we rearrange this algorithm. In Section 4, we compare the running times of
original (DB12) and rearranged (sDB12) algorithms. We finally discuss the need for further
research.
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2 Preliminaries

In this section, the definition of the concept of fpfs-matrices [8] have been presented. Through-
out this paper, let E be a parameter set, F (E) be the set of all fuzzy sets over E, and µ ∈ F (E).
Here, µ := {µ(x)x : x ∈ E}.

Definition 2.1. [5, 8] Let U be a universal set, µ ∈ F (E), and α be a function from µ to
F (U). Then the graphic of α, denoted by α, defined by

α := {(µ(x)x, α(µ(x)x)) : x ∈ E}

that is called fuzzy parameterized fuzzy soft set (fpfs-set) parameterized via E over U (or
briefly over U).

In the present paper, the set of all fpfs-sets over U is denoted by FPFSE(U).

Example 2.1. Let E = {x1, x2, x3, x4} and U = {u1, u2, u3, u4, u5}. Then

α = {(0x1, {0.7u1,0.4 u2,0.3 u4}), (0.6x2, {0.7u2,0.6 u3,0.5 u5}), (1x3, {0.6u1,0.3 u4,0.2 u5}), (0.8x4, {0.7u2,0.4 u3,0.9 u5})}

is a fpfs-set over U .

Definition 2.2. [8] Let α ∈ FPFSE(U). Then [aij ] is called the matrix representation of α
(or briefly fpfs-matrix of α) and defined by

[aij ] =




a01 a02 a03 . . . a0n . . .
a11 a12 a13 . . . a1n . . .

...
...

...
. . .

...
...

am1 am2 am3 . . . amn . . .
...

...
...

. . .
...

...




for i = {0, 1, 2, · · · } and j = {1, 2, · · · }

such that

aij :=

{
µ(xj), i = 0

α(µ(xj)xj)(ui), i 6= 0

Here, if |U | = m− 1 and |E| = n then [aij ] has order m× n.

From now on, the set of all fpfs-matrices parameterized via E over U is denoted by
FPFSE [U ].

Example 2.2. Let’s consider the fpfs-set α provided in Example 2.1. Then the fpfs-matrix
of α is as follows:

[aij ] =




0 0.6 1 0.8
0.7 0 0.6 0
0.4 0.7 0 0.7
0 0.6 0 0.4

0.3 0 0.3 0
0 0.5 0.2 0.9




3 A Review on The Soft Decision-Making Method DB12

In this section, firstly, we present the algorithm DB12 which has been proposed by Das and
Borgohain [9, 11].

Step 1. Construct fpfs-matrices [aij ]
(1), [aij ]

(2), . . . , [aij ]
(t) such that

∑
j a

(1)
0j ≤ 1,

∑
j a

(2)
0j ≤

1, . . . ,
∑

j a
(t)
0j ≤ 1
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Step 2. Obtain [bij ] defined by

bij :=
1

t

t∑

k=1

a
(k)
ij

Step 3. Obtain [cik] defined by

cik :=

n∑

j=1

b0jχ(bij , bkj), i, k ∈ {1, 2, ...,m− 1}

such that

χ(bij , bkj) :=

{
1, bij ≥ bkj
0, bij < bkj

Step 4. Obtain [di1] defined by

di1 :=

m−1∑

k=1

cik, i ∈ {1, 2, ...,m− 1}

Step 5. Obtain [ei1] defined by

ei1 :=

m−1∑

k=1

cki, i ∈ {1, 2, ...,m− 1}

Step 6. Obtain [si1] defined by

si1 := di1 − ei1, i ∈ {1, 2, ...,m− 1}

Step 7. Obtain the set {uk | sk1 = max
i
si1}

Preferably, the set {µ(uk)uk|uk ∈ U} can be attained such that µ(uk) =
sk1+|min

i
si1|

max
i
si1+|min

i
si1| .

It must be noted that DB12 is equivalent to MBR01 given in [3, 9] except for Step 1 and 2.
Therefore, DB12 can be simplified (sDB12) by using the proof provided in [10] as follows:

Step 1. Construct fpfs-matrices [aij ]
(1), [aij ]

(2), . . . , [aij ]
(t) such that

∑
j a

(1)
0j ≤ 1,

∑
j a

(2)
0j ≤

1, . . . ,
∑

j a
(t)
0j ≤ 1

Step 2. Obtain [bij ] defined by

bij :=
1

t

t∑

k=1

a
(k)
ij

Step 3. Obtain [si1] defined by

si1 :=

m−1∑

k=1

n∑

j=1

b0j sgn(bij − bkj), i ∈ {1, 2, ...,m− 1},

Step 4. Obtain the set {uk | sk1 = max
i
si1}

Preferably, the set {µ(uk)uk|uk ∈ U} can be attained such that µ(uk) =
sk1+|min

i
si1|

max
i
si1+|min

i
si1| .

Although DB12 is not an innovative study, it offers an idea about how to use MBR01 in the
event that a problem contains more than one fpfs-matrices. The relation between sDB12
and sMBR01 is similar to this.
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4 Simulation Results

In this section, we compare the running times of the algorithms provided in Section 3 for
random three fpfs-matrices. These algorithms are coded in MATLAB R2018b on a laptop
with 2.6 GHz i5 Dual Core CPU and 4GB RAM.

We present the running times of DB12 and sDB12 in Table 1 and Fig. 1 for 10 objects
and the parameters ranging from 1000 to 10000. We then give their running times in Table
2 and Fig. 2 for 10 parameters and the objects ranging from 1000 to 10000, in Table 3 and
Fig. 3 for the parameters and the objects ranging from 10 to 100 and in Table 4 and Fig. 4
for the parameters and the objects ranging from 100 to 1000. The results show that sDB12
outperforms DB12 in any number of data.

Table 1. The results for 10 objects and the parameters ranging from 1000 to 10000 (In
Seconds)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DB12 0.0110 0.0198 0.0292 0.0392 0.0323 0.0394 0.0389 0.0446 0.0496 0.0566

sDB12 0.0034 0.0046 0.0068 0.0083 0.0112 0.0079 0.0095 0.0107 0.0121 0.0137

Difference 0.0076 0.0152 0.0224 0.0309 0.0211 0.0315 0.0295 0.0339 0.0375 0.0429

Advantage (%) 69.2034 76.6479 76.6617 78.7758 65.3607 79.8421 75.6988 76.0316 75.6041 75.7260
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Fig. 1. The figure for Table 1

Table 2. The results for 10 parameters and the objects ranging from 1000 to 10000 (In
Seconds)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DB12 0.6029 2.5731 5.5545 10.0379 15.7436 23.8807 32.2466 46.0046 58.1403 74.5375

sDB12 0.0927 0.3141 0.6930 1.2800 1.9767 2.8459 3.9346 5.2587 6.4199 7.9532

Difference 0.5102 2.2590 4.8615 8.7579 13.7668 21.0347 28.3120 40.7459 51.7204 66.5843

Advantage (%) 84.6276 87.7923 87.5237 87.2484 87.4442 88.0827 87.7984 88.5691 88.9579 89.3299
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Fig. 2. The figure for Table 2
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Table 3. The results for the parameters and the objects ranging from 10 to 100 (In Seconds)

10 20 30 40 50 60 70 80 90 100

DB12 0.0015 0.0008 0.0023 0.0057 0.0109 0.0189 0.0181 0.0297 0.0378 0.0518

sDB12 0.0013 0.0002 0.0004 0.0009 0.0019 0.0017 0.0028 0.0041 0.0053 0.0074

Difference 0.0002 0.0006 0.0019 0.0048 0.0090 0.0171 0.0152 0.0256 0.0325 0.0444

Advantage (%) 14.3967 77.6795 82.3006 84.0919 82.8266 90.8021 84.2889 86.1317 85.9570 85.6798
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Fig. 3. The figure for Table 3

Table 4. The results for the parameters and the objects ranging from 100 to 1000 (In
Seconds)

100 200 300 40 500 600 700 800 900 1000

DB12 0.0842 0.4957 1.6483 3.9022 8.3366 15.1699 25.1246 39.1928 55.9517 78.6396

sDB12 0.0081 0.0596 0.2143 0.5683 1.2457 3.2403 6.5297 10.7083 15.2728 21.7734

Difference 0.0760 0.4361 1.4340 3.3339 7.0909 11.9296 18.5948 28.4845 40.6789 56.8662

Advantage (%) 90.3473 87.9818 86.9977 85.4354 85.0572 78.6398 74.0105 72.6778 72.7036 72.3125
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Fig. 4. The figure for Table 4

As a summary, the results in Table 5 show that sDB12 outperforms DB12 in any number of
data.

Table 5. The mean advantage, max advantage, and max difference values of sDB12 over
DB12

Location Objects Parameters Mean Advantage% Max Advantage% Max Difference

Table 1 10 1000− 10000 74.9552 79.8421 0.0429

Table 2 1000− 10000 10 87.7374 89.3299 66.5843

Table 3 10− 100 10− 100 77.4155 90.8021 0.0444

Table 4 100− 1000 100− 1000 80.6164 90.3473 56.8662
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5 Conclusion

The decision-making method DB12 provided in [11] was defined in 2012. Afterwards, this
method has been configured [9] via fpfs-matrices [8]. However, the soft decision-making
method DB12 is equivalent to MBR01 [3, 9] except for Step 1 and 2. Since this method is not
a new algorithm, its contribution to soft set theory is poor. Even so, it may provide new ideas
about how to use MBR01 in the event that a problem contains more than one fpfs-matrices.
The simulation results point out the significance of simplifications. Although some methods
which are equivalent or too similar to each other have been published in the different names,
it is worthwhile to keep studying on soft decision-making.
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[4] N. Çağman, S. Enginoğlu, Soft set theory and uni-int decision making, European Journal
of Operational Research 207 (2010) 848–855.
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Abstract

In a recent study, the uni-int soft decision-making method [N. Çağman, S. Enginoğlu,
Soft set theory and uni-int decision making, European Journal of Operational Research
207 (2010) 848-855] constructed by and-product/or-product has been configured via fuzzy
parameterized fuzzy soft matrices (fpfs-matrices) by Enginoğlu and Memiş, faithfully to
the original. However, in the case that a large amount of data is processed, the method
has a disadvantage in terms of time and complexity. To deal with this problem and to
be able to use this configured method, denoted by CE10, in computer science such as
machine learning and image processing, in this paper, we suggest a new algorithm, i.e.
EMO18o, equivalent to CE10 constructed by or-product (CE10o) in the event that first
rows of the fpfs-matrices are binary. We then compare the running times of these two
algorithms. The results show that EMO18o performs better than CE10o in any number
of data. Finally, we discuss the need for further research.

Keywords: Fuzzy sets, Soft sets, Soft decision-making, Soft matrices, fpfs-matrices

1 Introduction

The concept of soft sets was produced by Molodtsov [1] to deal with uncertainties, and so
far many theoretical and applied studies from algebra to decision-making problems have been
conducted on this concept [2–25]. Recently, the uni-int decision-making algorithm constructed
by and-product/or-product [22] has been configured via fuzzy parameterized fuzzy soft ma-
trices (fpfs-matrices) by Enginoğlu and Memiş [26], faithfully to the original. However, the
method has a disadvantage in terms of time and complexity, in spite of the fact that it has
the potential to be used successfully in computer science such as image processing and ma-
chine learning. To deal with this problem, it is worthwhile to study the simplification of this
algorithm.

In Section 2 of the present study, we introduce the concept of fpfs-matrices [21]. In
Section 3, we present CE10 constructed by and-product/or-product [22, 26]. In Section 4, we
propose a fast and simple algorithm, namely EMO18o, equivalent to CE10 constructed by
or-product (CE10o) under the condition that first rows of the fpfs-matrices are binary. In

∗Corresponding author. E-mail address: serdarenginoglu@gmail.com
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Section 5, we compare the running times of these algorithms. Finally, we discuss the need for
further research.

2 Preliminaries

In this section, the concept of fpfs-matrices [21] and some of its basic definitions have been
presented. Throughout this paper, let E be a parameter set, F (E) be the set of all fuzzy sets
over E, and µ ∈ F (E). Here, µ := {µ(x)x : x ∈ E}.

Definition 2.1. [14, 21] Let U be a universal set, µ ∈ F (E), and α be a function from µ to
F (U). Then the graphic of α, denoted by α, defined by

α := {(µ(x)x, α(µ(x)x)) : x ∈ E}

that is called fuzzy parameterized fuzzy soft set (fpfs-set) parameterized via E over U (or
briefly over U).

In the present paper, the set of all fpfs-sets over U is denoted by FPFSE(U).

Example 2.1. Let E = {x1, x2, x3, x4} and U = {u1, u2, u3, u4, u5}. Then

α = {(1x1, {0.7u1,0.3 u4}), (0.5x2, {0.6u2,0.2 u3}), (0.3x3, {0.6u1,0.3 u3,0.2 u4}), (0x4, {1u2,0.1 u3,0.4 u5})}

is a fpfs-set over U .

Definition 2.2. [21] Let α ∈ FPFSE(U). Then [aij ] is called the matrix representation of α
(or briefly fpfs-matrix of α) and defined by

[aij ] =




a01 a02 a03 . . . a0n . . .
a11 a12 a13 . . . a1n . . .

...
...

...
. . .

...
...

am1 am2 am3 . . . amn . . .
...

...
...

. . .
...

...




for i = {0, 1, 2, · · · } and j = {1, 2, · · · }

such that

aij :=

{
µ(xj), i = 0

α(µ(xj)xj)(ui), i 6= 0

Here, if |U | = m− 1 and |E| = n then [aij ] has order m× n.

From now on, the set of all fpfs-matrices parameterized via E over U is denoted by
FPFSE [U ].

Example 2.2. Let’s consider the fpfs-set α provided in Example 2.1. Then the fpfs-matrix
of α is as follows:

[aij ] =




1 0.5 0.3 0
0.7 0 0.6 0
0 0.6 0 1
0 0.2 0.3 0.1

0.3 0 0.2 0
0 0 0 0.4




Definition 2.3. [21] Let [aij ], [bik] ∈ FPFSE [U ] and [cip] ∈ FPFSE2 [U ] such that p =
n(j − 1) + k. For all i and p,

If cip = min{aij , bik}, then [cip] is called and-product of [aij ] and [bik], denoted by [aij ]∧[bik].
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If cip = max{aij , bik}, then [cip] is called or-product of [aij ] and [bik], denoted by [aij ]∨[bik].

If cip = min{aij , 1 − bik}, then [cip] is called andnot-product of [aij ] and [bik], denoted by
[aij ]∧[bik].

If cip = max{aij , 1 − bik}, then [cip] is called ornot-product of [aij ] and [bik], denoted by
[aij ]∨[bik].

3 The Soft Decision-Making Method CE10

In this section, we present the algorithm CE10 [22, 26].

Step 1. Construct two fpfs-matrices [aij ] and [bik]

Step 2. Find and-product/or-product fpfs-matrix [cip] of [aij ] and [bik]

Step 3. Obtain [si1] denoted by max - min(cip) defined by

si1 := max{maxjmink(cip),maxkminj(cip)}

such that i ∈ {1, 2, . . . ,m−1}, Ia := {j | a0j 6= 0}, Ib := {k | b0k 6= 0}, p = n(j−1)+k,
and

maxjmink(cip) :=





max
j∈Ia

{
min
k∈Ib

c0pcip

}
, Ia 6= ∅ and Ib 6= ∅

0, Otherwise

maxkminj(cip) :=





max
k∈Ib

{
min
j∈Ia

c0pcip

}
, Ia 6= ∅ and Ib 6= ∅

0, Otherwise

Step 4. Obtain the set {uk ∈ U | sk1 = max
i
si1}

Preferably, the set {si1ui |ui ∈ U} or {
sk1

max si1 uk|uk ∈ U} can be attained.

Note 3.1. Let CE10a and CE10o denote CE10 constructed by and-product and or-product,
respectively. It must be noted that the scores of CE10a and CE10o can be found without
writing any product matrices. When the algorithm is written in this format, it offers time
advantage, little though, over CE10 in most cases. Let’s illustrate this for CE10o;

Step 1. Construct two fpfs-matrices [aij ] and [bik]

Step 2. Obtain [si1] defined by

si1 :=

{
max{max

j∈Ia
{min
k∈Ib
{max{a0j , b0k},max{aij , bik}}},max

k∈Ib
{min
j∈Ia
{max{a0j , b0k},max{aij , bik}}}}, Ia, Ib 6= ∅

0, otherwise

such that i ∈ {1, 2, . . . ,m− 1}, Ia := {j | a0j 6= 0}, and Ib := {k | b0k 6= 0}.
Step 3. Obtain the set {uk ∈ U | sk1 = max

i
si1}

Preferably, the set {si1ui |ui ∈ U} or {
sk1

max si1 uk|uk ∈ U} can be attained.
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4 A Soft Decision-Making Method: EMO18o

In this section, we propose a fast and simple algorithm denoted by EMO18o.

Step 1. Construct two fpfs-matrices [aij ] and [bik]

Step 2. Obtain [si1] denoted by max - min(aij , bik) defined by

si1 := max{maxjmink(aij , bik),maxkminj(aij , bik)}

such that i ∈ {1, 2, . . . ,m− 1}, Ia := {j | a0j 6= 0}, Ib := {k | b0k 6= 0}, and

maxjmink(aij , bik) :=





max

{
max
j∈Ia
{a0jaij},min

k∈Ib
{b0kbik}

}
, Ia 6= ∅ and Ib 6= ∅

0, otherwise

maxkminj(aij , bik) :=





max

{
max
k∈Ib
{b0kbik},min

j∈Ia
{a0jaij}

}
, Ia 6= ∅ and Ib 6= ∅

0, otherwise

Step 3. Obtain the set {uk ∈ U | sk1 = max
i
si1}

Preferably, the set {si1ui |ui ∈ U} or {
sk1

max si1 uk|uk ∈ U} can be attained.

Theorem 4.1. EMO18o is equivalent to CE10o under the condition that first rows of the
fpfs-matrices are binary.

Proof. Suppose that first rows of the fpfs-matrices are binary. The functions si1 provided in
CE10a and EMO18a are equal in the event that Ia = ∅ or Ib = ∅. Assume that Ia 6= ∅ and
Ib 6= ∅. Since a0j = 1 and b0k = 1, for all j ∈ Ia := {a1, a2, ..., as} and k ∈ Ib := {b1, b2, ..., bt},

maxjmink(cip) = max
j∈Ia

{
min
k∈Ib

c0pcip

}

= max
j∈Ia

{
min
k∈Ib
{max{a0j , b0k}.max{aij , bik}}

}

= max
j∈Ia

{
min
k∈Ib
{max{aij , bik}}

}

= max {min {max{aia1 , bib1},max{aia1 , bib2}, . . . ,max{aia1 , bibt}} ,
min {max{aia2

, bib1},max{aia2
, bib2}, . . . ,max{aia2

, bibt}} , . . . ,
min {max{aias

, bib1},max{aias
, bib2}, . . . ,max{aias

, bibt}}}
= max {max{aia1 ,min{bib1 , bib2 , . . . , bibt}} ,

max{aia2
,min{bib1 , bib2 , . . . , bibt}} , . . . ,

max {aias ,min{bib1 , bib2 , . . . , bibt}}}
= max {max{aia1

, aia2
, . . . , aias

},min{bib1 , bib2 , . . . , bibt}}
= max

{
max
j∈Ia
{aij},min

k∈Ib
{bik}

}

= max

{
max
j∈Ia
{a0jaij},min

k∈Ib
{b0kbik}

}

= maxjmink(aij , bik)

In a similar way, maxkminj(cip) = maxkminj(aij , bik). Consequently,

max - min(aij , bik) = max - min(cip)
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5 Simulation Results

In this section, we compare the running times of CE10o and EMO18o by using MATLAB
R2018b. So long as it has not been encountered a difficulty, we use a laptop with 2.6 GHz
i5 Dual Core CPU and 4 GB RAM to compare the methods. However, in this study, we use
a workstation with I(R) Xeon(R) CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM because the
computer is insufficient to run CE10o if the parameters or objects are more than 5000.

We, present the running times of CE10o and EMO18o in Table 1 and Fig. 1 for 10 objects
and the parameters ranging from 1000 to 10000. We then give their running times in Table
2 and Fig. 2 for 10 parameters and the objects ranging from 1000 to 10000, in Table 3 and
Fig. 3 for the parameters and the objects ranging from 10 to 100, and in Table 4 and Fig. 4
for the parameters and the objects ranging from 100 to 1000. The results show that EMO18o
outperforms than CE10o in any number of data under the specified condition.

Table 1. The results for 10 objects and the parameters ranging from 1000 to 10000 (In
Seconds)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CE10o 1.4292 5.1723 11.0594 18.7021 28.1838 41.0885 55.7873 73.4621 92.8691 119.3578

EMO18o 0.0007 0.0011 0.0015 0.0018 0.0023 0.0025 0.0028 0.0032 0.0036 0.0040

Difference 1.4285 5.1712 11.0579 18.7003 28.1815 41.0860 55.7845 73.4590 92.8655 119.3538

Advantage (%) 99.9526 99.9782 99.9868 99.9904 99.9918 99.9939 99.9950 99.9957 99.9961 99.9967
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Fig. 1. The figure for Table 1

Table 2. The results for 10 parameters and the objects ranging from 1000 to 10000 (In
Seconds)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CE10o 0.0653 0.1653 0.2543 0.5031 0.6359 0.8852 1.1581 1.4888 1.7812 2.2587

EMO18o 0.0088 0.0170 0.0252 0.0358 0.0452 0.0557 0.0683 0.0812 0.0940 0.1095

Difference 0.0565 0.1483 0.2292 0.4674 0.5907 0.8294 1.0898 1.4076 1.6872 2.1492

Advantage (%) 86.4942 89.7373 90.1065 92.8936 92.8854 93.7031 94.1050 94.5449 94.7246 95.1539
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Fig. 2. The figure for Table 2

Table 3. The results for the parameters and the objects ranging from 10 to 100 (In Seconds)

10 20 30 40 50 60 70 80 90 100

CE10o 0.0011 0.0015 0.0047 0.0103 0.0184 0.0338 0.0537 0.0835 0.1365 0.1574

EMO18o 0.0006 0.0002 0.0003 0.0005 0.0008 0.0006 0.0007 0.0008 0.0009 0.0011

Difference 0.0006 0.0013 0.0044 0.0099 0.0176 0.0332 0.0530 0.0827 0.1355 0.1563

Advantage (%) 51.4841 84.8634 93.3296 95.5557 95.7001 98.3215 98.7335 99.0143 99.3060 99.3312
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Fig. 3. The figure for Table 3

Table 4. The results for the parameters and the objects ranging from 100 to 1000 (In
Seconds)

100 200 300 40 500 600 700 800 900 1000

CE10o 0.1740 2.1408 8.9146 25.4105 57.4277 109.2121 185.3141 306.6551 494.7809 734.7361

EMO18o 0.0017 0.0029 0.0046 0.0076 0.0101 0.0144 0.0175 0.0220 0.0286 0.0342

Difference 0.1724 2.1379 8.9100 25.4029 57.4176 109.1977 185.2966 306.6331 494.7522 734.7019

Advantage (%) 99.0506 99.8651 99.9484 99.9701 99.9823 99.9868 99.9906 99.9928 99.9942 99.9953
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6 Conclusion

The uni-int decision-making method was defined in 2010 [22]. Afterwards, this method has
been configured [26] via fpfs-matrices [21] because more general forms are needed for the
method in the event that the paramters or objects have uncertainties. However, the method
suffers from a drawback, i.e. its incapability of processing a large number of parameters
on a standard computer, e.g. with 2.6 GHz i5 Dual Core CPU and 4GB RAM. For this
reason, simplification of such methods is important for a wide range of scientific and industrial
processes. In this study, we have proposed the method EMO18o, which is faster than CE10o.
Of course, it is possible to investigate the simplifications for other products.

We then have compared the running times of these algorithms. In addition to the results
in Section 5, the results in Table 5 too show that EMO18o outperforms CE10o in any number
of data under the specified condition.

Table 5. The mean advantage, max advantage, and max difference values of EMO18o over
CE10o

Location Objects Parameters Mean Advantage% Max Advantage% Max Difference

Table 1 10 1000− 10000 99.9877 99.9967 119.3538

Table 2 1000− 10000 10 92.4348 95.1539 2.1492

Table 3 10− 100 10− 100 91.5639 99.3312 0.1563

Table 4 100− 1000 100− 1000 99.8776 99.9953 734.7019

In addition, other decision-making methods constructed by a different decision function
such as minimum-maximum (min-max), max-max, and min-min can also be studied in the
similar way.
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Abstract

In this study, the sequences consisting of operators defined on the space of continuous
functions on the closed interval [0, 1] has been investigated. The elements of the sequences
are regular operators providing the conditions of Bohman-Korovkin Theorem, with a con-
stant factor difference. It has been shown that the family consisting of those sequences
is a linear space. A complete subspace of this space was obtained. It was proved that
the family of the sequences of positive and linear operators by providing the conditions of
Bohman-Korovkin Theorem, is a cone in this complete subspace.

Keywords: Bohman-Korovkin Theorem, regular operator, almost positive operators.

1 Introduction
In 1912, Bernstein S. N. (1912) gave a simple and usefull proof of Weierstrass’ Approximation
Theorem (Weierstrass, K. (1885)). He used the following polynomials: For a function f which
continuonus on [0, 1], the polynomials

Bn (f ;x) =
n∑

k=0
f

(
k

n

)(
n
k

)
xk(1− x)n−k, n ∈ N,

converge to f uniformly on [0, 1]. The polynomials Bn (f) are called as n. Bernstein polinomial
of f . They are positive and linear as operators that defined on bounded functions on [0, 1]. In
1951 Bohman (1952) and in 1953 Korovkin (1959) investigated some important applications of
sequences of the positive and linear operators on approximation theory. They gave a simple
criteria for uniform convergence of sequences of positive linear operators to a contiuonus
function on compact intervals: According to their theorem (Bohman-Korovkin Theorem), if
f ∈ C [a, b] and {Ln} is a sequence of positive and linear operators on C [0, 1], then {Lnf}
converge uniformly to f iff {Lnei} converge uniformly to ei, for i = 0, 1, 2; where ei (x) = xi.
The Bernstein operators provide the conditions of Bohman-Korovkin Theorem. After this
main work, a large number of positive and linear operators have been constructed to form
polynomials that converge uniformly to continuous functions.

In this study, it is aimed to collect some of the functional properties of the class that
were created by gathering all these operator sequences in a class to have more general char-
acteristics. In this framework, the definitions and relations between the classes of regular
operators, quasi-operators and almost positive linear operators, each containing positive and
linear operators, are given (Stancu (1969), Nishishiraho (1992) and Campiti (1994)).

∗Corresponding author. E-mail address: ttunc@mersin.edu.tr
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For each n ∈ N, let Rn ∈ RC [0, 1] (the class of regular operators) and let ei (x) =
xi(i ∈ N0). If there exists a number λ ∈ R such that

lim
n→∞ ‖Rn (ei)− λ (ei)‖[0,1] = 0, ∀ i = 0, 1, 2

then the sequence R = {Rn} is called as Korovkin sequence and the number λ is called as
approximation multiplier of R = {Rn}. The set of all Korovkin sequences denoted by KC [0, 1]
is a real vector space. In this study, a complete subspace of this space was obtained. It was
proved that the family of the sequences of positive and linear operators by providing the
conditions of Bohman-Korovkin Theorem, is a cone in this complete subspace.

2 Definitions and Main Results
Let L : C [a, b] → C [a, b] be a linear operator. If there exists closed sets P and Nsuch that
[a, b] = P ∪N and for every f ∈ C + [a, b], L (f) (x) ≥ 0 if x ∈ P and L (f) (x) ≤ 0 if x ∈ N ,
then it is called that L is quasi-positive operator or convex-monoton operator, and denoted
by L ∈ QPC [a, b] .

Let R be an operator defined on C [a, b]. If there exists positive operators P+, P− ∈
PC [a, b] such that the equality R = P+ − P− holds, then it is called that R is a regular
operator. The set of regular operators on C [a, b] is denoted by RC [a, b]. It is clear that every
quasi-pozitive operator is regular. Each positive operator is regular, but converse does not
hold. For example the operator R defined on C [0, 1] by

R (f ; t) =
1∫

0

(1− 2xt)f (x) dx

is regular with

P+ (f ; t) =
1∫

0

(1− xt)f (x) dx and P− (f ; t) =
1∫

0

xtf (x) dx.

But it is not positive. It is shown by using the function f (x) = x.

Proposition 1 Every regular operator is bounded.

Proof. For f ∈ C [0, 1] we have f ≤ ‖f‖[0,1] and −f ≤ ‖f‖[0,1] then for each positive operator

P ∈ PC [0, 1]

we get

P (f) ≤ P
(
‖f‖[0,1]e0

)
= ‖f‖[0,1]P (e0) ,

and
−P (f) = P (−f) ≤ P

(
‖f‖[0,1]e0

)
= ‖f‖[0,1]P (e0)

thus
|P (f)| ≤ ‖f‖[0,1]P (e0) ≤ ‖P (e0)‖[0,1]‖f‖[0,1].

Let R be a regular operator. Then R = P+ − P−, where P+, P− ∈ PC [0, 1]. Therefore we
obtain desired result:

|R(f)| =
∣∣∣P+(f)− P−(f)

∣∣∣ ≤
∣∣∣P+(f)

∣∣∣+
∣∣P−(f)

∣∣

≤
(∥∥∥P+(e0)

∥∥∥
[0,1]

+
∥∥P− (e0)

∥∥
[0,1]

)
‖f‖[0,1].
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Definition 2 Let be given a sequence of regular operators R = {Rn} = {P+
n − P−n }. If

lim
n→∞P

−
n (f) (x) = 0

for all f ∈ C [a, b] and x ∈ [a, b], then it is called that R = {Rn} is a sequence of almost
positive operators.

Theorem 3 (Nowak, 2010). Let R = {Rn} be a sequence of almost positive operators and for
z ∈ [a, b] let ϕz (x) = (x− z)2. If

Rn (e0)
[a,b]
⇒ 1 ve Rn (ϕz)

[a,b]
⇒ 0

then for all f ∈ C [a, b], we have Rn (f)
[a,b]
⇒ f .

Definition 4 For each n ∈ N, let Rn ∈ RC [0, 1] and let ei (x) = xi (i ∈ N0). If there exists a
number λ ∈ R such that

lim
n→∞ ‖Rn (ei)− λ (ei)‖[0,1] = 0, ∀i = 0, 1, 2

then the sequence R = {Rn} is called as Korovkin sequence and the number λ is called as
approximation multiplier of R = {Rn}. The set of all Korovkin sequences denoted by KC [0, 1].

Set
K+

C [0, 1] = KC [0, 1] ∩ PC [0, 1] .

The sequence of Bernstein operators B = {Bn} is a positive Korovkin sequence with the
approximation multiplier λ = 1.

Proposition 5 The set KC [0, 1] is a real linear space.

Let R = {Rn} be a Korovkin sequence. Since Rn is a regular operator for each n ∈ N then
there exists positive operators P+

n , P
−
n ∈ PC [0, 1] such that Rn = P+

n − P−n . If the sequence
{‖Rn‖} is bounded the sequences

{∥∥P+
n

∥∥} and {‖P−n ‖} may not be bounded. For example,
the sequence {Rn} defined by

Rn(f ;x) = f (0) (2x− 1)(x− 1) + f (1)x(2x− 1)− 4f
(1

2

)
x(x− 1) + f (1)

n
,

is a Korovkin sequence, since

Rn(e0, x) = e0(x) + 1
n

; Rn(e1, x) = e1(x) + 1
n

; Rn(e2, x) = e2(x) + 1
n
.

Moreover, if we take

P+
n (f, x) = 4f

(1
2

)
x (1− x) +

(
1 + n2

n
+ 2x2

)
f (1) + f (0) (1− x)

and
P−n (f, x) = 2f (0)x (1− x) + f (1) (n+ x) ,

it is clear that
P+

n , P
−
n ∈ PC [0, 1]

and Rn = P+
n − P−n , that is Rn ∈ RC [0, 1] for all n ∈ N.
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On the other hand for ‖f‖ = 1 we have ‖Rn(f ; .)‖[0,1] ≤ 11, thus ‖Rn‖ ≤ 11 for all n ∈ N.
Consequently, {‖Rn‖} is bounded. But, since P+

n , P
−
n ∈ PC [0, 1], we have

∥∥∥P+
n

∥∥∥ =
∥∥∥P+

n (e0)
∥∥∥

[0,1]
= max

x∈[0,1]

∣∣∣∣∣−2x2 + 3x+ n2 + 1
n

+ 1
∣∣∣∣∣ > n

and ∥∥P−n
∥∥ =

∥∥P−n (e0)
∥∥

[0,1] = max
x∈[0,1]

∣∣∣−2x2 + 3x+ n
∣∣∣ > n,

so that both
{∥∥P+

n

∥∥} and {‖P−n ‖} is not bounded.

Theorem 6 Let R = {Rn} =
{
P+

n − P−n
} ∈ KC [0, 1]. Then the sequences

{∥∥P+
n

∥∥} and
{‖P−n ‖} are simultaneously bounded.

Proof. Since P+
n , P

−
n ∈ PC [0, 1] then

∥∥P+
n

∥∥ =
∥∥P+

n (e0)
∥∥

[0,1] and ‖P−n ‖ = ‖P−n (e0)‖[0,1].
Moreover, since

Rn(e0) + P−n (e0) = P+
n (e0) and P+

n (e0)−Rn(e0) = P−n (e0),

we have ∥∥∥P+
n (e0)

∥∥∥
[0,1]
≤ ‖Rn(e0)‖[0,1] +

∥∥P−n (e0)
∥∥

[0,1]

and ∥∥P−n (e0)
∥∥

[0,1] ≤ ‖Rn(e0)‖[0,1] +
∥∥∥P+

n (e0)
∥∥∥

[0,1]
.

Since the sequence {Rn(e0)} converges to λRe0 uniformly, then the sequence{
‖Rn(e0)‖[0,1]

}
is convergent, hence it is bounded. Consequently both

{∥∥P+
n

∥∥} and {‖P−n ‖}are
bounded.

Corollary 7 Let R = {Rn} =
{
P+

n − P−n
} ∈ KC [0, 1]. Then, if the sequence {‖P−n ‖} is

bounded, then the sequence {‖Rn‖} is bounded.

Let us define the space

K−C [0, 1] =
{
R = {Rn} =

{
P+

n − P−n
}
∈ KC [0, 1] : ∃M > 0, supn

∥∥P−n
∥∥ ≤M

}
.

The space K−C [0, 1] is a normed space with

‖ · ‖∞ : K−C [0, 1]→ R+, R → ‖R‖∞ = sup
n∈N
‖Rn‖ .

Proposition 8 The space K−C [0, 1] is a Banach Space.

Proof. Let
{
R(m)

}∞
m=1

be a Cauchy sequence in K−C [0, 1] and let R(m) =
{
R

(m)
n

}∞
n=1

for

all m ∈ N. Let be given ε > 0. Then there exists mε ∈ N such that
∥∥∥R(k) −R(l)

∥∥∥
∞
< ε

3 , for

all k, l ≥ mε. So that
∥∥∥R(k)

n −R(l)
n

∥∥∥ < ε
3 for all n ∈ N. Since

{
R

(k)
n

}
is a Cauchy sequence

in the Banacah space of bounded operators B(C [0, 1]) for each n ∈ N, there is an operator
Rn ∈ B(C [0, 1]) such that

lim
k→∞

∥∥∥R(k)
n −Rn

∥∥∥ = 0.

We shall show that R = {Rn} is in the space K−C [0, 1]. Since R(k)
n are regular for all n, k ∈ N,

then there exists P+
n,k, P

−
n,k ∈ PC [0, 1] such that R(k)

n = P+
n,k − P−n,k and sup

n,k∈N

∥∥∥P−n,k

∥∥∥ ≤ M .
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If we define lim
k→∞

P−n,k =: P−n for each n ∈ N, it is obvious that P−n is positive and linear on
C [0, 1] and supn ‖P−n ‖ ≤ M . Taking P+

n = Rn + P−n , we have P+
n ∈ PC [0, 1]. Thus the

operator Rn is regular for each n ∈ N. If λR(k) is the approximation multiplier of
{
R

(k)
n

}∞
n=1

for each k ∈ N, then we have

lim
n→∞ sup

x∈[0,1]

∣∣∣R(k)
n (ei;x)− λR(k)ei (x)

∣∣∣ = 0, i = 0, 1, 2; k ∈ N.

Hence there exits nε ∈ N such that
∥∥∥R(k)

n (ei)− λR(k)(ei)
∥∥∥

[0,1]
<
ε

3 , i = 0, 1, 2; k ∈ N

for each n ≥ nε. For k, l ≥ mε and n ≥ nε, we get

|λR(k) − λR(l) | = |λR(k)e0(x)− λR(l)e0(x)|
≤
∣∣∣R(k)

n (e0;x)− λR(k)e0(x)
∣∣∣+

∣∣∣R(k)
n (e0;x)−R(l)

n (e0;x)
∣∣∣+

∣∣∣R(l)
n (e0;x)− λR(l)e0(x)

∣∣∣

≤
∥∥∥R(k)

n (e0)− λR(k)e0
∥∥∥

[0,1]
+
∥∥∥R(k)

n (e0)−R(l)
n (e0)

∥∥∥
[0,1]

+
∥∥∥R(l)

n (e0)− λR(l)(e0)
∥∥∥

[0,1]

<
2ε
3 +

∥∥∥R(k)
n −R(l)

n

∥∥∥ < ε.

Thus {λR(k)} is a Cauchy sequence of real numbers, so it is converges a real number λR. Then
there is kε ∈ N such that

|λR(k) − λR| <
ε

3
for all k ≥ kε. Consequently, for i ∈ {0, 1, 2}, we have

‖Rn(ei)− λRei‖[0,1] ≤
∥∥∥Rn(ei)−R(kε)

n (ei)
∥∥∥

[0,1]
+
∥∥∥R(kε)

n (ei)− λR(kε)(ei)
∥∥∥

[0,1]

+ |λR(kε) − λR| ‖ei‖[0,1] < ε.

for all n ≥ nε. That is R = {Rn} has the approximation multiplier λR. Now the proof is
completed.

3 The Space of Positive Korovkin Sequences
Since the elements of the space K+

C [0, 1] have the zero negative parts, then it is the subset of
the space K−C [0, 1]. Moreover, the approximation multiplier of each element of K+

C [0, 1] is a
non-negative real number.

Proposition 9 The set K+
C [0, 1] is closed in K−C [0, 1].

Proof. Let
{
P(k)

}
be sequence in K+

C [0, 1] such that it is convergent in K−C [0, 1]. Then
there exists a sequence R ∈ K−C [0, 1] such that

lim
k→∞

∥∥∥P(k) −R
∥∥∥
∞

= 0

=⇒ lim
k→∞

sup
n

∥∥∥P (k)
n −Rn

∥∥∥
∞

= 0

=⇒ ∀n ∈ N, lim
k→∞

P (k)
n = Rn

where R = {Rn} and P(k) =
{
P

(k)
n

}
. If f ∈ C+ [0, 1] then P (k)

n (f) ≥ 0 for all n ∈ N. So that
Rn(f) ≥ 0. Consequently, Rn ∈ PC [0, 1] for all n ∈ N. That is R ∈ K+

C [0, 1] .
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Proposition 10 The set K+
C [0, 1] is convex.

Proof. Let P(1) =
{
P

(1)
n

}
, P(2) =

{
P

(2)
n

}
∈ K+

C [0, 1] and α ∈ [0, 1]. Then

αP(1) + (1− α)P(2) =
{
αP (1)

n

}
+
{

(1− α)P (2)
n

}
=
{
αP (1)

n + (1− α)P (2)
n

}

is a sequence of positive and linear opertors and has λ = αλP (1) + (1− α)λP (2) as approxi-
mation multiplier. So that, it is in K+

C [0, 1].

Theorem 11 The set K+
C [0, 1] is a cone in K−C [0, 1].

Proof. If P ∈ K+
C [0, 1] and t ∈ R+, then t � P = t {Pn} = {tPn} is a positive Korovkin

sequence with approximation multiplier tλP . So that t � P ∈ K+
C [0, 1]. Moreover, if P ∈

K+
C [0, 1] and −P ∈ K+

C [0, 1] then λP and λ−P = −λP are non-negative numbers. Hence
λP = 0, that is P = Θ. Therefore, the desired result follows from Propositions 9 and 10.
As a result of the theorem, we define an order relation in K−C [0, 1] as the following: For
R(1), R(2) ∈ K−C [0, 1],

R(1) ≥ R(2) ⇔ R(1) −R(2) ∈ K+
C [0, 1] .

Corollary 12
(
K−C [0, 1] ,≥

)
is a partially ordered Banach space.

Theorem 13 Let P = {Pn} ∈ K+
C [0, 1] be nonzero sequence and let f ∈ C [0, 1]. Then, Pn (f)

converge uniformly to the function λPf on[0, 1].

Proof. Let Ln = λ−1
P Pn for n ∈ N. Since, the sequence {Ln} satisfies the conditions of

Bohman-Korovkin Theorem, then we get the desired result.
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Abstract

This paper proposes the fundamental solution of fractional order Cauchy heat prob-
lem by using Fourier and Laplace transforms. We use a new fractional derivative operator
involving the normalized sinc function (NSF) without singular kernel. In the present pa-
per we consider the integral transform techniques to obtain the solution of the fractional
Cauchy problem. Firstly, we apply the Laplace transform (LT) with respect to time vari-
able and Fourier transform (FT) with respect to spatial coordinate. Then, applying the
inverse LT and inverse FT, we get the fundamental solution of a heat conduction equation.
It can be seen easily that the method we used in this study is very accurate and effective
method for solving the Cauchy problem if the results of the study are considered.
Keywords: Cauchy problem, normalized sinc function, fractional derivative without singu-
lar kernel, Laplace transform, Fourier transform.

1 Introduction

In recent years, some different-type fractional derivative operators in modelling real life
problems including different kernels, such as the power-law function [1], exponential func-
tion [2], Mittag-Leffler function [3, 4], stretched exponential function [5], stretched Mittag-
Leffler function [6], and the normalized sinc function [7]. In the literature, some theo-
retical aspects and applications have been studied on these operators by some researchers
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
In 2017, Yang et al. developed a new fractional derivative operator involving the normalized
sinc function without singular kernel. They also defined some integral transforms and prop-
erties of the mentioned operator such as, Laplace, Fourier, Sumudu transforms. In this study,
we consider the heat diffusion equation [18] and we obtain its fundamental solution by using
Laplace-Fourier transforms.

2 Suggested Derivative Operator and its Fundamental Prop-
erties

In this section, we explain the mentioned derivative operator and its integral transforms.

∗Corresponding author. E-mail address: mehmetyavuz@konya.edu.tr
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Definition 1. The normalized sinc function is defined as [19]:

sinc (t) =
sin (πt)

πt
, t ∈ R. (1)

Definition 2. Let u (t) be in H1 (a, b) , b > a. A new fractional derivative operator which is
defined with the normalized sinc function (FDNSF) of the function u (t) of order µ is defined
by [7]:

NSF
a Dµ

t u (t) =
µψ (µ)

1− µ

∫ t

a
sinc

(
−µ (t− ε)

1− µ

)
u′ (ε) dε, a ∈ (−∞, τ) , (2)

where ψ (µ) is a normalization function such that ψ (0) = ψ (1) = 1.
Definition 3. The Laplace transform of the FDNSF is defined as [7]

L
{
NSF
0 Dµ

t u (t)
}

= L
{
µψ(µ)
1−µ

∫ t
0 sinc

(
−µ(t−ε)

1−µ

)
u′ (ε) dε

}

= ψ(µ)
π arctan

(
µπ

s(1−µ)

)
(su∗ (s)− u (0)) ,

(3)

where L{u (t)} = u∗ (s) .
Definition 4. The Fourier transform of the FDNSF is defined by [7]

F
{
NSF
0 Dµ

xu (x)
}

= F
{
µψ(µ)
1−µ

∫ x
0 sinc

(
−µ(x−ε)

1−µ

)
u′ (ε) dε

}

= iηρψ (µ)
√

1
2πH

(
µπ
1−µ + |ηρ|

)
û (ηρ) ,

(4)

where F {u (x)} = û (ηρ) and H (.) is the Heaviside function [20].
Furthermore, we consider the finite sin-Fourier transform with respect to spatial coordinate
x as [21]

F {u (x)} = û (ηρ) =

∫ M

0
u (x) sin (ηρx) dx, (5)

and the inverse transform of it as

F−1 {û (ηρ)} = u (x) =
2

M

∞∑

ρ=1

û (ηρ) sin (ηρx) , (6)

where ηρ = πρ
M , ρ = 1, 2, 3, ....

The sin-Fourier transform property of the second order derivative in a finite domain is given
by

F
{
d2u (x)

dx2

}
= −η2ρû (ηρ) + ηρ [u (0)− (−1)ρ u (M)] . (7)

3 Application of the New Derivative Operator to Heat Con-
duction Problem

Consider the following fractional heat equation in the sense of FDNSF operator

∂αφ (x, t)

∂tα
= σ

∂2φ (x, t)

∂x2
, 0 < x < M, t > 0, (8)

with the initial condition

t = 0 : φ (x, 0) = δ (x− λ0) , 0 < λ0 < M, (9)
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and the boundary condition

x = 0 : φ (0, t) = 0,
x = M : φ (M, t) = 0,

(10)

where σ shows thermal diffusivity constant. Throughout the study, we suppose σ = 1 for
simplicity.
Applying the Laplace transform (3) with respect to time variable t and the finite sin-Fourier
transform (5) with respect to spatial coordinate x, we obtain the following equation

ψ (µ)

π
arctan

(
µπ

s (1− µ)

)(
sφ̂
∗

(ηρ, s)− sin (ηρλ0)
)

= −ση2ρφ̂
∗

(ηρ, s) (11)

After some arrangements, we have

φ̂
∗

(ηρ, s) =
sin (ηρλ0)

ψ(µ)
π arctan

(
µπ

s(1−µ)

)

ση2ρ + sψ(µ)π arctan
(

µπ
s(1−µ)

) . (12)

Using the inverse Laplace transform and inverse Fourier transform in the last equation, we
get the fundamental solution of suggested problem as

φ (x, t) = F−1
{
L−1

{
φ̂
∗

(ηρ, s)
}}

= F−1
{
L−1

{
sin(ηρλ0)

ψ(µ)
π

arctan
(

µπ
s(1−µ)

)

ση2ρ+s
ψ(µ)
π

arctan
(

µπ
s(1−µ)

)

}}

= 2
M

∑∞
ρ=1

[
sin(ηρλ0)
(1−µ)η2ρ+1

sin (ηρx) e
− tµη2ρ

(1−µ)η2ρ+1

]
.

(13)

If we take the special value of fractional operator as µ→ 1 in Eq. (13), we get the standard
exact solution of the mentioned Cauchy problem as:

φ (x, t) =
2

M

∞∑

ρ=1

[
sin (ηρλ0) sin (ηρx) e−tη

2
ρ

]
. (14)

Figure 1: Solutions of the Cauchy problem for the values µ = 0.3 (left) and µ = 0.6 (right).
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Figure 2: Solutions of the Cauchy problem for the values µ = 0.9 (left) and µ = 0.99.

4 Concluding Remarks

In this study, a series solution of the Cauchy heat equation is considered. A new defined
fractional derivative operator is applied to the problem to model and then to solve it. This
problem is considered in a finite domain (0,M) . The graphical results of the mentioned
solution with respect to various variables time, space and fractional order parameter.
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Abstract

An optimization problem involves one or more objectives to be optimized. In multi
objective optimization studies solution refers to the complex set of feasible solutions.
Multi objective optimization algorithms are usually used in construction industry due to
the comprised nature of the projects. These algorithms include objective functions such
as the minimum cost, the least time and resources. Objective functions can be optimized
by developing the construction plan with the aid of technology. Scheduling a construction
plan is a highly challenging task and in need of constantly updated algorithms. This paper
presents the current evolutionary algorithms and their applicability in the construction
sector.
Keywords: Algorithm, evolutionary algorithms, construction, construction planning.

1 Introduction

It has been emphasized in many studies that one of the conditions for successful acceptance of
a project is to be completed within the foreseen time. PERT and CPM (Critical Path Method)
are the most important time-based methods used in time management in projects(Zhang et
al. 2015).
Due to the complex nature of the construction projects (Figure 1), it is almost impossible to
plan without planning computer support(Chan, Scott, and Chan 2004).
Various methods have been widely used by construction managers for planning of the projects
including deterministic, probabilistic and artificial neural network-based approaches(Faghihi,
Reinschmidt, and Kang 2014).
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Figure 1: Complexity of the construction projects

Project duration and cost are the main problem of the entire project. Non-linear and discrete
methods dependent solutions have been applied as cost-time optimization tools in construc-
tion projects(Moussourakis and Haksever 2010; El-Sayegh and Al-Haj 2017). Metaheuristic,
mixed-integer non-linear programming and mixed-integer linear programming methods are
also preferred by the academics(Klansek 2016; Gao et al. 2015).
Linear scheduling methods were firstly developed in the USA(Alvarez-Valdes, Tamarit, and
Villa 2015). Artificial neural networks are also utilized for the project cost optimization(Monghasemi
et al. 2015).
This study presents the evolutionary algorithms utilized for construction projects planning.
The proposed models were also given within the scope of this research.

2 Evolutionary Algorithms

2.1 The linearized CPM-COST model

This model can be operated for minimizing direct and indirect costs. The tasks were connected
with finish-start relation. Model (Figure 2) can be described as follows(Radziszewska-Zielina
and Sroka 2017):
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Figure 2: linearized CPM-COST model

The main advantage of this system was found as linearity (Radziszewska-Zielina and Sroka
2017). This cause leads to simple calculations of the scheduling works and optimization.
However, it can be convergent when cost derivative function is negative for every task.

2.2 Hybrid Evolutionary Algorithm (HEA)

Hybrid evolutionary algorithm was first proposed for solving discreet optimization prob-
lems (Hejducki 2010). Then, some elements of the approach were changed for construction
projects(Rogalska, Bożejko, and Hejducki 2008). HEA is given in Figure 3. This algorithm
can determine the best construction start dates.
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Figure 3: Hybrid Evolutionary Algorithm (HEA) (Rogalska, Bożejko, and Hejducki 2008

2.3 Downtime Minimization Model (DMM)

This model was proposed in 2016 and detail of the DMM as follows(Krzemiński 2016): Great
minimization was obtained with the DMM. Network model of DMM is given in Figure 4. “W”
and “B” stands for site working subdivision and working bridges respectively.

Figure 4: DMM network model

Based on the network model (Figure 4) Tij and Zij matrices were designed and presented in
Figure 5.
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Figure 5: Tij and Zij matrices

This model provides great time reduces in scheduling works. Cost optimization can be also
analyzed with this model.

3 Conclusion

In this paper, widely utilized evolutionary algorithms in project scheduling are presented.
Review results can be drawn as follows:

1. CPM-COST model can be selected for cost based linear projects due to the fact that
no limitations on the density of linearity segments.

2. Hybrid Evolutionary Algorithm can be utilized effectively for time dependent tasks, and
it should be updated considering other criterion functions such as cost.

3. Downtime Minimization Model can be enhanced by adding workforce, direct and indirect
cost effects into the proposed algorithms.
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Abstract

In the present paper an idea of soft inner product on soft linear spaces has been
introduced and some of their properties are investigated. We define the soft inner product
space in a new point of view based on the soft point concept given in [1]

Keywords: Soft metric spaces, soft vector spaces, soft inner product spaces.

1 Introduction

Molodtsov [3] introduced the notion of soft set to overcome uncertainties which cannot be
dealt with by classical methods in many areas such as environmental science, economics,
engineering and etc. This theory is applicable where there is no clearly defined mathematical
model. Recently, many papers concerning soft sets have been published; see [4, 5, 6, 7].

The concept of soft point was defined in different approaches. Among these, the soft
point given in [1, 2] is more accurate.Das and et al. introduced the concept of soft element
in [8] and defined a soft vector space by using the concept of soft element. After then they
studied on soft normed spaces, soft linear operators, soft inner product spaces and their basic
properties [9, 10]. Later, Yazar and et al.[11] define the soft vector space by using the concept
of soft point and introduced the soft normed spaces in a new point of view. In this study, we
progress on the study [11] by introducing the soft inner product on soft vector spaces and give
some properties of soft inner product spaces. We show that the soft inner product function is
continuous and the inner product of two soft Cauchy sequences is also a soft Cauchy sequence.
We define soft space and show that this space is a soft inner product space.

2 Preliminaries

In this section we will introduce necessary definitions and theorems for soft sets. Let X be an
initial universe set and E be a set of parameters. Let P (X) denotes the power set of X and
A,B ⊆ E.

Definition 1 [3] A pair (F,E) is called a soft set over X, where F is a mapping given by
F : E → P (X).
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In other words, the soft set is a parameterized family of subsets of the set X. For a ∈ E,
F (a) may be considered as the set of a−elements of the soft set (F,E), or as the set of
a−approximate elements of the soft set.

Definition 2 [6] Let (F,E) and (G,E) be two soft sets over X. Then, soft union and soft
intersection of (F,E) and (G,E) are defined by the soft sets (H,E) and (H∗, E), respectively,

(H,E) = (F,E)∪̃(G,E), where H (a) = F (a) ∪G(a),
(H∗, E) = (F,E)∩̃(G,E), where H∗ (a) = F (a) ∩G(a), for all a ∈ E.

Definition 3 [6] A soft set (F,E) over X is said to be a null soft set denoted by Φ if for all
a ∈ E, F (a) = ∅.

Definition 4 [6] A soft set (F,E) over X is said to be an absolute soft set denoted by X̃ if for
all a ∈ E, F (a) = X.

Definition 5 [6] The difference (H,E) of two soft sets (F,E) and (G,E) over X, denoted by
(F,E)\̃(G,E), is defined as H(a) = F (a)\G(a) for all a ∈ E.

Definition 6 [6] The complement of a soft set (F,E), denoted by (F,E)c = (F c, E) , where
F c : E → P (X) is a mapping given by F c (a) = X\F (a) , for all a ∈ E .Here F c is called
the soft complement function of F.

Definition 7 [2] Let R be the set of all real numbers, B (R) be the collection of all non-empty
bounded subsets of R and E be taken as a set of parameters. Then a mapping F : E → B (R)
is called a soft real set. It is denoted by (F,E).If a soft real set is a singleton soft set, it will
be called a soft real number and denoted r̃, s̃ etc. Here r̃, s̃ will denote a particular type of soft
real numbers such that r̃ (a) = r, for all a ∈ E. For instance, 0̃ and 1̃ are the soft real numbers
where 0̃ (a) = 0, 1̃ (a) = 1 for all a ∈ E respectively.

Definition 8 [2] Let r̃, s̃ be two soft real numbers, then the following statements are hold:
(i) r̃≤̃s̃, if r̃ (a) ≤ s̃ (a) , for all a ∈ E,
(ii) r̃≥̃s̃, if r̃ (a) ≥ s̃ (a) , for all a ∈ E,
(iii) r̃<̃s̃, if r̃ (a) < s̃ (a) , for all a ∈ E,
(iv) r̃>̃s̃, if r̃ (a) > s̃ (a) , for all a ∈ E.

Definition 9 [1, 2] Let (F,E) be a soft set over X. The soft set (F,E) is called a soft point,
denoted by (xe, E) , if for the element e ∈ E, F (e) = {x} and F (e′) = φ for all e′ ∈ E − {e}
(briefly denoted by x̃e.)

Definition 10 [1] Two soft points (x̃e, E) and (ỹe′ , E) over a common universe X, we say that
the soft points are different if x 6= y or e 6= e′.

Definition 11 [13] Let τ̃ be the collection of soft sets over X, then τ̃ is called a soft topology
on X if the following conditions are satisfied:

1) Φ, X̃ belong to τ̃ ;
2) the union of any number of soft sets in τ̃ belongs to τ̃ ;
3) the intersection of any two soft sets in τ̃ belongs to τ̃ .
The triplet (X, τ̃ , E) is called a soft topological space over X.Then members of τ̃ are said

to be the soft open sets in X.

Let X̃ be the absolute soft set, E be a non-empty set of parameters and SP (X̃) be the
collection of all soft points of X̃.Let R(E)∗ denote the set of all non-negative soft real numbers.
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Definition 12 [2] A mapping d̃ : SP (X̃)× SP (X̃)→ R(E)∗ is said to be a soft metric on the
soft set X̃ if d̃ satisfies the following conditions:

(M1) d̃(x̃e1 , ỹe2)≥̃0̃ for all x̃e1 , ỹe2∈̃X̃,
(M2) d̃(x̃e1 , ỹe2) = 0̃ if and only if x̃e1 = ỹe2∈̃X̃,
(M3) d̃(x̃e1 , ỹe2) = d̃(ỹe2 , x̃e1) for all x̃e1 , ỹe2∈̃X̃,
(M4) For all x̃e1 , ỹe2 , z̃e3∈̃X̃, d̃(x̃e1 , z̃e3)≤̃ d̃(x̃e1 , ỹe2) + d̃(ỹe2 , z̃e3).
The soft set X̃ with a soft metric d̃ is called a soft metric space and denoted by (X̃, d̃, E).

Definition 13 [2] Let
{
x̃nen

}
be a sequence of soft points in a soft metric space (X̃, d̃, E). Then

the sequence
{
x̃nen

}
is said to be convergent in (X̃, d̃, E) if there is a soft point x̃0

e0∈̃X̃ such
that d̃(x̃nen

, x̃0
e0)→ 0̄ as n→∞.

Theorem 14 [2] Limit of a sequence in a soft metric space, if exist, is unique.

Definition 15 [2] (Cauchy Sequence) The sequence
{
x̃nen

}
of soft points in (X̃, d̃, E) is called a

Cauchy sequence in X̃ if corresponding to every ε̃>̃0̃, there is a m ∈ N such that d̃(x̃iei
, ỹjej

)≤̃ε̃,
for all i, j ≥ m i.e. d̃(x̃iei

, ỹjej
)→ 0̃ as i, j →∞.

Definition 16 [2] (Complete Metric Space) The soft metric space (X̃, d̃, E) is called complete
if every Cauchy Sequence in X̃ converges to some point of X̃. The soft metric space (X̃, d̃, E)
is called incomplete if it is not complete.

Let X be a vector space over a field K (K = R) and the parameter set E be the real
number set R.

Definition 17 [11] Let (F,E) be a soft set over X. The soft set (F,E) is said to be a soft
vector and denoted by x̃e if there is exactly one e ∈ E, such that F (e) = {x} for x ∈ X and
F (e′) = φ, ∀e′ ∈ E/ {e} .

The set of all soft vectors over X̃ will be denoted by SV (X̃).

Proposition 18 [11] The set SV (X̃) is a vector space according to the following operations;
(1) x̃e + ỹe′ = (x̃+ y)(e+e′) for every x̃e, ỹe′ ∈ SV (X̃);

(2) r̃.x̃e = (r̃x)(re) for every x̃e ∈ SV (X̃) and for every soft real number r̃.

Definition 19 [11] Let SV (X̃) be a soft vector space. Then a mapping

‖.‖ : SV (X̃)→ R+(E)

is said to be a soft norm on SV (X̃), if ‖.‖satisfies the following conditions:
(N1) ‖x̃e‖ ≥̃0̃ for all x̃e∈̃SV (X̃) and ‖x̃e‖ = 0̃⇔ x̃e = θ̃0;
(N2) ‖r̃.x̃e‖ = |r̃| ‖x̃e‖ for all x̃e∈̃SV (X̃) and for every soft scalar r̃;
(N3) ‖x̃e + ỹe′‖ ≤̃ ‖x̃e‖+ ‖ỹe′‖ for all x̃e, ỹe′∈̃SV (X̃).
The soft vector space SV (X̃) with a soft norm ‖.‖ on X̃ is said to be a soft normed linear

space and is denoted by (X̃, ‖.‖).

Definition 20 [11] A sequence of soft vectors
{
x̃nen

}
in (X̃, ‖.‖) is said to be convergent to x̃0

e0
,if lim

n→∞
∥∥x̃nen

− x̃0
e0

∥∥ = 0̃ and denoted by x̃nen
→ x̃0

λ0
as n→∞.

Definition 21 [11] A sequence of soft vectors
{
x̃nen

}
in (X̃, ‖.‖) is said to be a soft Cauchy

sequence if corresponding to every ε̃>̃0̃ , ∃m ∈ N such that
∥∥∥x̃iei
− x̃jej

∥∥∥ <̃ε̃, ∀i, j ≥ m i.e.∥∥∥x̃iei
− x̃jej

∥∥∥→ 0̃ as i, j →∞.

Definition 22 [11]Let (X̃, ‖.‖) be a soft normed linear space. Then (X̃, ‖.‖) is said to be a soft
Banach space if every Cauchy sequence in X̃ converges to a soft vector of X̃.
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3 Soft Inner Product Spaces
Definition 23 Let SV (X̃) be a soft vector space. The mapping

< . >: SV (X̃)→ SV (X̃)→ R(E)∗

is called a soft inner product on SV (X̃) iff it satisfies the following conditions, for every
x̃e, ỹe′ , z̃e′′∈̃SV (X̃) and for every soft real number α̃;

(I1.) < x̃e, x̃e > ≥̃0̃ and < x̃e, x̃e >= 0̃⇔ x̃e = θ̃0,

(I2.) < x̃e, ỹe′ >= < ỹe′ , x̃e >,

(I3.) < α̃x̃e, ỹe′ >=< x̃e, α̃ỹe′ >= α̃ < x̃e, ỹe′ >,

(I4.) < x̃e + ỹe′ , z̃e′′ >=< x̃e, z̃e′′ > + < ỹe′ , z̃e′′ > .

The triple (SV (X̃), < . >,E) is called soft inner product space.

Example 24 Given the soft vector space SV (R̃) and for every x̃e, ỹe′∈̃SV (R̃),
let us define the mapping < . >: SV (R̃)→ SV (R̃)→ R(E) (E = R) as follows

< x̃e, ỹe′ >= e.é+ < x, y > (x, y ∈ R, e, é ∈ R and < . >: R× R→ R)

In this case, the mapping < . > is an inner product on SV (R̃).
(I1) For every x̃e∈̃SV (R̃), < x̃e, x̃e >= e.e+ < x, x >= e2 + ‖x‖ ≥ 0 and

< x̃e, x̃e >= 0⇔ e.e+ < x, x >= 0
⇔ e = 0 and x = θ

⇔ x̃e = θ̃0

(I2) For every x̃e, ỹe′∈̃SV (R̃),

< x̃e, ỹe′ >= e.e′+ < x, y >= e′.e+ < y, x >=< ỹe′ , x̃e > .

(I3) For every α̃∈̃ R(E) and ∀x̃e, ỹe′∈̃SV (R̃),

< α̃x̃e, ỹe′ >= α̃e.e′+ < x, y >= α̃e′.e+ < y, x >=< x̃e, α̃ỹe
′ > .

(I4) For every x̃e, ỹe′ , z̃e′′∈̃SV (R̃),

< x̃e + ỹe′ , z̃e′′ >=< (x̃+ y)(e+e′), z̃e′′ >

= (e+ e′)e′′+ < x+ y, z >

= e.e′′ + e′e′′+ < x, z > + < y, z >

= e.e′′+ < x, z > +e′e′′+ < y, z >

= < x̃e, z̃e′′ > + < ỹe′ , z̃e′′ >

Remark 25 Let (SV (X̃), < . >,E) be a soft inner product space. For the parameter e = 0 the
soft vector space X̃ is equal to the vector space X and we have the following inner product

< . >0: X ×X −→ R.

Hence, for the parameter e = 0 we obtain the inner product space (X,< . >0).

Proposition 26 Let (SV (X̃), < . >,E) be a soft inner product space. In this case, for every
x̃e, ỹe′ , z̃e′′∈̃SV (X̃) and ∀α̃, β̃∈̃ R(E)

i. < α̃x̃e + β̃ỹe′ , z̃e′′ >= α̃ < x̃e, z̃e′′ > +β̃ < ỹe′ , z̃e′′ >,
ii. < x̃e, α̃ỹe′ + β̃z̃e′′ >= α̃ < x̃e, ỹe′ > +β̃ < x̃e, z̃e′′ >,
are satisfied.
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Proof. The proof is straight forward.

Proposition 27 Let
(
SV (X̃), 〈.〉 , E

)
be a soft inner product space. The mapping ‖.‖ :

SV (X̃)→ R+(E) defined as ‖x̃e‖ =
√
〈x̃e, x̃e〉 is a soft norm.

Proof. Let us show that soft norm conditions are satisfied;
N1. For every x̃e∈̃SV (X̃) it is obvious that ‖x̃e‖ =

√
〈x̃e, x̃e〉≥̃0̃. Furthermore,

‖x̃e‖ =
√
〈x̃e, x̃e〉 = 0̃⇔ 〈x̃e, x̃e〉 = 0̃⇔ x̃e = θ̃0̃.

N2. For every x̃e∈̃SV (X̃) and α̃∈̃R(E), since

‖α̃x̃e‖2 = 〈α̃x̃e, α̃x̃e〉 = α̃2 ‖x̃e‖2 ,

we have ‖α̃x̃e‖ = |α̃| ‖x̃e‖ .
N3. For every x̃e, ỹe′∈̃SV (X̃) we have

‖x̃e + ỹe′‖2 = 〈x̃e + ỹe′ , x̃e + ỹe′〉
= ‖x̃e‖2 + 2 〈x̃e, ỹe′〉+ ‖ỹe′‖2

≤̃ ‖x̃e‖2 + 2 |〈x̃e, ỹe′〉|+ ‖ỹe′‖2

≤̃ ‖x̃e‖2 + 2 ‖x̃e‖ ‖ỹe′‖+ ‖ỹe′‖2

= (‖x̃e‖+ ‖ỹe′‖)2 .

Example 28 Given the soft vector space SV (R̃n) and the parameter set E = R. Let us define
the function < . >: SV (R̃n)× SV (R̃n) −→ R(E) as follows

< x̃e, ỹe′ >= x̃1
e1 .ỹ

1
e′

1
+ x̃2

e2 .ỹ
2
e′

2
+ · · ·+ x̃nen

.ỹne′
n
,

where x̃e =
(
x̃1
e1 , x̃

2
e2 , . . . , x̃

n
en

)
, ỹe′ =

(
ỹ1
e′

1
, ỹ2
e′

2
, . . . , ỹne′

n

)
∈̃SV (R̃n). It is obvious that the condi-

tions I1, I2, I3 are satisfied. Let us show that the condition I4 is satisfied.
For every x̃e, ỹe′ , z̃e′′∈̃SV (R̃n),

< x̃e + ỹe′ , z̃e′′ >=< (x̃+ y)(e+e′), z̃e′′ >= (x̃+ y)(e+e′).z̃e′′

=
{(

x̃1 + y1
)

(e1+e′
1)
.z̃1
e′′

1
+ · · ·+

(
˜xn + yn

)
(en+e′

n)
.z̃ne′′

}

=
{(

˜(x1 + y1) .z1
)

(e1+e′
1).e′′

1

+ · · ·+
(

˜(xn + yn) .zn
)

(en+e′
n).e′′

n

}

=





(
x̃1 + z1

)

(e1+e′
1)

+
(
ỹ1 + z1

)

(e′
1+e′′

1 )
+

· · ·+
(

˜xn + zn
)

(en+e′
n)

+
(

˜yn + zn
)

(e′
n+e′′

n)





=
{(
x̃1
e1 .z̃

1
e′′

1
+ ỹ1

e′
1
.z̃1
e′′

1

)
+ · · ·+

(
x̃nen

.z̃ne′′
n

+ ỹne′
n
.z̃ne′′

n

)}

=
{(
x̃1
e1 .z̃

1
e′′

1
+ · · ·+ x̃nen

.z̃ne′′
n

)
+ · · ·+

(
ỹ1
e′

1
.z̃1
e′′

1
+ ỹne′

n
.z̃ne′′

n

)}

= < x̃e, ỹe′ > + < ỹe′ , z̃e′′ > .
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Abstract

Metric space is one of the most important space in mathematics. There are various
type of generalization of metric spaces. In this study we define soft D−metric spaces. We
obtain some important properties concerning D−metric spaces. Finally, we prove a fixed
point theorem on a complete soft D−metric space.

Keywords: Soft set, generalized soft D−metric space, soft ∆−distance.

1 Introduction and Preliminaries

Metric space is one of the most important space in mathematic. There are various type
of generalization of metric spaces. Bapure Dhage [6] in his PhD thesis [1992] introduce a
new class of generalized metrics called D−metrics. In a subsequent series of papers Dhage
attemped to develop topological structures in such spaces. Also he claimed that D−metrics
provide a generalization of ordinary metric functions. Subsequently, some works have been
done the basis for over a lot of papers by Dhage and other authors. Using the concept of
D−metric, Y.J.Cho and R. Saadati [4] defined a ∆−distance on a complete D−metric space
which is a generalization of the concept of ω−distance due to Kada, Suzuki and Takahashi
[14]. Later S.V.R.Naidu et all. [13] researched topology of D−metric spaces.

Metric spaces wide area provides a powerfull tool to the study of optimization and approx-
imation theory, variational inequalities and so many. After Molodtsov [10] initiated a novel
concept of soft set theory as a new mathematical tool for dealing with uncertainties, applica-
tions of soft set theory in other disciplines and real life problems was progressing rapidly, the
study of soft metric space which is based on soft point of soft sets was initiated by Das and
Samanta [5]. Yazar et al.[16] examined some important properties of soft metric spaces and
soft continuous mappings. They also proved some fixed point theorems of soft contractive
mappings on soft metric spaces. Later Gunduz Aras at al. [8], [9] defined soft S−metric
spaces and give some fixed point theorems on this spaces. The purpose of this paper firstly
is to contribute for investigating on soft D−metric space which is based on soft point of soft
sets. By using the concept of soft D−metric, we define a soft ∆− distance on a complete soft
D−metric. Secondly, using the concept of soft ∆−distance, we give a fixed point theorem.
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We briefly give some basic definitions of concepts which serve a background to this work.

Throughout this paper, X denotes initial universe, E denotes the set of all parameters,
P (X) denotes the power set of X.

Definition 1 [10] A pair (F,E) is called a soft set over X, where F is a mapping given by
F : E → P (X).

In other words, the soft set is a parameterized family of subsets of the set X. For a ∈ E,
F (a) may be considered as the set of a−elements of the soft set (F,E), or as the set of
a−approximate elements of the soft set.

Definition 2 [11] A soft set (F,E) over X is said to be a null soft set denoted by Φ if for all
a ∈ E, F (a) = ∅.

Definition 3 [11] A soft set (F,E) over X is said to be an absolute soft set denoted by X̃ if
for all a ∈ E, F (a) = X.

Definition 4 [15] Let τ̃ be the collection of soft sets over X, then τ̃ is called a soft topology on
X if the following conditions are satisfied:

1) Φ, X̃ belong to τ̃ ;
2) the union of any number of soft sets in τ̃ belongs to τ̃ ;
3) the intersection of any two soft sets in τ̃ belongs to τ̃ .
The triplet (X, τ̃ , E) is called a soft topological space over X.Then members of τ̃ are said

to be the soft open sets in X.

Proposition 5 [15] Let (X, τ̃ , E) be a soft topological space over X. Then the family τ̃a =
{F (a) : (F,E) ∈ τ̃} for each a ∈ E, defines a topology on X.

Definition 6 [1],[5] Let (F,E) be a soft set over X. The soft set (F,E) is called a soft point,
denoted by (xa, E) , if for the element a ∈ E, F (a) = {x} and F (a′) = ∅
for all a′ ∈ E − {a} (briefly denoted by xa) .

It is obvious that each soft set can be expressed as union of all soft points belonging to it.
For this reason, to give the family of all soft sets on X it is sufficient to give only soft points
on X.

Definition 7 [1] Two soft points xa and yb over a common universe X, we say that the soft
points are different if x 6= y or a 6= b.

Definition 8 [1] The soft point xa is said to be belonging to the soft set (F,E), denoted by
xa∈̃(F,E), if xa (a) ∈ F (a) ,i.e., {x} ⊆ F (a) .

Definition 9 [1] Let (X, τ,E) be a soft topological space over X. A soft set (F,E) ⊆ (X,E) is
called a soft neighborhood of the soft point xa ∈ (F,E) if there exists a soft open set (G,E)
such that xa ∈ (G,E) ⊆ (F,E).

Definition 10 [5] Let R be the set of all real numbers, B (R) be the collection of all non-empty
bounded subsets of R and E be taken as a set of parameters. Then a mapping F : E → B (R)
is called a soft real set. It is denoted by (F,E).If a soft real set is a singleton soft set, it will
be called a soft real number and denoted r̃, s̃ etc. Here r̃, s̃ will denote a particular type of soft
real numbers such that r̃ (a) = r, for all a ∈ E. For instance, 0̃ and 1̃ are the soft real numbers
where 0̃ (a) = 0, 1̃ (a) = 1 for all a ∈ E respectively.
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Definition 11 [6] Let X be a non-empty set. A function D : X3 → [0,∞) is called a D−metric
if the following conditions are satisfied:

(1) D (x, y, z) ≥ 0 for all x, y, z ∈ X and equality holds if and only if x = y = z,
(2) D (x, y, z) = D (x, z, y) = D (y, x, z) = ...
(3) D (x, y, z) ≤ D (x, y, u) +D (x, u, z) +D (u, y, z), for all x, y, z, u ∈ X.
Then the pair (X,D) is called an D− metric space.

2 Soft D− Metric Spaces
In this section, we introduce the definition of softD−metric spaces, soft ∆−distance function,
from the family of all soft points of a soft set to the set of all non-negative soft real numbers.
Later we study some important results of its. Later we give some important concepts such as
converge, Cauchy sequence, soft complete on soft D− metric spaces. Let X̃ be the absolute
soft set, E be a non-empty set of parameters and SP (X̃) be the collection of all soft points
of X̃.Let R(E)∗ denote the set of all non-negative soft real numbers.

Definition 12 A mapping D : SP (X̃)×SP (X̃)×SP (X̃)→ R(E)∗ is called a soft D− metric
on the soft set X̃ that D satisfies the following conditions, for each soft points xa, yb, zc, ud ∈
SP (X̃),

D1) D (xa, yb, zc) ≥ 0̃,with equality if and only if xa = yb = zc.(coincidence)
D2) D (xa, yb, zc) = D (yb, xa, zc) = D (xa, zc, yb) = ...(symmetry)
D3)D (xa, yb, zc) ≤ D (xa, yb, ud) +D (xa, ud, zc) +D (ud, yb, zc) .
Then the soft set X̃ with a soft D− metric is called a soft D− metric space and denoted

by
(
X̃,D,E

)
.

Remark 13 If
(
X̃,D,E

)
is a soft D− metric space, then (X,Da) is a D− metric space for

each a ∈ E. Here Da stands for the D−metric for only parameter a and (X,Da) is a crisp
D− metric space. It is clear that every soft D− metric space is a family of parameterized D−
metric space.

Theorem 14 Let
(
X̃,D,E

)
be a complete D−metric space and ∆−be a distance on X̃, (f, ϕ) :(

X̃,D,E
)
→
(
X̃,D,E

)
be a soft mapping. Let X̃ be a ∆−bounded. Suppose that there exists

a soft real number r̃ ∈ R(E) , 0̃ ≤ r̃ < 1̃ (R(E) denotes the soft real numbers set) such that

∆
(
(f, ϕ) (xa) , (f, ϕ)2 (xa) , (f, ϕ) (yb)

)
≤ r̃∆ (xa, (f, ϕ) (xa) , yb)

for all xa, yb ∈ SP (X̃).Then there exists zc ∈ SP (X̃) such that zc = (f, ϕ) (zc) .In addition, if
vs = (f, ϕ) (vs) , then ∆ (vs, vs, vs) = 0̃.

Note that a soft mapping is a soft continuous mapping because if xn
an
→ xa in the above

condition we get (f, ϕ)
(
xn

an

)→ (f, ϕ) (xa) .
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Abstract

This work represents one of the recent optimization algorithm so-called Symbiotic Or-
ganisms Search (SOS) for optimal design of 2-D steel frame structures. The SOS is based
on the interactions relationship between two organisms in ecosystems. The mostly common
symbiotic relations between the organisms in ecosystem are mutualism, commensalism,
and parasitism. The novel SOS algorithm is examined by 2-D steel frame design optimiza-
tion problem and its performance is further compared with various demoded optimization
algorithms.

Keywords: Optimal design, symbiotic organisms search, 2-D steel frame.

1 Introduction

The design optimization of steel frames mostly includes minimizing the volume or weight of
the structure under fixed design limitations achieved by using codes. So far, various algorithms
have been employed for resolving this type of problems [1, 2]. To put in a different way, for
investigating the performance of optimization techniques the design optimization of the steel
frames can be taken into account as a benchmark problem. The charged system search (CSS)
[3], imperialist competitive algorithm (ICA) [4], colliding-bodies optimization (CBO) [5], and
chaotic swarming of particles (CSP) [6] are some instances of countless methods implemented
in this subject.

2 Mathematical Based Statement of The Problem

The weight minimization is considered as the main objective in the optimal design of the steel
frames interpreted as following [7]:
Find a vector of integer values I (Equation 1) presenting the sequence numbers of steel sections
assigned to Nd member groups

IT= [I1, I2, ..., INd
] (1)

to minimize the weight (W) of the frame

W =

Nd∑

i=1

ρiAi

Nt∑

j=1

Lj (2)

here, Ai and ρi are the length and unit weight of the steel section adopted for member group i,
respectively, Nt is the total number of members in group i, and Li is the length of the member
j which belongs to group i. The members subjected to
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(δj−δj−1)

hj
≤ δju j = 1, ...,ns (3)

δi ≤ δiu i = 1, ...,nd (4)

Vu ≤ φVn (5)
(

Pu

φcPn

)
+

(
8

9

Mux

φbMnx

)
≤ 1.0 for

Pu

φcPn
≥ 0.2 (6)

(
Pu

2φcPn

)
+

(
Mux

φbMnx

)
≤ 1.0 for

Pu

φcPn
≤ 0.2

Bjb ≤ Bjc j = 1, ...,nj (7)

Ds ≤ Ds−1 s = 1, ...,nu (8)

ms ≤ ms−1 (9)

In Equation (3) the inter-story drift of the multi-story frame is presented. δj and δj−1 are
lateral deflections of two adjacent story levels and hj is the story height. ns is the total number
of stories in the frame. In Equation (4), the displacement restrictions that may be required to
include other than drift constraints such as mid-span deflections of beams is defined. nd is the
total number of restricted displacements in the frame. δju is the allowable lateral displacement.
The horizontal deflection of columns is limited due to unfactored imposed load and wind loads
to height of column/300 in each story of a building with more than one story. δiu is the upper
bound on the deflection of beams which is given as (span/300) if they carry plaster or other
brittle finish. In Equation (5), the shear capacity check for beam-columns is tabulated. ϕ
is resistance factor in shear, Vu required shear strength, Vn is nominal shear strength. In
Equation (6), the local capacity check for beam-columns is defined. Mnx is nominal flexural
strength, Mux is applied moment, Pn is nominal axial strength, Pu is applied axial load, Øc

is resistance factor for columns if the axial force is in compression, Øb is resistance factor
in bending. It is apparent that computation of compressive strength ØcPn of a compression
member requires its effective length. Equation (7) is comprised in the design problem to
guarantee that the flange width of the beam (B) section at each beam-column connection at
joint j should be less than or equal to the flange width of column section. nj represents the
total number of joints in the frame.
Equations (8) and (9) are needed to be included to make sure that the depth (D) and the
mass per meter (m) of column section at story s at each beam-column connection are less
than or equal to width and mass of the column section at the lower story s−1. nu is the total
number of these constraints.

3 Symbiotic Organisms Search (Sos) Algorithm

The symbiotic organisms search technique [8, 9] mimics the behavior of organisms affected
each other in the nature. Organisms depend on other genus to survive. This kind of de-
pendence is so-called as symbiotic. The SOS sustains inhabitants of probable solutions. The
initial population is called the ecosystem. Organisms in the ecosystem is randomly generated
which each organism is representing a candidate solution to the given problem. A fitness
function is assigned to each organism to reflect its degree of adaptation to the desired ob-
jective. The SOS consists of three phases that resemble real world biological interactions
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between two organisms: (i) Mutualism phase where an interaction benefits both organisms,
(ii) Commensalism phase where an interaction benefits one organism, while does not harm
the other, (iii)Parasitism phase where one organism is benefited, while the other is harmed.
Thus, the following algorithm outlines the SOS algorithm approach [10]:
Initialization
Repeat

Mutualism phase
Commensalism phase
Parasitism phase

Until a stopping criterion is met
A detailed description of the SOS algorithm and three phases is given in the Refs. [8-10] and
are not repeated here.

3.1 Constraint Handling

Each design is analyzed under the external loading and the design constraints given in Equa-
tions (3) (9) are checked. If a candidate design does not satisfy the design constraints, its
objective function value is penalized in accordance with constraint violations using Equation
(10):

fcost,p= fcost(1 + C)ε (10)

where, fcost is the objective function value given by Equation (2), fcost,p is the penalized
objective function value, C is the summation of constraint violations calculated using the
constraint functions stated by Equations (3)-(9), and ε is the penalty coefficient, which is
taken as 2.0 in this study. In general form, constraint violations are calculated as:

Ci=

{
0 gi(x) ≤ 0
gi(x) gi(x) > 0

i = 1, ...,NC (11)

where, gi(x) is the ith constraint function, x is the vector of design variables, and NC is the
number of constraint functions in the optimal design problem [7].

4 Design Example

A two-bay, six story 2-D steel frame [11] shown in Figure 1 is considered as design example of
this study. The frame consists of thirty members that are collected in eight groups as shown in
the figure. The allowable inter-story drift is 1.17 cm while the lateral displacement of the top
story is limited to 7.17 cm. The modulus of elasticity is taken as 200 kN/mm2. A distributed
load 50 kN/m and a 25 kN single lateral load is applied to each horizontal member of the frame.
Fixed supports are used for the connection of the columns to the foundation. Also, the discrete
set from which the SOS based design algorithm selects the sectional designations for frame
members is considered to be the complete set of 272 W-sections starting from W100x19.3 to
W1100x499 mm as given in LRFD–AISC [12]. Besides, two main control parameters for SOS
algorithm, which are ecosystem size and maximum number of fitness function evaluations, are
set as 20 and 20000 respectively.
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Figure 1: Two-bay, six story 2-D steel frame
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The optimum W-sections designation obtained by the Symbiotic Organisms Search algorithm
is given in Table 1. This minimum weight of the frame is yielded by SOS algorithm as 6925 kg.
The frame is formerly designed by two different optimal design algorithms that are based on
two different metaheuristics such that particle swarm algorithm and harmony search algorithm
as reported in Ref. [12]. This means that SOS design algorithm produces the best design
solution that is 8.8% and 13.1% lighter than the optimal designed frames attained by particle
swarm algorithm and harmony search algorithm, respectively. It is noticed that in the best
designed optimum frame achieved by SOS algorithm the lateral displacement of top story is
5.489 cm against its upper bound of 7.17cm. The highest ratio among the combined strength
constraints is 1.0 that means it reaches its upper bound. Maximum inter-story drift ratio is
recorded as 1.13 cm whose upper bound is set as 1.17 cm. This clearly indicates that strength
constraints dominate the optimum design.

Table 1: Optimal designs for two-bay, six story 2-D steel frame.

Group No Member
Type

Symbiotic
Organisms
Search Algo-
rithm

Particle
Swarm
Algorithm
[11]

Harmony
Search Al-
gorithm
[11]

1 Column W200x59 W530X74 W460x82

2 Column W200x59 W310X52 W310x74

3 Column W200x59 W200X41.7 W200x46

4 Column W690x125 W460X89 W530x109

5 Column W460x74 W460X89 W460x97

6 Column W200x41.7 W360X72 W310x60

7 Beam W460x52 W460X60 W410x60

8 Beam W310x32.7 W460X68 W360x33

Min. weight-kN
(kg)

67.910
(6925)

73.873
(7533)

76.776
(7829)

5 Conclusions

The relation and dependence behavior of organisms existing in the nature is treated as the
main inspirations for the Symbiotic Organisms Search (SOS) algorithm. Three main phases
of a real biological interaction between two organisms such as the mutualism phase, commen-
salism phase, and parasitism phase are implemented in current algorithm. In this study, the
SOS algorithm is examined on solving 2-D steel frames. A design example is resolved by the
SOS algorithm and its performance is further compared with various demoded algorithms.
From results presented here, the SOS algorithm shows a good performance compared to some
other well-known old fashion metaheuristics such as Particle Swarm algorithm and Harmony
Search algorithm. As a future work, some further enhancement can be studied to improve
the performance of SOS algorithm for 3-D large-scale problems where the performance of the
algorithm is expected as not good as its ability on solving small ones.
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Abstract

In the present work we consider the quadratic differential pencil l(y) = y′′ + (λ2 −
2λp(x)− q(x))y with the anti-periodic boundary conditions which are not strongly regu-
lar. It is assumed that q(x) ∈ C(1)[0, π] and p(x) ∈ C(2)[0, π] are complex valued functions
defined on the closed interval [0, π] and p(x) is satisfying the condition p(π) − p(0) 6= 0.
We obtain the accurate asymptotic expressions of linearly independent solutions of the
quadratic differential pencil and we give asymptotic formulas for eigenvalues of the anti-
periodic boundary value problem.
Keywords: Anti-periodic boundary condition, quadratic pencil, asymptotic expansions,
eigenvalues, eigenfunctions, Sturm-Liouville operator.

1 Introduction

We consider the following quadratic differential pencil on the interval [0, π]

l(y) = y′′ + (λ2 − 2λp(x)− q(x))y (1)

with the anti-periodic boundary conditions

y(0) = −y(π), y′(0) = −y′(π) (2)

where q(x) ∈ C(1)[0, π] and p(x) ∈ C(2)[0, π] are complex-valued functions defined on on the
closed interval [0, π] and λ is a spectral parameter. For simplicity we assume that

∫ π
0 q(x)dx =

0,
∫ π
0 p

2(x)dx = 0. The quadratic pencils of Sturm-Liouville operators have been studied in
[1, 2, 3]. The analysis of inverse spectral problems with other kinds of separated boundary
conditions as well as with periodic or antiperiodic boundary condition were investigated in [1,
2]. Direct and inverse spectral problems for differential operator pencils have been extensively
studied in [4]-[11] and other works (for details see [12, 13]).

In this study, we investigate some spectral properties of the differential pencil. We obtain
the expressions of two linearly independent solutions of the given problem, and we give the
asymptotic formulas for the eigenvaules under certain conditions.

∗Corresponding author. E-mail address: hmenken@mersin.edu.tr
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2 Linearly Independent Solutions For Quadratic Differential
Pencil

The following result is valid.

Lemma 1 For sufficiently large | λ |, the expressions of the fundamental solutions of the
quadratic differential pencil (1) are of the following form

y1(x, λ) = eiλxe−iβx



1 +

1

2iλ


i(p(x)− p(0)) +

x∫

0

p2(t)dt+

x∫

0

q(t)dt


 (3)

+
1

(2iλ)2

[
−i(p′(x)− p′(0))− 5

2
p2(x) + p(0)p(x) +

3

2
p2(0)− q(x) + q(0)

+ 2i

x∫

0

p3(t)dt+

x∫

0

q(t)dt

x∫

0

p2(t)dt+
1

2




x∫

0

p2(t)dt




2

+
1

2




x∫

0

q(t)dt




2

+i(p(x)− p(0))(

x∫

0

p2(t)dt+

x∫

0

q(t)dt) ] +O

(
1

λ3

)
 ,

y2(x, λ) = e−iλxeiβx



1 +

1

2iλ


i(p(x)− p(0))−

x∫

0

p2(t)dt−
x∫

0

q(t)dt


 (4)

+
1

(2iλ)2

[
i(p′(x)− p′(0))− 5

2
p2(x) + p(0)p(x) +

3

2
p2(0)− (q(x)− q(0))

− 2i

x∫

0

p3(t)dt+

x∫

0

q(t)dt

x∫

0

p2(t)dt+
1

2




x∫

0

p2(t)dt




2

+
1

2




x∫

0

q(t)dt




2

−i(p(x)− p(0))(

x∫

0

p2(t)dt+

x∫

0

q(t)dt) ] +O

(
1

λ3

)
 .

Proof. It is well known that see [12], page 43) if the complex λ -plane is divided into two
sectors S` defined by the equalities

`π

2
≤ arglambda ≤ (`+ 1)π

2
, (` = 0, 1). (5)

Then in each of these sectors (5), the equation (1) has two linear independent solutions for
sufficiently large |λ|, which satisfying the relation

yν(x, λ) = eλwνx
[
uν,0(x) + · · · uν,0(x)

(2λwν)n
+O(

1

λn+1 )

]
, (ν = 1, 2) (6)

where the functions uν,j(x) are satisfying the following recurrent relations

uν,j(x) = e−wνβ(x)
x∫

0

L [uν,j−1(t)] ewνβ(t)dt, (j = 0, 1) (7)

uν,0(x) = e−wνβ(x) (8)
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and

L ≡ − d2

dx2
+ q(x), w1 = i, w2 = −i. (9)

Thus, we can find from (7), (8) and (9) that

u1,0(x) = e−iβ(x), u2,0(x) = eiβ(x),

u1,1(x) = e−iβ(x)[(i(p(x)− p(0) +

∫ x

0
p2(t)dt) +

∫ x

0
q(t)dt)],

u1,2(x) = e−iβ(x)[2i
∫ x

0
p3(t)dt− i(p′(x) + p′(0))− 5

2
p2(x) + p(0)p(x)

+
3

2
p2(0)− q(x) + q(0) + 2i

∫ x

0
p(t)q(t)dt+ i(p(x)− p(0))

∫ x

0
p2(t)dt

+
1

2
(

∫ x

0
p2(t)dt)2 + i(p(x)− p(0))

∫ x

0
q(t)dt+

∫ x

0
q(t)dt

∫ x

0
p2(t)dt

+
1

2
(q(t)dt)2],

u2,1(x) = eiβ(x)[−i((p(x)− p(0)) +

∫ x

0
p2(t)dt+

∫ x

0
q(t)dt]

and

u2,2(x) = eiβ(x)[i(p′(x)− p′(0))− 5

2
p2(x) + p(0)p(x) +

3

2
p2(0)− (q(x)− q(0))

−i(p(x)− p(0))

∫ x

0
p2(t)dt− 2i

∫ x

0
p3(t)dt+ +

1

2
(

∫ x

0
p2(t)dt)2

−i(p(x)− p(0))

∫ x

0
q(t)dt− 2i

∫ x

0
p(t)q(t)dt+

∫ x

0
q(t)dt

∫ x

0
p2(t)dt

+
1

2
(

∫ x

0
q(t)dt)2].

Let us substitute all these recurrent relations into the (6) we easily obtain the linearly inde-
pendent solutions (3) and (4). The proof of Lemma is completed.

3 The Asymptotic Formulas For The Eigenvalues

Theorem 2 The eigenvalues of the boundary - value problem (1)-(2) form two infinite se-
quences λk,1 λk,2, | k |= N,N + 1, ... where N is a positive integer and have the following
asymptotic formulas:

λk,1 =
β(π)

π
+ 2k +

p(π)− p(0)

4kπ
+O(

1

k2
),

λk,2 =
β(π)

π
+ 2k − p(π)− p(0)

4kπ
+O(

1

k2
)
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Proof. By derivation of (6) up to first order with respect to x we obtain

y′ν(x, λ) = λwνe
λwνx

[
uν,0(x) + · · ·+

n∑

1

uν,k(x) + 2u′ν,k−1(x)

(2λwν)n
+O(

1

λn+1 )

]
,

where ν = 1, 2 and w1 = −w2 = i. It readily follows that

y1(0, λ) =

[
1 +O

(
1

λ3

)]
,

y2(0, λ) =

[
1 +O

(
1

λ3

)]
,

y1(π, λ) = eiλπe−iβ(π)



1 +

1

2iλ


i(p(π)− p(0)) +

π∫

0

p2(t)dt+

π∫

0

q(t)dt




+
1

(2iλ)2

[
−i(p′(π)− p′(0))− 5

2
p2(π) + p(0)p(π) +

3

2
p2(0)− q(π) + q(0)

+ 2i

π∫

0

p3(t)dt+

π∫

0

q(t)dt

π∫

0

p2(t)dt+
1

2




π∫

0

p2(t)dt




2

+
1

2




π∫

0

q(t)dt




2

+i(p(π)− p(0))(

π∫

0

p2(t)dt+

π∫

0

q(t)dt)


+O

(
1

λ3

)
 ,

y2(π, λ) = e−iλπeiβ(π)



1 +

1

2iλ


i(p(π)− p(0))−

π∫

0

p2(t)dt−
π∫

0

q(t)dt




+
1

(2iλ)2

[
i(p′(π)− p′(0))− 5

2
p2(π) + p(0)p(π) +

3

2
p2(0)− (q(π)− q(0))

− 2i

π∫

0

p3(t)dt+

π∫

0

q(t)dt

π∫

0

p2(t)dt+
1

2




π∫

0

p2(t)dt




2

+
1

2




π∫

0

q(t)dt




2

−i(p(π)− p(0))(

π∫

0

p2(t)dt+

π∫

0

q(t)dt)


+O

(
1

λ3

)
 ,

y′1(0, λ) = iλ

[
1− 2ip(0)

(2iλ)
+

2ip′(0) + 2p2(0) + 2q(0)

(2iλ)2
+O

(
1

λ3

)]
,

y′2(0, λ) = −iλ
[
1− 2ip(0)

(2iλ)
+
−2ip′(0) + 2p2(0) + 2q(0)

(2iλ)2
+O

(
1

λ3

)]
,
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y′1(π, λ) = iλeiλπe−iβ(π)



1− 1

2iλ


i(p(π)− p(0))−

π∫

0

p2(t)dt−
π∫

0

q(t)dt




+
1

(2iλ)2

[
i(p′(π) + p′(0)) +

3

2
p2(π)− p(0)p(π) +

3

2
p2(0) + q(π) + q(0)

+ 2i

x∫

0

p3(t)dt+

π∫

0

q(t)dt

π∫

0

p2(t)dt+
1

2




π∫

0

p2(t)dt




2

+
1

2




π∫

0

q(t)dt




2

−i(p(π) + p(0))(

π∫

0

p2(t)dt+

π∫

0

q(t)dt)


+O

(
1

λ3

)
 ,

y′2(π, λ) = −iλe−iλπeiβ(π)


1− 1

2iλ


i(p(π) + p(0)) +

π∫

0

p2(t)dt+

π∫

0

q(t)dt




+
1

(2iλ)2

[
−i(p′(π) + p′(0)) +

3

2
p2(π)− p(0)p(π) +

3

2
p2(0) + q(π) + q(0)

− 2i

x∫

0

p3(t)dt+

π∫

0

q(t)dt

π∫

0

p2(t)dt+
1

2




π∫

0

p2(t)dt




2

+
1

2




π∫

0

q(t)dt




2

+i(p(π) + p(0))(

π∫

0

p2(t)dt+

π∫

0

q(t)dt)


+O

(
1

λ3

)
 .

Let us substitute all these yν(x, λ) and y′ν(x, λ) (ν = 1, 2) into the characteristic determinant

4(λ) =

∣∣∣∣
U1 (y1(x, λ)) U1(y2(x, λ))
U2(y1(x, λ)) U2(y2(x, λ))

∣∣∣∣ , (10)

where
U1(y) = y(π) + y(0) U2(y) = y′(π) + y′(0).

By elementary transformations, for sufficiently large |λ|, we find that the following relation is
valid

eiλπeiβ(π)

−2iλ
4(λ) = b(λ)e2iλπ + C(λ)2eiλπeiβ(π) +D(λ)e2iβ(π). (11)

Let be b(λ) be coefficient of e2iλπ in (11). Using the expansion

(1− x)−1 = 1 + x+ x2 +O(x3) x→ 0,

we can easily see that for sufficiently large |λ| the following relation holds

b−1(λ) = 1 +
1

2iλ

[
2ip(0)−

∫ π

0
p2(t)dt−

∫ π

0
q(t)dt

]
(12)

+
1

(2iλ)2

[
1

2
p2(π)− p(0)p(π)− 11

2
p2(0)− 2i

∫ π

0
p3(t)dt

−2ip(0)

(∫ π

0
p2(t)dt+

∫ π

0
q(t)dt

)
+

∫ π

0
q(t)dt

∫ π

0
p2(t)dt

+
1

2

(∫ π

0
p2(t)dt

)2

+
1

2

(∫ π

0
q(t)dt

)2

− 2i

∫ π

0
p(t)q(t)dt

−2q(0) +

(
O(

1

λ3

)]
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Thus, the equation 4(λ) = 0 is equivalent to the equation

b−1(λ)
eiλπeiβ(π)

−2iλ
4(λ) = 0 (13)

If the conditions
∫ π
0 q(x)dx = 0 ,

∫ π
0 p

2(x)dx = 0 hold, in view of (11) and (12), Eq. (13) can
easily transformed to the form

eiλπ + eiβ(π) = ∓eiβ(π) 1

2iλ
[p(π)− p(0)] +O

(
1

λ2

)
. (14)

Since p(π)− p(0) 6= 0. Eq.(14) splits into two equations:

ei(λπ−β(π)) + 1 = −p(π)− p(0)

2iλ
+O

(
1

λ2

)
(15)

ei(λπ−β(π)) + 1 =
p(π)− p(0)

2iλ
+O

(
1

λ2

)
. (16)

By Rouche’s Theorem , we obtain asymptotic expressions for roots λk,1 and λk,2, |k| = N,N+
1, ... (N being positive integer), of Eq. (15) and (16) respectively:

λk,1 =
β(π)

π
+ 2k +

p(π)− p(0)

4kπ
+O

(
1

k2

)
,

λk,2 =
β(π)

π
+ 2k − p(π)− p(0)

4kπ
+O

(
1

k2

)
.

Thus, asymptotic formulas are valid, and the proof of the theorem is completed.
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Abstract

The main purpose of this study is presenting new exact solution sets of some nonlinear
conformable time-fractional partial differential equations arising in mathematical physics
by means of sub-equation method. The results show that the presented method is efficient,
dependable, simple to apply and a good alternative for obtaining solutions of fractional
partial differential equations.
Keywords: Sub-equation method, conformable fractional derivative, fractional partial dif-
ferential equation, exact solution.

1 Introduction

Solving nonlinear fractional partial differential equations (NFPDEs) has a great importance to
understand the mathematical model which based on a physical or an engineering phenomenon
[1, 2, 3, 4, 5]. For modeling the real world event scientists used different definitions of frac-
tional derivative. Each definition have supremacy over the other one. For instance Riemann-
Liouville derivative definition uses the boundary/initial value conditions with fractional order
by means of Riemann-Liouville fractional derivative. But Caputo derivative definition uses
the conditions with integer order derivative. Recently Khalil et. al. [6] claimed that both
Riemann-Liouville and Caputo has some deficiencies. For instance

1. The Riemann-Liouville derivative does not satisfy Dα
a 1 = 0(Caputo derivative satisfies),

if α is not a natural number.

2. All fractional derivatives do not satisfy the known formula of the derivative of the
product of two functions.

Dα
a (fg) = gDα

a (f) + fDα
a (g).

3. All fractional derivatives do not satisfy the known formula of the derivative of the
quotient of two functions.

Dα
a

(
f

g

)
=
fDα

a (f)− gDα
a (g)

g2
.

∗Corresponding author. E-mail address: oozkan@selcuk.edu.tr
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4. All fractional derivatives do not satisfy the chain rule.

Dα
a (fog)(t) = fα(g(t))gα(t).

5. All fractional derivatives do not satisfy DαDβ = Dα+β in general.

6. In the Caputo definition it is assumed that the function f is differentiable.

To annihilate these deficiencies Khalil et. al. [6] stated a new definition of differentiation
and integration with arbitrary order named conformable fractional derivative and integral.

Definition 1. Let f : [0,∞) → R be a function. The αth order conformable fractional
derivative of f is defined by,

Dα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0, α ∈ (0, 1).

Definition 2. If f is α-differentiable in some (0, a), a > 0 and lim
t→0+

f (α)(t) exists then define

f (α)(0) = lim
t→0+

f (α)(t). The conformable fractional integral of a function f starting from a ≥ 0

is defined as:

Iaα(f)(t) =

t∫

a

f(x)dαx =

t∫

a

f(x)

x1−α
dx

where the integral is the usual Riemann improper integral and α ∈ (0, 1].

Some properties of this new definition are given in the following theorem [6, 7].

Theorem 3. Let α ∈ (0, 1] and f, g are α-differantiable functions at point t > 0, then

1. Tα(mf + ng) = mTα(f) + nTα(g) for all m,n ∈ R
2. Tα(tp) = ptp−α for all p
3. Tα(f.g) = fTα(g) + gTα(f)

4. Tα(fg ) = gTα(f)−fTα(g)
g2

5. Tα(c) = 0 for all constant functions f(t) = c

6. In addition, if f is differentiable, then Tα(f)(t) = t1−α df(t)dt .
After existence of these definitions huge amount of applications are made by many scientists
[8, 9, 11]. In this work conformable time fractional Sine-Bratu type equation is considered as
follows.

D2
xu(x, t) +D

(2)α
t u(x, t) + λ sin(u(x, t)) = 0. (1)

2 Basics of Sub-Equation Method

Lets give a short description of considered sub equation method [10, 12]. Supposing the
nonlinear conformable time fractional partial differential equation as

P
(
u,Dα

t u,Dxu,D
2α
t u,D2

xu, ...
)

= 0 (2)

where Dα
t u indicates conformable fractional derivative of function u(x, t) and D2α

t shows two
times conformable fractional derivative of the function u(x, t). By using the conformable wave
transformation

u(x, t) = U(ξ), ξ = kx+ w
tα

α
(3)
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and the chain rule [7] Eq. (2) changes into nonlinear ordinary differential equation

G(U,U ′, U ′′, ...) = 0 (4)

where prime shows integer order derivative with respect to new wave variable ξ and k,w are
arbitrary constants to be evaluated later. Assume that equation (4) has a solution in the form

U(ξ) =

N∑

i=0

aiϕ
i(ξ), aN 6= 0, (5)

where ai, aN 6= 0 (0 ≤ i ≤ N) are constant coefficients to be determined, N is a positive
integer which is going to be found by balancing procedure in equation (4) and ϕ(ξ) is the
solution of Riccati equation

ϕ′(ξ) = σ + (ϕ(ξ))2 (6)

where σ is an arbitrary constant. Some special solutions of the Riccati equation (6) are given
in the following table.

ϕ(ξ) =





−√−σ tanh
(√−σξ

)
, σ < 0

−√−σ coth
(√−σξ

)
, σ < 0√

σ tan (
√
σξ) , σ > 0

−√σ cot (
√
σξ) , σ > 0

− 1
ξ+$ , $ is a cons., σ = 0

(7)

Putting the equations (5) and (6) into equation (4) we acquire a polynomial with respect
ϕ(ξ). Considering all the coefficients of ϕi(ξ) (i = 0, 1, ..., N) to zero leads a nonlinear alge-
braic equation system in k,w, ai (i = 0, 1, ..., N). By obtaining the solution of these nonlinear
algebraic equation system we evaluate the constants k,w, ai (i = 0, 1, ..., N). Then substitut-
ing obtained constants from the nonlinear algebraic system and the solutions of equation (6)
into equation (5) by the help of the formulas (7) we determine the exact solutions for equation
(2).

3 Solution of Time Fractional Sine-Bratu Type Equation

Regarding time fractional Sine-Bratu Type Equation (1) then applying chain rule [7] and wave
transform (3) the Eq. (1) changes into ordinary differential equation system such as

(k2 + w2)U ′′ + λ sin(U) = 0. (8)

Then using the transformation v(ξ) = eiU(ξ) where i2 = −1 so,

sin(U) =
v − v−1

2i
, cos(U) =

v + v−1

2

that gives

U = arccos

(
v + v−1

2

)
.

This transformation changes Eq.8 into

2(k2 + w2)(v′′v − v′2) + λ(v3 − v) = 0 (9)
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where prime denoted the derivative with respect to variable ξ. Supposing the solution of Eq.
(9) is indicated by the following series

u(ξ) =

N∑

i=0

aiϕ
i(ξ), aN 6= 0 (10)

where ϕ(ξ) is the exact solutions of Riccati differential equation (6) given in (7). After the
balancing procedure, we get N = 2. When we substitute all the obtained data into (8), an
algebraic equation system arises. Solving this system leads following solution set

a0 = 0, a1 = 0, a2 = − 1

σ
,w = ±

√
λ− 4k2σ

2
√
σ

For σ < 0

v1(x, t) = −
√
−σ tanh

(
√
−σ
(
kx±

√
λ− 4k2σ

2
√
σ

tα

α

))
,

v2(x, y, t) = −
√
−σ coth

(
√
−σ
(
kx±

√
λ− 4k2σ

2
√
σ

tα

α

))
,

For σ > 0

v3(x, y, t) =
√
σ tan

(
√
σ

(
kx±

√
λ− 4k2σ

2
√
σ

tα

α

))
,

v4(x, y, t) = −√σ cot

(
√
σ

(
kx±

√
λ− 4k2σ

2
√
σ

tα

α

))
,

where

U = arccos

(
v + v−1

2

)
. (11)

4 Conclusion

The sub-equation method is applied to conformable time fractional sine-Bratu type equations
successfully. Obtained results show that the method is accurate and reliable.
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Abstract

In this paper, we obtain Gröbner-Shirshov (non-commutative) basis for the congruence
classes of primitive complex reflection group G15. It gives a new algorithm for getting
normal form of elements of this group and hence a new algorithm for solving the word
problem in this group.
Keywords: Gröbner-Shirshov basis, presentation, complex reflection group, word problem.

1 Introduction

In 1965, Buchberger introduced the Gröbner basis theory for commutative algebras ([10]).
This theory provides a solution to the reduction problem for commutative algebras. Then,
in [4], Bergman generalized the Gröbner basis theory to associative algebras by proving the
“Diamond Lemma”. On the other hand, the parallel theory of Gröbner bases was advanced
for Lie algebras by Shirshov [20]. The main meaning of the theory of Gröbner basis is “Com-
position Lemma” which characterizes the leading terms of elements in the given ideal. After
Shirshov’s paper, in [5], Bokut noticed that Shirshov’s method works for also associative alge-
bras. Hence, for this reason, Shirshov’s theory for Lie algebras and their universal enveloping
algebras is called the Gröbner-Shirshov basis theory. The importance of this theory is that
it gives new algorithm for getting normal forms of elements of given algebraic structures
and thus a new algorithm for solving the word problem in these structures. This important
theory has been studied for lots of valuable algebraic structures, for example groups (group
extensions), monoids/semigroups (monoid and semigroup constructions), many types of Lie
algebras, rings and modules. We may refer the papers [2, 3, 6, 7, 8, 11, 14, 15, 16, 17] for
some recent studies over Gröbner-Shirshov basis theory.

In early 1900’s, Max Dehn introduced algorithmic problems such as the word, conjugacy
and isomorphism problems. These problems played an important role in group theory are
called decision problems which ask for a yes or no answer to a specific question. Among these
decision problems especially the word problem has been studied widely in groups (see [1]). It
is well known that the word problem for finitely presented groups is not solvable in general;
that is, given any two words obtained by generators of the group, there may be no algorithm
to decide whether these words represent the same element in this group.

The method of Gröbner-Shirshov bases which is the main theme of this paper gives a
new algorithm for getting normal forms of elements of groups (monoids) and hence a new
algorithm for solving the word problem in these groups (monoids). By considering this fact,
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our aim in this paper is to find Gröbner-Shirshov basis of the congruence classes of primitive
complex reflection group G15.

Shephard and Todd classified all finite complex reflection groups in [18]. Later Cohen
(1976) gave a more systematic description for these groups in terms of root systems, vector
graphs and root graphs ([12]). Then, in [13], Howlett and Shi defined a simple root system
(B,w) for such these groups which is analogous to the corresponding concept for a Coxeter
group. It is well known that any Coxeter group can be presented by generators and relations.
A finite complex reflection group G can also be presented in a similar way (see, for example,
[9]). But such a presentation is not unique for G in general. Different presentations of
G may reveal various different properties of G. Then it is worth to define a congruence
relation among the presentations of G (see [19]) and then to ask that question “How many
congruence classes of presentations are there for any irreducible finite complex reflection group
G?”. In [9], the authors solve this problem for the finite primitive complex reflection groups
G = {G7, G11, G15, G19, G27} and in [19], Shi studied the finite primitive complex reflection
groups G = {G12, G24, G25, G26} (in the notations of Shephard and Todd, 1954). So by
considering the presentation given in [9], our aim in this paper is to find Gröbner-Shirshov
basis for the group G15. Gröbner-Shirshov bases of other groups will be studied in the future.

Throughout this paper, we order words in given alphabet in the deg-lex way comparing
two words first by theirs lengths and then lexicographically when the lengths are equal. Ad-
ditionally (i)∩ (j) and (i)∪ (j) denote the intersection and inclusion compositions of relations
(i), (j), respectively.

2 Gröbner-Shirshov Bases and Composition-Diamond Lemma

Let K be a field and K〈X〉 be the free associative algebra over K generated by X. Denote
X* the free monoid generated by X, where the empty word is the identity denoted by 1. For
a word w ∈ X*, we denote the length of w by |w|. Suppose that X* is a well ordered set.
Then every nonzero polynomial f ∈ K 〈X〉 has the leading word f . If the coefficient of f in
f is equal to 1, then f is called monic.

Let f and g be two monic polynomials in K〈X〉. We then have two compositions as
follows:

• If w is a word such that w = fb = ag for some a, b ∈ X* with |f | + |g| > |w|, then
the polynomial (f, g)w = fb− ag is called the intersection composition of f and g with
respect to w. The word w is called an ambiguity of intersection.

• If w = f = agb for some a, b ∈ X*, then the polynomial (f, g)w = f − agb is called the
inclusion composition of f and g with respect to w. The word w is called an ambiguity
of inclusion.

If g is monic, f = agb and α is the coefficient of the leading term f , then transformation
f 7→ f − αagb is called elimination (ELW) of the leading word of g in f .

Let S ⊆ K 〈X〉 with each s ∈ S is monic. Then the composition (f, g)w is called trivial
modulo (S,w) if (f, g)w =

∑
αiaisibi, where each αi ∈ K, ai, bi ∈ X*, si ∈ S and aisibi < w.

If this is the case, then we write (f, g)w ≡ 0 mod(S,w).
We call the set S endowed with the well ordering < a Gröbner-Shirshov basis for K 〈X | S〉

if any composition (f, g)w of polynomials in S is trivial modulo S and corresponding w.
The following lemma was proved by Shirshov [20] for free Lie algebras with deg-lex order-

ing.

Lemma 1 (Composition-Diamond Lemma) Let K be a field, A = K 〈X | S〉 = K〈X〉/Id(S)
and < a monomial ordering on X*, where Id(S) is the ideal of K〈X〉 generated by S.Then
the following statements are equivalent:
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1. S is a Gröbner-Shirshov basis.

2. f ∈ Id(S)⇒ f = asb for some s ∈ S and a, b ∈ X*.

3. Irr(S) = {u ∈ X* | u 6= asb, s ∈ S, a, b ∈ X*} is a basis for the algebra A = K 〈X | S〉.

If a subset S of K〈X〉 is not a Gröbner-Shirshov basis, then we can add to S all nontrivial
compositions of polynomials of S, and by continuing this process (maybe infinitely) many
times, we eventually obtain a Gröbner-Shirshov basis Scomp. Such a process is called the
Shirshov algorithm.

3 Gröbner-Shirshov Basis for the Congruence Classes of Prim-
itive Complex Reflection Group G15

Main goal of this section is to search the solvability of the word problem for the congruence
classes of primitive complex reflection group G15. Since we will use the method of Gröbner-
Shirshov basis theory, the presentation of this group is required. This presentation is as
follows.

Theorem 2 ([9]) The braid group associated with the congruence classes of complex reflec-
tion group G15 admits the presentation

PG15 =
〈
s, t, u ; t2 = u2 = s3 = 1, tus = ust, stusu = tusus

〉
.

To obtain Gröbner-Shirshov basis let us order the generators of the group G15 as s > u > t.
Now the main result is as follows:

Theorem 3 A Gröbner-Shirshov basis of the braid group associated with the congruence
classes of complex reflection group G15 consists of the following polynomials:

(1) t2 − 1, (2) u2 − 1, (3) s3 − 1,
(4) ust = tus, (5) stusu− tusus,

relative to the deg-lex order of words in the generators.

Proof. We need to prove that all compositions among polynomials (1)− (5) are trivial. Let
us consider the intersection compositions of the polynomials (1) − (5) and start with listing
all intersections compositions. Actually we have the following ambiguities w:

(1) ∩ (1) : w = t3, (2) ∩ (2) : w = u3, (2) ∩ (4) : w = u2st,
(3) ∩ (3) : w = s4, (3) ∩ (5) : w = s3tusu, (4) ∩ (1) : w = ust2,
(4) ∩ (5) : w = ustusu, (5) ∩ (2) : w = stusu2, (5) ∩ (4) : w = stusust.

All of these intersection compositions are trivial. Let us show some of them as follows:

(2) ∩ (4) : w = u2st,

(f, g)w = (u2 − 1)st− u(ust− tus)
= u2st− st− u2st+ utus = utus− st
≡ tus− ust ≡ tus− tus ≡ 0.

(3) ∩ (3) : w = s4,

(f, g)w = (s3 − 1)s− s(s3 − 1)

= s4 − s− s4 + s ≡ 0.
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(5) ∩ (4) : w = stusust,

(f, g)w = (stusu− tusus)st− stus(ust− tus)
= stusust− tusus2t− stusust+ stustus

= stustus− tusus2t ≡ st2usus− tusus2t ≡ susus− tusus2t
≡ susust− tusus2 ≡ sustus− tusus2 ≡ stusus− tusus2
≡ tusus2 − tusus2 ≡ 0.

It remains to check including compositions of polynomials (1) − (5). Since there are no
any compositions of this type the proof ends up.

Now let R be the set of polynomails (relations) for congruence classes of primitive complex
reflection group G15. By using Composition-Diamond Lemma 1 and Theorem 3, the normal
form structue for elements of the congruence classes of primitive complex reflection group G15

can be given as follows:

Corollary 4 Let C(u) be a normal form of a word u ∈ G15. Then C(u) is of the form
wtε1w′uε2w′′sε3w′′′ (0 ≤ ε1, ε2 < 2, 0 ≤ ε3 < 3), where w,w′, w′′ and w′′′ are R−reduced words
in G15.

By considering Corollary 4, we have the following other consequence of Theorem 3.

Corollary 5 The word problem for the congruence classes of primitive complex reflection
group G15 is solvable.
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Karamanoglu Mehmetbey University,
Department of Mathematics,
70100, Karaman, TURKEY

Nimet ÇOŞKUN
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Abstract

Let L denote opeator generated in L2 (R+) by the differential expression

l(y) = −y′′
+ q(x)y, x ∈ R+ := (0,∞)

and the boundary condition
y

′
(0)

y(0)
=
β0 + β1λ

α0 + α1λ

where q is a complex valued function and αi, βi ∈ C, i = 0, 1 with α0β1 − α1β0 6= 0. In
this work, we investigate the principal functions corresponding to the eigenvalues and the
spectral singularities of L.
Keywords: Eigenvalues; Eigenfunctions; Spectral singularities;Principal functions; Resol-
vent.

1 Introduction

Spectral analysis of differential operators is a field of functional analysis which have numerous
application areas from engineering to physics. In particular, the spectral theory of linear
operators in Hilbert spaces is the most important tool in the mathematical formulation of
quantum mechanics. Even some very simple systems in quantum mechanics present nontrivial
questions whose answers need a mathematical approach. For example, Hamiltonian of a
quantum particle confined to a box involves a choice of boundary condition at the box ends.
Since different choices of boundary condition imply different physical models, spectral analysis
of operators with boundary condition constitues a wide field of research [1− 6] .

Investigation of the spectral properties of the Sturm Liouville boundary value problem
(BVP) can be traced back to Naimark [1]. He studied the (BVP)

{
−y′′ + q(x)y − λ2y = 0, x ∈ R+,

y
′
(0)− hy(0) = 0

where h ∈ C and q is a complex valued function. He showed that the spectrum of this BVP is
composed of eigenvalues, spectral singularities and continuous spectrum. He also proved that
these eigenvalues and spectral singularities are of finite number with finite multiplicity under
certain conditions.

The concept of spectral singularity which is rather typical for non-selfadjoint operators
with a continuous part of spectrum constitues a particular role in spectral analysis. The
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term ‘spectral singularity’ can be traced back to Schwartz [7]. Lyance studied the effect of
spectral singularities in the spectral expansion in terms of principal functions [8]. Detailed
investigation of differential operators with spectral singularities was done in various papers
[9− 15].

The present paper is motivated by the above mentioned studies and the references therein.
In this study, we take into consideration the following BVP,

− y′′ + q(x)y = λ2y, x ∈ R+ = [0,∞), (1.1)

(
y
′
/y
)

(0) =
β1λ+ β0
α1λ+ α0

(1.2)

where q is a complex-valued function and αi, βi ∈ C, i = 0, 1 with α0β1−α1β0 6= 0. The specific
feature of this study is the presence of the spectral parameter not only in the Sturm-Lioville
equation but also in the boundary condition. We obtain the associated (principal) functions
corresponding to the eigenvalues and the spectral singularities of the BVP (1.1)-(1.2).

2 Jost solution of (1.1)

Now we will assume that the complex valued function q is almost everywhere continuous in
R+ and satisfies the following

∞∫

0

x |q(x)| dx <∞. (2.1)

Let ϕ(x, λ) and e(x, λ) denote the solutions of (1.1) satisfying the conditions

ϕ(0, λ) = α0 + α1λ, ϕ
′
(0, λ) = β0 + β1λ (2.2)

and
lim
x→∞

e(x, λ)e−iλx = 1, λ ∈ C+, (2.3)

respectively. The solution e(x, λ) is called the Jost solution of (1.1). Note that, under the con-
dition (2.1), the solution ϕ(x, λ) is an entire function of λ and the Jost solution is an analytic
function of λ in C+ := {λ : λ ∈ C, Imλ > 0} and continuous in C+ = {λ : λ ∈ C, Imλ ≥ 0} .

In addition Jost solution has a representation

e(x, λ) = eiλx +

∞∫

x

K(x, t)eiλtdt, λ ∈ C+, (2.4)

where the kernel K(x, t) satisfies

K(x, t) =
1

2

∞∫

x+t
2

q(s)ds+
1

2

x+t
2∫

x

t+s−x∫

t+x−s

q(s)K(s, u)du ds+
1

2

∞∫

x+t
2

t+s−x∫

s

q(s)K(s, u)du ds. (2.5)

K(x, t) is continuously differentiable with respect to its arguments and

|K(x, t)| ≤ cσ(
x+ t

2
), (2.6)

|Kx(x, t)| , |Kt(x, t)| ≤
1

4

∣∣∣∣q(
x+ t

2
)

∣∣∣∣+ cσ(
x+ t

2
), (2.7)
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where σ(x) =

∞∫

x

|q(s)| ds and c > 0 is a constant.

Let ê±(x, λ) denote the solutions of (1.1) subject to the conditions

lim
x→∞

e±iλxê±(x, λ) = 1, lim
x→∞

e±iλxê±x (x, λ) = ±iλ, λ ∈ C±. (2.8)

Then
W [e(x, λ), ê±(x, λ)] = ∓2iλ, λ ∈ C±
W [e(x, λ), e(x,−λ)] = −2iλ, λ ∈ R (2.9)

where W [f1, f2] is the Wronskian of f1 and f2.
Let us define the following functions:

D±(λ) := ϕ (0, λ) e
′
(0,±λ)− ϕ′ (0, λ) e(0,±λ), λ ∈ C± (2.10)

where C− = {λ : λ ∈ C, Imλ ≤ 0} . Therefore D+ and D− are analytic in C+ and C− =
{λ : λ ∈ C, Imλ < 0}, respectively and continuous up to real axis.

The functions D+ and D− are called Jost functions of L.
The resolvent of L defined by

Rλ (L) f =

∞∫

0

G (x, t;λ) f (t) dt, f ∈ L2 (R+)

where

G±(x, t;λ) =

{
−ϕ(t,λ)e(x,±λ)

D±(λ)
, 0 ≤ t ≤ x

−ϕ(x,λ)e(t,±λ)
D±(λ)

, x ≤ t <∞.
(2.11)

We denote the set of eigenvalues and spectral singularities of L by σd(L) and σss(L), respec-
tively. From (2.11)

σd(L) = {λ : λ ∈ C+, D+(λ) = 0} ∪ {λ : λ ∈ C−, D−(λ) = 0} ,
σss(L) = {λ : λ ∈ R∗, D+(λ) = 0} ∪ {λ : λ ∈ R∗, D−(λ) = 0} , (2.12)

where R∗ = R� {0}.

Definition 1 The multiplicity of zero of the function D+(or D−) in C+(or C−) is called the
multiplicity of the corresponding eigenvalue and spectral singularity of L.

We see from (2.9) that the functions

K+(x, λ) = D̂+(λ)
2iλ e(x, λ)− D+(λ)

2iλ ê+(x, λ), λ ∈ C+

K−(x, λ) = D̂−(λ)
2iλ e(x,−λ)− D−(λ)

2iλ ê−(x, λ), λ ∈ C−
K(x, λ) = D+(λ)

2iλ e(x,−λ)− D−(λ)
2iλ e(x, λ), λ ∈ R∗

are the solutions of the boundary value problem (1.1)-(1.2) where

D̂±(λ) = (α0 + α1λ)ê±
′
(0, λ)− (β0 + β1λ)ê±(0, λ).

Now let us assume that

q ∈ AC(R+), lim
x→∞

q(x) = 0, sup
x∈R+

[
eε
√
x
∣∣∣q′(x)

∣∣∣
]
<∞, ε > 0. (2.13)

Theorem 2 Under the condition (2.13) the operator L has a finite number of eigenvalues
and spectral singularities, and each of them is of a finite multiplicity.
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3 Principal functions of L

In this section we assume that (2.13) holds. Let λ1, ..., λj and λj+1, ..., λk denote the zeros of
D+ in C+ and D− in C− (which are the eigenvalues of L) with multiplicities m1, ...,mj and
mj+1, ...,mk, respectively. It is obvious that from definition of the Wronskian

{
dn

dλn
W [K+(x, λ), e(x, λ)]

}

λ=λp

=

{
dn

dλn
D+(λ)

}

λ=λp

= 0 (3.1)

for n = 0, 1, ...,mp − 1, p = 1, 2, ..., j, and

{
dn

dλn
W [K−(x, λ), e(x,−λ)]

}

λ=λp

=

{
dn

dλn
D−(λ)

}

λ=λp

= 0 (3.2)

for n = 0, 1, ...,mp − 1, p = j + 1, ..., k.

Theorem 3 The fallowing formulae

{
∂n

∂λn
K+(x, λ)

}

λ=λp

=

n∑

m=0

Am(λp)

{
∂m

∂λm
e(x, λ)

}

λ=λp

(3.3)

n = 0, 1, ...,mp − 1, p = 1, 2, ..., j,where

Am(λp) =

(
n
m

){
∂n−m

∂λn−m
D̂+(λ)

}

λ=λp

and {
∂n

∂λn
K−(x, λ)

}

λ=λp

=

n∑

m=0

Bm(λp)

{
∂m

∂λm
e(x,−λ)

}

λ=λp

(3.4)

n = 0, 1, ...,mp − 1, p = j + 1, ..., k, where

Bm(λp) =

(
n
m

){
∂n−m

∂λn−m
D̂−(λ)

}

λ=λp

.

holds.
Proof. We will prove only (3.3) using the mathematical induction, because the case of (3.4)
is similar. Let n = 0. From (3.1) we get

K+(x, λp) = a0(λp).e(x, λp)

where a0(λp) 6= 0. Suppose that for 1 ≤ n0 ≤ mp − 2, (3.3) holds; that is,

{
∂n0

∂λn0
K+(x, λ)

}

λ=λp

=

n0∑

m=0

Am(λp)

{
∂m

∂λm
e(x, λ)

}

λ=λp

(3.5)

Now we will prove that (3.3) holds for n0 + 1. If y(x, λ) is a solution of (1.1), then ∂n

∂λn y(x, λ)
satisfies

[
− d2

dx2
+ q(x)− λ2

]
∂n

∂λn
y(x, λ) = 2λn

∂n−1

∂λn−1
y(x, λ) + n(n− 1)

∂n−2

∂λn−2
y(x, λ). (3.6)

Writing (3.6) for K+(x, λ) and e(x, λ), and using (3.5), we find
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[
− d2

dx2
+ q(x)− λ2

]
gn0+1(x, λp) = 0

where

gn0+1(x, λp) =

{
∂n0+1

∂λn0+1
K+(x, λ)

}

λ=λp

−
n0+1∑

m=0

Am(λp)

{
∂m

∂λm
e(x, λ)

}

λ=λp

.

From (3.1) we have

W [gn0+1(x, λp), e(x, λp)] =

{
dn0+1

dλn0+1W [K+(x, λ), e(x, λ)]

}

λ=λp

= 0.

Hence there exists a constant an0+1(λp) such that

gn0+1(x, λp) = an0+1(λp)e(x, λp).

This shows that (3.3) holds for n = n0 + 1.

Definition 4 Let λ = λ0 be an eigenvalue of L . If the functions

y0(x, λ0), y1(x, λ0), ..., ys(x, λ0)

satisfy the equations

l(y0)− λ0y0 = 0, l(yj)− λ0yj − yj−1 = 0, j = 1, 2, ..., s,

then the function y0(x, λ0) is called the eigenfunction corresponding to the eigenvalue λ = λ0
of L. The functions y1(x, λ0), ..., ys(x, λ0) are called the associated functions corresponding
λ = λ0. The eigenfunctions and the associated functions corresponding to λ = λ0 are called
the principal functions of the eigenvalue λ = λ0.

The principal functions of the spectral singularities of L are defined similarly.
Now using (3.3) and (3.4) define the functions

Un,p(x) =

{
∂n

∂λn
K+(x, λ)

}

λ=λp

=

n∑

m=0

Am(λp)

{
∂m

∂λm
e(x, λ)

}

λ=λp

(3.7)

n = 0, 1, ...,mp − 1,..p = 1, 2, ..., j
and

Un,p(x) =

{
∂n

∂λn
K−(x, λ)

}

λ=λp

=

n∑

m=0

Bm(λp)

{
∂m

∂λm
e(x,−λ)

}

λ=λp

(3.8)

n = 0, 1, ...,mp − 1, p = j + 1, ..., k.
Then for λ = λp, p = 1, 2, ..., j, j + 1, ..., k,

l(U0,p) = 0,

l(U1,p) +
1

1!

∂

∂λ
l(U0,p) = 0, (3.9)

l(Un,p) +
1

1!

∂

∂λ
l(Un−1,p) +

1

2!

∂2

∂λ2
l(Un−2,p) = 0,

n = 2, 3, ...,mp − 1,
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hold, where l(u) = −u′′ + q(x)u − λ2u and ∂m

∂λm l(u) denotes the differential expressions
whose coefficients are the m-th derivatives with respect to λ of the corresponding coefficients
of the differential expression l(u). (4.9) shows that U0,p is the eigenfunction corresponding to
the eigenvalue λ = λp; U1,p, U2,p, ..., Ump−1,p are the associated functions of U0,p ([16, 17]).

U0,p, U1,p, ..., Ump−1,p, p = 1, 2, ..., j, j + 1, ..., k are called the principal functions corre-
sponding to the eigenvalue λ = λp, p = 1, 2, ..., j, j + 1, ..., k of L.

Let µ1, ..., µv, and µv+1, ..., µl be the zeros of D+ and D− in R∗ = R� {0} (which are the
spectral singularities of L) with multiplicities n1, ..., nv and nv+1, ..., nl, respectively.

We can show

{
∂n

∂λn
K(x, λ)

}

λ=µp

=

n∑

m=0

Cm(µp)

{
∂m

∂λm
e(x, λ)

}

λ=µp

, (3.10)

n = 0, 1, ..., np − 1, p = 1, 2, ..., v,
where

Cm(µp) = −
(

n
m

){
∂n−m

∂λn−m
D−(λ)

}

λ=µp

and {
∂n

∂λn
K(x, λ)

}

λ=µp

=

n∑

m=0

Rm(µp)

{
∂m

∂λm
e(x,−λ)

}

λ=µp

(3.11)

n = 0, 1, ..., np − 1, p = v + 1, ..., l,
where

Rm(µp) =

(
n
m

){
∂n−m

∂λn−m
D+(λ)

}

λ=µp

.

Now define the generalized eigenfunctions and generalized associated functions corresponding
to the spectral singularities of L by the following:

υn,p(x) =

{
∂n

∂λn
K(x, λ)

}

λ=µp

=

n∑

m=0

Cm(µp)

{
∂m

∂λm
e(x, λ)

}

λ=µp

(3.12)

n = 0, 1, ..., np − 1, p = 1, 2, ..., v,

υn,p(x) =

{
∂n

∂λn
K(x, λ)

}

λ=µp

=

n∑

m=0

Rm(µp)

{
∂m

∂λm
e(x,−λ)

}

λ=µp

(3.13)

n = 0, 1, ..., np − 1, p = v + 1, ..., l.
Then υn,p, n = 0, 1, ..., np−1, p = 1, 2, ..., v, v+1, ..., l, also satisfy the equations analogous

to (3.9).
υ0,p, υ1,p, ..., υnp−1,p, p = 1, 2, ..., v, v+1, ..., l are called the principal functions correspond-

ing to the spectral singularities λ = µp, p = 1, 2, ..., v, v + 1, ..., l of L.
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Abstract

Copper losses to slag are a major problem in pyrometallurgical copper production.
Since dumping or disposal of such vast quantities of slag cause environmental problems,
many attempts have been performed by several types of research to investigate the po-
tential treatment of copper slag to decrease the metal losses. One of the current topics is
to use colemanite (Ca2B6O11.5H2O) addition to the production process to reduce copper
losses to slag. Although positive results are obtained after experimental works, there are
shortcomings in process optimization and prediction for copper losses due to limited ex-
perimental data. For this reason, in the present study, Gradient Descent method based
on artificial neural network (ANN) was carried out for estimating copper losses to slag by
analyzing the effects of input parameters colemanite addition (0%, %2, %4) and temper-
ature (1200, 1250, 1300 C). The results showed that the suggested method is quite useful
to estimate copper losses to slag by the proposed mathematical expression.

Keywords: Gradient descent, Artificial neural network, Copper losses.

1 Introduction

Pyrometallurgical copper production including concentration, smelting, converting and refin-
ing stages is widely used to produce metallic copper from sulfides ores. Converting of matte
(50-70% Cu) which is obtained after smelting stage forms blister copper (> 98% Cu) and slag
(oxidized materials) with the addition of silica flux. Despite the development of many copper
making techniques, copper losses to slag always occur during the converting stage depending
on several factors such as slag viscosity, density and its melting point [1-2]. Depending on
these factors, mechanical and physicochemical losses are two different ways for copper losses
to slag. It is well known that obtaining the slag with low copper content could be achieved
by reducing slag viscosity by addition fluxing agents. Previous studies [3-4] performed in
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different metal industries on colemanite (Ca2B6O11.5H2O) usage as flux showed that the use
of colemanite decreases the viscosity and the melting temperature of the slag.
Early determination of copper losses amount to slag is an essential issue to increase the
production efficiency in the copper industry. Therefore, data-based artificial neural networks
models and gradient descent systems are widely used in many engineering applications to
estimate production process [5]. Detailed and accurate estimations for an understanding of
manufacturing process can be obtained by applying these models [6].
In this study, an ANN model is proposed to estimate copper losses, and a mathematical
expression was created for copper losses to the slag by taking advantage of predictive and
modeling characteristics of artificial neural networks.

2 Material and Methods

2.1 Material

In this study, the slag which is a by-product of the converting stage in copper production
was used as a starting material. Sample provided from Eti Bakır Inc. contains a remarkable
amount of copper (4.45% wt.). In addition to the chemical analysis, according to the miner-
alogical analysis, the major components were obtained as fayalite and magnetite. Colemanite
which was used as flux was supplied from Eti Maden, commercially.

2.2 Artificial Neural Network Development

In this study, the Quasi-Newton algorithm was used to estimate the copper loss to slag. This
method is often used because it does not require the calculation of the second derivatives.
The computation was based on the inverse Hessian at each iteration of the algorithm with the
only usage of gradient information. All estimation studies have been proposed with Neural
Designer software. The training algorithm is shown in Table 1.

Table 1: Training Algorithm

Description Value

Training rate method
Training rate tolerance
Min. parameters increment form
Min. loss increase
Gradient norm goal
Max. iterations number
Maximum time

Brent Method
0.0005
1e-009
1e-012
0.001
1000
Maximum training time

The ANN model was proposed with two inputs for estimation of copper losses to slag, and it
was presented in Figure 1. Temperature and colemanite addition was taken as input parame-
ters based on the experimental studies. A graphical representation of the network architecture
is depicted next. It contains a scaling layer, a neural network, and an unscaling layer. The
yellow circles represent scaling neurons, and the purple circles are bounding neurons. The
architecture of this neural network can be written as 3:2:1.
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Figure 1: The proposed ANN model

3 Results and Discussions

A standard method to test the loss of a model is to perform a linear regression analysis
between the scaled neural network outputs and the corresponding targets for an independent
testing subset. This analysis leads to 3 parameters for each output variable. The first two
parameters correspond to the y-intercept and slope of the best linear regression relating scaled
outputs and targets. The third parameter, R2, is the correlation coefficient between the scaled
outputs and targets. If we had a perfect fit (outputs precisely equal to targets), the slope
would be 1, and the y-intercept would be 0. If the correlation coefficient is equal to 1, then
there is a perfect correlation between the outputs from the neural network and the targets in
the testing subset. The linear regression results are shown in Figure 2. Note that some scaled
outputs fall outside the range defined by the scale targets, and therefore they are not plotted.

Figure 2: Linear regression chart and parameters

Predictive model takes the form of a function of the outputs with respect to the inputs.
The mathematical expression represented by the model can be used to embed it into other
software. Figure 3 shows the mathematical expression of copper losses to slag depending on
the temperature and colemanite addition.
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Figure 3: Mathematical Expression of Copper Losses to Slag

This mathematical expression can be applied to estimate the intermediate values for tem-
perature (between 1200 and 1300 oC) and colemanite addition (from 0 to 4%) in terms of
copper losses to slag. When applied to all experimentally obtained values, this mathematical
equation was well-matched for all of them. For example, when compared to experimental
results with mathematical calculations at 1250 oC, minimum copper losses to slag value could
be determined as 0.86 % with 2.47% colemanite addition to the system (Figure 4).

Figure 4: Comparison of experimental results and mathematical calculations at 1250 oC.

As seen from Figure 4, experimental results are in good agreement with mathematical
calculations for initial region (up to 2% colemanite addition), but after this point, according
to the mathematical expression, copper losses value should be lowered, which expected due
to the positive effect of colemanite addition on slag viscosity.

4 Conclusions

In this study, it was aimed to estimate copper losses to slag after colemanite addition by
applying artificial neural network. For this purpose, the artificial neural network-based system
was developed using a gradient descent algorithm. According to the results, the ANN model
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approves the strong correlation between the inputs parameters temperature and colemanite
addition, and parameter copper losses. The outcomes of the study can be assessed by other
artificial and mathematical systems for a better understanding of inputs effects on copper
losses amount. Furthermore, ANN models showed good fitting performance, and this model
can be applied to the copper loss estimation studies.
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Abstract

In this paper, we propose a method based on generating functions for constructing
(p, q)-analogues of some discrete type positive linear operators (e.g., (p, q)-Lupas, (p, q)-
Meyer-König and Zeller and (p, q)-Bleimann-Butzer-Hahn operators etc.). In other words,
general operators of the discrete type are constructed, and their respective formulae for
central moments are thereby obtained. Finally, through the use of specific generating
functions, we are able to provide some relevant exemplary applications of general opera-
tors.
Keywords:(p, q)-Calculus, Generating functions, Positive linear operators, Rate of conver-
gence.

1 Introduction

First, let us provide some background information regarding what we know about q-calculus
formulae, the study of which was initiated by Euler in the eighteenth century. Following this,
many remarkable results in the field were obtained in the nineteenth century. In 1908, F. H.
Jackson (Jackson, 1909) introduced q-functions. He was also the first to develop q-calculus
in a systematic way. In the field of approximation theory, the applications of q-calculus are
new area in last 30 years. The first q-analogue of the well-known Bernstein polynomials was
introduced by A. Lupaş (Lupaş, 1987) in the year 1987. In 1997, G. M. Phillips (Phillips,
2000) considered another q-analogue of the classical Bernstein polynomials. Later several
other researchers have proposed the q-analogue of the well-known discrete-type operators
which includes Baskakov operators, Szasz–Mirakyan operators, Meyer-Konig-Zeller operators,
Bleiman, Butzer and Hahn operators etc. See (Agratini and Nowak, 2011)-(Şimşek and Tunç,
2018). Recently, Mursaleen et al. introduced (p, q)-calculus in approximation theory and
constructed the (p, q)-analogue of Bernstein operators (see (Mursaleen, Ansari and Khan,
2015)) and (p, q)-analogue of Bernstein-Schurer operators (see (Mursaleen, Nasiruzzaman and
Nurgali, 2015)). Most recently, the (p, q)-analogue of some more operators has been studied
in (Mursaleen, et al. 2015, 2016), (Acar, Aral and Mohiuddine, 2016, 2018), (Cai and Zhou,
2016), (Sharma, 2016), (Khan, and Lobiyal, 2017), (Kanat and Sofyalıoğlu, 2018) and (Kadak,
Khan and Mursaleen, 2016). Below, we present the outlines of (p, q)-integers, (p, q)-factorials,
(p, q)-binomial coefficients, and (p, q)-differentiations.

The required theorems and definitions in (p, q)-Calculus are as outlined below, where
0 < q < p < 1. For n ∈ N, the (p, q)-analogue of the integer n, called (p, q)-integer, is defined
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by

[n]p,q :=
pn − qn
p− q , p 6= 1; [n]1,q := [n]q.

Also [0]p,q := 0. Similarly, the (p, q)-analogue of the factorial of n is defined by

[n]p,q! := [n]p,q[n− 1]p,q · · · [1]p,q, n = 1, 2, 3, · · · ; [0]p,q! := 1

Now, let us obtain the (p, q)-analogue of the Gauss binomial formula. The (p, q)-analogues of
(a+ b)n are given by

(a⊕ b)np,q :=

n−1∏

s=0

(psa+ qsb); (a⊕ b)0p,q := 1.

By simple calculations, it follows that

(a⊕ b)np,q :=

n∑

k=0

[
n

k

]

p,q

p(n−k)(n−k−1)/2qk(k−1)/2bkan−k,

where [
n

k

]

p,q

:=
[n]p,q!

[k]p,q![n− k]p,q!
, 0 ≤ k ≤ n

is the (p, q)-binomial formula. All the concepts defined above, become their q-analogues if p
tends to 1.

The (p, q)-derivative of a function f , denoted by Dp,qf is given by

(Dp,qf) (x) =
f (px)− f (qx)

(p− q)x , x 6= 0

and (Dp,qf)(0) = f ′(0) provided f ′(0) exists.
Let us define the (p, q)-partial derivatives of a function f(x, y) of two variables. The

(p, q)-partial derivative of f(x, y) with respect to x is defined by

∂p,qf (x, y)

∂p,qx
=
f (px, y)− f (qx, y)

(p− q)x , x 6= 0.

Likewise, the (p, q)-partial derivative of f(x; y) with respect to y can be defined.
In this study, we propose a method based on generating functions for constructing (p, q)-

analogues of some discrete type positive linear operators (e.g., (p, q)-Lupas, (p, q)-Meyer-König
and Zeller and (p, q)-Bleimann-Butzer-Hahn operators etc.). In other words, general opera-
tors of the discrete type are constructed, and their respective formulae for central moments
are thereby obtained. Finally, through the use of specific generating functions, we are able to
provide some relevant exemplary applications of general operators.

2 Construction of Generating Operators

In order to construct the sequence of positive linear operators with the aid of sequences of
functions, we state the following:
Let 0 < q < p ≤ 1. and I ⊂ [0,∞) be an interval. We assume that in the sequence

{
ϕn,p,q (x, u)

}∞
n=1

of real functions on I × [0,∞), each function has the following conditions:

E. Şimşek, T. Tunç : On Some Sequences of the Positive Linear Operators
Based on (p, q)-Calculus

251

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



(i) ϕn,p,q (x, 0) 6= 0 and ϕn,p,q (x, 1) = 1 for every n ∈ N and x ∈ I.

(ii)
∂kp,qϕn,p,q(x,u)

∂p,quk

∣∣∣
u=0

exist and are continuous functions of x for all k ∈ N0 and n ∈ N.

(iii) For all k ∈ N0, x, u ≥ 0,

∂kp,qϕn,p,q (x, u)

∂p,quk
≥ 0, n ∈ N.

The sequence
{
ϕn,p,q (x, u)

}
generates a sequence of discrete type positive linear operators in

the following way.
Expanding the function ϕn,p,q (x, u) with u ∈ [0,∞), by using (p, q)-Taylor formula (see

(Njionou Sadjang, 2018)), we obtain

ϕn,p,q (x, u) =

∞∑

k=0

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

uk (1)

and taking u = 1, we have by (i)

∞∑

k=0

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

= 1. (2)

Using the sequence
{
ϕn,p,q (x, u)

}
, we introduce the announced operators as follows:

Ln,p,q (f ;x) =

∞∑

k=0

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

f

(
[k]p,q
αn,k,p,q

)
(3)

where αn,k,p,q are positive numbers. It is clear that the operators are linear and positive in
view of (iii) on the space of bounded functions on I shown by B(I). Also ‖Ln,p,q‖ = 1 by
virtue of (2).

Lemma 1 If the sequence
{
ϕn,p,q (x, u)

}
has the conditions (i)-(iii), then, for all m ∈ N0

∂mp,qϕn,p,q (x, u)

∂p,qum
=

∞∑

k=m

[k]p,q,m
[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

uk−m (4)

where [k]p,q,m = [k]p,q[k − 1]p,q[k − 2]p,q · · · [k −m+ 1]p,q.

Proof. The proof is by induction on m. For m = 0 the assertion is trivial. For m = 1 we
have,

∂p,qϕn,p,q (x, u)

∂p,qu
=
ϕn,q(x, pu)− ϕn,q(x, qu)

(p− q)u

=

∞∑

k=1

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

(
pk − qk
p− q

)
uk−1

=

∞∑

k=1

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

[k]p,qu
k−1.

For m+ 1, by assumption we obtain,

∂m+1
p,q ϕn,p,q (x, u)

∂p,qum+1
=

∂p,q
∂p,qu

( ∞∑

k=m

[k]p,q,m
[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

uk−m
)

=

∞∑

k=m+1

[k]p,q,m+1

[k]p,q!

∂kp,qϕn,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

uk−m−1.
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Corollary 2 a) Writing u = 1 in (4) we have

∂mp,qϕn,p,q (x, u)

∂p,qum

∣∣∣∣
u=1

=

∞∑

k=m

[k]p,q,m
[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

;

b) Writing u = p in (4) we have

∂mp,qϕn,p,q (x, u)

∂p,qum

∣∣∣∣
u=p

=

∞∑

k=m

[k]p,q,m
[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

pk−m.

The test functions er,i are given by

er,i (t) =

(
t

1 + (1− i)t

)r
, r ∈ N0, i = 0, 1, 2. (5)

The functions of er,0 for (p, q)-Butzer-Bleimann-Hahn operators are used, the functions er,1
are used as test functions for (p, q)-Bernstein, (p, q)-Szasz-Mirakyan, (p, q)-Lupas and (p, q)-
Baskakov operators and the functions of er,2 for (p, q)-Meyer-König and Zeller.

In continuation of the relation for the numbers αn,k,p,q indicated in (3), we assume the
following:

er,i

(
[k]p,q
αn,k,p,q

)
=

[k]rp,q
αrn,p,q

, r ∈ N0, n, k ∈ N,

where αn,p,q are positive numbers independent of k.

Theorem 3 Let Ln,p,q(f ;x) be given by (3), then for any x ≥ 0 and 0 < q < p ≤ 1, we have
the following identities

Ln,p,q (e0,i;x) = 1;

Ln,p,q (e1,i;x) =
1

αn,p,q

∂p,qϕn,p,q (x, u)

∂p,qu

∣∣∣∣
u=1

;

Ln,p,q (e2,i;x) =
1

α2
n,p,q

{
q
∂2p,qϕn,p,q (x, u)

∂p,qu2

∣∣∣∣∣
u=1

+
∂p,qϕn,p,q (x, u)

∂p,qu

∣∣∣∣
u=p

}
.

Proof. For r = 0, Ln,p,q (e0,i;x) = 1 is obvious.
Let r > 0

Ln,p,q (e1,i;x) =

∞∑

k=0

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

[k]p,q
αn,p,q

=
1

αn,p,q

∞∑

k=0

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

[k]p,q

=
1

αn,p,q

∂p,qϕn,p,q (x, u)

∂p,qu

∣∣∣∣
u=1

.

We have

Ln,p,q (e2,i;x) =

∞∑

k=0

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

[k]2p,q
α2

n,p,q
.

By simple calculation, we have

[k]p,q = pk−1 + q[k − 1]p,q, and [k]2p,q = q[k]p,q[k − 1]p,q + pk−1[k]p,q.
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Ln,p,q (e2,i;x) =
1

α2
n,p,q

∞∑

k=0

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

(
q[k]p,q[k − 1]p,q + pk−1[k]p,q

)

=
q

α2
n,p,q

∞∑

k=0

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

[k]p,q[k − 1]p,q

+
1

α2
n,p,q

∞∑

k=0

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

pk−1[k]p,q

from Corollary 2.2, we have

Ln,p,q (e2,i;x) =
1

α2
n,p,q

{
q
∂2p,qϕn,p,q (x, u)

∂p,qu2

∣∣∣∣∣
u=1

+
∂p,qϕn,p,q (x, u)

∂p,qu

∣∣∣∣
u=p

}
.

Example 4 ((p, q)-Bleimann-Butzer-Hahn Operators) For n ∈ N and 0 < q < p ≤ 1),
we consider the function

ϕn,p,q (x, u) =
(1⊕ xu)np,q
(1⊕ x)np,q

, x ∈ [0,∞). (6)

It is easy to check that the sequence
{
ϕn,p,q (x, u)

}
satisfies the condition (i) in section 2. By

the definition of (p, q)-partial derivatives, we obtain

∂p,qϕn,p,q (x, u)

∂p,qu
= [n]p,qx

n−2∏
s=0

(ps + qsqxu)

(1⊕ x)np,q
= [n]p,qx

(1⊕ qxu)n−1p,q

(1⊕ x)np,q
.

By induction, we obtain that

∂kp,qϕn,p,q (x, u)

∂p,quk
= [n]p,q,kx

kq
k(k−1)

2

(
1⊕ qkxu

)n−k
p,q

(1⊕ x)np,q
, k ∈ N.

where [n]p,q,k = [n]p,q[n− 1]p,q[n− 2]p,q · · · [n− k + 1]p,q.
If we write u = 0 in the last equality, then we get

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

=
1

(1⊕ x)np,q
[n]p,q,kq

k(k−1)
2 p

(n−k−1)(n−k)
2 xk. (7)

Since the right hand side of (7) is a rational function of x which does not have any singular
points in [0,∞), then the condition (ii) holds and since (0 < q < p ≤ 1) and x ∈ [0,∞), then
the condition (iii) is satisfied too, there by the functions ϕn,p,q (x, u) defined by (6) generate
some positive and linear operators.

By writing (7) and considering αn,k,p,q = qk[n− k + 1]p,q in the operators Ln,p,q given by
(3), we have

Ln,p,q (f ;x) =

∞∑

k=0

1

[k]p,q!

∂kp,qϕn,p,q (x, u)

∂p,quk

∣∣∣∣∣
u=0

f

(
[k]p,q
αn,k,p,q

)

=
1

(1⊕ x)np,q

∞∑

k=0

[
n

k

]

p,q

p
(n−k−1)(n−k)

2 q
k(k−1)

2 xkf

(
[k]p,q

qk[n− k + 1]p,q

)
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and since
[
n
k

]
p,q

:= 0 for k > n we obtain (p, q)-Bleimann-Butzer and Hahn operators Hn,p,q:

For f ∈ B[0,∞),

Hn,p,q(f ;x) =
1

(1⊕ x)np,q

n∑

k=0

[
n

k

]

p,q

p
(n−k−1)(n−k)

2 q
k(k−1)

2 xkf

(
[k]p,q

qk[n− k + 1]p,q

)
.

From Theorem 2.3, we have

Hn,p,q (e0,0;x) = 1,

Hn,p,q (e1,0;x) =
[n]p,q

[n+ 1]p,q

x

1 + x

(1⊕ qx)n−1p,q

(p⊕ qx)n−1p,q
,

Hn,p,q (e2,0;x) =
q2x2 [n]p,q[n− 1]p,q

[n+ 1]2p,q

(1⊕ xq2)n−2p,q

(1⊕ x)np,q
+

x[n]p,q
[n+ 1]2p,q

(1⊕ pqx)n−1p,q

(1⊕ x)np,q
.

Example 5 (p, q)-Lupas Operators
Let n ∈ N. If we consider αn,k,q = [n]p,q and

ϕn,p,q(x, u) :=
((1− x)⊕ xu)np,q
((1− x)⊕ x)np,q

, x ∈ [0, 1]; 0 < q; 0 < p,

in the operators Ln,p,q as defined by (3), then Ln,p,q become the (p, q)-Lupas operators
An,p,q as follows: For f ∈ B[0, 1]

An,p,q (f ;x) =
1

((1− x)⊕ x)np,q

n∑

k=0

[
n

k

]

p,q

p(
n−k
2 )q(

k
2)xk(1− x)n−kf

(
[k]p,q
[n]p,q

)

From Theorem 2.3, we have

An,p,q (e0,1;x) = 1,

An,p,q (e1,1;x) = x
((1− x)⊕ qx)n−1p,q

((1− x)⊕ x)n−1p,q
,

An,p,q (e2,1;x) =
q2x2[n− 1]p,q

[n]p,q

((1− x)⊕ xq2)n−2p,q

((1− x)⊕ x)np,q
+

x

[n]p,q

((1− x)⊕ pqx)n−1p,q

((1− x)⊕ x)np,q
.

Example 6 (p, q)-Meyer-König and Zeller Operators
Let n ∈ N. If we consider αn,k,p,q = q−n[k + n]p,q and

ϕn,p,q(x, u) :=
(1	 x)n+1

p,q

(1	 xu)n+1
p,q

, x ∈ [0, 1), 0 < q < p ≤ 1,

in the operators Ln,p,q as defined by (3), then Ln,p,q become the (p, q)-Meyer-König and Zeller
operators Mn,p,q as follows: For f ∈ B[0, 1)

Mn,p,q (f ;x) =
(1	 x)n+1

p,q

p
n(n+1)

n

∞∑

k=0

[
k + n

k

]

p,q

xkp−knf
(

[k]p,q
q−n[k + n]p,q

)
.

From Theorem 2.3, we have

Mn,p,q (e0,2;x) = 1,

Mn,p,q (e1,2;x) =
xp[n+ 1]p,q

[n]p,q

(1	 x)n+1
p,q

(1	 px)n+2
p,q

,

Mn,p,q (e2,2;x) =
p3qx2 [n+ 1]p,q[n+ 2]p,q

[n]2p,q

(1	 x)n+1
p,q

(1	 p2x)n+3
p,q

+
px[n+ 1]p,q

[n]2p,q

(1	 x)n+1
p,q

(1	 p2x)n+2
p,q

.
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E. Şimşek, T. Tunç : On Some Sequences of the Positive Linear Operators
Based on (p, q)-Calculus

256

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.
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Bernstein functions in CAGD. Journal of Computational and Applied Mathematics, 317,
pp.458-477.

[35] Kanat, K. and Sofyalıoglu, M. (2018). Some Approximation Results For (p, q)-Lupas-
Schurer Operators, Filomat 32(1), pp.217–229.

[36] Kadak, U., Khan, A. and Mursaleen, M. (2016). Approximation by Meyer-Konig and
Zeller Operators using (p, q)-Calculus. arXiv:1603.08539v2.
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Eylem GÜZEL KARPUZ∗

Karamanoglu Mehmetbey University,
Department of Mathematics,
70100, Karaman, TURKEY

Esra KIRMIZI ÇETİNALP
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Abstract

In this paper, we obtain complete rewriting systems for braid groups associated with
the congruence classes of complex reflection groups G7 and G25. Thus we give normal
forms of elements and solvability of the word problems of these group types.

Keywords: Complex reflection group, rewriting system, normal form, word problem.

1 Introduction and Preliminaries

Presentations arise in various areas of mathematics such as knot theory, topology, and ge-
ometry. Another motivation for studying presentations is the advent of softwares for symbolic
computations like GAP (Groups, Algorithms and Programming). Providing algorithms to
compute presentations of given group (monoid) structures is a great help for the developers of
these softwares. In this work, we consider presentations of some braid groups associated with
the congruence classes of complex reflection groups and find complete rewriting systems for
these group types. Thus, by these complete rewriting systems we characterize the structure
of elements of groups. Therefore, we obtain solvability of the word problem.

In early 1900’s, Max Dehn introduced algorithmic problems namely the word, conjugacy
and isomorphism problems. These problems have played an important role in group and
semigroup theory. In literature these problems are also called decision problems which ask for
a yes or no answer to a specific question. Among these decision problems especially the word
problem has been studied widely in group theory (see [1]). It is a well known fact that the
word problem for finitely presented groups is not solvable in general; that means given any
two words obtained by generators of the group, there may be no algorithm to decide whether
these words represent the same element in this group. The method of rewriting system which
is the main theme of this paper gives a set of normal forms for elements of the group/group
structure. This means that for each group element there is a unique word representing it
which cannot be rewritten.

∗Corresponding author. E-mail address: eylem.guzel@kmu.edu.tr
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1.1 Complex Reflection Groups

Shephard and Todd classified all finite complex reflection groups in [10]. Later Cohen (1976)
gave a more systematic description for these groups in terms of root systems, vector graphs
and root graphs [4]. Then, in [8], Howlett and Shi defined a simple root system (B;w) for
such these groups which is analogous to the corresponding concept for a Coxeter group.

It is well known that any Coxeter group can be presented by generators and relations. A
finite complex reflection group G can also be presented in a similar way (see, for example,
[3]). But such a presentation is not unique for G in general. Different presentations of
G may reveal various different properties of G. Then it is worth to define a congruence
relation among the presentations of G (see [11]) and then to ask that question “How many
congruence classes of presentations are there for any irreducible finite complex reflection group
G?”. In [3], the authors solve this problem for the finite primitive complex reflection groups
G = {G7, G11, G15, G19, G27} and in [11], Shi studied the finite primitive complex reflection
groups G = {G12, G24, G25, G26} (in the notations of Shephard and Todd, 1954). So by
considering the presentations given in [3] for G7 and in [11] for G25, our aim in this paper is
to find complete rewriting systems of these important groups.

Theorem 1 [3] The braid group associated with the congruence classes of complex reflection
group G7 admits the presentation

PG7 =
〈
s, t, u ; t2 = u3 = s3 = 1, tus = ust = stu

〉
.

Theorem 2 [11] The braid group associated with the congruence classes of complex reflection
group G25 admits the presentation

PG25 =
〈
s, t, u ; t3 = u3 = s3 = 1, tut = utu, usu = sus, ts = st

〉
.

1.2 String Rewriting System

In this paper, since we will use complete rewriting system method to obtain normal form
structure of elements of congruence classes of complex reflection groups G7 and G25, we give
some information about complete rewriting system as in the following paragraphs.

Let X be a set and let X∗ be the free monoid consists of all words obtained by the elements
of X. A (string) rewriting system on X∗ is a subset R ⊆ X∗×X∗ and an element (u, v) ∈ R,
also can be written as u → v, is called a rule of R. The idea for a rewriting system is an
algorithm for substituting the right-hand side of a rule whenever the left-hand side appears in
a word. In general, for a given rewriting system R, we write x→ y for x, y ∈ X∗ if x = uv1w,
y = uv2w and (v1, v2) ∈ R. Also we write x →∗ y if x = y or x → x1 → x2 → · · · → y
for some finite chain of reductions and ↔∗ is the reflexive, symmetric, and transitive closure
of →. Furthermore an element x ∈ X∗ is called irreducible with respect to R if there is no
possible rewriting (or reduction) x→ y; otherwise x is called reducible. The rewriting system
R is called

• Noetherian if there is no infinite chain of rewritings x → x1 → x2 → · · · for any word
x ∈ X∗,

• Confluent if whenever x →∗ y1 and x →∗ y2, there is a z ∈ X∗ such that y1 →∗ z and
y2 →∗ z,

• Complete if R is both Noetherian and confluent.
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A critical pair of a rewriting system R is a pair of overlapping rules if one of the
(i) (r1r2, s), (r2r3, t)∈ R with r2 6= 1 or (ii) (r1r2r3, s) (r2, t)∈ R ,

forms is satisfied. Also a critical pair is resolved in R if there is a word z such that sr3 →∗ z
and r1t→∗ z in the first case or s→∗ z and r1tr3 →∗ z in the second. A Noetherian rewriting
system is complete if and only if every critical pair is resolved. We also note that if a rewriting
system is complete then it has a solvable word problem ([1]). We finally note that the reader is
referred to [2] and [12] for a detailed survey on (complete) rewriting systems and to [5, 6, 7, 9]
for complete rewriting systems of some algebraic constructions.

2 Main Results

In this section, we obtain complete rewriting systems for braid groups associated with the
congruence classes of complex reflection groups G7 and G25, respectively. To do that we need
lexicographic orderings between generators of the group G7 as u > s > t and of the group G25

as t > s > u. Here, we order words in given alphabet in the way by comparing the right-hand
side of each rule is strictly smaller that its left-hand side for the lexicographic order induced
by the order on generators for each group. Additionally, the notation (i)∩ (j) will denote the
intersection overlapping words of left hand side of relations (i) and (j).

Theorem 3 A complete rewriting system for the braid group associated with the congruence
classes of complex reflection group G7 consists of the following rules:

(1) t2 → 1, (2) u3 → 1, (3) s3 → 1, (4) ust→ tus, (5) ust→ stu.

Proof. This rewriting system is Noetherian since there is no infinite chain of rewritings of
overlapping words for the lexicographic order induced by the order on generators (u > s > t).
It remains to show that the confluent property holds. To do that we have the following
overlapping words (w) and corresponding critical pairs (cp), respectively.

(1) ∩ (1) : w = t3, cp = (t, t),

(2) ∩ (2) : w = u4, cp = (u, u),

(3) ∩ (3) : w = s4, cp = (s, s),

(2) ∩ (4) : w = u3st, cp = (st, u2tus),

(2) ∩ (5) : w = u3st, cp = (st, u2stu),

(4) ∩ (1) : w = ust2, cp = (tust, us),

(5) ∩ (1) : w = ust2, cp = (stut, us).

All these above critical pairs are resolved by reduction steps. We show two of them as follows:

(2) ∩ (5) : w = u3st, cp = (st, u2stu),

u3st −→
{
st
u2stu→ ustu2 → stu3 → st

(4) ∩ (1) : w = ust2, cp = (tust, us),

ust2 −→
{
tust→ t2us→ us
us

After all these above processes, since the rewriting system is Noetherian and confluent it is
complete. Hence the result.
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Theorem 4 A complete rewriting system for the braid group associated with the congruence
classes of complex reflection group G25 consists of the following rules:

(1) t3 → 1, (2) u3 → 1, (3) s3 → 1,

(4) tut→ utu, (5) sus→ usu, (6) ts→ st.

Proof. This rewriting system is Noetherian since there is no infinite chain of rewritings of
overlapping words for the lexicographic order induced by the order on generators (t > s > u).
It remains to show that the confluent property holds. To do that we have the following
overlapping words (w) and corresponding critical pairs (cp), respectively.

(1) ∩ (1) : w = t4, cp = (t, t),

(2) ∩ (2) : w = u4, cp = (u, u),

(3) ∩ (3) : w = s4, cp = (s, s),

(1) ∩ (4) : w = t3ut, cp = (ut, t2utu),

(1) ∩ (6) : w = t3s, cp = (s, t2st),

(3) ∩ (5) : w = s3us, cp = (us, s2usu),

(4) ∩ (1) : w = tut3, cp = (utut2, tu),

(4) ∩ (4) : w = tutut, cp = (utu2t, tu2tu),

(4) ∩ (6) : w = tuts, cp = (utus, tust),

(5) ∩ (3) : w = sus3, cp = (usus2, su),

(5) ∩ (5) : w = susus, cp = (usu2s, su2su),

(6) ∩ (3) : w = ts3, cp = (sts2, t),

(6) ∩ (5) : w = tsus, cp = (stus, tusu).

All these above critical pairs are resolved by reduction steps. We show some of them as
follows:

(1) ∩ (4) : w = t3ut, cp = (ut, t2utu),

t3ut −→
{
ut
t2utu→ tutu2 → utu3 → ut

(5) ∩ (5) : w = susus, cp = (usu2s, su2su),

susus −→
{
usu2s→ usu2

su2su→ su3sus→ s2us→ susu→ usu2

(6) ∩ (3) : w = ts3, cp = (sts2, t),

ts3 −→
{
sts2 → s2ts→ s3t→ t
t

After all these above processes, since the rewriting system is Noetherian and confluent it is
complete. Hence the result.

Now let Ri be the set of relations for each congruence classes of primitive complex reflection
groups Gi (i = {7, 25}) given in Theorems 2.1 and 2.2. By using these results, the normal
forms for the congruence classes of primitive complex reflection groups G7 and G25 can be
given as follows:

Corollary 5 Let C(u) be a normal form of a word u ∈ Gi (i = {7, 25}).
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• For u ∈ G7, C(u) = wtε1w′ε2w′′ε3w′′′ (0 ≤ ε1 < 2, 0 ≤ ε2, ε3 < 3), where w,w′, w′′ and
w′′′ are R7-reduced words in G7.

• For u ∈ G25, C(u) = wuε1w′ε2w′′ε3w′′′ (0 ≤ ε1, ε2, ε3 < 3), where w,w′, w′′ and w′′′ are
R25-reduced words in G25.

By considering Corollary 2.3, we have the following other consequence of our main results.

Corollary 6 The word problem for the congruence classes of primitive complex reflection
groups Gi (i = {7, 25}) is solvable.
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Abstract

We study torus-type helicoidal hypersurface in the four dimensional Euclidean space
E4. We define torus-type helicoidal hypersurface. Then, we calculate its curvatures with
some results.
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1 Introduction

Focusing on the rotational characters in the literature, we meet [1 − 6, 8 − 18, 20, 21, 24 −
26, 28, 31, 32, 34, 35], and many others.

About helicoidal surfaces in Euclidean 3-space, Do Carmo and Dajczer [14] proved that
there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface
using a result of Bour [7].

Magid, Scharlach and Vrancken [28] introduced the affine umbilical surfaces in 4-space.
Vlachos [35] considered hypersurfaces in E4 with harmonic mean curvature vector field. Schar-
lach [32] studied on affine geometry of surfaces and hypersurfaces in E4. Cheng and Wan [11]
considered complete hypersurfaces of E4 with constant mean curvature. Arvanitoyeorgos,
Kaimakamais and Magid [6] showed that if the mean curvature vector field of M3

1 satisfies
the equation ∆H = αH (α a constant), then M3

1 has constant mean curvature in Minkowski
4-space E4

1.
General rotational surfaces in E4 were introduced by Moore [29, 30]. Ganchev and Milou-

sheva [17] considered the analogue of these surfaces in the Minkowski 4-space. Moruz and
Munteanu [31] considered hypersurfaces in E4 defined as the sum of a curve and a surface
whose mean curvature vanishes. Verstraelen, Walrave and Yaprak [34] studied on the minimal
translation surfaces in En for arbitrary dimension n. Kim and Turgay [26] studied surfaces
with L1-pointwise 1-type Gauss map in the 4-dimensional Euclidean space E4.

Güler, Magid and Yaylı [21] studied Laplace Beltrami operator of a helicoidal hypersurface
in E4. Güler, Hacisalihoglu and Kim [18] worked on the Gauss map and the third Laplace-
Beltrami operator of rotational hypersurface in E4. Güler, Kaimakamis and Magid [19] intro-
duced the helicoidal hypersurfaces in Minkowski 4-space E4

1. Güler and Turgay [22] studied
Cheng-Yau operator and Gauss map of rotational hypersurfaces in E4. Moreover; Güler, Tur-
gay and Kim [23] considered L2 operator and Gauss map of rotational hypersurfaces in E5.
Some relations among the Laplace-Beltrami operator and curvatures of the helicoidal surfaces
were shown by Güler, Yaylı and Hacısalihoğlu [24]. Güler and Kişi [20] defined torus type
rotational hypersurface in 4-space.

We study the torus-type helicoidal hypersurface in Euclidean 4-space E4. We give some
basic notions of four dimensional Euclidean geometry in section 2. In section 3, we define
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helicoidal hypersurface of four-space. Moreover, we obtain torus-type helicoidal hypersurface,
and calculate its curvatures in the last section.

2 Preliminaries

We shall identify a vector (a,b,c,d) with its transpose (a,b,c,d)t in the rest of this paper.
Next, we introduce the first and second fundamental forms, matrix of the shape operator
S, Gaussian curvature K, and the mean curvature H of hypersurface M = M(u, v, w) in
Euclidean 4-space E4.

Let M be an isometric immersion of a hypersurface M3 in E4. The triple vector product
−→x × −→y × −→z of −→x = (x1, x2, x3, x4),

−→y = (y1, y2, y3, y4),
−→z = (z1, z2, z3, z4) on E4 is defined

as follows 


x2y3z4 − x2y4z3 − x3y2z4 + x3y4z2 + x4y2z3 − x4y3z2
−x1y3z4 + x1y4z3 + x3y1z4 − x3z1y4 − y1x4z3 + x4y3z1
x1y2z4 − x1y4z2 − x2y1z4 + x2z1y4 + y1x4z2 − x4y2z1
−x1y2z3 + x1y3z2 + x2y1z3 − x2y3z1 − x3y1z2 + x3y2z1


 .

For a hypersurface M in E4 we have

det I = det




E F A
F G B
A B C


 = (EG− F 2)C −A2G+ 2ABF −B2E,

and

det II = det




L M P
M N T
P T V


 =

(
LN −M2

)
V − P 2N + 2PTM − T 2L,

where
A = Mu ·Mw, B = Mv ·Mw, C = Mw ·Mw,
P = Muw · e, T = Mvw · e, V = Mww · e,

e is the Gauss map (i.e., the unit normal vector field). We compute the matrix of the shape
operator S, as follows

S =
1

det I




s11 s12 s13
s21 s22 s23
s31 s32 s33


 , (1)

where
s11 = ABM − CFM −AGP +BFP + CGL−B2L,
s12 = ABN − CFN −AGT +BFT + CGM −B2M,
s13 = ABT − CFT −AGV +BFV + CGP −B2P,
s21 = ABL− CFL+AFP −BPE + CME −A2M,
s22 = ABM − CFM +AFT −BTE + CNE −A2N,
s23 = ABP − CFP +AFV −BV E + CTE −A2T,
s31 = −AGL+BFL+AFM −BME +GPE − F 2P,
s32 = −AGM +BFM +AFN −BNE +GTE − F 2T,
s33 = −AGP +BFP +AFT −BTE +GV E − F 2V.

So, we get the following formulas of the Gaussian and the mean curvatures

K = det(S) =
det II

det I

=

(
LN −M2

)
V + 2MPT − P 2N − T 2L

(EG− F 2)C + 2ABF −A2G−B2E
,
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and

H =
1

3
tr (S)

=
1

3 det I
[(EN +GL− 2FM)C + (EG− F 2)V

−A2N −B2L− 2(APG+BTE −ABM −ATF −BPF )].

A hypersurface M is minimal, if H = 0 identically on M.

3 Helicoidal Hypersurface

Next, we define the rotational hypersurface in E4. For an open interval I ⊂ R, let γ : I −→ Π
be a curve in a plane Π in E4, and let ` be a straight line in Π.

A rotational hypersurface in E4 is defined as a hypersurface rotating a curve γ around a
line ` (these are called the profile curve and the axis, respectively). Suppose that when a
profile curve γ rotates around the axis `, it simultaneously displaces parallel lines orthogonal
to the axis `, so that the speed of displacement is proportional to the speed of rotation.
Then the resulting hypersurface is called the helicoidal hypersurface with axis ` and pitchs
b, d ∈ R\{0}.

We may suppose that ` is the line spanned by the vector (0, 0, 0, 1)t. The orthogonal
matrix which fixes the above vector is

Z(v, w) =




cos v cosw − sin v − cos v sinw 0
sin v cosw cos v − sin v sinw 0

sinw 0 cosw 0
0 0 0 1


 , (2)

where v, w ∈ R. The matrix Z can be found by solving the following equations simultaneously;

Z` = `, ZtZ = ZZt = I4, detZ = 1.

When the axis of rotation is `, there is an Euclidean transformation by which the axis is `
transformed to the x4-axis of E4. Parametrization of the profile curve is given by

γ(u) = (f (u) , 0, 0, ϕ (u)) ,

where f (u) , ϕ (u) : I ⊂ R −→ R are differentiable functions for all u ∈ I. So, the helicoidal
hypersurface which is spanned by the vector (0, 0, 0, 1) is as follows

H(u, v, w) = Z(v, w)γ(u)t + (bv + dw) `t,

where u ∈ I, v, w ∈ [0, 2π]. Clearly, we write helicoidal hypersurface as follows

H(u, v, w) =




f (u) cos v cosw
f (u) sin v cosw
f (u) sinw

ϕ (u) + bv + dw


 . (3)

4 Torus-Type Helicoidal Hypersurface

Taking profile curve as
γ(u) = (a+ c cosu, 0, 0, c sinu) ,
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with the orthogonal matrix Z, then we get torus-type helicoidal hypersurface in E4 as follows

T(u, v, w) =




(c+ a cosu) cos v cosw
(c+ a cosu) sin v cosw

(c+ a cosu) sinw
a sinu+ bv + dw


 , (4)

where a, b, c, d ∈ R\{0} and 0 ≤ u, v, w ≤ 2π.
Using the first differentials of (4) with respect to u, v, w, we get the first quantities as

follows

I =




a2 ab cosu ad cosu
ab cosu β1 bd
ad cosu bd β2


 ,

where

β1 = a (2c+ a cosu) cosu cos2w + b2,

β2 = a (2c+ a cosu) cosu+ c2 + d2,

and have
det I = a2

((
2b2d2 − b2β2 − d2β1

)
cos2 u+

(
β1β2 − b2d2

))
.

Using the second differentials with respect to u, v, w, we have the second quantities as
follows

II =
1

W




−aφ ab sin2 u ad sin2 u
ab sin2 u −φ2 cosu− dφ sinu bφ sinu
ad sin2 u bφ sinu −φ2 cosu


 ,

where W =
√

(a2 − 2b2 − d2) cos2 u+ 2ac cosu+ a2 + 2b2 + d2, φ = c+ a cosu, and get

det II =
aφ

W 3/2



−
(
a cos2 u+ c cosu+ d sinu

)
φ3 cosu

+b2φ2 sin2 u+ aφ
(
b2 + d2

)
sin4 u cosu

+ad
(
2b2 + d2

)
sin5 u


 .

The Gauss map of the helicoidal hypersurface with spacelike axis is

eT =
1

D




(φ cosu+ d sinu sinw) cos v cosw + b sinu sin v
(φ cosu cosw + d sinu sinw) sin v cosw − b sinu cos v

(φ cosu sinw − d sinu cosw) cosw
φ sinu cosw


 , (5)

where D =
√

((a2 − d2) cos2 u+ 2ac cosu) cos2w + b2 sin2 u.
Finally, the Gaussian curvature of the torus-type helicoidal hypersurface is as follows

K =
aφΨ(u)

W 3/2 det I
,

where
Ψ = −

(
a cos2 u+ c cosu+ d sinu

)
φ3 cosu+ b2φ2 sin2 u

+a
(
b2 + d2

)
φ sin4 u cosu+ ad

(
2b2 + d2

)
sin5 u.

and the mean curvature is as follows

H = −aΩ(u,w)

3W det I
,
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where

Ω = aφ2
(
b2 sin2 u+ a (2c+ a cosu) cosu cos2w

)
cosu

+[b2c2 + a2
(
a2 − d2

)
cos4 u− acd2 cos3 u+ a2

(
b2 + 3c2 + d2

)
cos2 u

+ac
(
2b2 + c2 + d2

)
cosu+ a4 cos4 u cos2w − ad

(
2b2 + d2

)
sinu cos2 u

+a3c
(
4 cos2w + 3

)
cos3 u+ ad

(
2b2 + c2 + d2

)
sinu

+ad (2c+ a cosu)
(
d cos2w + a sinu

)
cosu]φ

+2a
(
b2c2 + a

(
b2 + d2 cos2w

)
(2c+ a cosu) cosu

)
cosu sin2 u.

Corollary 1. Let T : M3 −→ E4 be an immersion given by (4). Then M3 has following
Weingarten relation

3φΨH +W 1/2ΩK = 0.
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Abstract

In this study, we introduce the concept of lacunary I2-invariant convergence, lacunary
I∗2 -invariant convergence and lacunary I2-invariant Cauchy for double sequences in the
topology introduced by random 2-normed spaces. We give the relationships among these
concepts and prove some important results.

Keywords: I2-invariant convergence,lacunary convergence, 2-norm, 2-normed space.

1 Introduction

The notion of statistical convergence of sequences of numbers was introduced by Fast [2].
Later on, statistical convergence turned out to be one of the most active areas of research in
summability theory after the works of Fridy [3] and Salat [4].

The notion of convergence of real double sequences was first introduced by Pringsheim
[9]. A lot of useful developments of double sequences in summability methods can be found
in Limayea and Zeltser, Altay and Başar [1]. This notion of convergence of real double
sequences has been extended to statistical convergence by Mursaleen and Edely, [5]. Also, they
established some relationships between statistical convergence and strongly Cesàro summable
double sequences.

The concept of lacunary statistical convergence was defined by Fridy and Orhan [7]. Also,
Fridy and Orhan gave the relationships between the lacunary statistical convergence and the
Cesàro summability. Freedman and Sember established the connection between the strongly
Cesàro summable sequences space |σ1| and the strongly lacunary summable sequences space
Nθ in their work [10] published in 1978. This notion was extended to the double sequences
by Savaş and Patterson [32].

Kostyrko, Salát and Wilezyński [11] introduced the concept of I-convergence of sequences
in a metric space and studied some properties of this convergence.

Tripathy, Hazarika and Choudhary [28] introduced the concepts of I-lacunary convergent
sequences.

Recently in [12] we used ideals to introduce the concepts of I-statistical convergence and
I-lacunary statistical convergence which naturally extend the notions of the above mentioned
convergence.

Quite recently, I-double statistical convergence has been established as a better tool than
double statistical convergence. It is found very interesting that some results on sequences,
series and summability can be proved by replacing the double statistical convergence by I-
double statistical convergence.

∗Corresponding author. E-mail address: okisi@bartin.edu.tr
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The notion of statistical convergence of double sequence has been further generalized to
I-convergence of double sequences by Das, Kostyrko, Wilczyński and Malik [13] using ideals
in N× N.

Several authors have studied invariant convergent sequences (see, [24], [25], [26], [27],
[31], [38], [34], [35], [29], [30], [44]). Savaş and Nuray [44] introduced the concepts of σ-
statistically convergence and lacunary σ-statistically convergence and gave some inclusion
relations. Pancaroğlu and Nuray [31] defined the concept lacunary invariant summability and
p-strongly lacunary invariant summability. The concept of lacunary strongly σ-convergence
was introduced by Savaş [29].

In [36], the concepts of σ-uniform density of subsets A of the set N of positive inte-
gers and corresponding Iσ-convergence were introduced. Also, inclusion relations between
Iσ-convergence and invariant convergence also Iσ-convergence and [Vσ]p were given [36]. Re-
cently, the concept of lanunary σ-uniform density of the set A ⊂ N, lacunary Iσ-convergence,
lacunary I∗σ-convergence, lacunary Iσ-Cauchy, lacunary I∗σ-Cauchy sequences of real numbers
were defined by Ulusu and Nuray [34]. Ulusu, Dundar and Nuray [35] defined the lacunary
I2-invariant convergence for double sequences, and examine the properties the convergence.

First we recall some of the basic concepts which we will be used in this paper.
A number sequence x = (xk) is said to be statistically convergent to the number l, if for

every ε > 0, limn→∞ 1
n |{k ≤ n : |xk − l| ≥ ε}| = 0. In this case, we write st− limk→∞ xk = l.

Statistical convergence is a natural generalization of ordinary convergence. If limxk = l, then
st− limxk = l. The converse does not hold in general.

A number sequence x = (xk) is said to be statistically convergent to the number L, if for
every ε > 0, limn→∞ 1

n |{k ≤ n : |xk − L| ≥ ε}| = 0. In this case we write st− limxk = L.
By a lacunary sequence, we mean an increasing integer sequence θ = {kr} such that k0 = 0

and hr = kr − kr−1 → ∞ as r → ∞. Throughout this paper, the intervals determined by θ
will be denoted by Ir = (kr−1, kr].

A sequence x = (xk) is said to be lacunary statistically convergent to the number L, if for
every ε > 0, limr→∞ 1

hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0. In this case, we write Sθ − limxk = L or

xk → L(Sθ).
The strongly lacunary summable sequences sequence space Nθ, which is defined by

Nθ =



(xk) : lim

r→∞
1

hr

∑

k∈Ir
|xk − L| = 0



 .

A sequence x = (xk) is said to be (V, λ)−summable to a number L, if limn→∞ tn (x) = L. If
λn = n, then (V, λ)−summability reduces to (C, 1)−summability.

An ideal I on N for which I 6= P (N) is called a proper ideal. A proper ideal I is called
admissible if I contains all finite subsets of N.

A family of sets I ⊆ 2N is called an ideal if and only if (i) ∅ ∈ I, (ii) For each A,B ∈ I
we have A ∪B ∈ I, (iii) For each A ∈ I and each B ⊆ A we have B ∈ I.

A family of sets F ⊆ 2N is a filter in N if and only if (i) ∅ /∈ F , (ii) For each A,B ∈ F
we have A ∩B ∈ F , (iii) For each A ∈ F and each B ⊇ A we have B ∈ F .

Lemma 1 If I is proper ideal of N (i.e., N /∈ I), then the family of sets

F (I) = {M ⊂ N : ∃A ∈ I : M = N \ A}

is a filter of N it is called the filter associated with the ideal. Many concepts mentioned in
this exposition are more frequently defined using limit along a filter. Filter is a dual notion of
ideal.
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Let I ⊂ 2N be a proper admissible ideal in N. The sequence (xk) of elements of R is said
to be I−convergent to L ∈ R, if for each ε > 0, A (ε) = {k ∈ N : |xk − L| ≥ ε} ∈ I. If (xk) is
I-convergent to L, then we write I− limx = L.

An admissible ideal I ⊆ 2N is said to have the property (AP ) if for any sequence
{A1, A2, ...} of mutually disjoint sets of I, there is sequence {B1, B2, ...} of sets such that

each symmetric difference Ai∆Bi (i = 1, 2, ...) is finite and
∞⋃
i=1

Bi ∈ I.

Let σ be a one-to-one mapping of the set of positive integers into itself such that σm (n) =(
σm−1 (n)

)
, m = 1, 2, 3, .... A continuous linear functional Φ on l∞, the space of real bounded

sequences, is said to be an invariant mean or a σ mean, if and only if,
(1) Φ (x) ≥ 0, for all sequences x = (xn) with xn ≥ 0 for all n;
(2) Φ (e) = 1, where e = (1, 1, 1, ...) ;
(3) Φ

(
xσ(n)

)
= Φ (x) for all x ∈ l∞.

The mapping Φ are assumed to be one-to-one such that σm (n) 6= n for all positive integers
n and m, where σm (n) denotes the mth iterate of the mapping σ at n. Thus, Φ extends the
limit functional on c, the space of convergent sequences, in the sense that Φ (x) = limx, for
all x ∈ c. In case σ is translation mapping σ (n) = n+ 1, the σ mean is often called a Banach
limit and Vσ, the set of bounded sequences all of whose invariant means are equal, is the set
of almost convergent sequences.

It can be shown that

Vσ :=

{
x = (xn) ∈ l∞ : lim

m→∞
1

m

m∑

k=1

xσk(m) = L, uniformly in n

}
.

A bounded sequence x = (xk) is said to be strongly σ-convergent to L, if

lim
n→∞

1

n

n−1∑

k=0

∣∣∣xσk(m) − L
∣∣∣ = 0, uniformly in m

and in this case we write xk → L [Vσ]. By [Vσ] , we denote the set of all strongly σ-convergent
sequences.

A sequence x = (xk) is σ-statistically convergent to L, if for every ε > 0, limm→∞ 1
m

∣∣∣
{
k ≤ m :

∣∣∣xσk(n) − L
∣∣∣ ≥ ε

}∣∣∣ =

0, uniformly in n.
In this case, we write Sσ − limx = L or xk → L (Sσ).
Nuray et al. [36] introduced the concepts of σ-uniform density and Iσ-convergence.
Let A ⊆ N and

sn = min
m

∣∣A ∩
{
σ (m) , σ2 (m) , ..., σn (m)

}∣∣ and

Sn = max
m

∣∣A ∩
{
σ (m) , σ2 (m) , ..., σn (m)

}∣∣ .

If the following limits exists

V (A) = lim
n→∞

sn
n

, V (A) = lim
n→∞

Sn
n

then they are called a lower and an upper σ-uniform density of the set A, respectively. If
V (A) = V (A), then V (A) = V (A) = V (A) is called the σ-uniform density of A.

Denote by Iσ the class of all A ⊆ N with V (A) = 0.
A sequence x = (xk) is Iσ convergent to the number L if for every ε > 0, Aε =

{k : |xk − L| ≥ ε} ∈ Iσ, that is V (Aε) = 0. In this case, we write Iσ − limx = L.
Menger [19] generalized the metric axioms by associating a distribution function with each

pair of points of a set. This system, called a probabilistic metric space, originally a statistical
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metric space, has been developed extensively by Schweizer and Sklar [16], [17]. The idea of
Menger was to use distribution function instead of nonnegative real numbers as values of the
metric, which was further developed by several other authors. In this theory, the notion of
distance has a probabilistic nature.Namely, the distance between two points x and y is rep-
resented by a distribution function Fxy, and for t > 0, the value Fxy (t) is interpreted as the
probability that the distance from x to y is less than t. Using this concept, Śherstnev [18]
introduced the concept of probabilistic normed spaces. It provides an important area into
which many deterministic results of linear normed spaces can be generalized. The studies
of continuity properties, linear operators, statistical convergence, and ideal convergence in
probabilistic normed spaces have gained many attractions, and such studies have diverse ap-
plications into various fields. In [14], Gähler introduced an attractive theory of 2-normed and
n-normed spaces in the 1960s. In last few years these spaces are grown up rapidly and many
detereministic results of linear normed spaces are obtained for probabilistic normed spaces.
In 2005, Golet [15] used the concept of 2-norm of Gähler [14] and presented generalized prob-
abilistic normed space which he called random 2-normed space. Gürdal and Pehlivan ([40],
[41]) studied statistical convergence in 2-normed spaces and in 2-Banach spaces. Recently,
Savaş [43] defined and studied generalized statistical convergence in random 2-normed space.

Recently, Mohiuddine and Aiyub [23] studied lacunary statistical convergence by intro-
ducing the concept θ-statistical convergence in random2-normed space. Their work can be
considered as a particular generalization of the statistical convergence. In [22], Mursaleen
and Mohiuddine extended the idea of lacunary statistical convergence with respect to the
intuitionistic fuzzy normed space, and Debnath [6] investigated lacunary ideal convergence in
intuitionistic fuzzy normed linear spaces. Also, lacunary statistically convergent double se-
quences in probabilistic normed space were studied by Mohiuddine and Savaş in [33]. Yamancı
and Gürdal [42], studied lacunary ideal convergence in the n-normed linear spaces.

Let R denotes the set of reals and R+
0 = [0,∞). A function f : R → R+

0 is called
a distribution function if it is non-decreasing and left-continuous with inft∈R f (t) = 0 and
supt∈R f (t) = 1. We will denote the set of all distribution functions by D. Also, a a distance
distribution function is a non decreasing function F defined on R+ = [0,∞) that satisfies
F (0) = 0 and F (∞) = 1; and is left continuous on (0,∞). Let D+ denotes the set of all
distance distribution functions.

A triangular norm, briefly t-norm, is a binary operation ∗ on [0, 1] which is continuous,
commutative, associative, non-decreasing and has 1 as neutral element, i.e., it is the continuous
mapping ∗ : [0, 1]× [0, 1]→ [0, 1] such that for all a, b, c ∈ [0, 1] :

(i) a ∗ 1 = a,
(ii) a ∗ b = b ∗ a,
(iii) c ∗ d ≥ a ∗ b if c ≥ a and d ≥ b,
(iv) (a ∗ b) ∗ c = a ∗ (b ∗ c) .

The ∗ operations a ∗ b = max {a+ b− 1, 0}, a ∗ b = ab, and a ∗ b = min {a, b} on [0, 1] are
t-norms.

Definition 2 Let X be a real vector vector space of dimension d > 1 (d may be infinite). A
real valued function ‖., .‖ : X2 → R satisfying the following conditions:

(i) ‖x1, x2‖ = 0, if and only if x1, x2 are linearly dependent.
(ii) ‖x1, x2‖ = ‖x2, x1‖ for all x1, x2 ∈ X,
(iii) ‖αx1, x2‖ = |α| ‖x1, x2‖, for any α ∈ R and
(iv) ‖x1 + x2, x3‖ ≤ ‖x1, x3‖+ ‖x2, x3‖

is called a 2-norm and the pair (X, ‖., .‖) is called a 2-normed space.

Definition 3 Let X be a real vector vector space of dimension d > 1 (d may be infinite),τ be a
triangle function (a binary operation on D+ which is associative, commutative, nondecreasing
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and ε0 as a unit) and F : X ×X → D+ (for x, y ∈ X, F (x, y; t) is the value of F (x, y) at
t ∈ R). Then F is called a probabilistic norm (X,F , τ) a probabilistic 2-normed space if the
following conditions are satisfied:

(i) F (x, y; t) = H0 (t), if x, y are linearly dependent, where H0 (t) = 0 if t ≤ 0 and
H0 (t) = 1 if t > 0.

(ii) F (x, y; t) 6= H0 (t), if x, y are linearly dependent.
(iii) F (x, y; t) = F (y, x; t), for all x, y ∈ X,
(iv) F (αx, y; t) = F

(
x, y; t

|α|

)
for every t > 0, α 6= 0 and x, y ∈ X,

(v) F (x+ y, z; t) ≥ τ (F (x, z; t) ,F (y, z; t)), where x, y, z ∈ X.
If (v) is replaced by F (x+ y, z; t1 + t2) ≥ F (x, z; t1) ∗ F (y, z; t2) for all x, y, z ∈ X and

t1, t2 ∈ R+
0 then (X,F , ∗) is called a random 2-normed space.

Definition 4 Let (X,F , ∗) be a random 2-normed space. Then a sequence x = (xk) is said
to be convergent to x0 ∈ X with respect to norm F if for every ε > 0, t ∈ (0, 1) and non-zero
z ∈ X, there exists a positive integer k0 such that F (xk − x0, z; ε) > 1 − t whenever k ≥ k0.
It is denoted by F-limxk = x0.

Definition 5 Let (X,F , ∗) be a random 2-normed space. Then a sequence x = (xk) is said
to be statistically convergent SR2N convergent to x0 ∈ X with respect to norm F if for every
ε > 0, t ∈ (0, 1) and non-zero z ∈ X,

δ ({k ∈ N : F (xk − x0, z; ε) ≤ 1− t}) = 0.

In this case, we write SR2N -limxk = x0.

Definition 6 Let (X,F , ∗) be a random 2-normed space. Then a sequence x = (xk) is said
to be statistically convergent to l with respect to F if for every ε > 0, t ∈ (0, 1) and non-zero
z ∈ X,

lim
n→∞

1

n
|({k ≤ n : F (xk − l, z; ε) ≤ 1− t})| = 0.

In this case, we write SR2N -limxk = l.

Definition 7 Let θ = {(kr, ju)} be a double lacunary sequence, A ⊂ N× N and

pru := min
m,n

∣∣∣
{
A ∩

{(
σk (m) , σj (n) : (k, j)

)
∈ Iru

}}∣∣∣

and
Pru := max

m,n

∣∣∣
{
A ∩

{(
σk (m) , σj (n) : (k, j)

)
∈ Iru

}}∣∣∣

If the following limit exist

V θ
2 (A) := lim

r,u→∞
pru
Pru

, V θ
2 (A) := lim

r,u→∞
Pru
pru

,

then they are called a lower lacunary σ-uniform density and an upper lacunary σ-uniform

density of the set A, respectively. If V θ
2 (A) = V θ

2 (A), then V θ
2 (A) = V θ

2 (A) = V θ
2 (A) is

called the lacunary σ-uniform density of A.

Denote the paper we take Iσθ2 as a strongly admissible ideal in N× N.
The notion of lacunary I2-invariant convergence of double sequences in random 2-normed

spaces has not been studied previously in the setting of n-normed linear spaces. Motivated
by this fact, in this paper, as a variant of I-convergence, the notion of lacunary I2-invariant
convergence is introduced in a random n-normed space, and some important results are estab-
lished. Finally, the notions of lacunary I2-invariant Cauchy and lacunary I∗2 -invariant-Cauchy
sequences are introduced and studied.
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2 Main results

In this study, we introduce the concept of lacunary I2-invariant convergence, lacunary I∗2 -
invariant convergence and lacunary I2-invariant Cauchy for double sequences in the topology
introduced by random 2-normed spaces. We give the relationships among these concepts and
prove some important results.

Definition 8 Let (X,F , ∗) be an random 2-normed space. A double sequence x = (xkl) in
a random 2-normed space (X,F , ∗) is said to be Fσθ-convergent to l with respect to random
2-norm F-topology if for every ε > 0, t ∈ (0, 1) and for non-zero z ∈ X such that

δ





(k, l) ∈ Ir,s : F


 1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)

 /∈ Nl (ε, t)






=0,

uniformly in n,m. In other ways we can write

∣∣∣∣∣∣



(k, l) ∈ Ir,s : F


 lim
r,s→∞

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)

 /∈ Nl (ε, t)





∣∣∣∣∣∣
=0,

uniformly in n,m and it is denoted by Fσθ-limxkl = l.

Definition 9 Let (X,F , ∗) be an random 2-normed space, and Iσθ2 as a strongly admissible
ideal in N × N. A double sequence x = (xkl) in X is said to be lacunary Iσθ2 -invariant
convergent to l ∈ X (with respect to random 2-norm F-topology) if for each ε > 0, t ∈ (0, 1)
and for non-zero z ∈ X,



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)
/∈ Nl (ε, t)



 ∈ I

σθ
2 ,

uniformly in n,m and it is denoted by Iσθ2 -limxkl = l.

Theorem 10 Let (X,F , ∗) be an random 2-normed space. If a sequence x = (xkl) is lacunary
Iσθ2 -invariant convergent with respect to random 2-norm F , then Iσθ2 -limit is unique.

Proof. Let us assume that Iσθ2 -limxkl = l1, Iσθ2 -limxkl = l2, where l1 6= l2. Since l1 6= l2,
select ε > 0, t ∈ (0, 1) and for non-zero z ∈ X such that Nl1 (ε, t) and Nl2 (ε, t) are disjoint
neighborhoods of l1, l2. Since l1 and l2 both are Iσθ2 -limit of the double sequence (xkl), we
have

A =



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)
/∈ Nl1 (ε, t)



 ,

B =



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)
/∈ Nl2 (ε, t)



 ,

both belonging to Iσθ2 . This implies that the sets

Ac =



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)
∈ Nl1 (ε, t)
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and

Bc =



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)
∈ Nl2 (ε, t)





belongs to F
(
Iσθ2
)
. In this way, we obtain a contradiction to the fact that the neighborhoods

of Nl1 (ε, t) and Nl2 (ε, t) of l1 and l2 are disjoints. Hence, we have l1 = l2. This completes
the proof.

Lemma 11 Let (X,F , ∗) be an random 2-normed space. Then one has

(i) If Fσθ-limxkl = l, then Iσθ2 -limxkl = l;
(ii) If Iσθ2 -limxkl = l1 and Iσθ2 -lim ykl = l2, then Iσθ2 -lim (xkl + ykl) = l1+ l2;
(iii) If Iσθ2 -limxkl = l and α ∈ R, then Iσθ2 -limαxkl = αl;
(iv) If Iσθ2 -limxkl = l1 and Iσθ2 -lim ykl = l2, then Iσθ2 -lim (xkl − ykl) = l1− l2

Proof. (i) Suppose that Fσθ-limxkl = l. Let ε > 0, t ∈ (0, 1) and for non-zero z ∈ X. Then,
there exists positive integer N such that

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)
∈ Nl (ε, t)

for each k, j > N . Since the set

A =



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)
/∈ Nl1 (ε, t)





⊂ {1, 2, ..., N − 1}

and the ideal Iσθ2 is admissible, we have A ∈ Iσθ2 . This shows that Iσθ2 -limxkl = l.
(ii) Let ε > 0, t ∈ (0, 1) and for non-zero z ∈ X. Choose µ ∈ (0, 1) such that (1− µ) ∗

(1− µ) > (1− t). Since Iσθ2 -limxkl = l1 and Iσθ2 -lim ykl = l2, the sets

A =



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)
/∈ Nl1

(ε
2
, t
)


 ,

B =



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
yσk(m),σj(n), z

)
/∈ Nl2

(ε
2
, t
)


 ,

belong to Iσθ2 . Let

C =



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n) + yσk(m),σj(n), z

)
/∈ Nl1+l2 (ε, t)



 .

Since Iσθ2 is an ideal, it is sufficient to show that C ⊂ A ∪B. This is equivalent to show that
Cc ⊃ Ac ∩ Bc where Ac and Bc belongs to F

(
Iσθ2
)
. Let (r, u) ∈ Ac ∩ Bc, that is (r, u) ∈ Ac

and (r, u) ∈ Bc, and we have

F
z,
(
x
σk(m),σj(n)

+y
σk(m),σj(n)

)
−(l1+l2)

(ε) ≥ Fz,x
σk(m),σj(n)

−l1 (ε) ∗ Fz,y
σk(m),σj(n)

−l2 (ε)

> (1− µ) ∗ (1− µ) > (1− t) .

Since (r, u) ∈ Cc ⊃ Ac ∩Bc, we have C ⊂ A ∪B ∈ Iσθ2 .
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(iii) It is trivial for α = 0. Now, let α 6= 0, ε > 0, t ∈ (0, 1) and for non-zero z ∈ X. Since
Iσθ2 -limxkl = l, we have

A =



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)
/∈ Nl (ε, t)



 ∈ I

σθ
2 .

This implies that

Ac =



(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
xσk(m),σj(n), z

)
∈ Nl (ε, t)



 ∈ F

(
Iσθ2
)
.

Let (r, u) ∈ Ac. Then we have

Fz,αx
σk(m),σj(n)

−αl (ε) = Fz,x
σk(m),σj(n)

−l

(
ε

|α|

)

≥ Fz,x
σk(m),σj(n)

−l (ε) ∗ F0

(
ε

|α| − ε
)

> (1− t) ∗ 1 = (1− t)

So, 

(r, u) ∈ N× N :

1

hru

∑

k,j∈Ir,u

(
αxσk(m),σj(n), z

)
/∈ Nαl (ε, t)



 ∈ I

σθ
2 .

Hence, Iσθ2 -limαxkl = αl.
(iv) The result follows from (ii) and (iii).
We introduce the concept of lacunary Iσθ2∗ -invariant convergence closely related to lacu-

nary Iσθ2 -invariant convergence of double sequence in random 2-normed space and show that
lacunary Iσθ2∗ -invariant convergence implies lacunary Iσθ2 -invariant convergence but not con-
versely.

Definition 12 Let (X,F , ∗) be an random 2-normed space, and Iσθ2 as a strongly admissible
ideal in N × N. A double sequence x = (xkl) in X is said to be lacunary Iσθ2∗ -invariant
convergent to l ∈ X (with respect to random 2-norm F) if there exists a set M2 ∈ F

(
Iσθ2
)
,(

H = N× N \ M2 ∈ Iσθ2
)

such that

Fσθ- limxkl = l, (k, l) ∈M2.

In this case, we write Iσθ2∗ -limxkl = l for non-zero z ∈ X.

Theorem 13 Let (X,F , ∗) be an random 2-normed space, and Iσθ2 as a strongly admissible
ideal in N×N. If Iσθ2∗ -limxkl = l, then Iσθ2 -limxkl = l. But the converse of the theorem needs
not to be true.

Theorem 14 Let (X,F , ∗) be an random 2-normed space, and let Iσθ2 satisfy the condition
(AP2).If x = (xkl) is a sequence in X such that Iσθ2 -limxkl = l, then Iσθ2∗ -limxkl = l.

Definition 15 Let (X,F , ∗) be an random 2-normed space, and I2 be a proper ideal in N×N.
A double sequence x = (xkl) in X is called lacunary I2-invariant Cauchy sequence or Iσθ2 -
Cauchy sequence, if for every ε > 0, there exist numbers s = s (ε), t = t (ε) ∈ N such that

{
(r, u) ∈ N× N :
1
hru

∑
(k,j),(s,t)∈Iru

{(
xσk(m),σj(n) − xσs(m),σt(n), z

)
/∈ Nl (ε, t)

}

belongs to ∈ Iσθ2 .
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Definition 16 A double sequence x = (xkl) in X is said to be lacunary I∗2 -invariant Cauchy
sequence or Iσθ2∗ -Cauchy sequence, if there exists a set M2 ∈ F

(
Iσθ2
) (
H = N× N \ M2 ∈ Iσθ2

)

such that for every (k, j) , (s, t) ∈M2

lim
k,j,s,t→∞

(
xσk(m),σj(n) − xσs(m),σt(n), z

)
= 0.

Theorem 17 If a double x = (xkl) in X is Iσθ2 -convergent, then (xkl) is Iσθ2 -Cauchy sequence.

Theorem 18 If a double x = (xkl) in X is Iσθ2∗ -Cauchy sequence, then it is Iσθ2 -Cauchy
sequence.

Theorem 19 Let Iσθ2 has property (AP2). If a double sequence (xkl) is Iσθ2 -Cauchy sequence,
then (xkl) is Iσθ2∗ -Cauchy sequence.
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Abstract

To investigate the normed division algebras is greatly a important topic today. It is well
known that the octonions O and the sedenions S are the nonassociative, noncommutative,
normed division algebra over the real numbers R. In this paper, we study h(x)-Lucas
sedenion polynomials considering several properties involving these polynomials. Also, we
obtained various results for these classes of sedenion numbers include recurrence relations,
Binet formula, summation formulas for the h(x)-Lucas sedenion polynomials, Cassini’s
identity, Catalan’s identities and d’Ocagne’s identity by their Binet forms and also we
presented exponentinal generating functions, poisson generating functions for the h(x)-
Lucas sedenion polynomials

Keywords and Phrases: Lucas polynomials, recurrences, sedenion numbers.

1 Introduction and preliminaries

Sedenions appear in many areas of science, such as electromagnetic theory and linear grav-
ity. Sedenion algebra, which is usually denoted by S, is a 16-dimensional Cayley-Dickson
algebra. Sedenion algebra is a non-associative, non-commutative, and non-alternative but
power-associative Cayley-Dickson algebra over R. Because of their zero divisors, sedenions
do not form a composition algebra or a division algebra. They are hyper-complex numbers,
similar to quaternions and octonions.

Throughout this paper, we take the basis elements of S as {e0, e1, ..., e15} where e1, ..., e15
are imaginaries and e0 is the unit elements. A sedenion S can be written as

S =

15∑

i=0

aiei (1)

where a0, a1, a2, ..., a15 are reals.
Imaeda and Imaeda [12] defined a sedenion by

S = (O1; O2) ∈ S, O1,O2 ∈ O

where O is the octonion algebra over R. As a sedenion is an ordered pair of two octonions, the
conjugate of a sedenion S = (O1; O2) is defined by S = (O1;−O2) .Under the Cayley–Dickson
process, the product of two sedenions S1 = (O1; O2) , S2 = (O3; O4) is

S1S2 =
(
O1O3 + ρO4O2; O2O3 + O4O1

)
.
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After choosing the field parameter ρ = −1 and the generator e8 Imaeda and Imaeda examined
the sedenions. By setting i ≡ ei, where i = 0, 1, , ..., 15 , Cawagas [5] constructed the following
multiplication table for the basis of S.The multiplication rules for the basis of S are listed in
the following figure

Figure 1: The multiplication table for the basis of S.

In [7], Cariow and Cariowa derived an algorithm for the fast multiplication of two sede-
nions. In [4], Bilgici, Tokeser and Unal defined Fibonacci and Lucas sedenions over the

sedenion algebra S. Also, The nth Fibonacci sedenion is F̂n =
15∑
s=0

Fn+ses and the nth Lucas

sedenion is L̂n =
15∑
s=0

Ln+ses.

The Lucas sequence, {Ln} , is defined by the recurrence relation, for n > 1

Ln+1 = Ln + Ln−1

where L0 = 2, L1 = 1.
The Lucas quaternions have been studied in several papers (see, for example [1, 2, 10 ,

11, 18]). Recently, in [2], Ari considered the h(x)-Lucas quaternion polynomials, he derived
the Binet formula and generating function of h(x)−Lucas quaternion polynomial sequence.
In [15], Nalli and Haukkanen introduced the h(x)-Lucas polynomials.

In this paper, we study h(x)-Lucas sedenion polynomials considering several properties
involving these polynomials. Also, we obtained various results for these classes of sedenion
numbers include recurrence relations, Binet formula, summation formulas for the h(x)-Lucas
sedenion polynomials, Cassini’s identity, Catalan’s identities and d’Ocagne’s identity by their
Binet forms and also we presented Exponentinal generating functions, Poisson generating
functions for the h(x)-Lucas sedenion polynomials.
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2 Algebraic Properties of the h(x)-Lucas Sedenion Polynomi-
als

Definition 1 Let h(x) be a polynomial with real coefficients. The h(x)-Lucas polynomials
{Lh,n(x)}∞n=0 are defined by the recurrence relation

Lh,n+1(x) = h(x)Lh,n(x) + Lh,n−1(x), n ≥ 1, (2)

with initial conditions Lh,0(x) = 2, Lh,1(x) = h(x).[15]

Definition 2 Let h(x) be a polynomial with real coefficients. The h(x)-Lucas quaternion
polynomials {Th,n(x)}∞n=0 are defined by the recurrence relation

Th,n(x) =

3∑

s=0

Lh,n+s(x)es (3)

where Lh,n(x) is the nth h(x)-Lucas polynomial.[2]

Definition 3 Let h(x) be a polynomial with real coefficients. The h(x)-Lucas sedenion poly-
nomials {SLh,n(x)}∞n=0 are defined by the recurrence relation

SLh,n(x) =

15∑

i=0

Lh,n+i(x)ei (4)

where Lh,n(x) is the nth h(x)-Lucas polynomial.

The conjugate of SLh,n(x) is given by

SLh,n(x) = Lh,n(x)e0 −
15∑

i=1

Lh,n+i(x)ei. (5)

For n = 0,

SLh,0(x) =

15∑

i=0

Lh,i(x)ei

= Lh,0(x)e0 + Lh,1(x)e1 + ...+ Lh,15(x)e15

= 2e0 + h(x)e1 +
(
h2(x) + 2

)
e2 +

(
h3(x) + 3h(x)

)
e3 +

(
h4(x) + 4h2(x) + 2

)
e4

+...+
(
h15(x) + 15h13(x) + 90h11(x) + 265h9(x)

+400h7(x) + 318h5(x) + 130h3(x) + 15h(x)
)
e15

For n = 1,

SLh,1(x) =

15∑

i=0

Lh,i+1(x)ei

= Lh,1(x)e0 + Lh,2(x)e1 + ...+ Lh,16(x)e16

= h(x)e0 +
(
h2(x) + 2

)
e1 +

(
h3(x) + 3h(x)

)
e2 +

(
h4(x) + 4h2(x) + 2

)
e3

+...+
(
h16(x) + 16h14(x) + 104h12(x) + 342h10(x)

+600h8(x) + 572h6(x) + 296h4(x) + 49h2(x) + 2
)
e15
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From the recurrence relation(4), using the recurrence relation (2) and some properties of
summation formulas, we obtain

SLh,n+1(x) =

15∑

i=0

Lh,i+1+n(x)ei

=

15∑

i=0

(h(x)Lh,i+n(x) + Lh,i+n−1(x)) ei

= h(x)

15∑

i=0

Lh,i+n(x)ei +

15∑

i=0

Lh,i+n−1(x)ei

= h(x)SLh,n(x) + SLh,n−1(x)

and so
SLh,n+1(x) = h(x)SLh,n(x) + SLh,n−1(x). (6)

In [15], authors stuied properties of h(x)-Fibonacci and h(x)-Lucas polynomials and present
properties of these polynomials and they obtained the following Binet’s formula for Lh,n(x)

Lh,n(x) = αn(x) + βn(x) (7)

where

α(x) =
h(x) +

√
h2(x) + 4

2
, β(x) =

h(x)−
√
h2(x) + 4

2
(8)

are roots of the characteristic equation y2 − h(x)y − 1 = 0 of the recurrence relation (2) .
Ari in [2] calculated the Binet-style formula for Th,n(x),

Th,n(x) = α∗(x)αn(x) + β∗(x)βn(x)

where α(x) and β (x) as in (8) and α∗(x) =

3∑

s=0

αs(x)es, β
∗(x) =

3∑

s=0

βs(x)es.

The following basic identities are needed for our purpose in proving.

α(x) + β (x) = h(x), α(x)β (x) = −1, α(x)− β (x) =
√
h2(x) + 4 (9)

and
α(x)

β (x)
= −α2(x),

β (x)

α(x)
= −β2(x). (10)

Also,
1 + h(x)α(x) = α2(x), 1 + h(x)β(x) = β2(x), (11)

and
1 + α2(x) = α(x)

√
h2(x) + 4, 1 + β2(x) = −β (x)

√
h2(x) + 4. (12)

Similarly, the Binet-style formula for SLh,n(x), we obtain

SLh,n(x) = α∗(x)αn(x) + β∗(x)βn(x) (13)

where α(x) and β (x) as in (8) and α∗(x) =

15∑

s=0

αs(x)es, β
∗(x) =

15∑

s=0

βs(x)es.

Theorem 4 For n ≥ 0, we have the following identities:

(i) SL2
h,n(x) + SL2

h,n+1(x) =
[
α2∗(x)α2n+1(x)− β2∗(x)β2n+1(x)

]
(α(x)− β (x))
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(ii) SLh,n(x) + SLh,n(x) = 2Lh,n(x)e0

(iii) (SLh,n(x))2 = 2Lh,n(x)e0SLh,n(x)−SLh,n(x)SLh,n(x) = SLh,n(x)
(

2Lh,n(x)e0 − SLh,n(x)
)
.

(iv) SLh,1(x)− α(x)SLh,0(x) = −β∗(x)
√
h2(x) + 4

(v) SLh,1(x)− β(x)SLh,0(x) = α∗(x)
√
h2(x) + 4

Proof. (i) Using (13) , (9), (11) and (12) , we get

SL2
h,n(x) + SL2

h,n+1(x) = [α∗(x)αn(x) + β∗(x)βn(x)]2 +
[
α∗(x)αn+1(x) + β∗(x)βn+1(x)

]2

= α2∗(x)α2n(x) + α∗(x)β∗(x)αn(x)βn(x) + β∗(x)α∗(x)βn(x)αn(x) + β2∗(x)β2n(x)

+α2∗(x)α2n+2(x) + α∗(x)β∗(x)αn+1(x)βn+1(x) + β∗(x)α∗(x)βn+1(x)αn+1(x)

+β2∗(x)β2n+2(x)

= α2∗(x)α2n(x)(1 + α2(x)) + β2∗(x)β2n(x)(1 + β2(x))

+α∗(x)β∗(x)αn(x)βn(x)(1 + α(x)β(x)) + β∗(x)α∗(x)βn(x)αn(x)(1 + β(x)α(x))

= α2∗(x)α2n(x)(1 + α2(x)) + β2∗(x)β2n(x)(1 + β2(x))

=
(
α2∗(x)α2n+1(x)− β2∗(x)β2n+1(x)

)
(α(x)− β (x)) .

(ii) Using the definition of SLh,n(x) and some computations, we have

SLh,n(x) = Lh,n(x)e0 −
15∑

i=1

Lh,n+i(x)ei

= 2Lh,n(x)e0 −
15∑

i=0

Lh,n+i(x)ei

= 2Lh,n(x)e0 − SLh,n(x),

and the result
SLh,n(x) + SLh,n(x) = 2Lh,n(x)e0.

(iii) By (ii), (iii) holds.
(v) By using the definition of the h(x)− lucas sedenion polynomials and definition of β∗(x)

and equation (9), we obtain

SLh,1(x)− α(x)SLh,0(x) = Lh,1(x)e0 + Lh,2(x)e1 + Lh,3(x)e2 + ...+ Lh,16(x)e15

−α(x) [Lh,0(x)e0 + Lh,1(x)e1 + Lh,2(x)e2 + ...+ Lh,15(x)e15]

= (Lh,1(x)− α(x)Lh,0(x)) e0 + (Lh,2(x)− α(x)Lh,1(x)) e1

+...+ (Lh,16(x)− α(x)Lh,15(x)) e15

= −β0(x)(α(x)− β(x))e0 − β1(x)(α(x)− β(x))e0 − ...− β15(x)(α(x)− β(x))e15

= −
√
h2(x) + 4(e0 + β1(x)e1 + β2(x)e2 + ...+ β15(x)e15)

= −
√
h2(x) + 4

15∑

k=0

βk(x)ek

= −
√
h2(x) + 4β∗(x).

(vi) The proof is similar to part (v) and thus, omitted.

Theorem 5 For n ≥ 0,

n∑

k=0

(
n

k

)
(h(x))k SLh,k(x) = SLh,2n(x). (14)
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Proof.

n∑

k=0

(
n

k

)
(h(x))k SLh,k(x) =

n∑

k=0

(
n

k

)
(h(x))k

(
α∗(x)αk(x) + β∗(x)βk(x)

)

= α∗(x)

n∑

k=0

(
n

k

)
(h(x))k αk(x) + β∗(x)

n∑

k=0

(
n

k

)
(h(x))k βk(x)

= α∗(x)(1 + h(x)α(x))n + β∗(x)(1 + h(x)β(x))n

= α∗(x)α2n(x) + β∗(x)β2n(x)

= SLh,2n(x)

Theorem 6 The sum of the first m terms of the sequence {SLh,m(x)}∞m=0 is given by

m∑

k=0

SLh,k(x) =
SLh,0(x)− SLh,m(x)− SLh,m+1(x)− α∗(x)β(x)− β∗(x)α(x)

(1− α(x)) (1− β(x))
. (15)

Proof. By using of (13) and (9) , we obtain

m∑

k=0

SLh,k(x) =

m∑

k=0

(
α∗(x)αk(x) + β∗(x)βk(x)

)

= α∗(x)

m∑

k=0

αk(x) + β∗(x)

m∑

k=0

βk(x)

= α∗(x)

(
1− αm+1(x)

1− α(x)

)
+ β∗(x)

(
1− βm+1(x)

1− β(x)

)

=
α∗(x)− α∗(x)β(x)− α∗(x)αm+1(x) + α∗(x)αm(x)α(x)β(x)

(1− β(x)) (1− α(x))

+
β∗(x)− β∗(x)α(x)− β∗(x)βm+1(x) + β∗(x)α(x)β(x)βm(x)

(1− β(x)) (1− α(x))

=
SLh,0(x)− SLh,m(x)− SLh,m+1(x)− α∗(x)β(x)− β∗(x)α(x)

(1− α(x)) (1− β(x))
.

The following theorem, we state to different Cassini’s identity which occur from non-
commutativity of sedenion multiplication.

Theorem 7 (Cassini’s identities) For any naturel number n, Cassini’s identity for the
h(x)-Lucas sedenion polynomials the following identities are hold:

SLh,n+1(x)SLh,n−1(x)− SL2
h,n(x) = (−1)n

√
h2(x) + 4 (β∗(x)α∗(x)β(x) (16)

−α∗(x)β∗(x)α(x))

SLh,n−1(x).SLh,n+1(x)− SL2
h,n(x) = (−1)n

√
h2(x) + 4 (α∗(x)β∗(x)β(x) (17)

−β∗(x)α∗(x)α(x))

Proof. Using the Binet’s formula in equation (16) , we get

SLh,n+1(x)SLh,n−1(x)− SL2
h,n(x) =

[
α∗(x)αn+1(x) + β∗(x)βn+1(x)

] [
α∗(x)αn−1(x) + β∗(x)βn−1(x)

]

− (α∗(x)αn(x) + β∗(x)βn(x))2 .
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If necessary calculations are made, we obtain

SLh,n+1(x)SLh,n−1(x)− SL2
h,n(x) = (−1)n

√
h2(x) + 4 (β∗(x)α∗(x)β(x)− α∗(x)β∗(x)α(x)) .

In a similar way, using the Binet’s formula in equation (17) , we obtain

SLh,n−1(x)SLh,n+1(x)− SL2
h,n(x) =

[
α∗(x)αn−1(x) + β∗(x)βn−1(x)

] [
α∗(x)αn+1(x) + β∗(x)βn+1(x)

]

− (α∗(x)αn(x) + β∗(x)βn(x))2

= (−1)n
√
h2(x) + 4 (α∗(x)β∗(x)β(x)− β∗(x)α∗(x)α(x))

which is desired. Thus, the identities are proved.

Theorem 8 (Catalan identity) For every nonnegative integer numbers n and r such that
r ≤ n, Catalan identity for the h(x)-Lucas sedenion polynomials the following identities are
hold:

SLh,n+r(x).SLh,n−r(x)− SL2
h,n(x) = (−1)n−r (αr(x)− βr (x)) (18)

(α∗(x)β∗(x)αr(x)− β∗(x)α∗(x)βr(x))

SLh,n−r(x).SLh,n+r(x)− SL2
h,n(x) = (−1)n−r (αr(x)− βr (x)) (19)

(β∗(x)α∗(x)αr(x)− α∗(x)β∗(x)βr(x))

Proof. Using the Binet’s formula in equation (18) , we get

SLh,n+r(x)SLh,n−r(x)− SL2
h,n(x) =

[
α∗(x)αn+r(x) + β∗(x)βn+r(x)

] [
α∗(x)αn−r(x) + β∗(x)βn−r(x)

]

− (α∗(x)αn(x) + β∗(x)βn(x))2 .

If necessary calculations are made, we obtain

SLh,n+r(x)SLh,n−r(x)−SL2
h,n(x) = (−1)n−r (αr(x)− βr (x)) (α∗(x)β∗(x)αr(x)− β∗(x)α∗(x)βr(x)) .

In a similar way, using the Binet’s formula in equation (19) , we obtain

SLh,n−r(x)SLh,n+r(x)− SL2
h,n(x) =

[
α∗(x)αn−r(x) + β∗(x)βn−r(x)

] [
α∗(x)αn+r(x) + β∗(x)βn+r(x)

]

− (α∗(x)αn(x) + β∗(x)βn(x))2

= (−1)n−r (αr(x)− βr (x)) (β∗(x)α∗(x)αr(x)− α∗(x)β∗(x)βr(x))

which is desired. Thus, the identities are proved.

Theorem 9 (d’Ocagne’s identity) Suppose that n is a nonnegative integer number and m
any natural number. If m > n then:

SLh,m(x)SLh,n+1(x)− SLh,m+1(x)SLh,n(x) =
√
h2(x) + 4 (β∗(x)α∗(x)βm(x)αn(x)(20)

−α∗(x)β∗(x)αm(x)βn(x)) .

Proof. Using the Binet’s formula in equation (20) and if necessary calculations are made, we
obtain

SLh,m(x)SLh,n+1(x)− SLh,m+1(x)SLh,n(x) = [α∗(x)αm(x) + β∗(x)βm(x)]
[
α∗(x)αn+1(x) + β∗(x)βn+1(x)

]

−
[
α∗(x)αm+1(x) + β∗(x)βm+1(x)

]
[α∗(x)αn(x) + β∗(x)βn(x)]

=
√
h2(x) + 4 (β∗(x)α∗(x)βm(x)αn(x)− α∗(x)β∗(x)αm(x)βn(x)) .

So, the proof is complete.
We now derive Exponential generating functions for the h(x)-Lucas sedenion polynomials.

The Exponential generating function of a sequence {bk}∞k=0 is given by

EG(bk, l) =

∞∑

k=0

bk
lk

k!
.
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Theorem 10 The Exponential generating function for the h(x)-Lucas sedenion polynomials
the following identities are hold:

∞∑

k=0

SLh,k(x)

k!
lk = α∗(x)eα(x)l + β∗(x)eβ(x)l (21)

Proof. Using the Binet’s formula in equation (20) , we get

∞∑

k=0

SLh,k(x)

k!
lk =

∞∑

k=0

(
α∗(x)αk(x) + β∗(x)βk(x)

) lk
k!

= α∗(x)

∞∑

k=0

(α(x)l)k

k!
+ β∗(x)

∞∑

k=0

(β(x)l)k

k!

= α∗(x)eα(x)l + β∗(x)eβ(x)l.

Theorem 11 The Poisson generating functions for the sequence of the h(x)-Lucas sedenion
polynomials are

∞∑

k=0

SLh,k(x)

k!
lke−l =

α∗(x)eα(x)l + β∗(x)eβ(x)l

el
. (22)

Proof. Since PG(bn, x) = e−lEG(bn, x), we have the result by (21) .

3 Conclusions

In this paper;

• We study h(x)-Lucas sedenion polynomials considering several properties involving these
polynomials.

• We obtained various results for these classes of sedenion numbers include recurrence
relations, Binet formula, summation formulas for the h(x)-Lucas sedenion polynomials,
Cassini’s identity, Catalan identity and d’Ocagne’s identity by their Binet forms.

• We presented Exponentinal generating functions, Poisson generating functions for the
h(x)-Lucas sedenion polynomials.
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Abstract

It is important condition health and economically because the egg industry to quickly
and easily separate eggs according to their qualities. To purpose for eggs classification
was created a machine vision system that is not affected by external conditions such as
camera, lighting and computer. Images were increased with image processing techniques
(noise and rotation) using brown and white eggs (dirty, broken and solid). Egg images
YCbCr color space was transformed and processed with image processing techniques. The
resulting images were classified as solid and failing. Accordingly, the experiments were
validated using 48 egg surface images with accuracy was 0.85, specificity was 0.97, and
sensitivity was 0.75.

Keywords: Egg, image processing techniques, machine vision, classification.

1 Introduction

The separation of defective eggs from quality eggs is an important issue both in terms of
health and economics [1]. Especially the egg shell crack is a necessary parameter that must
be determined before sending market for consumption. Storing broken eggs and solid eggs in
the same location creates bacterial interaction. For this reason, it is a necessity to detect the
eggshell crack due to food safety [2].

There are many studies on egg shell quality determination in the literature. When studies
that use machine vision or image processing techniques are examined;

Dehrouyeh et al. (2010) received egg images under different lighting conditions and ob-
tained dirty and bloody egg shells with image processing techniques. They used HSI color
space and were close to 90% accurate [3]. Arivazhagan et al. (2013) obtained image process-
ing techniques using YIQ color space for detecting blood, dirt, and cracks in egg shells. In
addition, these images were obtained under different lighting conditions in the machine vision
system [4]. Mansoory et al. (2011) have developed an algorithm based on fuzzy thresholding
and SUSAN edge detection with digital image processing for egg crack detection. As a result,
they achieved 97% success [5]. Alaşahan (2010) determined the external and internal quality
characteristics of different kinds of eggs by classical and numerical image analysis [6]. Ribeiro
et al. (2000) used an artificial vision system to identify defective eggs. They detected the
pixels in the defective region with the genetic algorithm and made the classification system
[7]. Wang et al. (2009) performed pixel-based image analysis to determine egg freshness [8].
Pourreza et al. (2008) presented methods for classifying dirty and cracked eggs at the pack-
aging stage, utilizing the discontinuity in the image [9]. Yoon et al. (2012) formed a system
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that uses image processing techniques to detect cracks that adversely affect egg quality. The
system was a structure that could control 20 eggs at the same time and the success rate of
the system was about 95% [10].

In this study, a machine vision system was established. Dirty, broken and solid eight eggs
were increased with image processing techniques and 48 images were obtained. Visual Studio
C# programming language and AForge.Net framework using image processing algorithms.

2 Machine Vision System and Software

A Machine Vision System
Machine vision system was established to detect egg quality. The distance between the
scene and the camera should be about 80 cm. The cabin size was 30x30x85cm. The size
of the pictures is taken as 640x480.

For the machine vision system, the skeleton of the system and the system were closed
with the help of cartons to keep the system as far away from the outside conditions as
possible. It was placed on top of the camera and lighting system for a display cabinet.
In addition, a black fabric was placed under the cabin. The imaging system is shown in
Figure 1.

Figure 1: Imaging system

Images were taken from the system using a 5.2MP camera, which is a combination of
imaging and illumination (Figure 2).

Figure 2: Imaging system

B Software
AForge.Net is an open source framework created using C# programming language [11].
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The system used the Visual Studio C# programming language for capturing and pro-
cessing images from the camera, and the AForge.Net framework for some operations.
Figure 3 shows the flow diagram of the software.

Egg images are made 200x200 and egg images are obtained by applying noise (salt-
pepper) and rotation process (0◦, 90◦ and 180◦) with image processing techniques. The
pre-processed image is transformed from RGB to YCbCr color space and the median
filter is applied. Egg boundaries are drawn with AForge.Net’s blob analysis. If the black
pixels within the boundaries are too large, the image is considered to be broken or dirty.
These eggs are counted by a counter.

Figure 3: Software flow diagram

C Determination of Egg quality Image Processing Techniques
RGB color space

RGB tri-color rays (red, green, and blue) are mathematically expressed. The 3-dimensional
coordinate system is shown in Figure 4 [12]. Red, green, and blue components are loaded
in each pixel to create a color image. Each pixel forms a color vector and takes a value
between 0 and 255 [13].
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Figure 4: RGB color space

YCbCr color space

Y is the non-linear luma component that represents brightness [14]. The reason why the
YCbCr color space is used, the Y component is color independent. This may prevent
problems from occurring due to lighting problems [15]. YCbCr color space in the RGB
color cube is shown in Figure 5 [16].

Figure 5: YCbCr color space

Conversion from RGB color space to YCbCr color space is given in equation 1.




Y
Cb
Cr


 =




16
128
128


+




0.279 0.504 0.098
−0.148 −0.291 0.439
0.439 −0.368 −0.071





R
G
B


 (1)

Median filter and Blob analysis
Median filter is used to reduce impulsive or salt-pepper noise [17]. Blob analysis is a

technique used in image processing applications to detect objects from two-dimensional objects
[18]. Blob analysis using the AForge.Net framework [19]; the eggs inside the image were
detected.

D Egg Samples
Sample eggs are shown in the Figure 6. It is necessary for the egg to stand still to
control the egg surface. So the cut egg carton was placed under the egg.

B. Büyükarıkan : Classification Of Eggs With Image Processing Techniques By Using Machine
Vision System

300

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



Figure 6: Egg samples

E Classification Criteria
Four different classification model metrics were used to measure the classification perfor-
mance of the proposed model: accuracy (2), precision (3), sensitivity (4) and specificity
(5). The classification metrics are calculated using Table 1.

Table 1: Classification metrics

Predicted

S1 S2

True S1 A B

S2 C D

Accuracy =
A+ C

A+B + C +D
(2)

Precision =
A

A+ C
(3)

Sensitivity =
A

A+B
(4)

Specificity =
D

C +D
(5)

3 Results

After applying the YCbCr color space and median filter to the egg, the resulting image was
placed in a circle or a rectangle according to the blob analysis. If the ratio of black pixels
in the circle is too low, it shows that it is a sturdy egg (a yellow circle was drawn). If the
black pixel is too large, the egg has been shown to be unstable and is shown in a red circle or
rectangle. These ratios are calculated according to the pixel values of the width and height
of the eggs. Some of the results obtained in Figure 7 are shown.
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Figure 7: Processed image sample a)white solid b)brown empty c) broken egg

In Table 2, egg quality classification was successfully performed with image processing
techniques. Accordingly, the experiments were validated using 48 egg surface images with
accuracy was 0.85, specificity was 0.97, and sensitivity was 0.75.

Table 2: Classification results

Predicted

Solid Broken and Dirty

True Solid 6 6

Broken and Dirty 1 35

Due to the light reflection on the solid brown egg, egg quality is found incorrect.

4 Conclusions

Separation from other eggs from the eggs to egg quality is a necessity. In particular, it is
important to check the food consumption items untouched by human hands system in terms
of both health and accurate detection of eggs.

Image processing software was created using the AForge.Net framework with the Visual
Studio C# software language in the machine vision system for separating and classifying
quality eggs from other eggs. Egg images were classified using image processing techniques.
However, the results of the brown eggs that were solid were not found correctly. As a result
of the light shining on this situation, it was determined that the egg was seen as empty. For
this reason, the necessity of the lighting conditions must be taken into consideration.
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Abstract

In this study, by generalizing Frank matrix defined by

F = (fij)
n
i,j=1 =

{
n+ 1−max(i, j) , i > j − 2
0 , otherwise,

we first define Harmo-Frank matrix of the form

H = (hij)
n
i,j=1 =

{
hn+1−max(i,j) , i > j − 2
0 , otherwise,

where hk denotes the kth harmonic number. Then, we investigate some properties of
matrix H, such as LU decomposition and characteristic polynomial.

Keywords: Frank matrix, harmonic numbers, LU decomposition, characteristic poly-
nomial.

1 Introduction

In 1958, Frank [1] defined an n× n lower Hessenberg matrix F = (fij) by the rule

(fij)
n
i,j=1 =

{
n+ 1−max(i, j) , i > j − 2
0 , otherwise.

The matrix F is called Frank matrix [2,3] and F is of the form

F =




n n− 1 0 · · · 0 0
n− 1 n− 1 n− 2 · · · 0 0
n− 2 n− 2 n− 2 · · · 0 0

...
...

...
. . .

...
...

2 2 2 · · · 2 1
1 1 1 · · · 1 1



.

The matrix F is a nonsingular matrix and det (F ) = 1 [2]. Also, Hake [2] computed the
determinant, inverse, LU decomposition and characteristic polynomial of matrix F.

∗E-mail address: efruzmersin@gmail.com
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Varah [3] introduced a generalization of the Frank matrices and examined its eigenvalues
and eigenvectors.

Let we define an n× n matrix H = (hij) by the rule

(hij)
n
i,j=1 =

{
hn+1−max(i,j) , i > j − 2

0 , otherwise,

where hn is the nth harmonic number defined by h0 = 0 and hn =
∑n

k=1
1
k for n = 1, 2, ... .

Since the matrix H is in the same form as the Frank matrix F and its elements consist of
harmonic number, we call the matrix H as Harmo-Frank matrix. Then, the matrix H is of
the form

H =




hn hn−1 0 · · · 0 0
hn−1 hn−1 hn−2 · · · 0 0
hn−2 hn−2 hn−2 · · · 0 0

...
...

...
. . .

...
...

h2 h2 h2 · · · h2 h1
h1 h1 h1 · · · h1 h1



.

In this study, we investigate some properties of matrix H, such as determinant, inverse
and characteristic polynomial.

2 Main Results

Theorem 2.1. The determinant of n× n matrix Hsatisfies

det (H) =
1

n!
.

Proof. After row-column operations are applied to det(H) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

hn hn−1 0 · · · 0 0
hn−1 hn−1 hn−2 · · · 0 0
hn−2 hn−2 hn−2 · · · 0 0

...
...

...
. . .

...
...

h2 h2 h2 · · · h2 h1
h1 h1 h1 · · · h1 h1

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

we get

det(H) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hn − hn−1 hn−1 0 · · · 0 0
0 hn−1 − hn−2 hn−2 · · · 0 0
0 0 hn−2 − hn−3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · h2 0
0 0 0 · · · h2 − h1 h1
0 0 0 · · · 0 h1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The properties of the determinant yield

det(H) = h1
∏n
i=2(hi − hi−1)

= 1
∏n
i=2

1
i

=
∏n
i=1

1
i

= 1
n! ,

where hi − hi−1 = 1
i and h1 = 1.
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Theorem 2.2. Let B = (βij)
n
i,j=1 be inverse of H. Then,

βij =





n , i = j = 1
(n+ 2− i)(n+ 1− i)hn+2−i , i = j 6= 1
−(n+ 2− i) , i = j + 1
0 , i > j + 1

(−1)j−iβii
∏j−i
k=1(n+ 1− i− k)hn+1−i−k , i < j.

Proof. We use principle of mathematical induction on n. The result is true for n = 2, that
is,

(H)2 =

[
3
2 1
1 1

]

and

(H)−1
2 = 2

[
1 −1
−1 3

2

]
=

[
2 −2
−2 3

]
= (B)2.

Assume that the result is true for n− 1, then

(B)n−1 = (βij)
n−1
i,j=1 =





n− 1 , i = j = 1
(n− 1− i)(n− i)hn+2−i i = j 6= 1
−(n+ 1− i) i = j + 1
0 , i > j + 1

(−1)j−i β
ii

∏j−i
k=1(n− i− k)hn−i−k i < j.

Let the matrices H and B be partitioned as H =

[
H11 H12

H21 H22

]
and B =

[
B11 B12

B21 B22

]
,

where
H11 = [hn] ,

H12 = [hn−1 0 0 0 · · · 0] ,

H21 =
[
hn−1 hn−2 hn−3 · · · h2 h1

]T

and

H22 =




hn−1 hn−2 0 0 · · · 0 0
hn−2 hn−2 hn−3 0 · · · 0 0
hn−3 hn−3 hn−3 hn−4 · · · 0 0

...
...

...
...

. . .
...

...
h2 h2 h2 h2 · · · h2 h1
h1 h1 h1 h1 · · · h1 h1



.

From the assumption, H−1
22 = (B)n−1. The equation

[
H11 H12

H21 H22

] [
B11 B12

B21 B22

]
=

[
I 0
0 I

]

yields:
B11 = (H11 −H12H

−1
22 H21)

−1 = n ,

B12 = −B11H12H
−1
22 =

[
−(n− 1)x1hn−1 (n− 1)(n− 2)x1hn−1hn−2 · · · (−1)n−1x1

∏n−1
i=1 ihi

]
,

where x1 = n.
B21 = −H−1

22 H21B11 =
[
−n 0 0 · · · 0

]T
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and

B22 = H−1
22 −H−1

22 H21B11H12H
−1
22

=




x2 −(n− 2)x2hn−2 (n− 2)(n− 3)x2hn−2hn−3 · · · (−1)n−2x2
∏n−2
i=1 ihi

−(n− 1) x3 −(n− 3)x3hn−3 · · · (−1)n−3x3
∏n−3
i=1 ihi

0 −(n− 2) x4 · · · (−1)n−4x4
∏n−4
i=1 ihi

...
...

...
. . .

...
0 0 0 · · · xn




where xs
2≤s≤n

= (n+ 2− s) (n+ 1− s)hn+2−s. Thus,

(B)n =




x1 −(n− 1)x1hn−1 (n− 1)(n− 2)x1hn−1hn−2 · · · (−1)n−1x1
∏n−1
i=1 ihi

−n x2 −(n− 2)x2hn−2 · · · (−1)n−2x2
∏n−2
i=1 ihi

0 −(n− 1) x3 · · · (−1)n−3x3
∏n−3
i=1 ihi

...
...

...
. . .

...
0 0 0 · · · xn



.

That is, the result is true for n. This completes the proof.

Theorem 2.3. The characteristic polynomial of H holds

Pn(λ) = (λ− hn)Pn−1(λ) + hn−1 (Pn−1(λ)− λPn−2(λ)) ,

P1 (λ) = λ− 1 ,

P2 (λ) = λ2 −
(

5

2

)
λ+ 1.

Proof. For the characteristic polynomial of H , we have

Pn (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− hn −hn−1 0 · · · 0 0
−hn−1 λ− hn−1 −hn−2 · · · 0 0
−hn−2 −hn−2 λ− hn−2 · · · 0 0

...
...

...
. . .

...
...

−h2 −h2 −h2 · · · λ− h2 −h1
−h1 −h1 −h1 · · · −h1 λ− h1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (λ− hn)

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− hn−1 −hn−2 0 · · · 0 0
−hn−2 λ− hn−2 −hn−3 · · · 0 0
−hn−3 −hn−3 λ− hn−3 · · · 0 0

...
...

...
. . .

...
...

−h2 −h2 −h2 · · · λ− h2 −h1
−h1 −h1 −h1 · · · −h1 λ− h1

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (hn−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−hn−1 −hn−2 0 · · · 0 0
−hn−2 λ− hn−2 −hn−3 · · · 0 0
−hn−3 −hn−3 λ− hn−3 · · · 0 0

...
...

...
. . .

...
...

−h2 −h2 −h2 · · · λ− h2 −h1
−h1 −h1 −h1 · · · −h1 λ− h1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

E. Ö. Mersin, A. D. Maden, M. Bahşi : Harmo-Frank Matrix 308
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The first determinant of the right hand side of the last equality corresponds to the Pn−1(λ).
Let q(λ) denotes the second determinant of the right hand side of the last equality. Then,

q(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− hn−1 −hn−2 0 · · · 0 0
−hn−2 λ− hn−2 −hn−3 · · · 0 0
−hn−3 −hn−3 λ− hn−3 · · · 0 0

...
...

...
. . .

...
...

−h2 −h2 −h2 · · · λ− h2 −h1
−h1 −h1 −h1 · · · −h1 λ− h1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −hn−2 0 · · · 0 0
0 λ− hn−2 −hn−3 · · · 0 0
0 −hn−3 λ− hn−3 · · · 0 0
...

...
...

. . .
...

...
0 −h2 −h2 · · · λ− h2 −h1
0 −h1 −h1 · · · −h1 λ− h1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= Pn−1(λ)− λPn−2(λ).

Thus, we have

Pn (λ) = (λ− hn)Pn−1 (λ) + hn−1 (Pn−1 (λ)− λPn−2 (λ))

=
(
λ− 1

n

)
Pn−1 (λ)− hn−1λPn−2 (λ) .

Also, it is clear that P1 (λ) = λ− 1 and P2 (λ) = λ2 − 5
2λ+ 1

2 .

Theorem 2.4. Let Pn(λ) = λn+γ
(n)
n−1λ

n−1+· · ·+γ(n)1 λ+γ
(n)
0 be the characteristic polynomial

of the n× n matrix H . Then,

γ
(n)
0 = (− 1

n
)γ

(n−1)
0 = (−1)n det(H),

γ
(n)
n−1 = γ

(n−1)
n−2 − hn = −tr(H)

and

γ
(n)
i = γ

(n−1)
i−1 − 1

n
γ
(n−1)
i − hn−1γ

(n−2)
i−1

are valid for 1 ≤ i ≤ n− 2.
Proof. By using the recurrence relation in Theorem 2.3 and the coefficients of Pn(λ), Pn−1(λ)
and Pn−2(λ),we have

λn + γ
(n)
n−1λ

n−1 + · · ·+ γ
(n)
1 λ+ γ

(n)
0 = (λ− 1

n)(λn−1 + γ
(n−1)
n−2 λn−2 + · · ·+ γ

(n−1)
1 λ+ γ

(n−1)
0 )

− hn−1λ(λn−2 + γ
(n−2)
n−3 λn−3 + · · ·+ γ

(n−2)
1 λ+ γ

(n−2)
0 ).

Comparison of the coefficients yields the desired formulas. Also, we have

γ
(n)
0 = − 1

nγ
(n−1)
0 = 1

n(n−1)γ
(n−2)
0 = · · · = (−1)n

∏n
i=1

1
i = (−1)n det(H) and

γ
(n)
n−1 = γ

(n−1)
n−2 − hn = γ

(n−2)
n−3 − hn−1 − hn = · · · = − (h1 + h2 + · · ·+ hn) = −tr(H).

Theorem 2.5. The matrix H has LUdecomposition. Its factors L = (lij)and U = (uij) are
given by

lij =





0 , i < j
1 , i = j

hn+1−i
hn+1−j

, otherwise
and uij =





hn , i = j = 1

(hn+1−i)
(n+2−i)(hn+2−i)

, i = j 6= 1

hn−i , i = j − 1

0 , otherwise.
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Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



Proof. Matrix multiplication yields the result.
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Abstract

Concrete spraying is one of the economical alternative to the conventional concrete
casting methods, especially for glass fiber reinforced concrete (GRC) production sector.
Ingredients of the GRC spray mixes are costly compared to the other types of concrete; for
this reason, design and application of the spraying should be carried out meticulously. The
most important factor that increases the costs other than the components is the quantity
of splashed material. This rebounded amount can be the main caused of cost increase up
to 15

Keywords: Rebound optimization, GRC, Taguchi method, ANOVA.

1 Introduction

The spraying technology was developed firstly to separate the remains of dinosaur bones in
1920. Afterwards similar technology was applied to the many engineering studies. It is widely
used in civil engineering discipline such as slope stabilization, tunnel excavations and concrete
facade panel production(Niu, Wang, and Wang 2015). Sprayed concrete mixes with the fiber
content have higher amount of cement content compared to the conventional concrete designs.
Cement is one of the most expensive materials in the concrete mix. For the GRC production
sector, glass fiber is the another highly costed material. Glass fiber concrete production costs
are higher compared to traditional concrete methods(Yildizel, Yiǧit, and Kaplan 2017). For
this reason, it is of utmost to reduce material losses in the production line.

Fiber ratio, viscosity of the mix, spray angle and distance are the main factors effecting
rebound amount for the fiber reinforced concrete production industry. Mixing water amount,
aggregate types, chemical admixtures and other mineral additives are also affecting materials
on the rebound weights(Armengaud et al. 2017; Kaufmann et al. 2013; Prudêncio 1998).
Aggregate and water effects were ignored within the scope of this study due to the reason
that GRC production requirement only includes fine aggregate and certain amount of water.

Spray gun should be at the correct position and distance for all types of sprayed concrete.
The distance between the gun and the mold surface is generally 1 and 2 meters for concrete
mixes without any fiber content(Malmgren, Nordlund, and Rolund 2005). However, there is
no final and common solution for the GRC mixes concerning spray gun-mold surface distance
and gun angle due to the more complex structure of GRC designs.

2 Method and Experimental studies

Taguchi method was utilized to develop the design of experiments and determine the optimum
condition for rebound weight. The main was to minimize rebound weight of the sprayed
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concrete. Four factors were expected to effect rebound weight: glass fiber ratio, spray distance,
spray angle and viscosity of the mix. These parameters and their levels are given in Table 1.
Factor coding was taken as -1;0;1. The results were also evaluated by ANOVA to reach the
optimum parameter combination.

Factors Level1 Level 2 Level 3 Level 4 Level 5

Fiber content (%) 2 2.5 3 - -

Spray distance (cm) 25 50 75 100 -

Spray angle (◦) 30 45 60 75 90

Viscosity (Pa. s) 3.9 4.1 4.4 - -

Table 1: Factors and levels

Field study were performed on a GRC production line. The gun angles were selected as
30◦,45◦, 60◦,75◦ and 90◦ with the distances of 25 cm, 50 cm, 75cm and 100 cm. Sprayed
concrete were collected with a blanket. Rebound weight was calculated with the following
formula (1):

Rebound weight (kg, %) = [B/(A+B)] × 100 (1)

A represents the empty mold weight, B represents the blanket weight. Viscosity measurements
were conducted with a viscometer at 25C◦. The results were converted to Pa.s. CEM I 52.5
R cement complying TS EN 197-1 standard was used as the binder ingredients of the mixes.
The material properties of the cement are given Table 2. Polycarboxylate based water reducer
was used in this study.

Chemical
Properties (%)

Physical and Mechanical Properties

SiO2 21.6 Specific weight (t/m3) 3.06

Al2O3 4.05 Specific surface (cm2/g) 4600

Fe2O3 0.26 Whiteness (%) 85.5

CaO 65.7 Initial setting time (min.) 100

MgO 1.30 Final setting time (min.) 130

Na2O 0.30 Water for standard con-
sistency (%)

30

K2O 0.35 Volume Constancy (mm) 1

SO3 3.30 0.045 Sieve residue (%) 1

Free CaO 1.6 0.090 Sieve residue (%) 0.1

Insoluble 0.18

Loss on Ignition 3.20

Table 2: Material properties of CEM I 52.5 R Cement

Silica sand was utilized as aggregate and alkali resistant glass fiber was added into mixes. Ma-
terial property of silica sand and glass fiber are presented in Table 3 and Table 4, respectively.

S. A. Yıldızel : Optimization of GRC Rebound Amount Using Taguchi Method 312

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



Physical prop-
erties

Clay Content (%) 0.6 - 0.8

Specific Weight (t/m3) 2.68

AFS value 34.6

Chemical com-
position (%)

SiO2 98.60

Fe2O3 0.13

MgO 0.03

CaO 0.01

K2O 0.09

Na2O 0.02

Al2O3 1.12

Table 3: Properties of silica sand

Mechanical
and physical
properties

Ultimate strength, bending
(MOR, MPa)

20-28

Elastic limit, bending (LOP,
MPa)

7-11

Ultimate strength, tensile
(MOR, MPa)

8-11

Elastic limit, tensile (LOP,
MPa)

5-7

Compressive Strength (MPa) 50-80

Elastic Modulus (GPa) 10-20

Dry density t/m3 1.9-2.1

Table 4: Properties of the alkali resistant glass fiber

3 Results and discussion

The variation of the response was examined with via S/N ratio in Taguchi method. Larger
Signal to noise ratio is acceptable and better while analyzing splashed concrete amount. The
average S/N values of the factors are given in Table 5 and Figure 1, respectively.
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Level fiber spray dis-
tance

Spray angle viscosity

1 48.59 51.96 52.54 51.07

2 50.50 50.33 49.76 49.30

3 51.70 49.71 50.61 50.45

4 49.31 49.40

5 49.16

Table 5: Response table for S/N ratio

Figure 1: Main effects plot table for S/N ratios

It was found that increase in fiber content led to decrease in viscosity values of the mixes.
Maximum rebound weight was obtained as the spray gun was used with 30◦ and 25 cm distance
from the mold. ANOVA analysis results are given in Table 6.
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Source DF Adj SS Adj MS F-Value P-Value

Fiber 2 2.290 1.1451 151.62 0

Spray dis-
tance

3 24.178 8.0593 1067.08 0

Spray an-
gle

4 355.777 88.9442 11776.63 0

Viscosity 2 16.111 8.0555 1066.58 0

Error 348

Total 359 400.984

Table 6: Analysis of variance results

Regression equation of rebound weight is presented in Eq. (2) as follows:

Rebound weight = 8, 23264 + 0, 10061 fiber 2, 0 (2)

− 0, 00614 fiber 2, 5

− 0, 09447 fiber 3, 0 + 0, 39214 Spray distance 25

+ 0, 04092 Spray distance 50 − 0, 11797 Spray distance 75

− 0, 31508 Spray distance 100 + 1, 35722 Spray angle 30

+ 0, 73097 Spray angle 45

+ 0, 06056 Spray angle 60 − 0, 71889 Spray angle 75

− 1, 42986 Spray angle 90

+ 0, 24428 viscosity 3, 9 + 0, 02744 viscosity 4, 1

− 0, 27172 viscosity 4, 4

The optimum values for effecting parameters are recorded as 100 cm for spray distance, 90◦

for spray distance, 4.4 Pas for viscosity with 2 % fiber content.

4 Conclusions

Taguchi method was used to obtain optimum rebound amount for GRC production sector
within the scope of this study. Analysis results can be drawn as follows:

• The results showed that increase in fiber content caused the increase in rebound amount.
This can be attributed to the fiber loses during the spraying processes.

• Increase in spraying distance minimizes the rebound weights. Optimum distance was
obtained as 100 cm.

• Best results were obtained with the 90◦ of spraying angle. Spraying rebound values
decreased up to 18 % compared to the other spraying angle.

• Spraying angle was obtained as the most significant parameter effecting the rebound
weights according to the ANNOVA analysis.

• It was also found that increase in viscosity limits the rebound weight increase and
material losses.
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Abstract

In this paper, we introduce the notion of monotonic fuzzy soft set, and investigate
some applications. In the rest of the article, we proposed a decision-making method as an
application to the decision-making problems of monotonic fuzzy soft sets.

Keywords: Partial ordered set, soft set, fuzzy soft set, monotonic soft set, monotonic
fuzzy soft set, decision-making.

1 Introduction

Human being has tried to understand the world and the universe since existence. Therefore,
we have used mathematics which is language of science for modeling all phenomenon. In many
disciplines such as engineering, social sciences and other fundamental sciences, we come up
against various uncertainties. The classical methods in mathematics may fall short to model
uncertainty. To solve this uncertainty problems, many scientists seek to develop mathematical
tool. Firstly, in 1965, the most appropriate theory, for dealing with uncertainties is the theory
of fuzzy sets developed by Zadeh [9]. This theory has been studied by many scientists until
today and has progressed swiftly.

The theory of soft set, which is a completely new approach for modeling uncertainty, is
introduced by Molodtsov [8] in 1999. He gave basic properties of this theory and showed that
this theory has a rich potential for applications in several fields such as analysis, game theory,
probability theory etc. Algebraic operations such as soft subset, soft union, soft intersection
etc. among soft sets were studied in [1, 7] inclusively. In [6], Maji et al. established theory of
fuzzy soft set which is generalization of soft set theory. They studied set-theoretical operations
of fuzzy soft sets.

Kharal and Ahmad [5] built the notion of a mapping classes of fuzzy soft sets and studied
the properties of fuzzy soft images and fuzzy soft inverse images of fuzzy soft sets. In [4],
Kandemir and Tanay discussed some properties of fuzzy soft functions in detail.

The concept of fuzzy soft set and its applications are studied by many scientists. One of
the most important applications of fuzzy soft sets is decision making problems.

According to decision theory, preferences depends on the taste of the decision-maker.
There are, of course, parameters that influence our preferences in daily life problems. The
parameters affecting our decisions can be ordered again according to the preferences and taste
of the person. For example, there are many parameters that will influence the decision to
buy a house for a person, such as the environment in which they live, the cheapness, the
expesiveness, the number of rooms. It is important for a house to decide the cheapness and
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the expesiveness and they can be compared with each other. This comparison also depends
on the taste of the decision maker. In daily life problems, the parameters that affect our
preferences are fuzzy. Therefore, it is meaningful that the parameterized subsets are fuzzy
together with the comparison between the parameters.

Besides all these, in 2016, Kandemir [3] gave the definition of monotonic soft set whose
parameter set is a partial order set and discussed some properties. He gave an application
method for decision making problems using the concept of monotonic soft sets.

Due to these reasons, in this paper, we define the notion of monotonic fuzzy soft set whose
parameters set is a partial ordered set, analogously in [3], and study its some basic properties.
Then, we give an application for decision-making problems.

2 Preliminaries

Zadeh [9] has argued that the modelling of any phenomenon in the real universe depends on
the grade of membership of elements in it and he expressed this model by fuzzy set theory.
He introduced how a fuzzy set could be described as follows.

Definition 1 [9] Let U be an initial universe. A fuzzy set A on U is defined by a membership
function µA : U → [0, 1] whose membership value µA(x) specifies the degree to which x ∈ U
belongs to the fuzzy set A, for x ∈ U .

We denote the family of all fuzzy sets on U as F(U). In [9], some basic fuzzy set-theoretic
operations are given in [9] by Zadeh as follows.

Let A,B ∈ F(U), if µA(x) ≤ µB(x) for each x ∈ U , we call that A is a fuzzy subset of
B and denoted by A v B. If µA(x) = µB(x) for each x ∈ U , we call that A is equal to B.
Define the fuzzy set C on U such that µC(x) = max{µA(x), µB(x)}, then it is called that C
is a fuzzy union of A and B and denoted by C = A t B. Similarly, define the fuzzy set D
on U such that µD(x) = min{µA(x), µB(x)}, then it is called the fuzzy intersection of A and
B and denoted by D = A u B. Define the fuzzy set E on U such that µE(x) = 1 − µA(x)
for each x ∈ U , then we call that E is the complement of A and denoted by E = Ac. Many
scientists have developed the theory of fuzzy set and there are many applications of fuzzy sets
to several directions.

In 1999, Molodtsov has drawn attention to the inherent inadequacies and difficulties of
fuzzy set theory (such as membership fitting problems etc.) and similar theories. In [8], he
introduced the soft set theory for dealing with such difficulties. He defines s soft set over given
initial universe as a parameterization of some subsets of the universe. The formal definition
of soft set is as follows:

Definition 2 [8] Let U be an initial universe, E be a set of parameters and A ⊆ E. A pair
(F,A) is called a soft set over U if and only if F : A → P(U) where P(U) is a power set of
U .

The theory of soft set is a popular scientific theory that is still being studied intensively
by many scientists.

In 2001, Maji et. al. defined the concept of fuzzy soft set which is combined the theory
of fuzzy set and the theory of soft set. It is obvious that this concept is more applicable to
real universe problems. The definition of a fuzzy soft set over any initial universe is given as
follows.

Definition 3 [6] Let U be an initial universe, E be a set of parameters and A ⊆ E. The
pair (f,A) is called a fuzzy soft set over U if and only if f : A→ F(U) is a fuzzy set valued
mapping.
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It is clear that, f(p) is a fuzzy set on U for each parameter p ∈ A. Then the membership
function of the fuzzy soft set f(p) is denoted by fp : U → [0, 1] such that fp(x) is an element
in unit interval, and we express as the membership degree according to p parameter of any
element x in U . When a fuzzy set given, the membership degree to the fuzzy set of any element
of the universe will be denoted in the bottom right corner of the element as a subscript. In
terms of being more descriptive, we can give the following example.

Example 4 Let U = {a, b, c} be an initial universe, E = {1, 2, 3, 4, 5} be the set of parameters
and A = {1, 3} ⊂ E. Then we can define the fuzzy soft set over U as;

(f,A) = {1 = {a0.2, b0.7, c0.4}, 3 = {a0, b0.1, c1}}.

Here, subscripts are the membership degrees of relevant element of U with respect to relevant
parameters.

As mentioned in [6], the set-theoretic operations between fuzzy soft sets are given as
follows:

Let U be an initial universe, E be the set of parameters, A,B ⊆ E and (f,A) and (g,B)
be fuzzy soft sets over U . If A ⊆ B and fp(x) ≤ gp(x) for each p ∈ A and for each x ∈ U , it is
called that (f,A) is a fuzzy soft subset of (g,B), and denoted by (f,A)⊂̃(g,B). We call that
(f,A) is equal to (g,B) if and only if (f,A)⊂̃(g,B) and (g,B)⊂̃(f,A). The fuzzy soft union of
(f,A) and (g,B) is the fuzzy soft set (h,C) over U which is denoted by (h,C) = (f,A)∪̃(g,B),
where C = A ∪B and

hp(x) =





fp(x), if p ∈ A−B
gp(x), if c ∈ B −A
max{fp(x), gp(x)}, if p ∈ A ∩B

, ∀p ∈ C,∀x ∈ U.

The fuzzy soft intersection of (f,A) and (g,B) is the fuzzy soft set (h,C) which is denoted by
(h,C) = (f,A)∩̃(g,B) where C = A∩B and for each p ∈ C, hp(x) = min{fp(x), gp(x)} for all
x ∈ U . The fuzzy soft complement of (f,A) is a the fuzzy soft set (f c, A), which is denoted
by (f,A)c and where f c : A→ F(U) such that f cp(x) = 1− fp(x) for each p ∈ A and for each
x ∈ U . The fuzzy soft set (f,A) over U is called an absolute fuzzy soft set with respect to A
if fp(x) = 1 for each p ∈ A and for all x ∈ U . Similarly, the fuzzy soft set (f,A) is called a
null fuzzy soft set with respect to A if fp(x) = 0 for each p ∈ A and for all x ∈ U .

Some interesting fuzzy soft set theoretic operations which are called And and Or opera-
tions given by Maji et al. in [6]. Now we give the definitions of these operations. Let (f,A) and
(g,B) be fuzzy soft sets over U . (f,A)And(g,B) is a fuzzy soft soft set (h,A×B) over U such
that h(p1, p2) = f(p1) ∩ g(p2) for each (p1, p2) ∈ A×B, i.e. h(p1,p2)(x) = min{fp1(x), gp2(x)}
for all x ∈ U . Similarly, (f,A)Or(g,B) is a fuzzy soft soft set (h,A × B) over U such that
h(p1, p2) = f(p1) ∪ g(p2) for each (p1, p2) ∈ A × B, i.e. h(p1,p2)(x) = max{fp1(x), gp2(x)} for
all x ∈ U .

3 Monotonic Fuzzy Soft Sets

In [3], Kandemir gave the concept of monotonic soft set over any initial universe, where the
parameter set is a partial ordered set. The formal definition of monotonic soft set is as follows.

Definition 5 [3] Let (F,E) be a soft set over U such that E is a partial ordered set according
to the partial order relation ≤. (F,E) is called a monotonic (increasing) soft set if p1 ≤ p2
for each p1, p2 ∈ E, then F (p1) ⊆ F (p2).

Dually, (F,E) is called a monotonic (decreasing) soft set if p1 ≤ p2 for each p1, p2 ∈ E,
then F (p1) ⊇ F (p2).
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Figure 1: The Hasse diagram of the parameters

Now, we define the concept of monotonic fuzzy soft set over given initial universe with
partial ordered parameter set, analogously in [3]. Let U be an initial universe, E be the set
of parameters and the parameter set E will be fixed for all subsequent fuzzy soft sets from
now on.

Definition 6 Let (f,E) be a fuzzy soft set over U where E is a partial ordered set with respect
to partial order relation ≤. It is called that (f,E) is a monotonic (increasing) fuzzy soft set
if p1 ≤ p2 for each p1, p2 ∈ E, then f(p1) v f(p2), i.e. fp1(x) ≤ fp2(x) for all x ∈ U .

Dually, (f,E) is called a monotonic (decreasing) fuzzy soft set if p1 ≤ p2 for each p1, p2 ∈
E, then f(p1) w f(p2), i.e. fp1(x) ≥ fp2(x) for all x ∈ U .

Example 7 Let U = {a, b, c}, E = {1, 2, 3, 4} with the relation of divisor and its Hasse
diagram is as follows (Figure 1.):

(f,E) = {1 = {a0, b0.1, c0.2}, 2 = {a0, b0.4, c0.7}, 3 = {a0.1, b0.8, c0.6}, 4 = {a0.7, b0.6, c1}} be
a fuzzy soft set over U . Then it is a monotonic (increasing) fuzzy soft set, obviously.

Now let’s give some basic properties for monotonic fuzzy soft sets.

Theorem 8 The fuzzy soft intersection of two monotonic (increasing (decreasing)) fuzzy soft
sets is a monotonic (increasing (decreasing)) fuzzy soft set.

Proof. Suppose that (f,E) and (g,E) be two monotonic (increasing) fuzzy soft sets. From
definition of fuzzy soft intersection of two fuzzy soft sets, we have the fuzzy soft set (h,E)
over U such that h(p) = f(p) u g(p) for each p ∈ E, i.e. hp(x) = min{fp(x), gp(x)} for all
x ∈ U . Now, suppose that p1 ≤ p2 for p1, p2 ∈ E. Since (f,E) and (g,E) are monotonic
(increasing) soft sets, we have fp1(x) ≤ fp2(x) and gp1(x) ≤ gp2(x) for each x ∈ U . Due to
the monotonicity of the min operator we have that min{fp1(x), gp1(x)} ≤ min{fp2(x), gp2(x)}.
Thus, we obtain that

hp1(x) = min{fp1(x), gp1(x)} ≤ min{fp2(x), gp2(x)} = hp2(x),∀x ∈ U.

Hence (h,E) is a monotonic (increasing) fuzzy soft sets.
The same procedure is followed for monotonic (decreasing) fuzzy soft sets.

Theorem 9 The fuzzy soft union of two monotonic (increasing (decreasing)) fuzzy soft sets
is a monotonic (increasing (decreasing)) fuzzy soft set.

Proof. Suppose that (f,E) and (g,E) be two monotonic (increasing) fuzzy soft sets. From
definition of fuzzy soft union of fuzzy soft sets, say (h,E) = (f,E)∪̃(g,E). So we have
hp(x) = max{fp(x), gp(x)}, ∀p ∈ E,∀x ∈ U . Suppose that p1 ≤ p2 for p1, p2 ∈ E. Due to the
monotonicity of max operator, we obtain that

hp1(x) = max{fp1(x), gp1(x)} ≤ max{fp2(x), gp2(x)} = hp2(x), ∀x ∈ U.
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Thus (h,E) is a monotonic (increasing) fuzzy soft set over U .
The same procedure is followed for monotonic (decreasing) fuzzy soft sets.
If we have a partial ordered set (E,≤), then we obtain a partial order relation on E×E, and

it is defined as (p1, p2) ≤∗ (p′1, p
′
2) if and only if p1 ≤ p′1 and p2 ≤ p′2 for each p1, p2, p

′
1, p
′
2 ∈ E.

This partial order relation is called a product order on E × E.

Theorem 10 If (f,E) and (g,E) are monotonic (increasing (decreasing)) fuzzy soft sets,
then (f,E)And(g,E) is also monotonic (increasing (decreasing)) fuzzy soft set.

Proof. From definition of the operation And, we have that (f,E)And(g,E) = (h,E×E) and
h(p1, p2) = f(p1)ug(p2) for each p1, p2 ∈ E. Since (E,≤) is a poset, then we have the product
order relation ≤∗ on E×E such that (p1, p2) ≤∗ (p′1, p

′
2) if and only if p1 ≤ p′1 and p2 ≤ p′2 for

each p1, p2, p
′
1, p
′
2 ∈ E from above description. Now suppose that (p1, p2) ≤∗ (p′1, p

′
2). Since

(f,E) and (g,E) are monotonic (increasing) fuzzy soft sets and monotonicity of the operation
min, we obtain that h(p1, p2) v h(p′1, p

′
2). Thus (h,E × E) is a monotonic (increasing) fuzzy

soft set.
The same procedure is followed for monotonic (decreasing) fuzzy soft sets.

Theorem 11 If (f,E) and (g,E) are monotonic (increasing (decreasing)) fuzzy soft sets,
then (f,E)Or(g,E) is also monotonic (increasing (decreasing)) fuzzy soft set.

Proof. Similar to proof of Theorem 10.

Theorem 12 If (f,E) is monotonic (increasing (decreasing)) fuzzy soft sets over U , then the
complement of (f,E), (f,E)c, is a monotonic (decreasing (increasing)) fuzzy soft set over U .

Proof. Suppose that (f,E) is a monotonic (increasing) fuzzy soft sets. So we have that if
p1 ≤ p2 for p1, p2 ∈ E, fp1(x) ≤ fp2(x) for each x ∈ U . From definition of complement of a
fuzzy soft set, we have the fuzzy set-valued function f c : E → F(U) such that f cp(x) = 1−fp(x)
for each x ∈ U . Now, suppose that p1 ≤ p2 for p1, p2 ∈ E, then we obtain that

f cp1(x) = 1− fp1(x) ≥ 1− fp2(x) = f cp2(x), ∀x ∈ U.

Thus, (f,E)c = (f c, E) is a monotonic (decreasing) fuzzy soft set over U .

Theorem 13 The null and absolute fuzzy soft sets are monotonic fuzzy sets with respect to
the poset (E,≤).

Proof. It is obvious.
Let (f,E) be a fuzzy soft set over initial universe U . We know that f(p) is a fuzzy set

each p ∈ E. In [9, 10], the concept of α-level set of any fuzzy set A on U is defined as
the crisp subset of U such that Aα = {x ∈ U | µA(x) ≥ α} for any α ∈ [0, 1]. Using the
same arguments, we can give the notion of α-level soft set for the fuzzy soft set (f,E), i.e.
for each p ∈ E and α ∈ [0, 1], define the set valued mapping fα : E → P(U) such that
fα(p) = {x ∈ U | fαp (x) ≥ α}. Then it is called that (fα, E) is a α-level soft set for the fuzzy
soft set (f,E) and denoted by ãe–(f,E)α.

We can give the following lemma for fuzzy sets and α-level sets as in [9, 10].

Lemma 14 [9, 10] Let A,B ∈ F(U) and A v B, then Aα ⊆ Bα for each α ∈ [0, 1].

The definition of monotonic soft set given in Definition 5 and Lemma 14, we obtain
following theorem, obviously.

Theorem 15 If (f,E) is a monotonic fuzzy soft set over U , then its α-level soft set ãe–
(f,E)α is a monotonic soft set over U for each α ∈ [0, 1].
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4 An Application Method for Decision-Making Problems

If we have a monotonic fuzzy soft set, then we compare the element of problem universe
with respect to valuableness of the elements. Comparison among parameters indicates that
which parameters are valuable according to the decision-maker. We know that the value of a
material or any phenomenon depends on;

(i) having considerable monetary value for use or exchange,

(ii) great importance, and

(iii) and having admirable or esteemed qualities or characteristics.

In fuzzy soft theory, attributes or parameters have a fuzzy structure as we have already
mentioned. Therefore, the value of a phenomenon changes primarily the decision-maker’s
decision depending on the parameters and the fuzziness of the parameters. For this reason,
the solution of the problems of real-life phenomena modeling of fuzzy soft sets will be more
realistic. This theory is among the pioneers of decision-making methods. In [3], a decision-
making algorithms have been given using the concept of monotonic soft set. In this section, an
application method will be given to decision-making problems of fuzzy soft sets, analogously
in [3].

In a decision-making process, the decision-maker chooses the most appropriate one from
among the cases he chooses. There are, of course, many elements (parameters) that will
influence the choice. But these parameters vary according to the decision-maker, i.e. they
are relative. Accordingly, the decision-maker sorts the appropriate parameters with respect
to superiority of the parameters. All parameters do not have to be compared with each other.
For this reason, a partial order relation is obtained on the parameter set. Since almost every
parameter has a fuzzy character in daily-life, all phenomena in the problem universe can be
compared to each other according to the membership degree. i.e. let we have a monotonic
fuzzy soft set (f,E) over the problem universe U , if (f,E) is a monotonic increasing fuzzy soft
set, then we know that p1 ≤ p2 implies fp1(x) ≤ fp2(x) for each p1, p2 ∈ E and for each x ∈ U .
We will express this case as when the parameter p2 is superior than the parameter p1, the
element x according to p2 is superior than x according to p1. Therefore, using the monotonic
increasing fuzzy soft sets, we sort the elements to be selected in the universe according to the
comparison between the parameters.

Using these concepts, we can give the following decision-algorithm.

Algorithm 1 Construct a monotonic fuzzy soft set with respect to valueness of the param-
eters.

Algorithm 2 Choose maximal parameters and related approximated fuzzy sets with respect
to superiority.

Algorithm 3 Intersect these maximal approximated fuzzy sets.

The decision-maker will select the element with the highest membership degree in the
obtained final fuzzy set.

We can give following example to see how work this algorithm in decision-making process.

Example 16 We have inspired in [2] for this example. Assume that a company wants to
fill a position. There are six candidate who form the set of alternatives, U = {a, b, c, d, e, f}.
The hiring committee consider a set of parameters, E = {p1, p2, p3, p4, p5}. The parameters
pi (i = 1, . . . , 5) stand for “experience”, “computer knowledge”, “young age”, “good speaking”
and “friendly”, respectively.
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Figure 2: The Hasse diagram of the parameters

The order of the parameters according to the committee is as follows (Figure 2.);
The monotonic (increasing (decreasing)) fuzzy soft set is constructed with respect to the

committee as following:

(f,E) = {p1 = {a0.8, b0.6, c0.9, d1, e0.85, f0,3}, p2 = {a0.74, b0.5, c0.75, d0.6, e0.7, f0,28}
p3 = {a0.65, b0.3, c0.4, d0.3, e0.6, f0,25}, p4 = {a0.5, b0.5, c0.1, d0.9, e0.7, f0,3}
p5 = {a0.5, b0.75, c0.7, d0.3, e0.5, f0,8}}

Obviously, maximal elements according to committee p1 and p5. Then maximal approx-
imated fuzzy sets are f(p1) and f(p5). Taking the fuzzy intersection of these fuzzy sets, we
obtain the final fuzzy set

f(p1) ∩ f(p5) = {a0.8, b0.6, c0.9, d1, e0.85, f0,3} ∩ {a0.5, b0.75, c0.7, d0.3, e0.5, f0,8}
= {a0.5, b0.6, c0.7, d0.3, e0.5, f0,3}

Thus, among the candidates having both maximal properties, the highest one is c. As a
result, the committee will choose the candidate c.

5 Conclusion

In this paper, we have given the concept of monotonic fuzzy soft set and some basic prop-
erties. In decision-making theory, there are many parameters that affect our decision, and
these parameters can be sorted according to the decision makerâ e s preferences. Thus,
the parameters that affect the decision may be in partial order according to the order of
the decision-maker. In this study, we assume that the parameter set is a partial ordered set
according to the decision maker’s preferences. With this assuption and so the concept of
monotonic fuzzy soft set, p-approximated fuzzy sets were able to sort with respect to superi-
ority of the parameters. Using all of these we have shown that monotonic fuzzy soft sets can
be applied to decision making problems. Therefore, this study has the potential to be useful
for scientists working in this field. This theory can be examined in more detail by expanding
these concepts in future studies.

The author hopes that this article sheds light on a way of working scientists in this field.
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Abstract

On the surface of the earth, solar radiation estimation is done by two main mathemat-
ical models which are ground level measurement with a pyranometer and satellite-derived
remote sensing. Images taken from geostationary satellites are very important source to
estimate solar irradiance at the earth’s surface. In this study, the clear sky solar radiation
is mathematically modeled by using the empirical Angstrom (sunshine-based) model and
satellite-based remote sensing model. Firstly, the daily average pixel value of each image
is found mathematically by using Metlook version 1.7 which is a multi-functional analysis
and interpretation tool devoted to the satellite images. Moreover, the daily global radi-
ation on a horizontal surface was calculated by surface data for the selected time period
and region from the Turkish State Meteorological Service. Afterwards, in order to investi-
gate the accuracy of the estimation modeling, it has performed a comparative study using
the classical sunshine-based models (Angstrom type) and the satellite method. Obtained
preliminary results showed that, the inclusion of local information further increases the
performance of mathematical calculations. These results are encouraging for the future
works to use local information data in constructing such modeling, which may increase
the accuracy of the mathematical solar radiation maps.

Keywords: Clear Sky Radiation, Mathematical Modeling, Metlook Images, Angstrom
Method.

1 Introduction

In the use of solar energy system performance calculations, ground measured solar radiation
is obtained with difficulty for a given site. In addition to this, the measurement network’s
density is usually far too low. In order to derive information on solar irradiance, geostationary
satellites such as METEOSAT or GOES can be used for large area with very high spatial
resolution (up to 2.5 km) and with sufficient temporal resolution (up to 30 minutes) (Beyer,
Costanzo, and Heinemann 1996). There are mathematical models which estimate surface
solar irradiance based on this geostationary satellite image data. One of them is HELIOSAT
method, used by some researchers such as Cano et al. (1986); Beyer et al. 1996; Hammer 2000
(Beyer, Costanzo, and Heinemann 1996; Cano et al. 1986; Hammer 2000). They reported
that HELIOSAT method is an estimation technique to infer the shortwave surface irradiance
from satellite images. The general idea of the HELIOSAT is to deal with atmospheric and
cloud extinction separately. A measure of cloud cover is determined by METEOSAT visible
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channel count. In the first step, this satellite digital count is given a new useful form. By
using solar zenith angle, a relative reflectivity is calculated from this modified new signal. In
the second step, the cloud index is derived from METEOSAT images to take into account the
cloud extinction.
The other calculation technique is the daily average pixel value of each image by using Metlook
version 1.7 which is a multi-functional analysis and interpretation tool devoted to the satellite
experiment METEOSAT (Aksoy, Ener Rusen, and Akinoglu 2011; Aksoy, Ener Rusen, and
Akınoğlu 2010).
In this study we start to use the HELIOSAT method, which is a commonly utilized method
for such works. we also carried out calculations of Angstrom coefficients to be used for the
solar irradiation in clear sky atmosphere. By using different mathematical procedures and
formulas we performed sample calculations for the daily average solar radiation for one month
of selected region in Turkey. The procedures that we used and the results we obtained are
discussed in the following parts.

2 Summary of HELIOSAT Method

HELIOSAT method is modified by Beyer et al. 1996 (Beyer, Costanzo, and Heinemann
1996) to improve the correlation between cloud index and ground measurement irradiance
data which is derived from satellite images. Firstly, single digital count per pixel of visible
channel (VIS) is used to obtain the relative apparent albedo ρ and cloud index n that may be
linearly correlated to the atmospheric transmission of solar radiation. Diabaté et al.,(1987)
(Diabaté et al. 1987)described values of the relative apparent albedo ρ as (Beyer, Costanzo,
and Heinemann 1996):

ρ =
C − Co

0, 7.f. cos Θz (cos Θz)
0,15 (1)

where, C : satellite counts values, C0 : offset values, θz : zenith angle of the sun, f : correction
for the variability of Sun-Earth distance. In fact, as can be seen in this expression, satellite
count values are normalized with respect to a parameter that accounts the elevation of the
sun. Cloud index n can be defined with relative apparent albedo ρ, for each pixel of satellite
images, as:

n = (ρ− ρclear)/(ρcloud − ρclear). (2)

Here, ρclear and ρcloud are relative apperent albedo corresponding to clear and overcast condi-
tions, respectively (Hammer 2000; Dagestad 2005). These values are essentially the maximum
and minimum of pixel readings. Cloud information at the atmosphere is one of the basic in-
formation to use in the researches of solar radiation. To couple the cloud index n which
is calculated using relative apparent albedo ρ, with the measured ground irradiance data of
the locality increase the estimation performance. For such a coupling we used the following
procedure.
To estimate the solar radiation, an empirical form is needed between the normalized solar
radiation, namely the clearness index k and cloud index n defined above. That is, in the
linear approximation, the clearness index k can be written as:

k = H/Ho = a′n+ b′. (3)

where H is the daily global irradiance, Ho is the daily extraterrestrial irradiance, and a’ and
b’ are empirical constants to be determined using regression analysis with the ground data.
As one can guess these parameters would be site dependent and might be affected from the
temporal variations of the atmospheric conditions (Beyer, Costanzo, and Heinemann 1996;
Cano et al. 1986; Hammer 2000). The cloud index n values are obtained from the Meteosat
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geostationary satellite images using by standard HELIOSAT method and correlated to the
clearness index k. The result of the application of this method has been investigated by
Beyer et al. (1996) (Beyer, Costanzo, and Heinemann 1996). Beyer et al. concluded that
better results were reached using clear sky irradiance Gclear and clear sky index k* instead of
clearness index k (Eq. (3)). Daily global irradiance, H is divided by the output of daily clear
sky irradiance, Gclear is the clear sky index, and given as:

k∗ ≡ H/Gclear. (4)

Gclear gives the irradiance under clear sky conditions for the respective solar zenith angle.
Gclear is calculated as (Beyer, Costanzo, and Heinemann 1996):

Gclear = 0, 7.Isc.f.cos
1,15(θz) (5)

where Isc is the solar constant (1367 W / m2 ). To test the performance of HEIOSAT method,
compared the results obtained from the Metlook version 1.7 which is a multi-functional anal-
ysis and interpretation tool devoted to the satellite experiment METEOSAT (Aksoy, Ener
Rusen, and Akinoglu 2011; Aksoy, Ener Rusen, and Akınoğlu 2010) (k vs n) with to those
obtained from the modified HELIOSAT method (k* vs n, (Eq (5)).

3 Calculation of solar radiation from Angstrom type

In most of the applications Angstrom type equations are used to estimate the monthly average
daily global solar radiation [5, 6]. In this form, regression coefficients a and b are calculated
using the linear correlation:

H

H0
= a+ b

s

S
(6)

which is named as Angstrom-Prescott relation (Angström 1924), a nad b are calculated
Angstrom coefficients. In this equation (6), if we take s/S = 1, the result is the clear sky
radiation on horizontal surface.
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Table 1: Shows the data that we used in our calculations.

Day s / S k= H /
Ho

Hclear

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.55
0.40
0.92
0.92
0.91
0.90
0.91
0.88
0.83
0.74
0.85
0.67

0.10
0.41
0.88
0.30
0.21
0.05
0.53
0.06
0.01

0.57
0.68
0.87
0.32
0.33
0.86
0.65

0.60
0.57
0.82
0.81
0.80
0.77
0.76
0.72
0.70
0.69
0.71
0.66

0.26
0.56
0.67
0.52
0.39
0.28
0.53
0.34
0.25

0.60
0.69
0.80
0.49
0.38
0.81
0.66

26.62
26.82
27.02
27.21
27.41
27.60
27.79
27.98
28.17
28.36
28.54
28.73
28.91
29.09
29.26
29.44
29.61
29.78
29.95
30.12
30.28
30.44
30.60
30.76
30.91
31.06
31.21
31.36
31.50
31.65

Here the clear sky solar radiation calculated with s :daily bright sunshine hours (hour), S
:daylength (hour), Ho : daily extraterrestrial radiation on horizontal surface, M J / m2day, H
: daily global radiation on horizontal surface, M J /m2day, k : clearness index, Hclear : daily
clear sky radiation on horizontal surface, M J /m2 day.
To find the Angstrom coefficients a and b we can use the assumption of a linear relationship
between the clearness index k and (s / S). Fig.1 shows the result of the regression for the one
month for selected sample region.
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Figure 1: Linear regression between the clearness index k and (s / S )

In this Fig. 1, the data points represent 30 daily average values of selected sample region
in Turkey for one month of spring season. The straight line is the regression line and a and
b values are 0.560 and 0.275, respectively.

4 Calculation of The Solar Radiation from Satellite

For the application of HELIOSAT method, images were taken from geostationary Meteosat-7
satellite for one month in the visible channel (0,5-0,9 µm). The images are given for every 30
minutes in 24 hours, the number is 48 images. The images that correspond to daytime are of
course taken into account. The count values C for every pixel is in between 0-255. The relative
apparent albedo ρ values are calculated from the pixel counts C and the offset value Co for the
satellite. We take Co as 6 for Meteosat-7 satellite (http://www.eumetsat.int/Home/ 2018).
In this study, we find daily average pixel value of each image by using Metlook version 1.7
which is a multi-functional analysis and interpretation tool devoted to the satellite experiment
METEOSAT (Aksoy, Ener Rusen, and Akinoglu 2011). This software is a first step to visualize
METEOSAT products. It’s very simple C and XWindows architecture allows the developers
to add any user useful adding or remark. We calculated the relative apparent albedo ρ, ρ*,
cloud index n and n*. ρ* and n* are explained in the followings. List of these values can be
seen in Table 2.
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Table 2: The relative apparent albedo ρ and cloud index n

Average
pixel C

ρ* n* ρ n

45.50
38.05
28.40
29.10
29.00
29.00
29.74
31.15
33.10
32.33
29.70
33.38
77.43
72.33
52.95
30.05
52.81
66.43
75.72
53.74
78.90
86.95
70.00
45.25
39.84
31.16
59.47
81.40
47.10
50.95

1.48
1.20
0.83
0.85
0.84
0.83
0.85
0.90
0.96
0.93
0.83
0.95
2.47
2.28
1.60
0.82
1.58
2.03
2.33
1.59
2.41
2.66
2.09
1.28
1.09
0.81
1.71
2.40
1.30
1.42

0.36
0.21
0.01
0.02
0.02
0.01
0.02
0.05
0.08
0.06
0.01
0.08

0.80
0.43
0.00
0.42
0.66
0.82
0.42
0.86
1.00

0.25
0.15
0.00
0.49
0.86
0.27
0.33

93.59
115.04
62.38
59.61
58.87
54.70
55.96
64.52
67.89
66.05
58.84
69.43
68.91
160.79
129.62
54.15
120.82
155.74
171.63
101.00
169.63
170.40
132.82
82.28
68.14
51.25
103.68
171.99
92.40
93.85

0.35
0.53
0.09
0.07
0.06
0.03
0.04
0.11
0.14
0.12
0.06
0.15

0.91
0.65
0.02
0.58
0.87
1.00
0.41
0.98
0.99

0.26
0.14
0.00
0.43
1.00
0.34
0.35

Two different mathematical procedures and formulas were used for the cloud index calculation
proses. The first one is the used by Beyer et al. (1996) (Beyer, Costanzo, and Heinemann
1996) it is discussed in section 2. Afterwards, we calculated ρ* by using Eq. (7) and here
Hclear was used to normalize the count values instead of the parameter which accounts the
elevation of the sun as:

ρ ∗ = (C −−Co) /Hclear (7)

n∗ = (ρ ∗ −ρ∗clear)/(ρ∗cloud − ρ∗clear) (8)

where ρ*clear is the minimum value of ρ* and ρ*cloud is the maximum value of ρ* in one
month. In this mathematical calculation, use of Hclear (=Ho(a+b)) introduces locational
information because of the Angstrom coefficients a and b. Therefore, calculated relative
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apparent albedo ρ* and cloud index n* also contain information of locational data and pa-
rameters.
As mentioned above, we started to carry out some basic calculations and could reach some sig-
nificant results for one month. An excel file is prepared for the calculations, and the obtained
results are shown in Table1 and Table 2. The results obtained are summarized as follows:
Fig. 2 (A) shows the result of the regression analysis between it and it ( Eq. (3)),when
Hclear = Ho (a+b))) is used in n∗ for the normalization. R2 value is 0.89, higher than the
regression results when the parameter of sun’s elevation is used for normalization to obtain
n (Fig.1 (B)). This result confirms the thesis that inclusion of the more local data and infor-
mation in the models increase the performance of the correlations. In Fig. 3 (A) and (B), k∗

is used for the clear sky index (Eq. (4)). In Fig. 3 (A) in the calculation of cloud index n∗,
again local information Ho (a+b) is used for normalization while in Fig. 3 (B) the parameter
of sun’s elevation (Denomination of Eq. (1)) is used for the normalization, in the calculation
of ρ.The results similarly confirm that use of local information enhance the performance of
calculations since a larger R2 value of 0.90 is obtained.

Figure 2: Comparative analysis between (A) cloud index n*and (B) cloud index n for clearness
index k

Figure 3: Comparative analysis between (A) cloud index n*and (B) cloud index n for clear
sky index k

5 Discussion and Conclusion

In this stage of study, we used Meteosat images that are obtained from Eumetsat archive, for
selected sample region in Turkey. We also obtained daily global irradiance H on horizontal
surface, measured by pyranometer, for the one month for the selected sample region from the
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Turkish State Meteorological Service. We performed a comparative study using the cloud
index n* mathematical calculation of Metlook version 1.7 and the modified cloud index n
of HELIOSAT method. Obtained results were analyzed by using regression analysis method
for the selected sample site. According to the one-month data results, the cloud index n*
mathematical calculation of Metlook version 1.7 method indicates the same performance with
HELIOSAT method in mathematically.
Final conclusion is that the use of k∗ instead of k is better as Beyer et al. (1996) (Beyer,
Costanzo, and Heinemann 1996) stated. In addition, my calculations show that, inclusion of
local information further increase the performance of calculations (R2 = 0.90).
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Abstract

The concept of graph energy was introduced by Gutman and this concept has been
generalized to matrix energy by Nikiforov. In this study, we examine some energies of the
Hankel matrix with the Fibonacci and Lucas numbers.

Keywords: Fibonacci numbers, Lucas number, Hankel matrix, Matrix energy.

1 Introduction

Let G be a graph with n vertices. The adjacency matrix A = (aij) of G defined as aij = 1 if
there is an edge between i and j and 0 otherwise. The concept of graph energy was introduced
by Gutman in [2] as

E (G) =

n∑

s=1

|λs| ,

where λ1, λ2, ..., λn are the eigenvalues of the adjacency matrix of G. In fact, the energies of
graphs are special case of trace matrix norm [4] since the singular values of any hermitian
matrix are the moduli of its eigenvalues. The trace norm defined by

‖A‖∗ =

n∑

s=1

σs,

where σ1, σ2, ..., σn are the singular values of A. Thus, Nikiforov [4] has generalized the graph
energy to the energy ε (A)of arbitrary m×n matrix A, as the sum of all singular values of A.
That is,

ε (A) =

m∑

s=1

σs = ‖A‖∗ .

Bravo et al. [1] has extended the concept of energy of n× n matrix A as follows:

εN (A) =

∥∥∥∥A−
tr(A)

n
In

∥∥∥∥
∗
,

where tr(A) and In denote the trace of A and n × n identity matrix. If A is the adjacency
matrix of graph G then tr(A) = 0 and εN (A) = E (G) .

∗Corresponding author. E-mail address: mhvbahsi@yahoo.com
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The matrix H = (hij)
n−1
i,j=0, where hij = hi+j , is called Hankel matrix. The matrix H is of

the form:

H =




h0 h1 h2 · · · hn−2 hn−1
h1 h2 h3 · · · hn−1 hn
...

...
...

...
...

hn−2 hn−1 hn · · · h2n−4 h2n−3
hn−1 hn hn+1 · · · h2n−3 h2n−2



.

Fibonacci and Lucas numbers are the numbers in the following sequences, respectively:

0, 1, 1, 2, 3, 5, 8, 13, ...

and
2, 1, 3, 4, 7, 11, 18, 29, ....

The sequence Fn of the Fibonacci numbers is defined by recurrence relation Fn = Fn−1+Fn−2
with initial values F0 = 0 and F1 = 1. The sequence Ln of the Lucas numbers is defined by
recurrence relation Ln = Ln−1 +Ln−2 with initial values L0 = 2 and L1 = 1. For the detailed
information of Fibonacci and Lucas numbers, we refer to [3].

In this study, we compute the energies of Hankel matrices with the Fibonacci and Lucas
numbers of the forms:

A = (Fi+j)
n−1
i,j=0 =




F0 F1 F2 · · · Fn−2 Fn−1
F1 F2 F3 · · · Fn−1 Fn
...

...
...

...
...

Fn−2 Fn−1 Fn · · · F2n−4 F2n−3
Fn−1 Fn Fn+1 · · · F2n−3 F2n−2




(1)

and

B = (Li+j)
n−1
i,j=0 =




L0 L1 L2 · · · Ln−2 Ln−1
L1 L2 L3 · · · Ln−1 Ln
...

...
...

...
...

Ln−2 Ln−1 Ln · · · L2n−4 L2n−3
Ln−1 Ln Ln+1 · · · L2n−3 L2n−2




(2)

where Fn and Ln are the nth Fibonacci and Lucas numbers, respectively. In [5], the authors
have computed the spectral norms of the matrices A and B. Also, they have obtained the
eigenvalues of the matrices A and B as [see proofs of Theorems 1 and 2 in 5]:

λ1,2 (A) =





F2n−1−1±
√
F 2
2n−1−2F2n−1+4F 2

n+1

2 , for n is even (3)

F2n−1−1±
√
F 2
2n−1−2F2n−1+4F 2

n−3
2 , for n is odd, (4)

λm (A) = 0,m = 2, 3, ..., n (5)

and

λ1,2 (B) =





L2n−1+1±(F2n−1−1)
√
5

2 , for n is even (6)

L2n−1+1±
√

5(F2n−1−1)
2
+4

2 , for n is odd. (7)

λm (B) = 0,m = 2, 3, ..., n. (8)

In the next section we give our main results.
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2 Main Results

Theorem 2.1. Let the matrix A be as in (1). Then

ε (A) =





√
F 2
2n−1 − 2F2n−1 + 4F 2

n + 1 , for n is even

√
F 2
2n−1 − 2F2n−1 + 4F 2

n − 3 , for n is odd.

Proof. Since the matrix A is symmetric, its singular values are the moduli of its eigenvalues.
Thus, by the formulas (3), (4) and (5) we have

σ1 = |λ1| =





F2n−1−1+
√
F 2
2n−1−2F2n−1+4F 2

n+1

2 , for n is even

F2n−1−1+
√
F 2
2n−1−2F2n−1+4F 2

n−3
2 , for n is odd,

σ2 = |λ2| =





√
F 2
2n−1−2F2n−1+4F 2

n+1−F2n−1+1

2 , for n is even
√
F 2
2n−1−2F2n−1+4F 2

n−3−F2n−1+1

2 , for n is odd

and
σm = |λm| = 0,m = 2, 3, ..., n,

where σj and λj denote the singular values and eigenvalues of A, respectively. Therefore,

ε (A) =

m∑

s=1

σs =





√
F 2
2n−1 − 2F2n−1 + 4F 2

n + 1 , for n is even

√
F 2
2n−1 − 2F2n−1 + 4F 2

n − 3 , for n is odd.

Theorem 2.2. Let the matrix A be as in (1). Then

εN (A) =





√
F 2
2n−1 − 2F2n−1 + 4F 2

n + 1 + (n− 2)
F2n−1−1

n , for n is even

√
F 2
2n−1 − 2F2n−1 + 4F 2

n − 3 + (n− 2)
F2n−1−1

n , for n is odd.

Proof. Since the matrix A is symmetric, the matrix A − tr(A)
n In is also symmetric and

eigenvalues of A− tr(A)
n In are µ1 = λ1 − tr(A)

n , µ2 = λ2 − tr(A)
n , . . . , µn = λn − tr(A)

n . Also,

tr(A) =

n−1∑

i=0

F2i = F2n−1 − 1.

If n is even, then,

µ1 = λ1 −
tr(A)

n
=
F2n−1 − 1 +

√
F 2
2n−1 − 2F2n−1 + 4F 2

n + 1

2
− F2n−1 − 1

n
,

µ2 = λ2 −
tr(A)

n
=
F2n−1 − 1−

√
F 2
2n−1 − 2F2n−1 + 4F 2

n + 1

2
− F2n−1 − 1

n
,

and

µm = λm −
tr(A)

n
= −F2n−1 − 1

n
,m = 2, 3, ..., n.
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Thus, we have

εN (A) =

∥∥∥∥A−
tr(A)

n
In

∥∥∥∥
∗

=

n∑

i=1

|µi| =
√
F 2
2n−1 − 2F2n−1 + 4F 2

n + 1 + (n− 2)
F2n−1 − 1

n
.

If n is odd, similarly, we have

εN (A) =

∥∥∥∥A−
tr(A)

n
In

∥∥∥∥
∗

=

n∑

i=1

|µi| =
√
F 2
2n−1 − 2F2n−1 + 4F 2

n − 3 + (n− 2)
F2n−1 − 1

n
.

Theorem 2.3. Let the matrix B be as in (??). Then

ε (B) = L2n−1 + 1.

Proof. The matrix B is symmetric. Then, its singular values are the moduli of its eigenvalues.
Also, one can see easily that

L2n−1 + 1 ≥
√

5
(
F2n−1 − 1

)2
+ 4 (3)

for n ≥ 1. Then, the formulas (6), (7), (8) and (9) yield

ψ1 = |β1| =





L2n−1+1+(F2n−1−1)
√
5

2 , for n is even

L2n−1+1+
√

5(F2n−1−1)
2
+4

2 , for n is odd,

ψ2 = |β2| =





L2n−1+1−(F2n−1−1)
√
5

2 , for n is even

L2n−1+1−
√

5(F2n−1−1)
2
+4

2 , for n is odd,

and
ψm = |βm| = 0,m = 2, 3, ..., n,

where ψj and βj denote the singular values and eigenvalues of B, respectively. Thus,

ε (B) =

m∑

s=1

ψs = L2n−1 + 1.

Theorem 2.4. Let the matrix B be as in (2). Then

εN (B) =





(
F2n−1 − 1

)√
5 + (n− 2)

L2n−1+1

n , for n is even
√

5
(
F2n−1 − 1

)2
+ 4 + (n− 2)

L2n−1+1

n , for n is odd.

Proof. The matrices B and B − tr(B)
n In are symmetric. For the eigenvalues of B − tr(B)

n In,

we have η1 = β1 − tr(B)
n , η2 = β2 − tr(B)

n , . . . , ηn = βn − tr(B)
n . In addition,

tr(B) =

n−1∑

i=0

L2i = L2n−1 + 1.

If n is even, then,

η1 = β1 −
tr(B)

n
=
L2n−1 + 1 +

(
F2n−1 − 1

)√
5

2
− L2n−1 + 1

n
,
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η2 = β2 −
tr(B)

n
=
L2n−1 + 1−

(
F2n−1 − 1

)√
5

2
− L2n−1 + 1

n
,

and

ηm = βm −
tr(B)

n
= −L2n−1 + 1

n
,m = 2, 3, ..., n.

Considering the equality

(
F2n−1 − 1

)√
5

2
+
L2n−1 + 1

n
≥ L2n−1 + 1

2
,

we have

εN (B) =

∥∥∥∥B −
tr(B)

n
In

∥∥∥∥
∗

=

n∑

i=1

|ηi| =
(
F2n−1 − 1

)√
5 + (n− 2)

L2n−1 + 1

n
.

If n is odd, similarly, we have

εN (B) =

∥∥∥∥B −
tr(B)

n
In

∥∥∥∥
∗

=

n∑

i=1

|ηi| =
√

5
(
F2n−1 − 1

)2
+ 4 + (n− 2)

L2n−1 + 1

n
.
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Abstract 

In this study, that Hankel transform is invariant under Invert transform which had been proved 
by Layman, is proved by us with a different method. The method of proof consists generation of a 
table S. Table S is formed sequentially by multiplication elements of a column with elements of rows 
and the sum of diagonal elements. Equation of the elements of initial row to the sum of diagonal 
elements, gives the equalities which are used in the proof. The operations described in the proof, have 
a simple interpretation in terms of the table S. That operations reached by multiplying each 
row/column with an element and add a row/column to another row/column. The determinant of a 
matrix is invariant under these operations. Thus, that Hankel transform is invariant under Invert 
transform, is concluded. Operations described in the proof are explained with an example that acquired 
Pell numbers as invert transform of Fibonacci numbers. 

Key words: Hankel transformations, Hankel matrix, invert transformation. 

1. Introduction

    An infinite Hankel matrix H is defined as , 1( )i j i jH h 
  . If matrix H, the Hankel  matrix of 

the integer sequence ,...},,{ 321 aaaA   then, 






















...

...

...

543

432

321

aaa

aaa

aaa

H

with elements , 1i j i jh a   . The Hankel matrix nH  of order n of A is the upper-left nn submatrix 

of H, and nh , the Hankel determinant of order n of A, is the determinant of the corresponding Hankel 

matrix of order n, nh = det( nH ) ( Layman, 2001). 
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Let nh  denote the determinant of the Hankel matrix of order n. Then define the Hankel 

transform H of ,...},,{ 321 aaaA   to be  the sequence   1 2 3{ , , ,...}nh h h h  (Spivey and Steil, 2006). 

Let ,...},,,{ 3210 aaaaA   be integer sequences. If 10 b  and mj

j

m
mj bab 




1

 then 

 jbAB )(  is called the invert transform of  A. 

There are many researchs related to Hankel transforms, Hankel determinants 

and binomial transforms in literature. [1-3] 

  In [1], Layman has defined Hankel transform of an integer sequence and has discussed some 
of its properties. He has shown that the Hankel transform of this sequence is the same as the Hankel 
transform of the Binomial or Invert transform of this sequence. 

  Michael and Steil have given a new proof of the invariance of the Hankel transform under the 
binomial transform of a sequence. Their  method of proof led to three variations of the binomial 
transform; called these the k-binomial transforms [2]. 

  Pan studied the multiple binomial transform and the Hankel transform of shifted sequences of 
an integer sequences, particularly a linear homogenous recurrence sequence and some of their 
properties [3]. 

In this study, we give a new proof to below theorem which is different from Layman’s 
method. 

2. Main Theorem

Theorem 1.  Let A be an integer sequence and B its invert transform. Then A and B have the same 
Hankel transform. In other words,  the Hankel transform is invariant under the invert transform 
(Layman, 2001). 

Proof. Let ,...},,{ 321 aaaA   is integer sequences and ,...},,{ 321 bbbB   is the invert transform of 

A. *H  is defined to be the matrix RHCH *  where the elements of R , H and

C  are given by










 ikb

ik
r

ki

ki
,

,0
,   1,  mkmk ah           








 mjb

mj
c

ki

jm
,

,0
,



0 where b  is defined to be 1. The matrix forms of R, H, C  are respectively 
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Then the (i,j-1) element of H , given  by 










 

i

k

j

m
mjkmikji chrh

1

1

1
11, =
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k

j

m
mjmkki bab

1

1
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1

1

1
1
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1
11 
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1 1
11

i

k

j

m
mjmkki bab

  
 jih ,1

which shows that 1, 
  jiji bh , in other words, that H   is the Hankel matrix of  B. Since L and R are 

triangular with diagonals consisting of all 1's, this shows that the Hankel determinants of  B are the 
same as those for A, and thus A and B have the same Hankel transform. 
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Now we give a new proof to this theorem by using a different method, independent from 
Layman’s. Our proof technique suggests generalizations of the invert transforms. We require the 
following lemma. 

Lemma 2. (Table S) Given a sequence ,...},,{ 321 aaaA   create table of numbers S using the 

following rule 

a)The initial column consists of elements of A and the first element of initial row is 1.

b)Each elements of initial column multiply with 1 and place to the first column.

c)The sum of diagonal elements generate the first element of invert transform 1b , that is the second 

element of initial row (first element 1 is invariably). 

 Each elements of initial column multiply with 1b  and place to the second column. The sum of 

diagonal elements generate the second element of invert transform 2b  that is the third element of 

initial row. 

The rest of invert transform’s elements are obtained by applying these rules to ,ib

)1,...,5,4,3(  ni  as each elements of initial column multiply with ,ib  and place to the i+1 th 

column. The sum of diagonal elements generate the i+1 th element of invert transform that is the i+2 
th element of initial row. 

Thus, the elements of initial row is obtained. Except of 1 that is also the elements of invert 
transform of A sequence. 

Figure 1.   (m: multiplication) 

m 
(multiplication) 

1 
(First Column) 

invert transform 
of A sequence  
(initial row) 

A 
Sequence 

(initial column) 

m 1  

1a

2a

3a

m 1 
11 ba 

1a 1a

2a 2a

3a 3a

m 1 
1b 2112 bbaa 

1a 1a 11ba

2a 2a 12ba

3a 3a 13ba

m 1 
1b 2b

1a 1a 11ba 21ba

2a 2a 12ba 22ba

3a 3a 13ba 23ba

m 1 
1b 2b 321123 bbabaa 

1a 1a 11ba 21ba

2a 2a 12ba 22ba

3a 3a 13ba 23ba
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Example 3. The invert  transform  of the Fibonacci numbers is the Pell numbers. Figure 2. illustrates 
how the Pell numbers can be generated from the Fibonacci numbers using the table described in 
Lemma 2.  

 

 

 

 

Figure 2 

Thus, the invert transform of the Fibonacci numbers can be generated as  29,12,5,2,1 .

Example 4. Figure 3 illustrates how the invert transform of the nonnegative even numbers can be 
generated from the table given in Lemma 2.  

         

Figure 3 

 1 1 
1 1 
1 1 
2 2 
3 3 
5 5 

 1 1 2 2+1+2=5  
1 1 1 2 
1 1 1 2
2 2 2 4 
3 3 3 6 
5 5 5 10 

 1 1 1+1=2  
1 1 1 
1 1 1
2 2 2 
3 3 3 
5 5 5 

 1 1 2 5 3+2+2+5=12 
1 1 1 2 5 
1 1 1 2 5  
2 2 2 4 10 
3 3 3 6 15 
5 5 5 10 25 

 1 1 2 5 12 5+3+4+5+12=29 
1 1 1 2 5 12 
1 1 1 2 5 12
2 2 2 4 10 24 
3 3 3 6 15 36 
5 5 5 10 25 60 

 1 2 
2 2 
4 4 
6 6 
8 8 

10 10 

 1 2 8 6+8+16=30  
2 2 4 16 
4 4 8 32
6 6 12 48 
8 8 16 64 
10 10 20 80 

 1 2 4+4=8  
2 2 4 
4 4 8
6 6 12 
8 8 16 

10 10 20 

 1 2 8 30 8+12+32+60=112 
2 2 4 16 60 
4 4 8 32 120
6 6 12 48 180 
8 8 16 64 240 

10 10 20 80 300 

 1 2 8 30 112 10+16+48+120+224=418 
2 2 4 16 60 224 
4 4 8 32 120 448
6 6 12 48 180 672 
8 8 16 64 240 896 
10 10 20 80 300 1120 
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Thus, the invert transform of the nonnegative even numbers can be generated as 418,112,30,8,2 .

Proof. Let ,...},,{ 321 aaaA   be an integer sequence and ,...},,{ 321 bbbB   be the invert transform 

of A. We define a procedure for transforming the Hankel matrix of order n of a sequence A to the 
Hankel matrix of order n of a sequence B. Let 0,iS be the i th element of initial column which is also 

equal to i th element of A, let jjS , be the j+1 th element of initial row which is also equal to j th 

element of B and create the table S described in Lemma 2 where jjiS , is the (i,j+1) th element of table 

S. 

 1 1b 2b   

1a 1a 11ba 21ba   

2a 2a 12ba 22ba   

          

,0 ,i ia S          ,, jjj Sb 
     jjijjiji SSSba ,,0, 

If  we use these equalities, we get the same table as 

 0,0S 1,1S 2,2S   

0,1S 0,1S 1,2S 2,3S   

0,2S 0,2S 1,3S 2,4S   

          

In Lemma 2, elements of initial row which is obtained from the sum of diagonal elements, 
give us the following  equality  

10,0 S  

1,10,1 SS 

2,21,20,2 SSS 

   3,32,31,30,3 SSSS 

  

nnnnnnn SSSSS ,1,2,1,0, ...                                          (1) 

Let nS  is the following matrix consisting of numbers from the element of 

,...},,{ 321 aaaA   integer sequence. Since ii aS 0, , nS  is the Hankel matrix of A order n. 
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Then apply the following transformations to nS , 

(a) Let , 1, 2,..., 2m n n n    and 1, 2,..., m 1i   ,  then multiply m i  th row of nS  with 

ib  and add to m  th row. 

(b) Let 1,...,2,1  ni ,  multiply i th column with ja  where inj  ,...,2,1  and add to 

(j+i) th column. 

After application of stage (a), m th row of the matrix is at the following form 

for 1m i      

).........( 1,11,10,11,11,10,11,1,0,   mnmnmnmmmmmmmmm SSSSSSSSS 

)......( 1,11,10,11,11,10,1,   mnmnmnmmmmmmm SSSSSSS   from (1) 

for 1m i   

).........( ,11,10,1,11,10,1,1,0, inmnmnmimmmimmm SSSSSSSSS     

The claim is clearly true initially when 0i . Now assume that the claim is true for 1 ki  
and prove it for ki   with induction. Then in stage 1 ki ; 

for m k , (m-k) th row of nS  is as follows. 

)...( 0,10,10,  nkmkmkm SSS

If we multiply this row with  kkk Sb , , 

)...()...( ,1,1,0,10,10,, knmkmkmnkmkmkmkk SSSSSSS  
 

and add to m th row that is as follows 

).........( 1,11,10,11,11,10,11,1,0,   knmnmnmkmmmkmmm SSSSSSSSS 

Sum of these rows give m th row as 

).........( ,11,10,1,11,10,1,1,0, knmnmnmkmmmkmmm SSSSSSSSS     

Thus, it is proved for ki  .
 































0,120,20,10,

0,20,50,40,3

0,10,40,30,2

0,0,30,20,1

nnnn

n

n

n

n

SSSS

SSSS

SSSS

SSSS

S
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After  the transformations in (a) are applied, we have the matrix   

1,1 2,0 3,0 ,0

2,2 3,0 3,1 4,0 4,1 1,0 1,1

3,3 4,0 4,1 4,2 5,0 5,1 5,2 2,0 2,1 2,2

, 1,0 1,1 1, 1 2,0 2,1 2, 1 2 1,0 2 1,1 2 1, 1

n

n n

n n n

n n n n n n n n n n n n n n

S S S S

S S S S S S S

S S S S S S S S S S

S S S S S S S S S S

 

  

           

 
    
      
 
 
       





    
 

 

After application of stage (b), m th column  of the matrix is at the following form 

for im  , from (1)                                 T
nmnmmmmm SSS )( 1,11,1,  

for im 

T
ninmnmnmimmmimmm SSSSSSSSS ).........( 1,11,10,11,11,10,1,1,0,   

The claim is clearly true initially when 0i . Now assume that the claim is true for 1 ki  
and prove it for ki   with induction. Then in stage ki  only columns that change are 

nkk ,...,2,1   

for ki  , k th column of the matrix is as follows. 

T
nknkkkkk SSS )( 1,11,1,  

If we multiply this column with  0,kmkm Sa   and add to m th column, we get ; 

T
nknmkmkm

T
nknkkkkkkm SSSSSSS )()( 1,11,1,1,11,1,0,   

T
nknmnmnmkmmmkmmm SSSSSSSSS ).........( 2,11,10,1,11,10,11,1,0,   

Sum of these columns give m th column as 

T
nknmnmnmkmmmkmmm SSSSSSSSS ).........( 1,11,10,11,11,10,1,1,0,   

Therefore for ki  , verified with induction. After application of this stage to all rows, from 
(1) we get;































12,122,21,1,

2,25,54,43,3

1,14,43,32,2

,3,32,21,1

nnnnnnnn

nn

nn

nn

n

SSSS

SSSS

SSSS

SSSS

S








nS  is the Hankel matrix of order n of B(A), which is the invert transform of A. Since the only 

matrix manipulation we used multiplying row with number ib , add a row to another row and 

multiplying column with number ja , add a column to another column. The determinant of a matrix is 
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invariant under these operations. The determinant of the Hankel matrix  of order n of A is equal to the 
deterninant of the Hankel matrix of order n of B(A). So, we conclude that the Hankel transform is 
invariant under the invert transform. 

The operations described in the proof of  Theorem 1 when done in the order prescribed by the 
procedure have a simple interpretation in terms of the table S. In proof of theorem multiply ib  with 

each row shifts the elements which is obtained multiply ib  with the elements of initial row in table S 

and adding a row to another row shifts the sum of diagonal elements 

Example 5. We can see that the same invert transform Hankel matrix of order 4 of the Fibonacci 
numbers by a comparison of Figure 2 and the sequence of matrices arising from the procedure 
described in the proof of Theorem 1  



















13853

8532

5321

3211



1 1 2 3

1 2 3 5

2 3 5 8

5 8 13 21

 
 
 
 
 
 



1 1 2 3

1 2 3 5

2 3 5 8

7 12 19 31

 
 
 
 
 
 



1 1 2 3

1 2 3 5

2 3 5 8

12 17 29 46

 
 
 
 
 
 



1 1 2 3

1 2 3 5

3 5 8 13

12 17 29 46

 
 
 
 
 
 





















46291712

191275

8532

3211

  



















70412912

2917125

12752

5321





















99702912

4129125

171252

7521





















169702912

7029125

291252

12521

In Figure 2 we get the invert transform of  ...21,13,8,5,3,2,1,1  as  ...169,70,29,12,5,2,1 .

Example 6. We can see that the invert transform of Pell  numbers are obtained arising from the 
procedure described in the proof of Theorem  1  

















29125

1252

521


















41177

1773

521


















562310

1773

521

  

















563310

17103

531


















763310

23103

731


















1093310

33103

1031

After the application of procedure we get the invert transform of  ...29,12,5,2,1  as  ...109,33,10,3,1
. 
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Department of Civil Engineering,

Karamanoglu Mehmetbey University,
Karaman/TURKEY

Osman TUNCA ∗

Department of Civil Engineering,
Karamanoglu Mehmetbey University,

Karaman/TURKEY

S. Alper YILDIZEL
Department of Civil Engineering,

Karamanoglu Mehmetbey University,
Karaman/TURKEY

Abstract

Due to the slenderness and the presence of imperfections in steel sections, by which the
space steel frames are constituted, it is necessary to consider the geometric nonlinearity
in the prediction of their response to external loading in order to attain realistic results
in their design. In this study, the effect of geometric nonlinearity on space steel frames is
discussed. General information about elastic critical load analysis, calculation of elastic
critical load factor, stiffness matrix of a space member, nonlinear stiffness matrix with
stability functions and nonlinear elastic critical load analysis are also principally described
in the paper.

Keywords: Geometric nonlinearity, spatial frames, structural analysis.

1 Introduction

A variety of classifications may be used to describe the deformational response of structures;
for example, small or large, elastic or inelastic, etc. In general, deformations of structures
under the external loads are small, and hence the application of the equilibrium equations on
the undeformed shape of the structure does not introduce large errors. However, when struc-
ture consists of slender members, the deformations become large and small deflection theory
is no longer valid. The equilibrium equations are required to be written in such structures
on the deformed shape of its elements. In other words, the deflected shape of the structure
should be taken into account. When this is considered in the displacement computations,
the relationship between the external loads and displacements become nonlinear. Geometric
nonlinearity is required to be considered in the analysis of a structure, if its deflections are
large compared with its initial dimensions. In structures with large displacements, although
the material behaves linear elastic, the response of the structure becomes nonlinear [1].

2 Definition Of Elastic Critical Load Analysis

Elastic Critical Load Analysis computes the elastic critical load factor, λc, for a structure
subjected to a particular set of applied loads. This load factor is the ratio by which the axial
forces in the members of the structure must be increased to cause the structure to become

∗Corresponding author. E-mail address: osmantunca@kmu.edu.tr
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unstable due to the flexural buckling of one or more members (lateral torsional buckling of
individual members is not taken into account). The elastic critical load of the structure is a
function of the elastic properties of the structure and the pattern of loading. Once the elastic
critical load is known, member effective lengths can be calculated. The effective length of a
member is defined as the length of an ideal pin-ended strut having the same elastic critical
load as the load existing in the member when the structure is at its critical load. The effective
length may be expressed as a factor multiplying the actual member length. The effective
length factor is calculated separately for each of the member principal axes for each load case.
A load factor of less than 1.0 for any load case indicates that the structure is unstable under
the applied loading. The elastic critical load for any load case is determined by computing
the axial forces in the members of the structure and then increasing them in proportion until
the structure becomes unstable. At this point the factor by which the axial forces have been
increased is the elastic critical load factor for the structure under the current loading. The
elastic critical load factor is also known as the buckling load factor [2, 3].

3 Calculation Of Elastic Critical Load Factor

The elastic behavior of a structure is governed by the equation:

P = Ks∆ (1)

or more precisely:
λP = Ks (λP ) ∆ (2)

The use of implies that is a function of the applied load . This equation is nonlinear.
where;
P = external loads applied at the joints of the structure,
∆ = joint displacements of the structure,
Ks = stiffness matrix of the structure,
λ = the load factor.
To determine the value of the critical load factor, λc, the problem is linearized by carrying out
a double iterative process. The value of λ is increased in a step-by-step manner, and at each
load level the singularity of Ks(λP ) is checked. At each load level, also, an inner iteration is
performed before the singularity check to find the correct values of the member axial forces
shown in Equation (2) is solved repeatedly until a consistent set of deflections is obtained.
The number of iterations required here depends on how the structure is near to instability,
and how good a guess of axial force can be made initially [4, 5].

4 Derivation of A Nonlinear Stiffness Matrix Using Stability
Functions

The axial forces in a member have a significant effect on its flexural bending that cause non-
linearity in the behavior of structures. Therefore, it is of importance to study this effect in
the behavior of spatial steel frames.
Structures which are subjected to both axial forces and bending moments are called beam-
column. Members carrying both axial force and bending moments are exposed to an inter-
action between these effects. The lateral deflection of a member causes additional bending
moment when an axial force is applied. This changes the flexural stiffness of the member.
Similarly, the presence of bending moments affects the axial stiffness of the member due
to shortening of the member caused by the bending deformations. If the deformations are
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small, the interaction between bending and axial forces can be ignored. In such a case, the
force-deformation relationship for a beam-column is same as Equation (3).

p = kd (3)

Here, this equation gives the member stiffness equation in which p and d are 12-term vectors
of member force and displacement respectively, and k is a 12x12 member stiffness matrix
for most general case of a prismatic member in space (shear deformation is neglected), and
with the implicit condition that the deformations are so small as to leave the basic geometry
unchanged. However, if the deformations are large, the stiffness matrix k is affected by the
interaction between bending and axial forces, and it is not linear anymore [6]. The detail
derivation of the nonlinear stiffness matrix by using stability functions is given in Ref. [6]
and is not being repeated here. Only the definitions of the derived stability functions are
presented. The stability functions are the modification factors from s1 to s9. These functions
can be defined with respect to member length, cross-sectional properties, axial force, and the
end moments.
s1 : stability function for the effect of flexure on axial stiffness,
s2 : stability function for the effect of axial force on flexural stiffness against rotation of near
end about z-axis,
s3 : stability function for the effect of axial force on flexural stiffness against rotation of far
end about z-axis,
s4 : stability function for the effect of axial force on flexural stiffness against rotation of near
end about y-axis,
s5 : stability function for the effect of axial force on flexural stiffness against rotation of far
end about y-axis,
s6 : stability function for the effect of axial force on flexural stiffness (about z-axis) against
translation in y-direction,
s7 : stability function for the effect of axial force on shear stiffness in y-direction against
translation in y-direction,
s8 : stability function for the effect of axial force on flexural stiffness (about y-axis) against
translation in z-direction,
s9 : stability function for the effect of axial force on shear stiffness in z-direction against
translation in z-direction.
So, the nonlinear stiffness matrix of a three-dimensional steel member including stability
functions can be depicted as shown in Figure 1.
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Figure 1: Nonlinear stiffness matrix of a member of spatial steel.

where the physical properties of a steel frame member are designated in the conventional
manner as E, G, L, and A, which denote Young’s modulus, shear modulus, length, and cross-
sectional area respectively. The principle second moments of area for bending are Iy and Iz,
the subscripts indicating the axes about which the second moments are taken. The polar
second moment of area, which should logically be denoted by Ix, is denoted by J which is the
conventional symbol in torsion studies.

4.1 Construction of Overall Stiffness Matrix

After setting up the nonlinear member stiffness matrix in local coordinate system displacement
transformation matrix is conducted. The Equation (3) can be rewritten for a 3-D frame
member in local coordinates. Now, the stiffness matrix in terms of local coordinates (k)
must be converted to stiffness matrix in terms of global coordinates (K). The transformation
equation of stiffness matrix from local to global coordinates is given below;

K = TTkT (4)

where;
K = global stiffness matrix,
k = local stiffness matrix,
T = transformation matrix (from local to global coordinates).
Although in theory the direction cosine matrices for each member of a structure may be set
up from the orientation of the members in terms of the structure axes, in practice this can
cause some difficulty. It is convenient, therefore, to restate a rotation matrix R0 in terms of
the projections of the members on the structure axes [7]. So, that is to say, direct forces in
structure axes are affected only by the direct forces in member axes, and moments in structure
axes are affected only by the direct forces in member axes. The form of transformation matrix
(T) is;

T =




R0 0 0 0
0 R0 0 0
0 0 R0 0
0 0 0 R0



(12×12)

(5)
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After developing the stiffness matrices for each member of the entire structure in terms of
local coordinates, these matrices can be assembled to form the global stiffness matrix for the
entire structure. Total stiffness at a coordinate is the sum of the stiffnesses contributed to
that coordinate by each element attached to that coordinate.

5 Analysis of Spatial Steel Frames Including Geometric Non-
linearity

The nonlinear response of a spatial steel frame is obtained through successive linear elastic
analysis as shown in the flow chart of Figure 2. Initially the axial forces are presumed to be
zero. With zero values of axial forces, stability functions become equal to 1.0. Linear elastic
analysis of the structure is carried out and axial forces in members are determined. With
these values of axial forces the stability functions are calculated and structural analysis is
repeated. This process is continued until the convergence is obtained in the axial force values
of members. The joint displacements and member forces obtained at this final iteration yields
the accurate response of the structure to external loads where the geometric nonlinearity of
its members in local coordinate system is taken into account [8].

Figure 2: Nonlinear response of a spatial steel frame obtained through successive elastic linear
analysis.
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6 Numerical Example

Figure 3: 8-member, 3D spatial steel frame with crosswise columns.

In order to reflect the effect of geometric nonlinearity in a clearer manner, a 3-D spatial steel
frame [9] with crosswise columns is selected as a numerical example. This frame has 5 kN
concentrated loading on each joint and 5 kN horizontal loads on two joints as shown in Figure
3. The steel 10CS2.5x105 cross-section, which is taken from available design manuals [10],
is assigned to all frame members. The frame has 4m x 4m top area and 8m x 8m basement
area. The joint displacements calculated by carrying out nonlinear analysis in this work are
almost same as the ones obtained by SAP2000 v14 [11] as tabulated in Table 1.

Table 1: Joint displacements obtained by the nonlinear analysis using SAP2000v14 and non-
linear analysis by the routine developed in this study for 8-member, 3D steel frame with
crosswise columns.

Joint Displacements

Joint displacements obtained by carrying out
the nonlinear analysis proposed in this study

Joint displacements obtained by carrying out
the nonlinear analysis using SAP2000 v14

#
of
joint

X-DISP
(m)

Y-DISP
(m)

Z-DISP
(m)

X-DISP
(m)

Y-DISP
(m)

Z-DISP
(m)

1 0.24354E-
05

-
0.62881E-
02

-
0.12323E-
01

0.2439E-
05

-0.630E-
02

-
0.1240E-
01

2 0.41895E-
04

0.58946E-
02

-
0.12234E-
01

0.4180E-
04

0.590E-02 -
0.1230E-
01

3 0.24354E-
05

-
0.62881E-
02

-
0.12323E-
01

0.2439E-
05

-0.630E-
02

-
0.1240E-
01

4 0.41895E-
04

0.58946E-
02

-
0.12234E-
01

0.4180E-
04

0.590E-02 -
0.1230E-
01
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7 Conclusions

The investigation of the impact of geometric nonlinear behaviour of spatial steel frames has
shown that the concept for the analysis of the nonlinear features of 3-D frames reflects more
realistic characterization. The behavior of most of the spatial steel frames is nonlinear due to
change of their geometry under external loads. This is due to the weak torsional and flexural
stiffness of sections. It is also necessary to check the overall stability during the analysis
to ensure that the frame does not lose its load carrying capacity due to instability. The
elastic instability analysis of spatial steel frames involves iterative linear elastic analysis of the
structure and determination of axial forces in structural members. After this identification,
the stability functions are calculated and structural analysis is repeated. When the specific
convergence is reached at the axial forces of the members, this operation is terminated. The
final values of internal actions and displacements are the result of nonlinear analysis of the
structure.
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Özgür BOYACIOĞLU KALKAN ∗
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Abstract

In this study, let {α∗α} be involute evolute curve couple, when the Frenet vectors
of the spacelike involute curve α∗ with a spacelike normal α∗ which is incidental to a
timelike evolute curve α are taken as the position vectors, the curvature and the torsion of
Smarandache curve are calculated depending upon the timelike evolute curve α. Finally,
we give an illustrative example related to our results.

Keywords: minkowski n−space, Frenet equations, smarandache curves, involute-evolute
curves.

1 Introduction

The specific curve pairs are the most popular subjects in curve theory and involute-evolute
curve couple is one of them. We can see in most textbooks various applications not only
in curve theory but also in surface theory and mechanics. There are extensive literature on
this curves, for instance Bilici and Çalışkan studied involutes of timelike curves in R3

1 [3] and
involutes of spacelike curves with timelike binormal in R3

1 [2]. Bükçü and Karacan studied
involute and evolute curves of spacelike curves with spacelike binormal in R3

1 [4].
A regular curve in Minkowski space-time, whose position vector is composed by Frenet

frame vectors on another regular curve, is called a Smarandache curve [12]. Special Smaran-
dache curves have been studied by some authors. Turgut and Yılmaz studied a special case
of such curves and called it TB2 Smarandache curves in the space R4

1 [12]. Şenyurt S.,
Çalışkan A. and Çelik Ü. studied N∗C∗-Smarandache curve of Bertrand curves pair according
to Frenet frame [6]. Şenyurt S., Çalışkan A. studied N∗C∗-Smarandache curve of Mannheim
curve couple according to Frenet frame [5].

In this paper, special Smarandache curves belonging to spacelike curve with a spacelike
normal α∗ such as T ∗N∗B∗ drawn by Frenet frame are defined and some related results are
given.

∗Corresponding author. E-mail address: bozgur@aku.edu.tr
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2 Preliminaries

Let Minkowski 3-space R3
1 be the vector space R3 endowed with the standart Lorentzian

inner product g given by g(X,X) = −x2
1 + x2

2 + x2
3 where X = (x1, x2, x3) ∈ R3

1. A vector
X = (x1, x2, x3) ∈ R3

1. is said to be spacelike if g(X,X) > 0 or X = 0, timelike if g(X,X) < 0
or and null (lightlike) if g(X,X) = 0 and X 6= 0. The pseudo-norm (length) of a vector X
is given by ‖X‖L =

√
|g(X,X)|. Therefore X is unit vector if g(X,X) = ±1. Next, vectors

X,Y in R3
1 are said to be orthogonal if g(X,Y ) = 0. The Lorentzian cross product of X,Y in

R3
1 is given by

X × Y = (x3y2 − x2y3, x1y3 − x3y1, x1y2 − x2y1). (1)

Let α = α(s) be a regular curve parametrized by arc length in R3
1. {T,N,B, κ, τ} be its

Frenet invariants, where {T,N,B} is moving Frenet frame and κ, τ are curvature and torsion
of α(s), respectively. Then T,N and B are the tangent, the principal normal and the binormal
vector of the curve α, respectively. Depending on the causal character of the curve α, we have
the following Frenet formulas and the Darboux vectors:

i) For an unit speed timelike curve α in R3
1, the Frenet formulas are given as follows ([13]):

T ×N = −B, N ×B = T, B × T = −N
T
′

= κN N ′ = κT − τB B′ = τN.
(2)

Then we write Frenet invariants in this way: T (s) = α′(s), κ(s) =
√
〈T ′(s), T ′(s)〉, N(s) =

T ′(s)
κ(s) , B(s) = −(T × N)(s) and τ(s) =

(
〈α′ × α′′, α′′′〉 / ‖α′ × α′′‖2

)
(s) [14]. The Darboux

vector for the timelike curve is given by W = τT − κB, [13].
ii) For an unit speed spacelike curve with timelike normal α in R3

1, the Frenet formulas
are given as follows ([13]):

T ×N = −B, N ×B = −T, B × T = N,

T
′

= κN N ′ = κT + τB B′ = τN.
(3)

Then we write Frenet invariants in this way: T (s) = α′(s), κ(s) =
√
−〈T ′(s), T ′(s)〉, N(s) =

T ′(s)
κ(s) , B(s) = −(T ×N)(s) and τ(s) = −

(
〈α′ × α′′, α′′′〉 / ‖α′ × α′′‖2

)
(s) [14]. The Darboux

vector for the spacelike curve is given by W = −τT + κB [13].
iii) For an unit speed spacelike curve with a spacelike normal α in R3

1, the Frenet formulas
are given as follows ([13]):

T ×N = B, N ×B = −T, B × T = −N,
T
′

= κN N ′ = −κT + τB B′ = τN.
(4)

Then we write Frenet invariants in this way: T (s) = α′(s), κ(s) =
√
〈T ′(s), T ′(s)〉, N(s) =

T ′(s)
κ(s) , B(s) = (T×N)(s) and τ(s) =

(
〈α′ × α′′, α′′′〉 / ‖α′ × α′′‖2

)
(s) [14]. The Darboux vector

for the spacelike curve is given by W = τT − κB, [13].
In addition, the Frenet formulae for a null curve parametrized by distinguished parameter

α in R3
1, the Frenet formulas are given as follows:

T ×B = −T, T ×N = −B, B ×N = −N,
T
′

= κB N ′ = −τB B′ = −τT + κN.
(5)

In this state T and N are null vectors and B is a spacelike vector. The Frenet invari-

ants are T (s) = α′(s), κ(s) =
√
〈T ′(s), T ′(s)〉, B(s) = T ′(s)

κ(s) , N(s) =
(

(1/κ)((1/κ)T
′′

+ (1/κ)
′
T
′
+ τT )

)
and τ(s) =

(
1/2

[(
(1/κ)

′)2
κ− (1/κ3)

∥∥∥T ′′
∥∥∥

2
])

(s) [7]. The Darboux

vector for the null curve is given by W = τT + κN.
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Lemma 1 i.) Let X and Y be positive (negative) timelike vectors in R3
1. Then there is a

nonnegative real number ϕ(X,Y ) such that

g(X,Y ) = ‖X‖ ‖Y ‖ coshϕ(X,Y )

The Lorentzian timelike angle between X and Y is defined to be ϕ(X,Y ).
ii) Let X and Y be spacelike vectors in R3

1 that span a spacelike vector subspace. Then
there is a real number ϕ(X,Y ) between 0 and π such that

g(X,Y ) = ‖X‖ ‖Y ‖ cosϕ(X,Y )

The Lorentzian spacelike angle between X and Y is defined to be ϕ(X,Y ).
iii) Let X and Y be spacelike vectors in R3

1 that span a timelike vector subspace. Then
there is a positive real number ϕ(X,Y ) such that

|g(X,Y )| = ‖X‖ ‖Y ‖ coshϕ(X,Y )

The Lorentzian timelike angle between X and Y is defined to be ϕ(X,Y ).
iv) Let X be spacelike vector and Y be a positive timelike vector in R3

1 Then there is a
nonnegative real number ϕ(X,Y ) such that

|g(X,Y )| = ‖X‖ ‖Y ‖ sinhϕ(X,Y )

The Lorentzian timelike angle between X and Y is defined to be ϕ(X,Y ), [13].

Definition 2 [10] Let α = α(s), β = β(s) ⊂ R3
1 be two curves in R3

1. Let Frenet frames of
α and β be {T,N,B}and {T ∗, N∗, B∗}, respectively. β is called the involute of α (α is called
the evolute of β) if

g(T, T ∗) = 0.

Lemma 3 [3] Let (α∗, α) be the involute-evolute curve couple which are given by (I, α) and
(I, β) coordinate neighborhoods, respectively. The distance between the curves α∗ and α are
given by

d(α(s), α∗(s)) = |c− s| , c = cons tan t ∀s ∈ I.

Definition 4 [3] Let α be a timelike curve and θ being a Lorentzian timelike angle between the
spacelike binormal unit vector −B and the Darboux vector W. If |κ|〈 |τ | then W is a timelike
vector. In this situation we can write

κ = ‖W‖ sinh θ
τ = ‖W‖ cosh θ

, ‖W‖2 = −g(W,W ) = −(κ2 − τ2). (6)

Theorem 5 [3] Let (α∗, α) be the involute-evolute curve couple. If W is a timelike vector
( |κ|〈 |τ |), then the Frenet vectors of the curve couple (α∗, α) as follows:



T ∗

N∗

B∗


 =




0 1 0
sinh θ 0 − cosh θ
− cosh θ 0 sinh θ





T
N
B


 , (7)

where θ be Lorentzian timelike angle between B and N∗.

Remark 6 [3] Let (α∗, α) be the involute-evolute curve couple and α = α(s) be timelike curve.
If W is a timelike vector ( |κ|〈 |τ |), then the causal characteristics of the Frenet frames of the
curves α and α∗ are

{T timelike, N spacelike, B spacelike}
and

{T ∗ spacelike, N∗ spacelike, B∗ timelike}.
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3 On T ∗N ∗B∗ Smarandache Curves of involute-evolute curve
in R3

1

Let (α∗, α) be the involute evolute curve couple in E3
1 , α

∗ be a spacelike curve with spacelike
normal and {T ∗, N∗, B∗} be the Frenet frame of α∗. In this case, T ∗N∗B∗ Smarandache curve
can be defined by

β1(s) =
1√
3

(T ∗ +N∗ +B∗). (8)

Then solving the equation (8) by substitution of T ∗, N∗ and B∗ from (7) , we obtain

β1(s) =
1√
3

([sinh θ − cosh θ)T +N + (sinh θ − cosh θ)B]. (9)

The derivative of this respect to s is as follows:

β
′
1(s) = Tβ1

dsβ1

ds
=

1√
3

[
(θ
′
(cosh θ − sinh θ) + κ)T − ‖W‖N

+θ
′
(cosh θ − sinh θ)B

]
(10)

and 〈
β
′
1, β

′
1

〉
=

2(‖W‖2 − θ′ ‖W‖)
3

.

Therefore there are three possibilities for the causal character of β1under the conditions
‖W‖2 − θ

′ ‖W‖〉0, ‖W‖2 − θ
′ ‖W‖ 〈0 and ‖W‖2 − θ

′ ‖W‖ = 0. Because of the fact that
2(‖W‖2−θ′‖W‖)

3 6= 1 for at least one θ′, ‖W‖ ∈ R, we know that s is not arc-length of β1.
Assume that sβ1

is arc-length of β1.

i) If ‖W‖2 − θ′ ‖W‖〉0 then Smarandache curve β1 is a spacelike curve. If we rearrange
equation (10), we get

Tβ1
=

(θ
′
(cosh θ − sinh θ) + κ)T − ‖W‖N

+(θ
′
(cosh θ − sinh θ)− τ)B√

2(‖W‖2−θ′‖W‖)
(11)

where
dsβ1
ds =

√
2(‖W‖2−θ′‖W‖)√

3
and ‖W‖2 = τ2 − κ2.

i.1) Let β1 be a spacelike curve with spacelike normal. If we differentiate (11) with respect
to s , we obtain

T
′
β1

=
√

3

2(‖W‖2−θ′‖W‖)3/2 (w1T + w2N + w3B)

where

w1 = ((θ
′′ − θ′2)(cosh θ − sinh θ) + κ′ − κ ‖W‖)

√
‖W‖2 − θ′ ‖W‖

−
(√
‖W‖2 − θ′ ‖W‖

)′
(θ
′
(cosh θ − sinh θ) + κ),

w2 = (θ
′ ‖W‖ − ‖W‖2 − ‖W‖′)

√
‖W‖2 − θ′ ‖W‖+

(√
‖W‖2 − θ′ ‖W‖

)′
‖W‖ ,

w3 = ((θ
′′ − θ′2)(cosh θ − sinh θ)− τ ′ + τ ‖W‖)

√
‖W‖2 − θ′ ‖W‖

−
(√
‖W‖2 − θ′ ‖W‖

)′
(θ
′
(cosh θ − sinh θ)− τ).

The first curvature of β1 and the principal normal vector field is
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κβ1
=

√〈
T
′
β1
, T
′
β1

〉
=

√
3(−w2

1+w2
2+w2

3)

2(‖W‖2−θ′‖W‖) 3
2
,

Nβ1
=

T
′
β1∥∥∥T ′β1
∥∥∥

= w1T+w2N+w3B√
−w2

1+w2
2+w2

3

.

Based upon this calculation, the binormal vector field of β1 is

Bβ1
= (Tβ1

∧Nβ1
) =

(‖W‖w3 + (θ
′
cosh θ − τ)w2)T

+(θ
′
(cosh θ − sinh θ)(w3 − w1) + w3κ+ w1τ)N

+(θ
′
(cosh θ − sinh θ) + κ)w2 + ‖W‖w1)B√

2(‖W‖2−θ′‖W‖)
√
−w2

1+w2
2+w2

3

.

The torsion of β1is given as below:

τβ1
=

〈
β
′
1∧β

′′
1 ,β
′′′
1

〉

∥∥∥β′1∧β
′′
1

∥∥∥
2 =

√
3(− ∼w1Ω1+

∼
w2Ω2+

∼
w3Ω3)

− ∼w1
2
+
∼
w2

2
+
∼
w3

2

where∼
w1 = (cosh θ − sinh θ)(−θ′′ ‖W‖+ θ′(‖W‖2 + ‖W‖′))

+τ(θ′ ‖W‖ − 2 ‖W‖2 − ‖W‖′) + τ ′ ‖W‖ ,
∼
w2 = θ′(cosh θ − sinh θ)(−κ′ − τ ′ + ‖W‖ (κ+ τ))

+(θ
′′ − θ′2) ‖W‖ − κτ ′ + τκ′,

∼
w3 = (cosh θ − sinh θ)(−θ′′ ‖W‖+ θ′(‖W‖2 + ‖W‖′))

+κ(−θ′ ‖W‖+ 2 ‖W‖2 + ‖W‖′)− κ′ ‖W‖
and

Ω1 = (cosh θ − sinh θ)(θ
′′′ − 3θ

′
θ
′′
− θ′3) + κ′′ − κ′ ‖W‖

−2κ ‖W‖′ + θ
′
κ ‖W‖ − κ ‖W‖2 ,

Ω2 = (θ
′′ − θ′2)(‖W‖ − ‖W‖ ‖W‖′ + ‖W‖3) + θ

′′ ‖W‖
+θ′ ‖W‖′ − 2 ‖W‖ ‖W‖′ − ‖W‖′′ ,

Ω3 = (cosh θ − sinh θ)(θ
′′′ − 3θ

′
θ
′′
− θ′3)− τ ′′ + τ ′ ‖W‖

+2τ ‖W‖′ − θ′τ ‖W‖+ τ ‖W‖2 .
i.2) Let β1 be a spacelike curve with timelike normal. Then the Frenet invariants of β1

are given as below:

Tβ1
=

(θ
′
(cosh θ − sinh θ) + κ)T − ‖W‖N

+(θ
′
(cosh θ − sinh θ)− τ)B√

2(‖W‖2−θ′‖W‖)
,

κβ1
=

√
−
〈
T
′
β1
, T
′
β1

〉
=

√
3(w2

1−w2
2−w2

3)

2(‖W‖2−θ′‖W‖) 3
2
,

Nβ1
=

T
′
β1∥∥∥T ′β1
∥∥∥

= w1T+w2N+w3B√
w2

1−w2
2−w2

3

,

Bβ1
= −(Tβ1

∧Nβ1
) =

(−‖W‖w3 − (θ
′
cosh θ − τ)w2)T

+(θ
′
(cosh θ − sinh θ)(w1 − w3)− w3κ− w1τ)N

−(θ
′
(cosh θ − sinh θ) + κ)w2 + ‖W‖w1)B√

2(‖W‖2−θ′‖W‖)
√
w2

1−w2
2−w2

3

,

τβ1
= −

〈
β
′
1∧β

′′
1 ,β
′′′
1

〉

∥∥∥β′1∧β
′′
1

∥∥∥
2 =

√
3(
∼
w1Ω1− ∼w2Ω2−∼w3Ω3)

− ∼w1
2
+
∼
w2

2
+
∼
w3

2 .

ii.) If ‖W‖2 − θ′ ‖W‖ 〈0 then Smarandache curve β1 is a timelike curve. If we rearrange
equation (10), we get

Tβ1
=

(θ
′
(cosh θ − sinh θ) + κ)T − ‖W‖N

+(θ
′
(cosh θ − sinh θ)− τ)B√

2
∣∣∣‖W‖2−θ′‖W‖

∣∣∣
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where
dsβ1
ds =

√
2
∣∣∣‖W‖2−θ′‖W‖

∣∣∣
√

3
and ‖W‖2 = τ2 − κ2.

Then the other Frenet invariants of β1 are given as below:

κβ1
=

√〈
T
′
β1
, T
′
β1

〉
=

√
3(−w2

1+w2
2+w2

3)

2
∣∣∣‖W‖2−θ′‖W‖

∣∣∣
3
2
,

Nβ1
=

T
′
β1∥∥∥T ′β1
∥∥∥

= w1T+w2N+w3B√
−w2

1+w2
2+w2

3

,

Bβ1
= −(Tβ1

∧Nβ1
) =

(−‖W‖w3 − (θ
′
cosh θ − τ)w2)T

+(θ
′
(cosh θ − sinh θ)(w1 − w3)− w3κ− w1τ)N

−(θ
′
(cosh θ − sinh θ) + κ)w2 + ‖W‖w1)B√

2
∣∣∣‖W‖2−θ′‖W‖

∣∣∣
√
−w2

1+w2
2+w2

3

,

τβ1
=

〈
β
′
1∧β

′′
1 ,β
′′′
1

〉

∥∥∥β′1∧β
′′
1

∥∥∥
2 =

√
3(− ∼w1Ω1+

∼
w2Ω2+

∼
w3Ω3)

− ∼w1
2
+
∼
w2

2
+
∼
w3

2 .

iii.) If ‖W‖ (‖W‖−θ′) = 0 then T ∗N∗B∗ Smarandache curve β1 is a null curve. Since W
vector is timelike, ‖W‖ = 0 is a contradiction. If ‖W‖ = θ

′
then rearranging (10), we obtain

Tβ1
=

1√
3

ds

dsβ1

(τT − ‖W‖N − κB). (12)

By differentiating (12), we get

T
′
β1

=
1√
3




(
d3s
ds3β1

τ + d2s
ds2β1

(τ ′ − κ ‖W‖)
)
T

−
(

d3s
ds3β1
‖W‖+ d2s

ds2β1
‖W‖′

)
N

+

(
− d3s
ds3β1

κ+ d2s
ds2β1

(−κ′ + τ ‖W‖)
)
B



. (13)

From the calculations of Frenet invariants of a null curve, we find that the curvature κβ1
=∥∥∥T ′β1

∥∥∥ = 0. So there is no calculations for Nβ1
and Bβ1

in this case.

Example Let α(s) = (
√

7√
2
s,
√

5√
2

cos s,
√

5√
2

sin s) be timelike curve and parametrized by arc

length. In this situation, the involute of the curve α can be given by the equation

α∗(s) = (
√

7√
2
s+

√
7√
2
|c− s| ,

√
5√
2

cos s−
√

5√
2
|c− s| sin s,

√
5√
2

sin s+
√

5√
2
|c− s| cos s).

The Frenet invariants of the spacelike curve with timelike binormal α∗(s) are given as following:
T ∗(s) = (0,− cos s,− sin s), N∗(s) = (0, sin s,− cos s) and
B∗(s) = (−1, 0, 0), κ∗(s) = 1, τ∗(s) = 0. The T ∗N∗B∗ Smarandache curve is β1(s) =

1√
3
(−1,− cos s+ sin s,− sin s− cos s). In terms of definitions, we obtain special Smarandache

curve, see Figure 1.

Figure 1: T ∗N∗B∗ Smarandache curve belonging to curve α∗
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[6] Şenyurt S., Çalışkan A., Çelik Ü., N∗C∗-Smarandache Curve of Bertrand Curves Pair
According to Frenet Frame, International J.Math. Combin. Vol.1, 1-7, 2016.

[7] Duggal K. L., Bejancu A., Lightlike Submanifolds of Semi Riemannian Manifolds and
Applications, Kluwer Academic Publishers, Dordrecht, 1996.
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Abstract

The main purpose of this note is to establish some new Ostrowski inequalities for
quasi-convex functions via new conformable fractional integrals.

Keywords: Gamma function, Beta function, quasi-convex function, Ostrowski inequal-
ity, Riemann-Liouville fractional integrals, fractional conformable integral operators.

1 Introduction and Preliminaries
In 1938, Alexander Markovich Ostrowski (see [15]) proved the following integral inequality (1).
Ostrowski considered the problem of estimating the deviation of a function from its integral
mean. To be precise, for any continuous function f on [a, b] ⊂ R which is differentiable on
(a, b) and with the property that |f ′(x)| ≤M for all x ∈ (a, b), the inequality

∣∣∣∣∣f(x)− 1
b− a

∫ b

a
f(x)dx

∣∣∣∣∣ ≤M(b− a)




1
4 +

(
x− a+b

2

)2

(b− a)2


 (1)

holds for every x ∈ (a, b). The constant 1
4 is the best possible in the sense that it cannot

be replaced by a smaller constant. The inequality (1) is well known in the literature as the
Ostrowski inequality. Many researchers have given considerable attention to the inequality
(1) and several generalizations, extensions and related results have appeared in the literature.
For some results which generalize, improve, and extend the above inequality, see [?, 2, 9, 16,
17, 18, 19, 20].

Let real function f be defined on some nonempty interval I of real line R . The function
f is said to be convex on I if inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
∗Corresponding author. E-mail address: bariscelik15@hotmail.com
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holds for all x, y ∈ I and λ ∈ [0, 1] .
The notion of quasi-convex functions generalizes the notion of convex functions. More

precisely, a function f : [a, b]→ R is said quasi-convex on [a, b] if

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}

for any x, y ∈ [a, b] and λ ∈ [0, 1]. Clearly, any convex function is a quasi-convex function.
Furthermore, there exist quasi-convex functions which are not convex (see [10]).

Let f ∈ L1[a, b] := L(a, b). The Riemann-Liouville integrals Jαa+f and Jαb−f of order
α ∈ R+ with a ∈ R+

0 are defined, respectively, by

Jαa+f(x) = 1
Γ(α)

∫ x

a
(x− t)α−1 f(t) dt (x > a) (2)

and
Jαb−f(x) = 1

Γ(α)

∫ b

x
(t− x)α−1 f(t) dt (x < b) (3)

where Γ is the familiar Gamma function (see, e.g., [23, Section 1.1]). It is noted that J1
a+f(x)

and J1
b−f(x) become the usual Riemann integrals.

We recall Beta function (see, e.g., [23, Section 1.1])

B(α, β) =





∫ 1

0
tα−1(1− t)β−1 dt (<(α) > 0; <(β) > 0)

Γ(α) Γ(β)
Γ(α+ β)

(
α, β ∈ C \ Z−0

)
.

(4)

and the incomplete gamma function, defined for real numbers a > 0 and x ≥ 0 by

Γ(a, x) =
∫ ∞

x
e−tta−1dt.

For more details and properties concerning the fractional integral operators (2) and (3),
we refer the reader, for example, to the works [3, 4, 5, 6, 7, 8, 14] and the references therein.

In [22], Set gave some Ostrowski type results involving Riemann-Liouville fractional inte-
grals, as follows:

Lemma 1 Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If f ′ ∈ L[a, b],
then for all x ∈ [a, b] and α > 0 we have:

(x− a)α + (b− x)α
b− a f(x)− Γ(α+ 1)

b− a [Jαx−f(a) + Jαx+f(b)]

= (x− a)α+1

b− a

∫ 1

0
tαf ′(tx+ (1− t)a)dt− (b− x)α+1

b− a

∫ 1

0
tαf ′(tx+ (1− t)b)dt

where Γ(α) is Euler gamma function.

Jarad et. al. [11] has defined a new fractional integral operator. Also, they gave some
properties and relations between the some other fractional integral operators, as Riemann-
Liouville fractional integral, Hadamard fractional integrals, generalized fractional integral
operators, with this operator.

Let β ∈ C, Re(β) > 0, then the left and right sided fractional conformable integral
operators has defined respectively, as follows;

β
aJ

αf(x) = 1
Γ(β)

∫ x

a

((x− a)α − (t− a)α
α

)β−1 f(t)
(t− a)1−αdt; (5)

βJαb f(x) = 1
Γ(β)

∫ b

x

((b− x)α − (b− t)α
α

)β−1 f(t)
(b− t)1−αdt. (6)
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The fractional integral in (??) coincides with the Riemann-Liouville fractional integral (2)
when a = 0 and α = 1. It also coincides with the Hadamard fractional integral [13] once a = 0
and α→ 0 with the Katugampola fractional integral [12], when a = 0. Similarly, Notice that,
(Qf)(t) = f(a+ b− t) then we have β

aJ
αf(x) = Q(βJαb )f(x). Moreover (5) coincides with the

Riemann-Liouville fractional integral (3), when b = 0 and α = 1. It also coincides with the
Hadamard fractional integral [13] once b = 0 and α → 0 with the Katugampola fractional
integral [12], when b = 0. Further, getting more knowledge, see the paper given in [11].

The main goal of this paper, motivated by the above mentions and results in [11, 21],
is to prove some new Ostrowski type inequalities via new conformable fractional integral for
quasi-convex functions.

2 Main Results
Lemma 2 [21] Let f : [a, b] → R be a differentiable function on (a, b) with a < b and f ′ ∈
L[a, b]. Then the following equality for fractional conformable integrals holds:

(x− a)αβ + (b− x)αβ
(b− a)αβ f(x)− Γ(β + 1)

b− a
[
β
xJ

αf(b) +β Jαxf(a)
]

= (x− a)αβ+1

b− a

∫ 1

0

(1− (1− t)α
α

)β
f ′(tx+ (1− t)a)dt

+(b− x)αβ+1

b− a

∫ 1

0

(1− (1− t)α
α

)β
f ′(tx+ (1− t)b)dt

where α, β > 0 and Γ is Euler Gamma function.

Theorem 3 Let f : [a, b]→ R be a differentiable function on (a, b) with a < b and f ′ ∈ L[a, b].
If |f ′| is quasi-convex on [a, b], then the following inequality for fractional conformable integrals
holds:

∣∣∣∣∣
(x− a)αβ + (b− x)αβ

(b− a)αβ f(x)− Γ(β + 1)
b− a

[
β
xJ

αf(b) +β Jαxf(a)
] ∣∣∣∣∣

≤ 1
(b− a)αβ+1B

(
β + 1, 1

α

)

×
[
(x− a)β+1 max{|f ′(x)|, |f ′αβ+1 max{|f ′(x)|, |f ′(b)|}

]
,

where α, β > 0, B(x, y) and Γ are Euler beta and Euler gamma functions respectively.
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Proof. From Lemma 2 and quasi-convexity of |f ′| on [a, b], we can write
∣∣∣∣∣
(x− a)αβ + (b− x)αβ

(b− a)αβ f(x)− Γ(β + 1)
b− a

[
β
xJ

αf(b) +β Jαxf(a)
] ∣∣∣∣∣

≤ (x− a)αβ+1

b− a

∫ 1

0

(1− (1− t)α
α

)β
|f ′(tx+ (1− t)a)|dt

+(b− x)αβ+1

b− a

∫ 1

0

(1− (1− t)α
α

)β
|f ′(tx+ (1− t)b)|dt

≤ (x− a)αβ+1

b− a

∫ 1

0

(1− (1− t)α
α

)β
max{|f ′(x)|, |f ′(a)|}dt

+(b− x)αβ+1

b− a

∫ 1

0

(1− (1− t)α
α

)β
max{|f ′(x)|, |f ′(b)|}dt

= (x− a)αβ+1

b− a
1

αβ+1B

(
β + 1, 1

α

)
max{|f ′(x)|, |f ′(a)|}

+(b− x)αβ+1

b− a
1

αβ+1B

(
β + 1, 1

α

)
max{|f ′(x)|, |f ′(b)|}

= 1
(b− a)αβ+1B

(
β + 1, 1

α

)

×
[
(x− a)β+1 max{|f ′(x)|, |f ′αβ+1 max{|f ′(x)|, |f ′(b)|}

]
,

where it is easily seen that
∫ 1

0

(1− (1− t)α
α

)β
dt = 1

αβ+1B

(
β + 1, 1

α

)
.

So we get desired result.

Remark 4 Under the assumptions of Theorem 3, if we choose |f ′(x)| ≤ M for x ∈ [a, b], we
have

∣∣∣∣∣
(x− a)αβ + (b− x)αβ

(b− a)αβ f(x)− Γ(β + 1)
b− a

[
β
xJ

αf(b) +β Jαxf(a)
] ∣∣∣∣∣

≤ M

(b− a)αβ+1B

(
β + 1, 1

α

) [
(x− a)β+1 + (b− x)αβ+1

]
.

Theorem 5 Let f : [a, b]→ R be a differentiable function on (a, b) with a < b and f ′ ∈ L[a, b].
If |f ′q is quasi-convex on [a, b], p, q > 1, then the following inequality for fractional conformable
integrals holds:

∣∣∣∣∣
(x− a)αβ + (b− x)αβ

(b− a)αβ f(x)− Γ(β + 1)
b− a

[
β
xJ

αf(b) +β Jαxf(a)
] ∣∣∣∣∣

≤


B
(
βp+ 1, 1

α

)

αβ+1




1
p

×
[

(x− a)αβ+1

b− a max{|f ′(x)|, |f ′(a)|}+ (b− x)αβ+1

b− a max{|f ′(x)|, |f ′(b)|}
]

where 1
p + 1

q = 1, α, β > 0, B(x, y) and Γ are Euler beta and Euler gamma functions respec-
tively.
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Proof. By using Lemma 2, well known Hölder’s inequality and quasi-convexity of |f ′q on [a, b],
we get

∣∣∣∣∣
(x− a)αβ + (b− x)αβ

(b− a)αβ f(x)− Γ(β + 1)
b− a

[
β
xJ

αf(b) +β Jαxf(a)
] ∣∣∣∣∣

≤ (x− a)αβ+1

b− a

∫ 1

0

(1− (1− t)α
α

)β
|f ′(tx+ (1− t)a)|dt

+(b− x)αβ+1

b− a

∫ 1

0

(1− (1− t)α
α

)β
|f ′(tx+ (1− t)b)|dt

≤ (x− a)αβ+1

b− a



(∫ 1

0

(1− (1− t)α
α

)βp
dt

) 1
p (∫ 1

0
|f ′qdt

) 1
q




+(b− x)αβ+1

b− a



(∫ 1

0

(1− (1− t)α
α

)βp
dt

) 1
p (∫ 1

0
|f ′qdt

) 1
q




≤ (x− a)αβ+1

b− a



(∫ 1

0

(1− (1− t)α
α

)βp
dt

) 1
p (

max{|f ′q, |f ′q})
1
q




+(b− x)αβ+1

b− a



(∫ 1

0

(1− (1− t)α
α

)βp
dt

) 1
p (

max{|f ′q, |f ′q})
1
q




= (x− a)αβ+1

b− a



B
(
βp+ 1, 1

α

)

αβ+1




1
p

max{|f ′(x)|, |f ′(a)|}

+(b− x)αβ+1

b− a



B
(
βp+ 1, 1

α

)

αβ+1




1
p

max{|f ′(x)|, |f ′(b)|}

=



B
(
βp+ 1, 1

α

)

αβ+1




1
p

×
[

(x− a)αβ+1

b− a max{|f ′(x)|, |f ′(a)|}+ (b− x)αβ+1

b− a max{|f ′(x)|, |f ′(b)|}
]
.

Notice that, changing variables with x = 1− (1− t)α, we get

∫ 1

0

(1− (1− t)α
α

)βp
dt =

B
(
βp+ 1, 1

α

)

αβ+1 .

The proof is completed.

Remark 6 Under the assumptions of Theorem 5, if we choose |f ′q ≤M for x ∈ [a, b], we have
∣∣∣∣∣
(x− a)αβ + (b− x)αβ

(b− a)αβ f(x)− Γ(β + 1)
b− a

[
β
xJ

αf(b) +β Jαxf(a)
] ∣∣∣∣∣

≤ M



B
(
βp+ 1, 1

α

)

αβ+1




1
p [

(x− a)αβ+1

b− a + (b− x)αβ+1

b− a

]
.
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Theorem 7 Let f : [a, b]→ R be a differentiable function on (a, b) with a < b and f ′ ∈ L[a, b].
If |f ′q is quasi-convex on [a, b], q ≥ 1, then the following inequality for fractional conformable
integrals holds:

∣∣∣∣∣
(x− a)αβ + (b− x)αβ

(b− a)αβ f(x)− Γ(β + 1)
b− a

[
β
xJ

αf(b) +β Jαxf(a)
] ∣∣∣∣∣

≤


B
(
β + 1, 1

α

)

αβ+1




×
[

(x− a)αβ+1

b− a max{|f ′(x)|, |f ′(a)|}+ (b− x)αβ+1

b− a max{|f ′(x)|, |f ′(b)|}
]

where α, β > 0, B(x, y) and Γ are Euler Beta and Euler Gamma functions respectively.

Proof. By using Lemma 2, convexity of |f ′q and well-known power-mean inequality, we have

∣∣∣∣∣
(x− a)αβ + (b− x)αβ

(b− a)αβ f(x)− Γ(β + 1)
b− a

[
β
xJ

αf(b) +β Jαxf(a)
] ∣∣∣∣∣

≤ (x− a)αβ+1

b− a

∫ 1

0

(1− (1− t)α
α

)β
|f ′(tx+ (1− t)a)|dt

+(b− x)αβ+1

b− a

∫ 1

0

(1− (1− t)α
α

)β
|f ′(tx+ (1− t)b)|dt

≤ (x− a)αβ+1

b− a

(∫ 1

0

(1− (1− t)α
α

)β
dt

)1− 1
q

×
(∫ 1

0

(1− (1− t)α
α

)β
|f ′qdt

) 1
q

+(b− x)αβ+1

b− a

(∫ 1

0

(1− (1− t)α
α

)β
dt

)1− 1
q

×
(∫ 1

0

(1− (1− t)α
α

)β
|f ′qdt

) 1
q
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≤ (x− a)αβ+1

b− a

(∫ 1

0

(1− (1− t)α
α

)β
dt

)1− 1
q

×
(

max{|f ′q, |f ′q}
∫ 1

0

(1− (1− t)α
α

)β
dt

) 1
q

+(b− x)αβ+1

b− a

(∫ 1

0

(1− (1− t)α
α

)β
dt

)1− 1
q

×
(

max{|f ′q, |f ′q}
∫ 1

0

(1− (1− t)α
α

)β
dt

) 1
q

= (x− a)αβ+1

b− a



B
(
β + 1, 1

α

)

αβ+1


max{|f ′(x)|, |f ′(a)|}

+(b− x)αβ+1

b− a



B
(
β + 1, 1

α

)

αβ+1


max{|f ′(x)|, |f ′(b)|}

=



B
(
βp+ 1, 1

α

)

αβ+1




×
[

(x− a)αβ+1

b− a max{|f ′(x)|, |f ′(a)|}+ (b− x)αβ+1

b− a max{|f ′(x)|, |f ′(b)|}
]
.

So, the proof is completed.

Remark 8 Under the assumptions of Theorem 7, if we choose |f ′q ≤M for x ∈ [a, b], we have
∣∣∣∣∣
(x− a)αβ + (b− x)αβ

(b− a)αβ f(x)− Γ(β + 1)
b− a

[
β
xJ

αf(b) +β Jαxf(a)
] ∣∣∣∣∣

≤ M



B
(
β + 1, 1

α

)

αβ+1



[

(x− a)αβ+1

b− a + (b− x)αβ+1

b− a

]
.
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On Some Properties of Leibniz Algebras
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Abstract

Leibniz algebras are non-(anti)commutative generalization of Lie algebras. In this
note, we investigate the some differences and analogs between Leibniz algebras and Lie
algebras. Furthermore, we constructed some examples on some properties of non-Lie
Leibniz algebras.

Keywords: Lie algebra, Leibniz algebra.

1 Introduction

Leibniz algebras are non-commutative generalization of Lie algebras were introduced by J.L.
Loday [6]. Leibniz algebras is an interesting area, which was studied in many papers (see
[1, 2, 3]). Our main starting point is given by the paper [4] which İ. Demir, K.C. Misra and
E. Stitzinger studied on some results on Leibniz algebras analogs to results on Lie algebras.
In this study we try to give some properties of non-Lie Leibniz algebras and some examples
on the differences and analogs between Leibniz algebras and Lie algebras.

2 Preliminaries

In this section we give some necessary concepts and notation on Leibniz algebras. Let F be a
field with characteristic zero. A Lie algebra L over a field F which is a non-associative algebra
with a bilinear map, the Lie bracket [, ] : L × L → L defined by (x, y) 7→ [x, y], satisfies the
following conditions:

(L1) [x, x] = 0, for all x ∈ L (anti-commutative)

(L2) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0, for all x, y, z ∈ L (Jacobi identity)

(see [5]). A Leibniz algebra L over a field F is a non-associative algebra with the multiplication
[, ] : L× L→ L which verifies the Leibniz identity

[[x, y], z] = [x, [y, z]]− [y, [x, z]]

for all x, y, z ∈ L.
Let L be a Lie algebra over a field F . By the Jacobi identity, we obtain that [[x, y], z] =

[x, [y, z]]− [y, [x, z]] which, means that every Lie algebra is a Leibniz algebra. Provided that
L is a Leibniz algebra with [x, x] = 0 for all x ∈ L, then L is a Lie algebra.

A Leibniz algebra L is called abelian if [x, y] = 0 for all x, y ∈ L. A subspace A is said
to be a Leibniz subalgebra of L, if [x, y] ∈ A for all x, y ∈ A. A subspace A is called a left

∗Corresponding author. E-mail address: nil.mansuroglu@ahievran.edu.tr
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(respectively right) ideal, if [y, x] ∈ A (respectively [x, y] ∈ A) for all x ∈ A and y ∈ L. If
a subspace A is both a left and a right ideal of L, then we say that A is an ideal, that is,
[x, y], [y, x] ∈ A for all x ∈ A and y ∈ L. By Leib(L), we donote the subspace generated by
the elements [x, x], for some x ∈ L. It is not hard to show that this subspace is an ideal of L
and so this ideal is called the Leibniz kernel of L. Since for [x, x] ∈ Leib(L) and y ∈ L,

[[x, x], y] = [x, [x, y]]− [x, [x, y]] = 0,

the Leibniz kernel of L is an abelian Leibniz algebra. If a Leibniz algebra L has an ideal A,
then the factor algebra L/A is a Leibniz algebra. Say K = Leib(L). If the Leibniz algebra
L/K is abelian, then

[x+K,x+K] = [x, x] +K = K

for all x ∈ L. This means that L/K is a Lie algebra. Let L1 and L2 be two Leibniz algebras.
A map ϕ :L1→L2 is called a homomorphism if ϕ([x, y])= [ϕ(x), ϕ(y)] for all x, y∈L1 and ϕ
is a linear map. If ϕ is bijective, we say that ϕ is an isomorphism.

3 Some Properties of non-Lie Leibniz Algebras

Suppose that L is a non-Lie Leibniz algebra over a field F . As in case of Lie algebras, the
sum and intersection of two ideals of a Leibniz algebra is an ideal. However, in general, the
product of two ideals is not an ideal. The following example justifies it.

Example 1 Let L be a vector space over a field with {u1, u2, u3, u4, u5}. We define the
operation on basis vectors by the following rule:
[u1, u2] = −u2, [u1, u4] = u5, [u1, u5] = u4, [u2, u1] = u2, [u2, u3] = u5, [u3, u2] = u4, [u4, u1] =
u4, [u5, u1] = −u4 and other products are zero. I1 = Fu2⊕Fu4⊕Fu5 and I2 = Fu3⊕Fu4⊕Fu5
are ideals of L. As [I1, I2] = Fu5, the product of I1 and I2 is not ideal.

Let L be a Leibniz algebra over a field F . An F -linear map D : L→ L is called a derivation
of L if for all x, y ∈ L, D([x, y]) = [x,D(y)] + [D(x), y]. By Der(L) we denote the set of
derivations of L. Let D1 and D2 be two derivations of L. If L is Lie algebra, then [D1, D2]
is also derivation. In case of non-Lie Leibniz algebras, [D1, D2] is not derivation. We define
linear operator adx on L, called the adjoint endomorphism of x, by adxy = [x, y] for all y ∈ L.
By Leibniz identity, the map adx : L 7→ L is a derivation of L. By Leibniz identity the
derivation adx coincides with the Jacobi identity, that is, adx([y, z]) = [adxy, z] + [y, adxz] for
all x, y, z ∈ L. We denote by Ad(L) the set of all adx for x ∈ L. This set is a Lie algebra
under the commutator bracket. Moreover, it is easy to check that [adx, ady] = ad[x,y] for all
x, y ∈ L.

The left (respectively right) center C left(L) (respectively Cright(L)) of a Leibniz algebra
L is defined by the rule:

C left(L) = {x ∈ L|[x, y] = 0 for each element y ∈ L}

and respectively

Cright(L) = {x ∈ L|[y, x] = 0 for each element y ∈ L}.

The left center of L is an ideal, but in general, the right center of L is not ideal. Furthermore,
the right and left centers have different structures. The following example shows this.
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Example 2 Let L be a vector space over a field with {u1, u2, u3, u4}. We define the operation
on basis vectors by the following rule [u1, u2] = u4 + u3, [u1, u3] = −u4 − u3, [u2, u2] = u1,
[u1, u4] = u3 +u4, and other products are zero. C left(L) = Fu4⊕Fu3 is ideal, but Cright(L) =
Fu1 is not ideal.

Acknowledgement: This work was supported by Kırşehir Ahi Evran University Scientific
Research Projects Coordination Unit. Project Number: FEF.A4.18.009.
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Eskişehir, Turkey

Mustafa DEDE
Kilis 7 Aralık University,

Kilis, Turkey

Abstract

In this paper, we study the spacelike translation surfaces generated by two space curves
according to q-frame in 3-dimensional Minkowski space E3

1 . We investigate classification
of such surfaces in E3

1 with q-frame curvatures. Finally, several examples are given by
figures for these surfaces.

Keywords: q-frame, translation surfaces, space curve.

1 Introduction

The theory of translation surfaces is always one of interesting topics in Euclidean and ambi-
ent spaces. Translation surfaces have been investigated from the various viewpoints by many
differential geometers. L. Verstraelen, J. Walrave and S. Yaprak have investigated minimal
translation surfaces in n-dimensional Euclidean spaces [18]. H. Liu has given the classifica-
tion of the translation surfaces with constant mean curvature or constant Gauss curvature in
3-dimensional Euclidean space E3 and 3-dimensional Minkowski space E3 [12]. D. W. Yoon
and Baba-Hamed et al. have studied translation surfaces in 3-dimensional Lorentz-Minkowski
space [3, 19]. M. I. Munteanu and A. I. Nistor have studied the second fundamental form of
translation surfaces in E3 [13]. Çetin et al. (2011) investigated the translation surfaces in
3- dimensional Euclidean space by using non-planar space curves and they gave the differen-
tial geometric properties for both translation surfaces and minimal translation surfaces [6].
Moreover, Çetin et al. (2011) studied the translation surface with Frenet frames and Darboux
frame and gave some differential geometric properties of the translation surfaces in E3

1 [7].
Ali et al. have given a classification of some special points on translation surfaces in E3 [2].
Sipus and Divjak (2011) have described translation surfaces in Galilean space with constant
Gauss and mean curvatures [16]. Also, Translatiıon surface is used in many applications such
as architecture to design and construct the glass roofing structures etc.

Recently, there are a number of different adapted frames along a space curve. İnspired
by the 3D offset curve application of the quasi-normal vector nq [5].Concordantly, Dede et al.
defined the q-frame for tubular surface modeling [8]. The q-frame offers two key advantages
over Frenet frame: a) it is defined for all points along every space curve on which curvature may
vanish at some points, b) it avoid the unnecessary twist around the tangent [9]. Additionally,
Dede et al. have studied translation surfaces according to q-frame [17].
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In this paper, we study the spacelike translation surfaces generated by two space curves
according to q-frame in 3-dimensional Minkowski space E3

1 . We investigate classification of
such surfaces in E3

1 with the q-frame curvatures. Finally, several examples are given by figures
for these surfaces.

2 Preliminaries

Coquillart [5] introduced the quasi-normal vector of a space curve in order to construct the
3D curve offset. The quasi-normal vector is defined for each point of the curve, and lies in
the plane perpendicular to the tangent of the curve at this point [15]. As an alternative to
Frenet frame we define a new adapted frame along a space curve, called as the q-frame.

Let α (u) be a regular space curve with the q-frame. The q-frame {t,nq,bq,k} along α(t)
is given byThe q-frame {t,nq,bq,k} along α(t) is given by

t =
α′

‖α′‖ ,nq =
t ∧ k

‖t ∧ k‖ ,bq = t ∧ nq. (1)

where t is the unit tangent vector, nq is the quasi-normal and bq is the quasi-binormal vector.
Also, k is the projection vector is chosen as k = (0, 0, 1) or (0, 1, 0) [8, 9]. The q-frame along
a space curve is shown in Figure 1.

Figure 1: The q-frame and Frenet frame.

The variation equations of the q-frame of a spacelike curve,which has the unit tangent vec-
tor t (spacelike), the quasi-normal nq (timelike) and the quasi-binormal vector bq (spacelike)
are given by 


t′

n′q
b′q


 =




0 −k1 k2
−k1 0 k3
−k2 k3 0






t
nq
bq


 (2)

where the q-curvatures are
k1 = κ cosh θ

k2 = −κ sinh θ

k3 = dθ + τ .

(3)

If the orthonormal bases change the causality, the variation equations of the q-frame of a
spacelike curve,which has the unit tangent vector t (spacelike), the quasi-normal nq (spacelike)
and the quasi-binormal vector bq (timelike) will be given in the following form




t′

n′q
b′q


 =




0 k1 −k2
−k1 0 −k3
−k2 −k3 0






t
nq
bq


 (4)
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where the q-curvatures are
k1 = κ cosh θ

k2 = −κ sinh θ

k3 = −dθ − τ .
(5)

[11]. In 3-dimensional Minkowski space R3
1, the inner product and the cross product of two

vectors u = (u1, u2, u3), v = (v1, v2, v3) ∈ R3
1 are defined as

< u, v >= u1v1 + u2v2 − u3v3 (6)

and
u ∧ v = (u3v2 − u2v3, u1v3 − u3v1, u1v2 − u2v1) (7)

where e1 ∧ e2 = e3, e2 ∧ e3 = −e1, e3 ∧ e1 = −e2, respectively [1]. If u and v are spacelike
vectors, then u ∧ v is a timelike vector [14].

Let x and y be future pointing (or past pointing) timelike vectors in E3
1 , then there is an

unique real number θ ≥ 0 such that

〈x, y〉 = ‖x‖ ‖y‖ cosh θ.

This number is called the hyperbolic angle between the vectors x and y.
Let x and y be spacelike vectors in E3

1 that span spacelike vector subspace. Then, there
is an unique real number θ ≥ 0 such that

〈x, y〉 = ‖x‖ ‖y‖ cos θ.

This number is called the spacelike angle between the vectors x and y.
Let x be a spacelike and y be a timelike vectors in E3

1 , then there is an unique real number
θ ≥ 0 such that

〈x, y〉 = ‖x‖ ‖y‖ sinh θ.

This number is called the timelike angle between the vectors x and y [14].
The norm of the vector u is given by

‖u‖ =
√
|〈u, u〉| (8)

We say that a Lorentzian vector u is spacelike, lightlike or timelike if 〈u, u〉 > 0, 〈u, u〉 = 0
and u 6= 0, 〈u, u〉 < 0, respectively. In particular, the vector u = 0 is spacelike.

An arbitrary curve α(s) in R3
1, can locally be spacelike, timelike or null(lightlike), if all

its velocity vectors α′(s) are respectively spacelike, timelike or null [14]. A null curve α is
parameterized by pseudo-arc s if 〈α′′(s), α′′(s)〉 = 1. On the other hand, a non-null curve α is
parameterized by arc-lenght parameter s if 〈α′(s), α′(s)〉 = ±1 [4].

When a space curve is translated over another space curve, the resulting surface can be
considered as the most general appearance of a translation surface. Consequently, this surface
can be parameterized as the sum of two space curves. Quite often, the class of translation
surfaces is restricted to those that can be parameterized as the sum of two plane curves. So
it can be parameterized by a patch

M(u, v) = α(u) + β (v) ,

where u and v are the parameters of the arc lengths of the curves α and β, respectively [10].
Let {tα,nα,bα} be the Frenet frame field of α with curvature κα and torsion τα. Also, let

{tβ,nβ,bβ} be the Frenet frame field of β with curvature κβ and torsion τβ. A surface that
can be generated from two space curves by translating either one of them parallel to itself in
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such a way that each of its points describes a curve that is a translation of the other curve.
Let M(u, v) be a translation surface in 3-dimensional Euclidean space. Then,

M(u, v) = (α1 + β1, α2 + β2, α3 + β3)

where α = (α1, α2, α3) and β = (β1, β2, β3).
The unit normal of translation surface can be defined by

U (u, v) =
1

sinϕ
(tα ∧ tβ)

where ϕ(u) is the angle between tangent vectors of α(u) and β(v). The first fundamental
form I of the surface M(u, v) is

I = du2 + 2 cosϕdudv + dv2

and the second fundamental form II is

II = κα cos θαdu
2 + κβ cos θβdv

2

where θα and θβ are the angles between U and nα, nβ, respectively [6].It is well known that
the Gauss and mean curvatures of a surface are given by

K =
LN −M2

EG− F 2
, 2H =

LG− 2MF +NE

EG− F 2
. (9)

3 Spacelike Translation Surfaces with q-Frame

In this section, we introduce the spacelike translation surfaces by using the non-null curves.
Let M(u, v) be a spacelike translation surface in 3-dimensional Minkowski space. Then

M(u, v) is parametrized by
M(u, v) = α(u) + β(v), (10)

where α and β being unit-speed spacelike curves of the arclength parameters u and v, respec-
tively.

Let {tα,nαq ,bαq } be the q-frame field of α with q-curvatures kα1 , k
α
2 and kα3 . and {tα,nβq ,bβq }

be the q-frame field of β with q-curvatures kβ1 , k
β
2 and kβ3 . Also, let M(u, v) be a translation

surface in 3-dimensional Minkowski space. Then,

M(u, v) = (α1 + β1, α2 + β2, α3 + β3) (11)

where α = (α1, α2, α3) and β = (β1, β2, β3). The partial derivatives of M(u, v), with respect
to u and v, are determined by

Mu = tα (12)

and
Mv = tβ. (13)

Case 1:In this case we introduce the spacelike translation surfaces by using the spacelike

curves. Let α(u) be a spacelike curve which have the tangent vector tα (spacelike), quasi-
normal vector nqα (timelike) and quasi-binormal vector bqα (spacelike) with the projection
vector k (spacelike) and β(v) be a spacelike curve which have the tangent vector tβ (space-
like), quasi-normal vector nqβ (timelike) and quasi-binormal vector bqβ (spacelike) with the
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projection vector k (spacelike). From the equation (2), q-frames of spacelike curves α(u) and
β(v) may be written as, respectively,




t′α
(nqα)′

(bqα)′


 =




0 −kα1 kα2
−kα1 0 kα3
−kα2 kα3 0






tα
nqα
bqα


 (14)

and 


t′β
(nqβ)′

(bqβ)′


 =




0 −kβ1 kβ2
−kβ1 0 kβ3
−kβ2 kβ3 0







tβ
nqβ
bqβ


 , (15)

where kαi and kβi are q-curvature of spacelike curves α(u) and β(v) for 1 ≤ i ≤ 3.
By using equations (12) and (13), the unit normal of the spacelike translation surface can

be defined by

U (u, v) =
1

sinϕ
(tα ∧ tβ) (16)

where ϕ(u) is the angle between the tangent vectors of α(u) and β(v).
Theorem 3.1. The Gauss and mean curvatures of the translation surface are given by

K =
(−kα1 coshφα + kα2 sinhφα)(−kβ1 cosφβ + kβ2 sinφβ)

sin2 φ
(17)

and

H =
−kβ1 coshφβ + kβ2 sinhφβ − kα1 coshφα + kα2 sinhφα

2 sin2 φ
(18)

where kαi and kβi are q-curvature of spacelike curves α(u) and β(v) for i = 1, 2.
Proof: From (12) and (13), the components E = 〈Mu,Mu〉, F = 〈Mu,Mv〉 and G =

〈Mv,Mv〉 of the first fundamental form I of the spacelike translation surface M(u, v) is

I = du2 + 2 cosϕdudv + dv2. (19)

Similarly, we can derive the components L = 〈ψrss, U〉 , M = 〈ψrsv, U〉 and N = 〈ψrvv, U〉 of
the second fundamental form II of the spacelike translation surface M(u, v) is

II = (−kα1 coshφα + kα2 sinhφα)du2 + (−kβ1 coshφβ + kβ2 sinhφβ)dv2 (20)

where φα is the angle between the vectors of U and nαq , φβ is the angle between the vectors

of U and nβq .
By substituting components of the equations (19) and (20) into the equation (9), the

Gauss and mean curvatures of the spacelike translation surface are obtained by

K =
(−kα1 coshφα + kα2 sinhφα)(−kβ1 cosφβ + kβ2 sinφβ)

sin2 φ

and

H =
−kβ1 coshφβ + kβ2 sinhφβ − kα1 coshφα + kα2 sinhφα

2 sin2 φ
.

Case 2:In this case we introduce the spacelike translation surfaces by using the spacelike

curves. Let α(u) be a spacelike curve which have the tangent vector tα (spacelike), quasi-
normal vector nqα (timelike) and quasi-binormal vector bqα (spacelike) with the projection
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vector k (spacelike) and β(v) be a spacelike curve which have the tangent vector tβ (space-
like), quasi-normal vector nqβ (spacelike) and quasi-binormal vector bqβ (timelike) with the
projection vector k (timelike). From the equations (2) and (4), q-frames of spacelike curves
α(u) and β(v) may be written as, respectively,




t′α
(nqα)′

(bqα)′


 =




0 −kα1 kα2
−kα1 0 kα3
−kα2 kα3 0






tα
nqα
bqα


 (21)

and 


t′β
(nqβ)′

(bqβ)′


 =




0 kβ1 −kβ2
−kβ1 0 −kβ3
−kβ2 −kβ3 0







tβ
nqβ
bqβ


 , (22)

where kαi and kβi are q-curvature of spacelike curves α(u) and β(v) for 1 ≤ i ≤ 3.
By using equations (12) and (13), the unit normal of the spacelike translation surface can

be defined by

U (u, v) =
1

sinϕ
(tα ∧ tβ) (23)

where ϕ(u) is the angle between the tangent vectors of α(u) and β(v).
Theorem 3.2. The Gauss and mean curvatures of the translation surface are given by

K =
(−kα1 coshφα + kα2 sinhφα)(kβ1 cosφβ − kβ2 sinφβ)

sin2 φ
(24)

and

H =
kβ1 coshφβ − kβ2 sinhφβ − kα1 coshφα + kα2 sinhφα

2 sin2 φ
(25)

where kαi and kβi are q-curvature of spacelike curves α(u) and β(v) for i = 1, 2.
Proof: From (12) and (13), the components E = 〈Mu,Mu〉, F = 〈Mu,Mv〉 and G =

〈Mv,Mv〉 of the first fundamental form I of the spacelike translation surface M(u, v) is

I = du2 + 2 cosϕdudv + dv2. (26)

Similarly, we can derive the components L = 〈ψrss, U〉 , M = 〈ψrsv, U〉 and N = 〈ψrvv, U〉 of
the second fundamental form II of the spacelike translation surface M(u, v) is

II = (−kα1 coshφα + kα2 sinhφα)du2 + (kβ1 coshφβ − kβ2 sinhφβ)dv2 (27)

where φα is the angle between the vectors of U and nαq , φβ is the angle between the vectors

of U and nβq .
By substituting components of the equations (26) and (27) into the equation (9), the

Gauss and mean curvatures of the spacelike translation surface are obtained by

K =
(−kα1 coshφα + kα2 sinhφα)(kβ1 cosφβ − kβ2 sinφβ)

sin2 φ

and

H =
−kβ1 coshφβ + kβ2 sinhφβ + kα1 coshφα − kα2 sinhφα

2 sin2 φ
.

Case 3:In this case we introduce the spacelike translation surfaces by using the spacelike
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curves. Let α(u) be a spacelike curve which have the tangent vector tα (spacelike), quasi-
normal vector nqα (spacelike) and quasi-binormal vector bqα (timelike) with the projection
vector k (timelike) and β(v) be a spacelike curve which have the tangent vector tβ (space-
like), quasi-normal vector nqβ (timelike) and quasi-binormal vector bqβ (spacelike) with the
projection vector k (spacelike). From the equations (2) and (4), q-frames of spacelike curves
α(u) and β(v) may be written as, respectively,




t′α
(nqα)′

(bqα)′


 =




0 kα1 −kα2
−kα1 0 −kα3
−kα2 −kα3 0






tα
nqα
bqα


 (28)

and 


t′β
(nqβ)′

(bqβ)′


 =




0 −kβ1 kβ2
−kβ1 0 kβ3
−kβ2 kβ3 0







tβ
nqβ
bqβ


 , (29)

where kαi and kβi are q-curvature of spacelike curves α(u) and β(v) for 1 ≤ i ≤ 3.
By using equations (12) and (13), the unit normal of the spacelike translation surface can

be defined by

U (u, v) =
1

sinϕ
(tα ∧ tβ) (30)

where ϕ(u) is the angle between the tangent vectors of α(u) and β(v).
Theorem 3.3. The Gauss and mean curvatures of the translation surface are given by

K =
(kα1 coshφα − kα2 sinhφα)(−kβ1 cosφβ + kβ2 sinφβ)

sin2 φ
(31)

and

H =
−kβ1 coshφβ + kβ2 sinhφβ + kα1 coshφα − kα2 sinhφα

2 sin2 φ
(32)

where kαi and kβi are q-curvature of spacelike curves α(u) and β(v) for i = 1, 2.
Proof: From (12) and (13), the components E = 〈Mu,Mu〉, F = 〈Mu,Mv〉 and G =

〈Mv,Mv〉 of the first fundamental form I of the spacelike translation surface M(u, v) is

I = du2 + 2 cosϕdudv + dv2. (33)

Similarly, we can derive the components L = 〈ψrss, U〉 , M = 〈ψrsv, U〉 and N = 〈ψrvv, U〉 of
the second fundamental form II of the spacelike translation surface M(u, v) is

II = (kα1 coshφα − kα2 sinhφα)du2 + (−kβ1 coshφβ + kβ2 sinhφβ)dv2 (34)

where φα is the angle between vectors of U and nαq , φβ is the angle between vectors of U and

nβq .
By substituting components of the equations (33) and (34) into the equation (9), the

Gauss and mean curvatures of the spacelike translation surface are obtained by

K =
(kα1 coshφα − kα2 sinhφα)(−kβ1 cosφβ + kβ2 sinφβ)

sin2 φ

and

H =
−kβ1 coshφβ + kβ2 sinhφβ + kα1 coshφα − kα2 sinhφα

2 sin2 φ
.
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Case 4:In this case we introduce the spacelike translation surfaces by using the spacelike

curves. Let α(u) be a spacelike curve which have the tangent vector tα (spacelike), quasi-
normal vector nqα (spacelike) and quasi-binormal vector bqα (timelike) with the projection
vector k (timelike) and β(v) be a spacelike curve which have the tangent vector tβ (space-
like), quasi-normal vector nqβ (spacelike) and quasi-binormal vector bqβ (timelike) with the
projection vector k (timelike). From the equation (4), q-frames of spacelike curves α(u) and
β(v) may be written as, respectively,




t′α
(nqα)′

(bqα)′


 =




0 kα1 −kα2
−kα1 0 −kα3
−kα2 −kα3 0






tα
nqα
bqα


 (35)

and 


t′β
(nqβ)′

(bqβ)′


 =




0 kβ1 −kβ2
−kβ1 0 −kβ3
−kβ2 −kβ3 0







tβ
nqβ
bqβ


 , (36)

where kαi and kβi are q-curvature of spacelike curves α(u) and β(v) for 1 ≤ i ≤ 3.
By using equations (12) and (13), the unit normal of the spacelike translation surface can

be defined by

U (u, v) =
1

sinϕ
(tα ∧ tβ) (37)

where ϕ(u) is the angle between the tangent vectors of α(u) and β(v).
Theorem 3.4. The Gauss and mean curvatures of the translation surface are given by

K =
(kα1 coshφα − kα2 sinhφα)(kβ1 cosφβ − kβ2 sinφβ)

sin2 φ
(38)

and

H =
kβ1 coshφβ − kβ2 sinhφβ + kα1 coshφα − kα2 sinhφα

2 sin2 φ
(39)

where kαi and kβi are q-curvature of spacelike curves α(u) and β(v) for i = 1, 2.
Proof: From (12) and (13), the components E = 〈Mu,Mu〉, F = 〈Mu,Mv〉 and G =

〈Mv,Mv〉 of the first fundamental form I of the spacelike translation surface M(u, v) is

I = du2 + 2 cosϕdudv + dv2. (40)

Similarly, we can derive the components L = 〈ψrss, U〉 , M = 〈ψrsv, U〉 and N = 〈ψrvv, U〉 of
the second fundamental form II of the spacelike translation surface M(u, v) is

II = (kα1 coshφα − kα2 sinhφα)du2 + (kβ1 coshφβ − kβ2 sinhφβ)dv2 (41)

where φα is the angle between the vectors of U and nαq , φβ is the angle between the vectors

of U and nβq .
By substituting components of the equations (40) and (41) into the equation (9), the

Gauss and mean curvatures of the spacelike translation surface are obtained by

K =
(kα1 coshφα − kα2 sinhφα)(kβ1 cosφβ − kβ2 sinφβ)

sin2 φ

and

H =
kβ1 coshφβ − kβ2 sinhφβ + kα1 coshφα − kα2 sinhφα

2 sin2 φ
.

H. Tozak, C. Ekici, M. Dede : Spacelike Translation Surface According to Q-Frame
in Minkowski 3-Space

380

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



Definition 3.1. Let α(u) be a spacelike curve that is parameterized by arc length u with
q-frame {tα,nqα,bqα} on a spacelike surface M. If

〈U,nqα〉 = 0

where the timelike vector U is the unit normal of the spacelike surface M and the space-
like(timelike) quasi-normal vector nqβ, then the spacelike curve α is called spacelike (timelike)
nqα-line.

Theorem 3.5. a) α is not a timelike nqα-line of spacelike translation surface for Case 1
and Case 2

b) If α is a spacelike nqα-line of spacelike translation surface, then
kα2
kα3

= − tanhφ for Case

3 and Case 4
Proof a) Since 〈U,nqα〉 = coshφα and coshφα 6= 0, the results are easily obtained.
b) Since 〈U,nqα〉 = cosφα , then from (16),

cosφα = − 1

sinφ
〈bqα, tβ〉 (42)

is obtained.
Differentiating (42) with respect to u, using (28), (35) and 〈bqα, t′β〉 = 0 , so

φ′α sinφα = − cothφ(−φ′ cosφα + kα2 )− kα3 . (43)

Since α is a nqα-line, cosφα = 0, sinφα = ±1 and φ′α = 0. From (43), we get

kα2
kα3

= − tanhφ. (44)

Theorem 3.7. The Gauss curvature of a spacelike translation surface generating by spacelike
curves is zero if and only if

a)
kα1
kα2

= tanhφα or
kβ1

kβ2
= tanhφβ for Case 1.

b)
kα1
kα2

= tanhφα or
kβ1

kβ2
= cothφβ for Case 2.

c)
kα1
kα2

= cothφα or
kβ1

kβ2
= tanhφβ for Case 3.

d)
kα1
kα2

= cothφα or
kβ1

kβ2
= cothφβ for Case 4.

where kαi , k
β
i (i = 1, 2) are, respectively, q-curvatures of α and β.

Proof: a) (⇒) Let the Gauss curvature be zero, then from the equation (17) we get

kα1
kα2

= tanhφα or
kβ1

kβ2
= tanhφβ.

(⇐) If

kα1
kα2

= tanhφαor
kβ1

kβ2
= tanhφβ

where φα is the angle between the vectors of U and nαq , φβ is the angle between the vectors

of U and nβq . Then, we obtain

−kα1 coshφα + kα2 sinhφα = 0 or − kβ1 coshφβ + kβ2 sinhφβ = 0. (45)

By substituting the equations (45) into the equation (17), K = 0 is get. It is easy to see that
the similar results are obtained with the same steps for the other cases.
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4 EXAMPLES

Example 5.1. Let M(u, v) be the spacelike translation surface given by

M(u, v) =

(√
5 sinu− 2 cos

v√
3
,
√

5 cosu+ 2 sin
v√
3
, 2u+

v√
3

)

with generator spacelike curves

α(u) =
(√

5 sinu,
√

5 cosu, 2u
)

and β(v) = (−2 cos
v√
3
, 2 sin

v√
3
,
v√
3

)

where the projection vector k is (0, 0, 1).
The tangent and the quasi-normal and the quasi-binormal vector of α are

tα = (
√

5 cosu,−
√

5 sinu, 2)

nqα = (sinu, cosu, 0)

and
bqα =

(
2 cosu,−2 sinu,

√
5
)
.

where the projection vector k is (0, 0, 1).
Similarly, the tangent and the quasi-normal and the quasi-binormal vector of β are

tβ =

(
2√
3

sin
v√
3
,

2√
3

cos
v√
3
,

1√
3

)

nqβ =

(
− cos

v√
3
, sin

v√
3
, 0

)

and

bqβ =

(
1√
3

sin
v√
3
,

1√
3

cos
v√
3
,

2√
3

)

where the projection vector k is (0, 0, 1). The first and the second fundamental forms of the
spacelike translation surface M(u, v) are

I = du2 − 4√
3

(√
5 sin(u− v√

3
) + 1

)
dudv + dv2.

and

II = − 1√
3

(4
√

5 sin(u− v√
3

) + 5)du2 − 2

3
√

3
(
√

5 sin(u− v√
3

) + 4)dv2,

respectively. Also, the Gauss and mean curvatures of the translation surface are obtained as

K =

40 sin2(u− v√
3

) + 42
√

5 sin(u− v√
3

) + 40

60 sin2(u− v√
3

) + 24
√

5 sin(u− v√
3

) + 3

H =

10
√

5 sin(u− v√
3

) + 7

40
√

3 sin2(u− v√
3

) + 16
√

15 sin(u− v√
3

) + 2
√

3
.

The graph is plotted when the tangent vectors between α and β are orthogonal in Figure 2.
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Figure 2

Example 5.2. Let M(u, v) be the spacelike translation surface given by

M(u, v) =
(√

5 sinu+ 2v,
√

5 cosu− 2v, 2u+ v
√

7
)

with generator spacelike curves

α(u) =
(√

5 sinu,
√

5 cosu, 2u
)

and β(v) = (2v,−2v, v
√

7)

where the projection vector k is (0, 0, 1).
The tangent and the quasi-normal and the quasi-binormal vector of α are

tα = (
√

5 cosu,−
√

5 sinu, 2)

nqα = (sinu, cosu, 0)

and
bqα =

(
2 cosu,−2 sinu,

√
5
)
.

where the projection vector k is (0, 0, 1).
Similarly, the tangent and the quasi-normal and the quasi-binormal vector of β are

tβ =
(

2,−2,
√

7
)

nqβ =

(√
2

2
,

√
2

2
, 0

)

and

bqβ =

(√
14

2
,−
√

14

2
, 2
√

2

)

where the projection vector k is (0, 0, 1). The first and the second fundamental forms of the
spacelike translation surface M(u, v) are

I = du2 +
(

4
√

5 (sinu+ cosu)− 4
√

7
)
dudv + dv2.

and
II =

(
4
√

5 (sinu+ cosu)− 5
√

7
)
du2,

respectively. Also, the Gauss and mean curvatures of the translation surface are obtained as

K = 0

H =
4
√

5 (sinu+ cosu)− 5
√

7

16
√

35 (sinu+ cosu)− 80 sinu cosu
.
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If we take the parameter u in the range
(
−3+

√
7

3
√
7+1
− 2π, 3+

√
7

−1+3
√
7
− 2π

)
, the surface M will be

the spacelike translation. Also, the graph is plotted when the tangent vectors between α and
β are orthogonal in Figure 3.

Figure 3
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Abstract

In this work, we take tangent spherical images as base curves. Using Frenet formulae,
we characterize Bertrand W -curve couples of tangent spherical images in E4. Moreover,
we study ccr−curves of tangent spherical images in E4. Finally, we give involute-evolute
curve couple of tangent spherical images in Euclidean 4-space E4.

Keywords: Tangent spherical images, inclined curve, involute-evolute curve couple,
Bertrand W -curve, ccr-curve.

1 Introduction

It is well-known that, if a curve differentiable in an open interval, at each point, a set of
mutually orthogonal unit vectors can be constructed. And these vectors are called Frenet
frame or moving frame vectors. The rates of these frame vectors along the curve define
curvatures of the curves. The set, whose elements are frame vectors and curvatures of a
curve, is called Frenet apparatus of the curves [1].

In their study [2], Yılmaz and Turgut also investigated relations among Frenet apparatus
of space-like Bertrand W-curve couples in Minkowski space-time. They also showed that
Frenet apparatus of an evolute curve can be formed according to apparatus of involute curve
and that there are no inclined evolutes in Minkowski space-time E4

1 [3]. Turgut et al. proved
that there are no timelike involutes of a time-like evolute. In the light of their result, they
observed that involute curve transforms to a time-like curve when evolute is a space-like helix
with a time-like principal normal. Then, they investigated relationships among Frenet-Serret
apparatus of involute and evolute curves by the method expressed as in their previous work.
Moreover, they also proved that the time-like involute cannot be a helix, a general helix or a
type-3 slant helix, respectively [4].

Mağden gave some characterizations for regular smooth curves in Euclidean 4-space [5].
Nizamoğlu and Köroğlu characterized a curve in Euclidean 4-space by obtaining a differential
equation given by the axisof Frenet frame [6]. Yılmaz et al. characterized inclined curves
by obtaining a vector differential equation of fifth order and presented solutions of this equa-
tion for special cases [7]. Turgut and Yılmaz gave some characterizations of slant helices in
Euclidean 4-space E4 [8]. In another work [9], some relations between involute-evolute curve
couples were found in terms of Frenet elements in Euclidean 4-space E4. Turgut and Ali gave
some characterizations of helices and ccr-curves in the Euclidean 4-space. Thereafter, they
presented relations among Frenet-Serret invariants of Bertrand curve of a helix. Moreover, in
the same space, they gave some new characterizations of involute of a helix [10].

∗Corresponding author. E-mail address: yasinunluturk@klu.edu.tr
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In this work, as differs from the works [2], [3], [4], we study Bertrand W -curve couples
of tangent spherical images using Frenet formulae in E4. In the mentioned works, these char-
acterizations had been given for a regular curve. Moreover, we characterize ccr−curves of
tangent spherical images in E4. Finally, we give involute-evolute curve couple of tangent
spherical images in this space E4.

2 Preliminaries

Let α : I ⊂ R −→ E4 be an arbitrary curve in Euclidean space E4. Recall that the curve α is

said to be of unit speed (or parameterized by arclength function) if
〈
α
′
, α
′
〉

= 1 where 〈, 〉 is

the standard scalar (inner) product of E4 given by

〈a, a〉 = a1b1 + a2b2 + a3b3 + a4b4 (1)

for each
a = (a1, a2, a3, a4) , b = (b1, b2, b3, b4) ∈ E4.

In particular, the norm of a vector a ∈ E4 is given by

‖a‖ =
√
〈a, a〉.

Denoted by {T (s), N(s), B(s), E(s)} the moving Frenet frame along the unit speed curve α.
Then, the Frenet formulas are given by [1]:




T ′(s)
N ′(s)
B′(s)
E′(s)


 =




0 κ(s) 0 0
−κ(s) 0 τ(s) 0
0 −τ(s) 0 σ(s)
0 0 −σ(s) 0







T (s)
N(s)
B(s)
E(s)


 . (2)

Here, T,N,B and E are called, respectively, the tangent, the normal, the binormal and trinor-
mal vector fields of the curves. And the functions κ(s), τ(s) and σ(s) are called, respectively,
the first, the second and third curvature of the curve α. Recall that a regular curve is called
a W -curve if it has constant Frenet curvatures [1].

Let α : I ⊂ R −→ E4 be a regular curve. If tangent vector field T of the curve α forms a

constant angle with unit vector
−→
U , this curve is called an inclined curve in E4.

Let ϕ and ξ be unit speed curves in E4. The curve ϕ is an involute of ξ if ϕ lies on the
tangent line to ξ at ξ(s0) and tangents to ξ, ξ(s0) and ϕ are perpendicular for each s0. The
curve ϕ is an evolute of ξ if ξ is an involute of ϕ. This curve couple is defined by ϕ = ξ + µT
[11].

Definition 2.1. ([13]) Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) and c = (c1, c2, c3, c4) be
vectors in E4. The vector product of a, b and c is defined by the determinant

a ∧ b ∧ c =

∣∣∣∣∣∣∣∣

e1 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣
,

where
e1 ∧ e2 ∧ e3 = e4, e2 ∧ e3 ∧ e4 = e1, e3 ∧ e4 ∧ e1 = e2,
e4 ∧ e1 ∧ e2 = e3, e3 ∧ e2 ∧ e1 = e4.

Theorem 2.2. Let α = α(t) be an arbitrary curve in E4. Frenet apparatus of the curve
α can be calculated by the following equations:

T =
α′

‖α′‖ , (3)
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N =

∥∥∥α′
∥∥∥
2
α′′ − 〈α′, α′′〉α′

∥∥∥‖α′‖2 α′′ − 〈α′, α′′〉α′
∥∥∥
, (4)

B = ηE ∧ T ∧N, (5)

E = η
T ∧N ∧ α′′′
‖T ∧N ∧ α′′′‖ , (6)

κ =

∥∥∥∥
∥∥∥α′
∥∥∥
2
α′′ − 〈α′, α′′〉α′

∥∥∥∥
‖α′‖4

,
(7)

τ =
‖T ∧N ∧ α′′′‖ ‖α′‖∥∥∥‖α′‖2 α′′ − 〈α′, α′′〉α′

∥∥∥
, (8)

σ =

〈
α(IV ), E

〉

‖T ∧N ∧ α′′′‖ ‖α′‖ ,
(9)

where η is taken to make 1 determinant of [T,N,B,E] matrix [9].
Definition 2.3. Let α = α(t) be a unit speed ccr−curve in E4. Then, we know

κ

τ
= c1, and

τ

σ
= c2,

where c1 and c2 are constants [12].
Definition 2.4. Let a curve α be in E4 be given with s ∈ I arc parameter. Provide T is

the unit tangent vector of the curve α, we obtain a curve α1 = T (s) on the unit sphere if we
carry these tangents to at a point O of the unit sphere. This curve is called the first spherical
indicatrix of the curve α (or tangent spherical indicatrix) [11].

3 Main results

Theorem 3.1. Let ϕ be an involute of α1 and be a W -curve in E4. The Frenet apparatus of
ϕ (Tϕ, Nϕ, Bϕ, Eϕ, κϕ, τϕ, σϕ) can be formed by apparatus of −→α 1 (T1, N1, B1, E1, κ1, τ1, σ1).
Here, the curve α1 is tangent spherical image of α and s1 is arclength parameter of α1(s).

Proof. From definition of involute-evolute curve couples, we get

ϕ = α1 + µT1. (10)

Differentiating both sides with respect to s1, we have

dϕ

dsϕ

dsϕ
ds1

=
dα1

ds1
+
dµ

ds1
T1 + µ

dT1
ds1

or

Tϕ
dsϕ
ds1

= T1

(
dµ

ds1
+ 1

)
+ µ

dT1
ds1

. (11)

Recalling definition of involute and evolute curves, by multiplying both sides of (11) with T1,
we obtain

dµ

ds1
+ 1 = 0. (12)

Hence µ = c− s1. Then, we write

ϕ = α1 + (c− s1)T1. (13)
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Differentiating both sides with respect to s1, we get

Tϕ
dsϕ
ds1

= (c− s1)κ1N1. (14)

Taking the norm of both sides of (14) (here · denotes derivative according to s1) we obtain

Tϕ = N1 (15)

and ∥∥∥ ·ϕ
∥∥∥ = (c− s1)κ1. (16)

Considering the presented method, we calculate differentiations of (14) four times. We write,
respectively,

··
ϕ = −κ21 (c− s1)T1 − κ1N1 + κ1τ1 (c− s1)B1, (17)

···
ϕ =

{
−2κ21T1 − κ1 (c− s1)

[
κ21 + τ21

]
N1 − 2κ1τ1B1 + κ1τ1σ1 (c− s1)E1

}
, (18)

ϕ(IV ) = {κ21 (c− s1) 2
[
κ21 + τ21

]
T1 − κ1

[
κ21 + τ21

]
N1

−κ1τ1 (c− s1)1
[
κ21 + τ21 + σ21

]
B1 − 2κ1τ1σ1E1}.

(19)

Considering (4), we form

∥∥∥ ·ϕ
∥∥∥ ··ϕ−

〈 ·
ϕ,
··
ϕ
〉 ·
ϕ = κ1 (c− s1) [−κ1T1 + τ1B1] . (20)

Since we have the principal normal and the first curvature of the curve, we obtain

Nϕ =
−κ1T1 + τ1B1√

κ21 + τ21
. (21)

Using the vector product of T ∧N ∧ ···ϕ , we get

T ∧N ∧ ···ϕ =

∣∣∣∣∣∣∣∣∣∣

T N B E
0 1 0 0
−κ1√
κ21 + τ21

0
τ1√
κ21 + τ21

0

···
ϕ1

···
ϕ2

···
ϕ3

···
ϕ4

∣∣∣∣∣∣∣∣∣∣

,

and find that

T ∧N ∧ ···ϕ =
κ1τ1√
κ21 + τ21

[τ1σ1 (c− s1)T1 + κ1σ1 (c− s1)B1 + 3κ1E1] . (23)

From (6), we obtain trinormal vector

Eϕ = η
τ1σ1 (c− s1)T1 + κ1σ1 (c− s1)B1 + 3κ1E1√

[τ1σ1 (c− s1)]2 + [κ1σ1 (c− s1)]2 + 9κ21
. (24)

By this way, we easily have the second and the third curvatures

τϕ =

√
[τ1σ1 (c− s1)]2 + [κ1σ1 (c− s1)]2 + 9κ21

κ21 + τ21
, (25)

σϕ =
−κ21τ1σ1

[
σ21 (c− s1)2 − 3

]

√
[τ1σ1 (c− s1)]2 + [κ1σ1 (c− s1)]2 + 9κ21

, (26)

S. Yılmaz, Y. Ünlütürk : Relations Among Frenet Apparatus Of Some Special Curves in E4 389

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



respectively. Finally, the vector product Eϕ ∧ Tϕ ∧Nϕ follows that

Bϕ =
η

A
√
κ21 + τ21

{
−3κ1σ1T1 − 3κ21B1 + σ1 (c− s1)

(
κ21 + τ21

)
E1

}
, (27)

where

A =
√

[τ1σ1 (c− s1)]2 + [κ1σ1 (c− s1)]2 + 9κ21.

Theorem 3.2. Let ϕ and α1 be unit speed regular curves in E4 and ϕ be involute of the
tangent spherical image α1. The evolute ϕ can not be an inclined curve.

Proof. By the definition of inclined curves, we may write

〈Tϕ, U〉 = cosϕ, (28)

where U is a constant vector and ϕ is a constant angle. Considering (15), we can easily have

〈N1, U〉 = cosϕ. (29)

Differentiating (29), we obtain

〈−κ1T1 + τ1B1, U〉 = 0. (30)

Therefore, we may write T1 ⊥ U and B1 ⊥ U . Let us decompose U as

U = u1N1 + u2E1. (31)

One more differentiating of (31) and using Frenet equations, we have

U = 0 (32)

which is a contradiction. Thus, evolute ϕ can not be an inclined curve.
Definition 3.3. Let α = α(t) be a unit speed curve in E4. If we translate the tangent

vector fields to the center O of the Euclidean space S3
0 , we obtain a curve θ = θ(s0). This

curve is called the tangent spherical image of the curve α in E4 [11].
Theorem 3.4. Let α = α(t) be a unit speed curve and θ = θ(s0) be its tangent spherical

image (indicatrix). The Frenet apparatus of θ can be determined by the apparatus of α = α(t)
by the following

Tθ = N,

Nθ = − 1

κθ
T +

τ

κκθ
B,

Bθ =
ε√

κ2τ2σ2κ2θ + τ4
(κ
τ

)′2



τ3
(κ
τ

)′

κκθ
T +

τ2
(κ
τ

)′

κθ
B − (κτσκθ)E


 ,

Eθ = ε

(
τ2σ

)
T + (κτσ)B + τ2

(κ
τ

)′
E

√
κ2τ2σ2κ2θ + τ4

(κ
τ

)′2 ,

κθ =

√
κ2 + τ2

κ
=

√
1 +

(
2

κ

)2

,

τ θ =

√
κ2τ2σ2κ2θ + τ4

(κ
τ

)′2

κ3κ2θ
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σθ =
εκ2θ

κ2τ2σ2κ2θ + τ4
(κ
τ

)′2



−3κ′2τ2σ − κκ′′τ2σ − 2κ2τ4σ + 3κ′τ ′κτσ + κ2ττ ′′σ

−κ2τ2σ2 + τ2
(κ
τ

)′
(3κ′τσ + 2κτ ′σ) + κτσ′




√
κ2τ2σ2κ2θ + τ4

(κ
τ

)′2
(κ2 + τ2)

.

Theorem 3.5. Let α = α(t) be a unit speed curve and θ = θ(s0) be its tangent spherical
image (indicatrix). If α is a ccr-curve, then θ is also a ccr-curve.

Proof. Let α = α(t) be a unit speed ccr-curve. Then, we know
κ

τ
= c1 and

τ

σ
= c2 where

c1 and c2 are constant. Since, in terms of Theorem 3.5, we have respectively,

κθ =

√
1 +

1

c21
= constant, (33)

and

τ θ =
1

c2
√
c21 + 1

,

θ(s0) is a spherical curve. So, we may substitute κθ and τ θ from Theorem 3.5,

σθ =
c2
c21

= constant.

Therefore,

κθ
τ θ

=

√
1 +

1

c21

c2
√
c21 + 1

=
1

c1c2
= constant,

τ θ
σθ

=
c2
√
c21 + 1
c2
c21

= c21
√
c21 + 1 = constant.

Thus we obtain θ is also a ccr-curve.
Theorem 3.6. Let α∗ and α be Betrand W−curves of the tangent spherical indicatrix

β in Euclidean 4-space. The Frenet apparatus of α∗ (T ∗, N∗, B∗, E∗, κ∗, τ∗, σ∗) can be
formed by the apparatus of α (T,N,B,E, κ, τ , σ).

Proof. From definition of Bertrand curves, we write

α∗(s∗) = α(s) + λN. (34)

Differentiating both sides of (34) with respect to s, we have

dα∗

ds∗
ds∗

ds
= T ∗

ds∗

ds
= (1− λκ)T +

dλ

ds
N + λτB. (35)

Definition of Bertrand curves yields that T ∗ ⊥ N. Multiplying both sides of (35) with gives

dλ

ds
= 0. (36)

The equation (34) implies that λ =constant. Using this in (35) and taking the norm of
both sides, we find

‖α∗‖ =
ds∗

ds
=
√
λ2τ2 + (1− λκ)2. (37)
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Therefore the tangent vector of α∗ is obtained as follows:

T ∗ =
1− λκ√

λ2τ2 + (1− λκ)2
T +

λτ√
λ2τ2 + (1− λκ)2

B. (38)

Considering equations in the method, we calculate the following equations:

··
α∗ = (κ+ λκ2 − λτ2)N + λτσE, (39)

···
α∗ = κ(−κ− λκ2 + λτ2)T + τ(κ+ λκ2 − λτ2 + λσ2)B, (40)

α∗(IV ) = (−κ3 − λκ4 − κτ2 + λτ4 − λ2τ2σ2)N + τσ(κ+ λκ2 − λτ2 + λσ2)E. (41)

Thereafter we compute

∥∥∥∥
·
α∗
∥∥∥∥
··
α∗ −

〈 ·
α∗,

··
α∗
〉 ·
α∗ = (λ2τ2 + (1− λκ)2){(κ+ λκ2 − λτ2)N + λτσE}. (42)

Using (42), we get the first curvature and the principal normal vector N∗ as follows:

κ∗ =

√
(κ+ λκ2 − λτ2)2 + λ2τ2σ2

λ2τ2 + (1− λκ)2
, (43)

and

N∗ =
(κ+ λκ2 − λτ2)N + λτσE√
(κ+ λκ2 − λτ2)2 + λ2τ2σ2

. (44)

Using the vector product of T ∗ ∧N∗ ∧
···
α∗, we get

T ∗ ∧N∗ ∧
···
α∗ = ξ1N + ξ2E. (45)

So we have the second and the third curvatures of α∗ and its trinormal vector E∗, respec-
tively, as follows:

τ∗ =

√
ξ21 + ξ22

(λ2τ2 + (1− λκ)2)2{(κ+ λκ2 − λτ2)2 + λ2τ2σ2} ,
(46)

σ∗ =
τσ(κ+ λκ2 − λτ2 + λσ2)√
(ξ21 + ξ22)(λ

2τ2 + (1− λκ)2)
, (47)

and

E∗ = µ
ξ1N + ξ2E√

ξ21 + ξ22

. (48)

Finally, the vector product N∗ ∧ T ∗ ∧ E∗ gives us the binormal vector as

B∗ =
µ

L
{(λτξ2(κ+ λκ2 − λτ2)− λ2τ2σξ1)T

+(1− λκ)(κ+ λκ2 − λτξ2 − λτσξ2)B}.
(49)
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4 Conclusion

In this work, we studied some properties of tangent spherical images, not an ordinary curve in
Euclidean 4-space E4. Hence we studied Bertrand W -curve couples of tangent spherical images
using Frenet formulae in E4. Moreover, we characterized ccr−curves of tangent spherical
images in E4. Finally, we gave involute-evolute curve couple of tangent spherical images in
this space E4. All these properties can be also obtained for normal, binormal and trinormal
spherical images in both Euclidean 4-space E4 and Minkowski space-time E4
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[7] S. Yılmaz, Ş. Nizamoğlu, M. Turgut, A note on differential geometry of the curves in E4,
Int. J. Math. Combin., 2, 2008, 104–108.

[8] M. Turgut, S. Yılmaz, Characterizations of some special helices in E4, Scientia Magna,
4(1), 2008, 51–55.
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Abstract

In this paper, CW-Smarandache curve and NCW-Smarandache curve are defined, ac-
cording to alternative frame. Then, some characters of this curves are calculated.

Keywords: CW-Smarandache curve, NCW-Smarandache curve

1 Introduction

In differential geometry, special curves have an important role. One of these curves Smaran-
dache curves. Smarandache curves was firstly defined by M. Turgut and S. Yılmaz in 2008[6].
Let α = α(s) be a regular unit speed curve in E3. This curves Frenet frame and Alternative
frame are {T,N,B} and {N,C,W}, respectively. In there, N is normal vector, W is unit
Darboux vector and C = W ∧N [5].

In this paper, we created the Smarandache curves according to the
alternative frame of the unit speed curve. Firstly, we introduced Frenet frame, Alternative
frame and its properties. After that we mentioned the relationship with Alternative frame
and Frenet frame. Then we defined two curves. And we calculated curvature, torsion, Frenet
frame and Alternative frame of this curves.

2 Preliminaries

Let α = α(s) be a regular curve with unit speed. Then the Frenet apparatus of the curve
(α)[4]

T (s) = α
′
(s), N(s) =

T
′
(s)

‖T ′(s)‖ , B(s) = T (s) ∧N(s), (1)

κ(s) = ‖T ′(s)‖, τ(s) =
det
(
α
′
(s), α

′′
(s), α

′′′
(s)
)

(
‖α′(t) ∧ α′′(t)‖

)2 ,

T
′

= κN, N
′

= −κT + τB, B
′

= −τN.

In Euclidean 3-space any regular curve α(s) depending on the Frenet
vectors moves around the axis of Darboux vector and the Darboux vector and defining a
unit vector field are given as[2]

W =
τT + κB√
κ2 + τ2

= N ∧N ′, C = W ∧N. (2)
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(a) Frenet frame (b) Alternative frame

Figure 1: CW-Smarandache curves

So build another orthonormal moving frame along the curve α(s). This frame defined as
alternative frame and is represented by {N,C,W}. The derivative formulae of the alternative
frame is given by[3]

N
′

= βC, C
′

= −βN + γW, W
′

= −γC, (3)

β =
√
κ2 + τ2, γ =

κ2

κ2 + τ2

(τ
κ

)′
.

The relationship between the Frenet frame and alternative frame is

C = κT + τB, W = τT + κB, T = −κC + τW, B = τC + κW

where
κ =

κ

β
, τ =

τ

β
. (4)

Principal normal vektor N is common both frames.

3 Smarandache Curves of Alternative Frame

Definition 1 Let α(s) be a regular curve with unit speed in E3 and {N,C,W} is Alternative
frame. Then, αCW -Smarandache curve can be identified as

αCW =
1√
2

(C +W ). (5)

Theorem 2 Let α(s) be a regular curve with unit speed in E3 and {N,C,W} be Alternative
frame. The Frenet frame of αNC-Smarandache curve is
{TNC , NNC , BNC}.

TCW =
−βN − γC + γW√

β2 + 2γ2
,

NCW =
χ3N + ν3C + µ3W√

χ2
3 + ν23 + µ23

,

BCW =

(
βµ3 − γν3

)
√(

χ2
3 + ν23 + µ23

)(
2β2 + γ2

)N

+

(
βµ3 + γχ3

)
√(

χ2
3 + ν23 + µ23

)(
2β2 + γ2

)C +

(
− βν3 − βχ3

)
√(

χ2
3 + ν23 + µ23

)(
2β2 + γ2

)W.
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where

χ3 = 2γ2
(
− β′ + γβ

)
+ βγ

(
β2 + 2γ′

)
,

ν3 = β
(
− β3 − γ′β + γβ′

)
− γ2

(
3β2 + 2γ2

)
,

µ3 = β2
(
γ′2)− γ

(
2γ3 + ββ′).

Proof. If we take the derivate of the equation (5)

TCW
dsCW
ds

=
1√
2

(−βN − γC + γW ),
dsCW
ds

=
1√
2

(β2 + 2γ2). (6)

From equations (6) tangent vector of αCW curve is

TCW =
−βN − γC + γW√

β2 + 2γ2
. (7)

If we take the derivate of the equation (7), we can write

T ′CW =

√
2
(
χ3N + ν3C + µ3W

)
(
β2 + γ2

)2 . (8)

where the coefficients are,

χ3 = 2γ2
(
− β′ + γβ

)
+ βγ

(
β2 + 2γ′

)
,

ν3 = β
(
− β3 − γ′β + γβ′

)
− γ2

(
3β2 + 2γ2

)
,

µ3 = β2
(
γ′2)− γ

(
2γ3 + ββ′).

If we take norm of equation of (8), we can write

‖T ′NW ‖ =

√
2
√
χ2
3 + ν23 + µ23(

β2 + 2γ2
)2 . (9)

From equations (1), (8) and (9) principal normal vector of αCW curve is

NCW =
χ3N + ν3C + µ3W√

χ2
3 + ν23 + µ23

. (10)

Binormal vector of αCW curve is

BCW =

(
βµ3 − γν3

)
√(

χ2
3 + ν23 + µ23

)(
2β2 + γ2

)N

+

(
βµ3 + γχ3

)
√(

χ2
3 + ν23 + µ23

)(
2β2 + γ2

)C +

(
− βν3 − βχ3

)
√(

χ2
3 + ν23 + µ23

)(
2β2 + γ2

)W.

Theorem 3 Let α(s) be a regular curve with unit speed in E3 and {N,C,W} be Alternative
frame. The curvature and torsion according to αCW -Smarandache curve of Alternative Frame
are, respectivelly,

κCW =

√
2
√
χ2
3 + ν23 + µ23(

β2 + 2γ2
)2 ,

τCW =
√

2

(
2γ3 + γβ2

)
χ̄3 +

(
− β′γ + βγ′

)
ν̄3 +

(
2γ2β + β3 + βγ′ − γβ′

)
µ̄3(

2γ3 + γβ2
)2 −

(
γβ′ − βγ′

)2
+
(
2βγ2 + β3 + γ′ − γβ′

)2 .
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where

χ̄3 = −β′′ + β
(
2γ′2

)
+ γ
(
β′ + βγ

)
,

ν̄3 = β
(
− 3β′ + γβ

)
+
(
− 3γ′2

)
− γ′′,

µ̄3 = −γ
(
β2 + γ2 + 3γ′

)
+ γ′′.

Proof. From equations (1) and (9) the curvature according to
αCW -Smarandache curve κCW is

κCW =

√
2
√
χ2
3 + ν23 + µ23(

β2 + 2γ2
)2 . (11)

If we take second and third differential of equation (5) are, respectivelly

α′′CW =

(
β2 − γβ

)
N +

(
β′ − γ′

)
C +

(
βγ − γ2

)
W√

2
, (12)

α′′′CW =
χ̄3N + ν̄3C + µ̄3W√

2
.

From equations (1) the torsion according to αCW curve τCW is

τCW =
√

2

(
2γ3 + γβ2

)
χ̄3 +

(
− β′γ + βγ′

)
ν̄3 +

(
2γ2β + β3 + βγ′ − γβ′

)
µ̄3(

2γ3 + γβ2
)2 −

(
γβ′ − βγ′

)2
+
(
2βγ2 + β3 + γ′ − γβ′

)2 .

Theorem 4 Let α(s) be a regular curve with unit speed in E3 and {N,C,W} be Alternative
frame. The Alternative frame of αCW -Smarandache curve is {NCW , CCW ,WCW }.

NCW =
χ3√

χ2
3 + ν23 + µ23

N +
ν3√

χ2
3 + ν23 + µ23

C +
µ3√

χ2
3 + ν23 + µ23

W,

CCW =
µ3(χ3m− µ3k)− ν3(χ3l − ν3k)

(χ2
3 + ν23 + µ23)

5
2

N

+
µ3(ν3m− µ3l)− χ3(χ3l − ν3k)

(χ2
3 + ν23 + µ23)

5
2

C

+
ν3(ν3m− µ3l)− χ3(χ3m− µ3k)

(χ2
3 + ν23 + µ23)

5
2

W,

WCW =
ν3m− µ3l

(χ2
3 + ν23 + µ23)

2
N +

χ3m− µ3k
(χ2

3 + ν23 + µ23)
2
C +

χ3l − ν3k
(χ2

3 + ν23 + µ23)
2
W.

where

k = (χ′3 − ν3β)(χ2
3 + ν23 + µ23)− χ3(χ3 + ν3 + µ3)

′,

l = (χ3β + ν ′3 − γµ3)(χ2
3 + ν23 + µ23)− ν3(χ3 + ν3 + µ3)

′,

m = (γν3 + µ′3)(χ
2
3 + ν23 + µ23)− µ3(χ3 + ν3 + µ3)

′.

Proof. From equation (10) principal normal vektor of αCW is

NCW =
χ3√

χ2
3 + ν23 + µ23

N +
ν3√

χ2
3 + ν23 + µ23

C +
µ3√

χ2
3 + ν23 + µ23

W. (13)
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If we take derivative of equation (13), we can write

N ′CW =
kN + lC +Mw

(χ2
3 + ν23 + µ23)

3
2

(14)

where the coefficients are

k = (χ′3 − ν3β)(χ2
3 + ν23 + µ23)− χ3(χ3 + ν3 + µ3)

′,

l = (χ3β + ν ′3 − γµ3)(χ2
3 + ν23 + µ23)− ν3(χ3 + ν3 + µ3)

′,

m = (γν3 + µ′3)(χ
2
3 + ν23 + µ23)− µ3(χ3 + ν3 + µ3)

′.

From equations (13) and (14) darboux vector of αCW is

WCW =
ν3m− µ3l

(χ2
3 + ν23 + µ23)

2
N +

χ3m− µ3k
(χ2

3 + ν23 + µ23)
2
C (15)

+
χ3l − ν3k

(χ2
3 + ν23 + µ23)

2
W.

From equations (13) and (15) unit vector CCW is

CCW =
µ3(χ3m− µ3k)− ν3(χ3l − ν3k)

(χ2
3 + ν23 + µ23)

5
2

N (16)

+
µ3(ν3m− µ3l)− χ3(χ3l − ν3k)

(χ2
3 + ν23 + µ23)

5
2

C

+
ν3(ν3m− µ3l)− χ3(χ3m− µ3k)

(χ2
3 + ν23 + µ23)

5
2

W.

(a) Frenet frame
(b) Alternative frame

Figure 2: NCW-Smarandache curves

Definition 5 Let α(s) be a regular curve with unit speed in E3 and {N,C,W} is Alternative
frame. Then, αNCW -Smarandache curve can be identified as

αNCW =
1√
3

(N + C +W ). (17)

Theorem 6 Let α(s) be a regular curve with unit speed in E3 and {N,C,W} be Alternative
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frame. The Frenet frame of αNCW -Smarandache curve is {TNCW , NNCW , BNCW }.

TNCW =
−βN +

(
β − γ

)
C + γW√

2
(
β2 + 2γ2 − βγ

) ,

NNCW =
χ4N + ν4C + µ4W√

χ2
4 + ν24 + µ24

,

BNCW =

(
β − γ

)
µ4 − γν4√

2
(
χ2
4 + ν24 + µ24

)(
β2 + γ2 − γβ

)N

+

(
γχ4 + βµ4

)
√

2
(
χ2
4 + ν24 + µ24

)(
β2 + γ2 − γβ

)C

− βν4 +
(
β − γ

)
χ4√

2
(
χ2
4 + ν24 + µ24

)(
β2 + γ2 − γβ

) .

Where

χ4 = β2
(
− 2β2 − 4γ2 + 4βγ − β2γ′

)
+ γβ

(
β′ + 2γ + 2γ′

)
− 2β′2,

ν4 = β2
(
− 2β2 − 4γ2 + 2βγ − γ′

)
+ γ2

(
− 2γ2 + 2βγ + β′

)
+ βγ

(
β′γ′

)
,

µ4 = 2β2
(
βγ − 2γ2 + γ′

)
+ γ2

(
4γβ − 3γ2 + β′

)
− γβ

(
2β′ + γ′

)
.

Proof. If we take derivate of the equation (17)

TNCW
dsNCW
ds

=
−βN +

(
β − γ

)
C + γW√

3
. (18)

where

dsNCW
ds

=

√
6(β2 + γ2 − βγ)

3
. (19)

From equations (18) and (19) tangent vector of αNCW -Smarandache curve is

TNCW =
−βN +

(
β − γ

)
C + γW√

2
(
β2 + 2γ2 − βγ

) . (20)

If we take the derivate of the equation (20), we can write

T ′NCW =

√
3
(
χ4N + ν4C + µ4W

)

4
(
β2 + 2γ2 − βγ

)2 . (21)

If we take norm of equation (21), we can write

‖T ′NCW ‖ =

√
3
(
χ4 + ν4 + µ4

)

4
(
β2 + 2γ2 − βγ

)2 . (22)

From equations (1), (21) and (22) principal normal vector of αNCW is

NNCW =
χ4N + ν4C + µ4W√

χ2
4 + ν24 + µ24

. (23)
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Binormal vector of αNCW is

BNCW =

(
β − γ

)
µ4 − γν4√

2
(
χ2
4 + ν24 + µ24

)(
β2 + γ2 − γβ

)N (24)

+

(
γχ4 + βµ4

)
√

2
(
χ2
4 + ν24 + µ24

)(
β2 + γ2 − γβ

)C

− βν4 +
(
β − γ

)
χ4√

2
(
χ2
4 + ν24 + µ24

)(
β2 + γ2 − γβ

)W

Theorem 7 Let α(s) be a regular curve with unit speed in E3 and {N,C,W} be Alternative
frame. The curvature and torsion according to αNCW -Smarandache curve of Alternative
Frame are, respectivelly,

κNCW =

√
3
(
χ4 + ν4 + µ4

)

4
(
β2 + 2γ2 − βγ

)2 ,

τNCW =

√
3
(
χ̄4(2β

2γ − 2βγ2 + βγ′ − β′γ) + ν̄4(βγ
′ − β′γ)

+µ̄4(2β
3 − 2β2γ + 2βγ2 + βγ′ − β′γ)

)
(
2βγ(β − γ) + βγ′ − γβ′3

)2
+
(
βγ′ − γβ′

)2

+
(
2β3 + βγ′ − γβ′2 − 2β2γ

)2
,

where

χ̄4 = β′γ − β′′ − 3γγ′ + 2βγ′3 + βγ2,

ν̄4 = γ3 − β3 − 3
(
ββ′ + γγ′

)
−
(
− β′′ + γ′′

)
+ βγ

(
β − γ

)
,

µ̄4 = γ′′2γ − 3γγ′3 + 2βγ′ + βγ′.

Proof. From equations (1) and (22) the curvature according to
αNCW -Smarandache curve κNCW is

κNCW =

√
3
(
χ4 + ν4 + µ4

)

4
(
β2 + 2γ2 − βγ

)2 . (25)

If we take second and third differential of equation (17) are, respectivelly

α′′NCW =

(
− β2 − β′ + γβ

)
√

3
N −

(
β′2 + γ′2

)
√

3
C (26)

+

(
βγ − γ2 + γ′

)
√

3
W,

α′′′NCW =
χ̄4N + ν̄4C + µ̄4W√

3
.

From equations (1) and (26) the torsion according to αNCW -Smarandache curve τNCW is

τNCW =

√
3
(
χ̄4(2β

2γ − 2βγ2 + βγ′ − β′γ) + ν̄4(βγ
′ − β′γ)

+µ̄4(2β
3 − 2β2γ + 2βγ2 + βγ′ − β′γ)

)
(
2βγ(β − γ) + βγ′ − γβ′3

)2
+
(
βγ′ − γβ′

)2

+
(
2β3 + βγ′ − γβ′2 − 2β2γ

)2
,
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where the coefficients are

χ̄4 = β′γ − β′′ − 3γγ′ + 2βγ′3 + βγ2,

ν̄4 = γ3 − β3 − 3
(
ββ′ + γγ′

)
−
(
− β′′ + γ′′

)
+ βγ

(
β − γ

)
,

µ̄4 = γ′′2γ − 3γγ′3 + 2βγ′ + βγ′.

Theorem 8 Let α(s) be a regular curve with unit speed in E3 and {N,C,W} be Alternative
frame. The Alternative frame of αNCW -Smarandache curve is {NNCW , CNCW ,WNCW }.

NNCW =
χ4N + ν4C + µ4W√

χ2
4 + ν24 + µ24

,

CNCW =
µ4(χ4f − µ4d)− ν4(χ4e− ν4d)

(χ2
4 + ν24 + µ24)

5
2

N +
µ4(ν4f − µ4e)− χ4(χ4e− ν4d)

(χ2
4 + ν24 + µ24)

5
2

C

+
ν4(ν4f − µ4e)− χ4(χ4f − µ4d)

(χ2
4 + ν24 + µ24)

5
2

W,

WNCW =
ν4f − µ4e

(χ2
4 + ν24 + µ24)

2
N +

χ4f − µ4d
(χ2

4 + ν24 + µ24)
2
C +

χ4e− ν4d
(χ2

4 + ν24 + µ24)
2
W.

Where

d = (χ′4 − ν4β)(χ2
4 + ν24 + µ24)− χ4(χ4 + ν4 + µ4)

′,

e = (χ4β + ν ′4 − γµ4)(χ2
4 + ν24 + µ24)− ν4(χ4 + ν4 + µ4)

′,

f = (γν4 + µ′4)(χ
2
4 + ν24 + µ24)− µ4(χ4 + ν4 + µ4)

′.

Proof. From equation (23) principal normal vektor of αNCW is

NNCW =
χ4N + ν4C + µ4W√

χ2
4 + ν24 + µ24

. (27)

If we take derivative of equation (27), we can write

N ′NCW =
d

(χ2
3 + ν23 + µ23)

3
2

N +
e

(χ2
3 + ν23 + µ23)

3
2

C (28)

+
f

(χ2
3 + ν23 + µ23)

3
2

W

where the coefficients are

d = (χ′4 − ν4β)(χ2
4 + ν24 + µ24)− χ4(χ4 + ν4 + µ4)

′,

e = (χ4β + ν ′4 − γµ4)(χ2
4 + ν24 + µ24)− ν4(χ4 + ν4 + µ4)

′,

f = (γν4 + µ′4)(χ
2
4 + ν24 + µ24)− µ4(χ4 + ν4 + µ4)

′.

From equations (27) and (28) unit darboux vector of αNCW is

WNCW =
ν4f − µ4e

(χ2
4 + ν24 + µ24)

2
N +

χ4f − µ4d
(χ2

4 + ν24 + µ24)
2
C (29)

+
χ4e− ν4d

(χ2
4 + ν24 + µ24)

2
W.
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From equations (27) and (29) unit vector CNCW is

CNCW =
µ4(χ4f − µ4d)− ν4(χ4e− ν4d)

(χ2
4 + ν24 + µ24)

5
2

N +
µ4(ν4f − µ4e)− χ4(χ4e− ν4d)

(χ2
4 + ν24 + µ24)

5
2

C

+
ν4(ν4f − µ4e)− χ4(χ4f − µ4d)

(χ2
4 + ν24 + µ24)

5
2

W.

Example 9 Let δ(s) = ( 9
208 sin 16s − 1

117 sin 36s,− 9
208 cos 16s + 1

117 cos 36s, 6
65 sin 10s) be a

curve withthe alternative frame of {N,C,W} given as

N(s) =
(12

13
cos 26s,−12

13
sin 26s,

5

13

)
,

C(s) =
(
− sin 26s, cos 26s, 0

)
,

W (s) =
( 5

13
cos 26s,− 5

13
sin 26s,

12

13

)
.

CW-Smarandache curves and NCW-Smarandache curves of δ(s) given as below (see Figure
3)

β1 =
1√
2

(C +W ) =
1√
2

( 5

13
cos 26s− sin 26s,

5

13
sin 26s+ cos 26s,

12

13

)
,

β2 =
1√
3

(N + C +W ) =
1√
3

(17

13
cos 26s− sin 26s,

17

13
sin 26s+ cos 26s,

7

13

)
.

(a) β1-Smarandache curve,
s ∈ (−3, 3π2 )

(b) β2-Smarandache curve,
s ∈ (−π, 4π3 )

Figure 3: Smarandache curves

Example 10 Let α(s) = 1√
2
(cos s, sin s, s) be a curve withthe alternative frame of {N,C,W}

given as

N(s) = (cos s, sin s, 0), C(s) = (− sin s, cos s, 0), W (s) = (0, 0, 1).

CW-Smarandache curves and NCW-Smarandache curves of δ(s) given as below (see Figure
4)

β3 =
1√
2

(C +W ) =
1√
2

(sin s,− cos s, 1),

β4 =
1√
3

(N + C +W ) =
1√
3

(cos s+ sin s, sin s− cos s, 1).
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(a) β1 Smarandache curve,
s ∈ (0, 2π)

(b) β1 Smarandache curve,
s ∈ (0, 2π)

Figure 4: Smarandache curves
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Abstract

In this study, we first formed a Sabban frame of spherical indicatrix curve of W-
alternative vector defined by a differentiable curve. Then the geodesic curvature of this
vector is calculated according to this frame. Finally we defined Smarandache curves
generated by the Sabban frame and give some characterizations of them.

Keywords: Sabban frame, Smarandache curve, alternative frame, spherical indicatrix
curve.

1 Introduction

In differential geometry, special curves have an important role. One of these curves is a
Smarandache curve. Smarandache curves are first defined by M. Turgut and S. Yılmaz in
2008 [7]. Special Smarandache curves also have been studied by some authors [1, 2, 3]. Let
α = α(s) be a regular unit speed curve in E3. The Frenet frame and alternative frame of this
curve are {T,N,B} and {N,C,W},respectively. Here, N is normal vector, W is unit Darboux
vector and C = W ∧ N [5]. In this paper, we created the Smarandache curves according to
the alternative frame of the unit speed curve. We then introduced alternative frame and its
properties. Finally we calculated geodesic curvature of these curves according to alternative
frame.

∗Corresponding author. E-mail address: senyurtsuleyman@hotmail.com
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2 Preliminaries

Let α = α(s) be a regular curve with unit speed. Then the Frenet apparatus of the curve (α)
[4]

T (s) = α′(s), N(s) =
α′′(s)
‖ α′′(s) ‖ , B(s) = T (s) ∧N(s), (1)

κ(s) = ‖ T ′(s) ‖, τ(s) =
det(α′(s) ∧ α′′(s), α′′′(s))

‖ α′ ∧ α′′2 ,

T ′ = κN, N ′ = −κT + τB, B′ = −τN.

In Euclidean 3-space any regular curve α(s) depending on the Frenet
vectors moves around the axis of Darboux vector. The vector defining a unit vector field
is given as [5]

W =
τ√

κ2 + τ2
T +

κ√
κ2 + τ2

B, C = − κ√
κ2 + τ2

T +
τ√

κ2 + τ2
B. (2)

So build another orthonormal moving frame along the curve α(s). This frame defined as
alternative frame and is represented by {N,C,W}. The derivative formulae of the alternative
frame is given by [5]

N ′ = βC, C ′ = −βN + γW, W ′ = −γC,

β =
√
κ2 + τ2, γ =

κ2

κ2 + τ2
(τ
κ

)′
(3)

The relationship between Frenet frame and alternative frame is

C = −κ̄T + τ̄B, W = τ̄T + κ̄B, T = −κ̄C + τ̄W, B = τ̄C + κ̄W,

κ̄ =
κ

β
, τ̄ =

τ

β
. (4)

Principal normal vector N is common both frames. Let γ : I → S2 be a unit speed spherical
curve and s arc-length parameter of γ. Let us denote t(s) = γ

′
(s) and d(s) = γ(s)∧ t(s). This

frame is called the Sabban frame of γ on S2. Then we have the following spherical Frenet
formulae of γ

γ′(s) = t(s), t′(s) = −γ(s) + κg(s)d(s), d′(s) = −κg(s)t(s), (5)

where κg(s) is the geodesic curvature of γ on S2 [6],

κg(s) = 〈t′(s), d(s)〉 (6)

3 Smarandache Curves of Alternative Frame According to the
Sabban Frame

In this section ,we investigated special Smarandache curves according to
Sabban frame on S2. Let W = W (s) = αW (s) be a unit speed regular spherical curve on S2,
{W,TW , (W ∧ TW )} and
{WαW , TWαW

, (W ∧ TW )αW } be the Sabban frame of this curve, respectively. Let αW (s) =
W (s) and if we take the derivative of the equation, then TW vector is
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dαW
ds∗

.
ds∗

ds
= −γC, TW = −C, ds∗

ds
= γ. (7)

Considering the W (s) and TW vectors we can write,

W ∧ TW = N. (8)

Accordingly, the {W,TW , (W ∧ TW )} ≡ {N,C,W} Sabban frame is obtained from the W
vector. If we take the derivative of the equation (7), then T ′W vector is

T ′W
ds∗

ds
= −C ′

= βN − γW,
T ′W =

β

γ
N −W. (9)

From the equation (6), (8) and (9), the geodesic curvature of
αW (s) = W (s) is

κWg (s) =
β

γ
. (10)

Then from the equation (5) we have the following spherical Frenet formulae of αW (s),

W ′ = −C,
T ′W = −W +

β

γ
N, (11)

(W ∧ TW )′ =
β

γ
C.

Definition 1 Let (W ) be a spherical curve of α(s), W and TW be Sabban vectors of (W ).
Then WTW -Smarandache curve can be identified as

αWTW =
1√
2

(W + TW ) (12)

or substituting the equation (7) into equation (12), we have

αWTW =
1√
2

(W − C)

Theorem 2 The geodesic curvature according to WTW -Smarandache curve is

κWTW
g =

1
(

2 +
(
κWg
)2
) 5

2

(
λ1κ

W
g − λ2κWg − 2λ3

)
. (13)

where

λ1 = κWg
(
κWg
)′ −

(
κWg
)2 − 2, (14)

λ2 = −
(
κWg
)4

+ 3
(
κWg
)2

+ κWg
(
κWg
)′

+ 2,

λ3 =
(
κWg
)3

+ 2κWg + 2
(
κWg
)′
.
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Proof. If we take the derivative of the equation (12) then TWTW vector is

TWTW

ds∗

ds
=

1√
2

(
−W + TW + κWg (W ∧ TW )

)
, (15)

TWTW =

(
−W + TW + κWg (W ∧ TW )

)
√

2 +
(
κWg
)2 ,

ds∗

ds
=

√
2 +

(
κWg
)2

√
2

.

Considering the equations (12) and (15), we have

αWTW ∧ TWTW =

(
κWg W − κWg TW + 2(W ∧ TW )

)
√

4 + 2
(
κWg
)2 . (16)

If we take the derivative of the equation (15), then T ′WTW
vector is

T ′WTW

ds∗

ds
= −

κWg
(
κWg
)′(−W + TW + κWg (W ∧ TW )

)
(
2 + (κWg )2

) 3
2

+
−W − (1 + (κWg )2)TW + (κWg + (κWg )′(W ∧ TW ))√

2 + (κWg )2
,

T ′WTW
=

√
2
(
κWg (κWg )′ − (κWg )2 − 2

)
(
2 + (κWg )2

)2 W

−
√

2
(
(κWg )4 + 3(κWg )2 + κWg (κWg )′ + 2

)
(
2 + (κWg )2

)2 TW

+

√
2
(
(κWg )3 + 2κWg + 2(κWg )′

)
(
2 + (κWg )2

)2 (W ∧ TW ).

(17)

Using the equations (6),(14),(16) and (17) we can write κWTW
g geodesic curvature

κWTW
g =

1
(

2 +
(
κWg
)2
) 5

2

(
λ1κ

W
g + λ2κ

W
g − 2λ3

)
.

Corollary 3 The geodesic curvature of the WTW -Smarandache curve
according to the alternative frame is

κWTW
g =

γ4

(
2γ2 + β2

) 5
2

(
(λ1 + λ2)β − 2γλ3

)
(18)

where

λ1 =
β

γ

(
β

γ

)′
− β2 + 2γ2

γ2
, λ2 =

β

γ

(
β

γ

)′
+
β4 + 3β2γ2 + 2γ4

γ4
, (19)

λ3 = 2

(
β

γ

)′
+
β3 + 2βγ2

γ3
.
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Definition 4 Let (W ) be a spherical curve of α(s), W and W ∧ TW be Sabban vectors of
(W ).Then W (W ∧ TW )-Smarandache curve can be identified as

αW (W∧TW ) =
1√
2

(
W +W ∧ TW

)
. (20)

or substituting the equation (8) into equation (20) we have

αW (W∧TW ) =
1√
2

(W +N).

Theorem 5 The geodesic curvature according to W (W ∧ TW )-Smarandache curve is

κW (W∧TW )
g =

γ + β

γ − β (21)

Proof. If we take the derivative of the equation (20), then TW (W∧TW ) vector is

TW (W∧TW )
ds∗

ds
=

1√
2

(
TW − κWg TW

)
,

TW (W∧TW ) = TW ,
ds∗

ds
=

1− κWg√
2

. (22)

Considering the equations (20) and (22), we have

αW (W∧TW ) ∧ TW (W∧TW ) =
1√
2

(
−W + (W ∧ TW )

)
. (23)

If we take the derivative of the equation (22), then T ′W (W∧TW ) vector is

T ′W (W∧TW ) =

√
2

1− κWg
(
−W + κWg (W ∧ TW )

)
. (24)

Using the equations (6), (10), (23) and (24), we can write κ
W (W∧TW )
g geodesic curvature

κW (W∧TW )
g =

γ + β

γ − β .

Definition 6 Let (W ) be a spherical curve of α(s), TW and W∧TW be Sabban vectors of (W ).
Then TW (W ∧ TW )-Smarandache curve can be
identified as

αTW (W∧TW ) =
TW + (W ∧ TW )√

2
(25)

or substituting the equation (7), (8) into equation (25) we have

αTW (W∧TW ) =
1√
2

(−C +N).

Theorem 7 The geodesic curvature according to TW (W ∧ TW )-Smarandache curve is

κTW (W∧TW )
g =

1
(

1 + 2
(
κWg
)2
) 5

2

(
2λ1κ

W
g − λ2 + λ3

)
, (26)
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where

λ1 = 2κWg
(
κWg
)′

+ κWg + 2
(
κWg
)3
,

λ2 = −1−
(
κWg
)′ − 3

(
κWg
)2 − 2

(
κWg
)4
,

λ3 =
(
κWg
)′ −

(
κWg
)2

+ 2
(
κWg
)4
.

(27)

Proof. If we take the derivative of the equation (25) then TTW (W∧TW ) vector is

TTW (W∧TW )
ds∗

ds
=

1√
2

(
−W − κWg TW + κWg (W ∧ TW )

)
, (28)

TTW (W∧TW ) =
−W − κWg TW + κWg (W ∧ TW )√

1 + 2
(
κWg
)2 ,

ds∗

ds
=

√
1 + 2

(
κWg
)2

√
2

.

Considering the equations (25) and (28), we have

αTW (W∧TW ) ∧ TTW (W∧TW ) =

(
2κWg W − TW + (W ∧ TW )

)
√

2 + 4
(
κWg
)2 . (29)

If we take the derivative of the equation (28), then T ′TW (W∧TW ) vector is

T ′TW (W∧TW )

ds∗

ds
= −

2κWg
(
κWg
)′

√
1 + 2

(
κWg
)2

(
−W − κWg TW + κWg (W ∧ TW )

)

+
1√

1 + 2
(
κWg
)2

(
κWg −

(
1 +

(
κWg
)′

+
(
κWg
)2)
)
TW

+
((
κWg
)′ −

(
κWg
)2)(

W ∧ TW
)
,

T ′TW (W∧TW ) =

√
2

(
2κWg

(
κWg
)′

+ κWg + 2
(
κWg
)3
)

(
1 + 2

(
κWg
)2
)2 W (30)

−

√
2

(
1 +

(
κWg
)′

+ 3
(
κWg
)2

+ 2
(
κWg
)4
)

(
1 + 2

(
κWg
)2
)2 TW

+

√
2

((
κWg
)′ −

(
κWg
)2

+ 2
(
κWg
)4
)

(
1 + 2

(
κWg
)2
)2

(
W ∧ TW

)
.

Using the equations (6),(27),(29) and (30),we can write κ
TW (W∧TW )
g geodesic curvature

κTW (W∧TW )
g =

1
(

1 + 2
(
κWg
)2
) 5

2

(
2λ1κ

W
g − λ2 + λ3

)
.
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Corollary 8 The geodesic curvature of the TW (W ∧ TW )-Smarandache curve according to
the alternative frame is

κTW (W∧TW )
g =

γ4

(
γ2 + 2β2

) 5
2

(
2λ1β + (λ3 − λ2)γ

)
(31)

where

λ1 = 2
β

γ

(
β

γ

)′
+
β

γ
+ 2

β3

γ3
,

λ2 = −1−
(
β

γ

)′
− 3

β2

γ2
− 2

β4

γ4
,

λ3 =

(
β

γ

)′
− β2

γ2
+ 2

β4

γ4
. (32)

Definition 9 Let (W ) be a spherical curve of α(s),W , TW and W ∧TW be Sabban vectors of
(W ).Then WTW (W ∧ TW )-Smarandache curve can be identified as

αWTW (W∧TW ) =
1√
3

(
W + TW + (W ∧ TW )

)
(33)

or substituting the equation (7),(8)into equation (33) we have

αWTW (W∧TW ) =
1√
3

(W − C +N).

Theorem 10 The geodesic curvature according to WTW (W ∧ TW )-Smarandache curve is

κTW (W∧TW )
g =

(
− 1 + 2κWg

)
λ1 −

(
1 + κWg

)
λ2 +

(
2− κWg

)
λ3

4
√

2

(
1−

(
κWg
)

+
(
κWg
)2
) 5

2

(34)

where

λ1 = −(κWg )′(1− 2κWg ) + 2
(
− 1 + 2κWg − 2(κWg )2 + (κWg )3

)
,

λ2 = (κWg )′
(
1− 3κWg + 2(κWg )2

)
− 2
(
1− κWg + (κWg )2

)(
1 + (κWg )′ + (κWg )2

)
,

λ3 = (κWg )′
(
κWg − 2(κWg )2

)
+ 2
(
1− κWg + (κWg )2

)(
κWg − (κWg )2 + (κWg )′

)
.

(35)

Proof. If we take the derivative of the equation (33) then TWTW (W∧TW ) vector is

TWTW (W∧TW )
ds∗

ds
=

1√
3

(
−W +

(
1− κWg

)
TW + κWg (W ∧ TW )

)
,

TWTW (W∧TW ) =
−W +

(
1− κWg

)
TW + κWg (W ∧ TW )

√
2
√

1− κWg +
(
κWg
)2 , (36)

ds∗

ds
=

√
2√
3

√
1− κWg +

(
κWg
)2
.

Considering the equations (33) and (36), we have

αWTW (W∧TW ) ∧ TWTW (W∧TW ) =

(
2κWg − 1

)
W −

(
1 + κWg

)
TW

√
6
√

1− κWg +
(
κWg
)2 (37)

+

(
2− κWg

)
(W ∧ TW )

√
6
√

1− κWg +
(
κWg
)2
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If we take the derivative of the equation (36), then T ′WTW (W∧TW ) vector is

T ′WTW (W∧TW ) =

√
3

4

(κWg )′
(
1− 2(κWg )

)(
−W + (1− κWg )TW + κWg (W ∧ TW )

)
(
1− κWg + (κWg )2

)2

+

√
3

2

(κWg − 1)W −
(
1 + (κWg )′ + (κWg )2

)
TW

1− κWg + (κWg )2
(38)

+

√
3

2

(
κWg − (κWg )2 + (κWg )′

)
(W ∧ TW )

1− κWg + (κWg )2

T ′WTW (W∧TW ) =

√
3

4
.
−(κWg )′

(
1− 2κWg

)
+ 2
(
− 1 + 2κWg − 2(κWg )2 + (κWg )3

)
(
1− κWg + (κWg )2

)2 W

+

√
3

4

(κWg )′
(
1− 3κWg + 2(κWg )2

)
(
1− κWg + (κWg )2

)2 TW

−
√

3

2

(
1− κWg + (κWg )2

)(
1 + (κWg )′ + (κWg )2

)
(
1− κWg + (κWg )2

)2 TW

+

√
3

4

(κWg )′
(
κWg − 2(κWg )2

)
(
1− κWg + (κWg )2

)2 (W ∧ TW )

−
√

3

2

2
(
1− κWg + (κWg )2

)(
κWg − (κWg )2 + (κWg )′

)
(
1− κWg + (κWg )2

)2 (W ∧ TW )

Using the equation (6), (35), (37) and (38), we can write κ
WTW (W∧TW )
g geodesic curvature

κTW (W∧TW )
g =

(
(−1 + 2κWg )λ1 − (1 + κWg )λ2 + (2− κWg )λ3

)

4
√

2
(
1− (κWg ) + (κWg )2

) 5
2

.

Corollary 11 The geodesic curvature of the WTW (W ∧ TW )-Smarandache curve according
to the alternative frame is

κWTW (W∧TW )
g =

γ4
(
(2β − γ)λ1 − (β + γ)λ2 + (2γ − β)λ3

)

4
√

2

(
γ2 + β2 − βγ

) 5
2

(39)

where

λ1 = −γ − 2β

γ

(
β

γ

)′
+
−2γ3 + 4βγ2 − 4β2γ + 2β3

γ3
, (40)

λ2 =
γ2 − 3βγ + 2β2

γ2

(
β

γ

)′
− 2

(
γ2 − βγ + β2

γ2

)((β
γ

)′
+
γ2 + β2

γ2

)
,

λ3 =
βγ − 2β2

γ

(
β

γ

)′
+ 2

(
γ2 − βγ + β2

γ2

)(
βγ − β2
γ2

+
(β
γ

)′
)
.

Example 12 Let;

γ(s) =
( 9

208
sin 16s− 1

117
sin 36s,− 9

208
cos 16s+

1

117
cos 36s,

6

65
sin 10s

)
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be a curve with the alternative frame of {N,C,W} given as

N(s) = (
12

13
cos 26s,−12

13
sin 26s,

5

13
), C(s) = (− sin 26s, cos 26s, 0),

W (s) = (
5

13
cos 26s,− 5

13
sin 26s,

12

13
).

Then we have the following spherical indicatrix curve (W ) and β1, β2, β3 and β4 Smarandache
curves according to Sabban frame on S2. These curves are (see Figure 2, 3)

β1 =
1√
2

(
5

13
cos 26s− 10 sin 26s,

5

13
sin 26s+ 10 cos 26s,

12

13
),

β2 =
1√
2

(−115

13
cos 26s,−115

13
sin 26s,

62

13
),

β3 =
1√
2

(−120

13
cos 26s− 10 sin 26s, 10 cos 26s− 120

13
sin 26s,

50

13
),

β4 =
1√
3

(−115

13
cos 26s− 10 sin 26s, 10 cos 26s− 115

13
sin 26s,

62

13
).
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(i) (ii)

Figure 1: (i)β1-Smarandache curve,s ∈ (−π2 ,
π
2 ),(ii)β2-Smarandache curve,s ∈ (0, 4π3 )

(i)
(ii)

Figure 2: (i)β3-Smarandache curve,s ∈ (−π, π2 ),(ii)β4-Smarandache curve,s ∈ (−5, π)
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Abstract

In this paper, we first prove a lemma for twice differentiable functions . Then we
establish some inequalities for mapping whose second derivatives in absolute value are
convex via Riemann-Liouville fractional integrals. These results generalize the midpoint
and trapezoid inequalities involving Riemann-Liouville fractional integrals given in earlier
studies.

Keywords: Hermite-Hadamard inequality, midpoint inequality, fractional integral op-
erators, convex function.

1 Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are consid-
erable significant in the literature (see, e.g.,[6], [9], [20, p.137]). These inequalities state that
if f : I → R is a convex function on the interval I of real numbers and a, b ∈ I with a < b,
then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f (a) + f (b)

2
. (1)

Both inequalities hold in the reversed direction if f is concave. We note that Hadamard’s
inequality may be regarded as a refinement of the concept of convexity and it follows easily
from Jensen’s inequality. Hadamard’s inequality for convex functions has received renewed
attention in recent years and a remarkable variety of refinements and generalizations have
been found (see, for example, [1]-[4], [7], [12], [14], [18], [19], [22], [24], [28], [29], [32], [33])
and the references cited therein.

In the following we will give some necessary definitions and mathematical preliminaries of
fractional calculus theory which are used further in this paper. More details, one can consult
([8], [13], [15], [21])

Definition 1 Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of order α > 0
with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x
(t− x)α−1 f(t)dt, x < b

respectively. Here, Γ(α) is the Gamma function and J0
a+f(x) = J0

b−f(x) = f(x).
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M. Z. Sarıkaya, S. Sönmezoğlu : On generalization of midpoint and trapezoid type inequalities
involving fractional integrals

415

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



It is remarkable that Sarikaya et al.[26] first give the following interesting integral inequal-
ities of Hermite-Hadamard type involving Riemann-Liouville fractional integrals.

Theorem 2 Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L1 [a, b] . If f is
a convex function on [a, b], then the following inequalities for fractional integrals hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2 (b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
≤ f (a) + f (b)

2
(2)

with α > 0.

Sarıkaya and Yıldırım also give the following Hermite-Hadamard type inequality for the
Riemann-Lioville fractional integrals in [23].

Theorem 3 Let f : [a, b] → R be a positive function with a < b and f ∈ L1 [a, b] . If f is a
convex function on [a, b] , then the following inequalities for fractional integrals hold:

f

(
a+ b

2

)
≤ 2α−1Γ(α+ 1)

(b− a)α

[
Jα
(a+b2 )

+f(b) + Jα
(a+b2 )

−f(a)

]
≤ f(a) + f(b)

2
. (3)

For the more information fractional calculus and related inequalities please refer to ([5],
[10], [11], [16], [17], [25], [27], [30], [31], [34])

2 Generalized Midpoint and Trapezoid Type Inequalities

In this section, we will first present a lemma for twice differentiable functions . Then we
establish some inequalities which generalize the midpoint and trapezoid inequalities involving
Riemann-Liouville fractional integrals obtained in previous works.

Lemma 4 Let I ⊂ R be an open interval, a, b ∈ I with a < b. If f : I → R is a twice
differentiable mapping such that f ′′ is integrable and 0 ≤ λ ≤ 1, α ≥ 1, then we have

[(
λ− α+ 1

2α

)
f

(
a+ b

2

)
− λ

(
f (a) + f (b)

2

)
+

Γ (α+ 2)

2 (b− a)α

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)]
(4)

=
(b− a)2

2

∫ 1

0
k (t) f ′′ (ta+ (1− t) b) dt

where

k (t) =





t (tα − λ) 0 ≤ t ≤ 1
2

(1− t) ((1− t)α − λ) 1
2 ≤ t ≤ 1.

Proof. It suffices to note that

I =

∫ 1

0
k (t) f ′′ (ta+ (1− t) b) dt (5)

=

∫ 1
2

0
t (tα − λ) f ′′ (ta+ (1− t) b) dt+

∫ 1

1
2

(1− t) ((1− t)α − λ) f ′′ (ta+ (1− t) b) dt

= I1 + I2.
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Integrating by parts twice, we can state:

I1 =

∫ 1
2

0
t (tα − λ) f ′′ (ta+ (1− t) b) dt (6)

= t (tα − λ)
f ′ (ta+ (1− t) b)

a− b

∣∣∣∣
1
2

0

−
∫ 1

2

0

f ′ (ta+ (1− t) b)
a− b ((α+ 1) tα − λ) dt

=
−1

2 (b− a)

(
1

2α
− λ
)
f ′
(
a+ b

2

)
− 1

(b− a)2

(
α+ 1

2α
− λ
)
f

(
a+ b

2

)

− λ

(b− a)2
f (b) +

α (α+ 1)

(b− a)2
1

(b− a)α
Γ (α) Jα

(a+b2 )
+f (b)

and similarly, we get

I2 =

∫ 1

1
2

(1− t) ((1− t)α − λ) f ′′ (ta+ (1− t) b) dt (7)

= (1− t) ((1− t)α − λ)
f ′ (ta+ (1− t) b)

a− b

∣∣∣∣
1

1
2

+

∫ 1

1
2

f ′ (ta+ (1− t) b)
a− b ((α+ 1) (1− t)α − λ)

=
1

2 (b− a)

(
1

2α
− λ
)
f ′
(
a+ b

2

)
− λ f (a)

(b− a)2

− 1

(b− a)2

(
α+ 1

2α
− λ
)
f

(
a+ b

2

)
+

α (α+ 1)

(b− a)α+2Γ (α) Jα
(a+b2 )

−f (a) .

Using (6) and (7) in (5), it follows that

I = I1 + I2 =
−2

(b− a)2

(
α+ 1

2α
− λ
)
f

(
a+ b

2

)
− 2λ

(b− a)2

(
f (a) + f (b)

2

)

+
α (α+ 1)

(b− a)α+2Γ (α)

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)

=
2

(b− a)2

[(
λ− α+ 1

2α

)
f

(
a+ b

2

)
− λ

(
f (a) + f (b)

2

)]

+
Γ (α+ 2)

(b− a)α+2

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)
.

Then by multipling the above equality with (b−a)2
2 , this completes the proof.

Theorem 5 Let I ⊂ R be an open intervial, a, b ∈ I with a < b and f : I → R be a twice
differentiable mapping such that f ′′ is integrable and 0 ≤ λ ≤ 1, α ≥ 1. If |f ′′| is a convex
on [a, b] , then the following inequalities hold:
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∣∣∣∣
(
λ− α+ 1

2α

)
f

(
a+ b

2

)
− λ

(
f (a) + f (b)

2

)
+

Γ (α+ 2)

2 (b− a)α

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)∣∣∣∣(8)

≤ (b− a)2

2





(
1

2α+2 (α+ 2)
− λ

8
+
αλ1+

2
α

α+ 2

)
[|f ′′ (a)|+ |f ′′ (b)|] , 0 ≤ λ ≤ 1

2

(
λ

8
− 1

2α+2 (α+ 2)

)
[|f ′′ (a)|+ |f ′′ (b)|] , 1

2 ≤ λ ≤ 1.

Proof. From Lemma 4 and by defination of k (t), we get

∣∣∣∣
(
λ− α+ 1

2α

)
f

(
a+ b

2

)
− λ

(
f (a) + f (b)

2

)
+

Γ (α+ 2)

2 (b− a)α

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)∣∣∣∣(9)

≤ (b− a)2

2

∫ 1

0
|k (t)|

∣∣f ′′ (ta+ (1− t) b)
∣∣ dt

=
(b− a)2

2

{∫ 1
2

0
|t (tα − λ)|

∣∣f ′′ (ta+ (1− t) b)
∣∣ dt

+

∫ 1

1
2

|(1− t) ((1− t)α − λ)|
∣∣f ′′ (ta+ (1− t) b)

∣∣ dt
}

=
(b− a)2

2
{J1 + J2} .

We assume that 0 ≤ λ ≤ 1
2 , then using the convexity of |f ′′| ,we get

J1 ≤
∫ 1

2

0
|t (tα − λ)|

[
t
∣∣f ′′ (a)

∣∣+ (1− t)
∣∣f ′′ (b)

∣∣] dt (10)

=

∫ λ
1
α

0
t (λ− tα)

[
t
∣∣f ′′ (a)

∣∣+ (1− t)
∣∣f ′′ (b)

∣∣] dt

+

∫ 1
2

λ
1
α

t (tα − λ)
[
t
∣∣f ′′ (a)

∣∣+ (1− t)
∣∣f ′′ (b)

∣∣] dt

=
∣∣f ′′ (a)

∣∣
[

2αλ1+
3
α

3 (α+ 3)
+

1

2α+3 (α+ 3)
− λ

24

]

+
∣∣f ′′ (b)

∣∣
[
αλ1+

2
α

α+ 2
− 2αλ1+

3
α

3 (α+ 3)
+

α+ 4

2α+3 (α+ 2) (α+ 3)
− λ

12

]
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and similarly, we have

J2 ≤
∫ 1−λ 1

α

1
2

(1− t) ((1− t)α − λ)
[
t
∣∣f ′′ (a)

∣∣+ (1− t)
∣∣f ′′ (b)

∣∣] dt (11)

+

∫ 1

1−λ 1
α

(1− t) (λ− (1− t)α)
[
t
∣∣f ′′ (a)

∣∣+ (1− t)
∣∣f ′′ (b)

∣∣] dt

=
∣∣f ′′ (a)

∣∣
[
αλ1+

2
α

α+ 2
− 2αλ1+

3
α

3 (α+ 3)
+

α+ 4

2α+3 (α+ 2) (α+ 3)
− λ

12

]

+
∣∣f ′′ (b)

∣∣
[

2αλ1+
3
α

3 (α+ 3)
+

1

2α+3 (α+ 3)
− λ

24

]
.

Using (10) and (11) in (9),we see thatthe first inequality of (8) holds. On the other hand, let
1
2 ≤ λ ≤ 1, then, using the convexity of |f ′′| and by simple computation we have

J ′1 ≤
∫ 1

2

0
|t (tα − λ)|

[
t
∣∣f ′′ (a)

∣∣+ (1− t)
∣∣f ′′ (b)

∣∣] dt (12)

=

∫ 1
2

0
t (λ− tα)

[
t
∣∣f ′′ (a)

∣∣+ (1− t)
∣∣f ′′ (b)

∣∣] dt

=

(
λ

24
− 1

2α+3 (α+ 3)

) ∣∣f ′′ (a)
∣∣+

(
λ

12
− α+ 4

2α+3 (α+ 2) (α+ 3)

) ∣∣f ′′ (b)
∣∣

and similarly

J ′2 ≤
∫ 1

1
2

|(1− t) ((1− t)α − λ)|
∣∣f ′′ (ta+ (1− t) b)

∣∣ dt (13)

=

∫ 1

1
2

(1− t) (λ− (1− t)α)
[
t
∣∣f ′′ (a)

∣∣+ (1− t)
∣∣f ′′ (b)

∣∣] dt

=

(
λ

12
− α+ 4

2α+3 (α+ 2) (α+ 3)

) ∣∣f ′′ (a)
∣∣+

(
λ

24
− 1

2α+3 (α+ 3)

) ∣∣f ′′ (b)
∣∣ .

Thus if we (12) and (13) in (9), we obtain the second inequality of (8). This completes the
proof.

Corollary 6 Under the assumptions of Theorem 5 with λ = 0, then we get the following
inequality

∣∣∣∣
2α−1Γ (α+ 1)

(b− a)α

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)
− f

(
a+ b

2

)∣∣∣∣

≤ (b− a)2

(α+ 1) (α+ 2)

[ |f ′′ (a)|+ |f ′′ (b)|
8

]

which is proved by Noor and Awan in [16, Theorem 2 (for s=1)].
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Remark 7 If we take α = 1 in Corollary 6, then we get the following inequality

∣∣∣∣∣∣
1

b− a

b∫

a

f(t)dt− f
(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)2

24

[ |f ′′ (a)|+ |f ′′ (b)|
2

]

which is given by Sarikaya et al. in [28].

Corollary 8 Under the assumptions of Theorem 5 with λ = α+1
2α , then we get the following

inequality

∣∣∣∣
f (a) + f (b)

2
− 2α−1Γ (α+ 1)

(b− a)α

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)∣∣∣∣

≤ (b− a)2

8 (α+ 1) (α+ 2)

(
α (α+ 1)1+

2
α + 1− (α+ 1) (α+ 2)

2

)[∣∣f ′′ (a)
∣∣+
∣∣f ′′ (b)

∣∣]

for α ≥ 3 and

∣∣∣∣
f (a) + f (b)

2
− 2α−1Γ (α+ 1)

(b− a)α

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)∣∣∣∣

≤ (b− a)2

8 (α+ 1) (α+ 2)

(
(α+ 1) (α+ 2)

2
− 1

)[∣∣f ′′ (a)
∣∣+
∣∣f ′′ (b)

∣∣]

for 1 ≤ α ≤ 3.

Remark 9 If we take α = 1 in Corollary 8, then we get the following inequality

∣∣∣∣∣∣
f (a) + f (b)

2
− 1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣
≤ (b− a)2

12

[ |f ′′ (a)|+ |f ′′ (b)|
2

]

which is given by Sarikaya and Aktan in [24].

Remark 10 Under the assumptions of Theorem 5 with λ = 1
3 and α = 1, then we get the

following inequality

∣∣∣∣∣∣
1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣
≤ (b− a)2

81

[ |f ′′ (a)|+ |f ′′ (b)|
2

]

which is given by Sarikaya and Aktan in [24].

Remark 11 Under the assumptions of Theorem 5 with λ = 1
2 and α = 1, then we get the

following inequality

∣∣∣∣∣∣
1

b− a

b∫

a

f(t)dt− 1

2

[
f (a) + f (b)

2
+ f

(
a+ b

2

)]∣∣∣∣∣∣
≤ (b− a)2

48

[ |f ′′ (a)|+ |f ′′ (b)|
2

]

which is given by Sarikaya and Aktan in [24].
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Theorem 12 Let I ⊂ R be an open intervial, a, b ∈ I with a < b and f : I → R be a twice
differentiable mapping such that f ′′ is integrable and 0 ≤ λ ≤ 1, α ≥ 1. If |f ′′|q is a convex
on [a, b] , q ≥ 1 then the following inequalities hold:

∣∣∣∣
[(
λ− α+ 1

2α

)
f

(
a+ b

2

)
− λ

(
f (a) + f (b)

2

)
+

Γ (α+ 2)

2 (b− a)α

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)]∣∣∣∣(14)

≤ (b− a)2

2

(
αλ1+

2
α

α+ 2
+

1

2α+2 (α+ 2)
− λ

8

)1− 1
q

×
{[
C1

∣∣f ′′ (a)
∣∣q + C2

∣∣f ′′ (b)
∣∣q] 1q +

[
C2

∣∣f ′′ (a)
∣∣q + C1

∣∣f ′′ (b)
∣∣q] 1q

}

for 0 ≤ λ ≤ 1
2 and

∣∣∣∣
(
λ− α+ 1

2α

)
f

(
a+ b

2

)
− λ

(
f (a) + f (b)

2

)
+

Γ (α+ 2)

2 (b− a)α

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)∣∣∣∣(15)

≤ (b− a)2

2

(
λ

8
− 1

2α+2 (α+ 2)

)1− 1
q

×
{
[
C3

∣∣f ′′ (a)
∣∣q + C4

∣∣f ′′ (b)
∣∣q]

1
q

+
[
C4

∣∣f ′′ (a)
∣∣q + C3

∣∣f ′′ (b)
∣∣q]

1
q

}
,

for 1
2 ≤ λ ≤ 1 where 1

p + 1
q = 1,

C1 =

(
2αλ1+

3
α

3 (α+ 3)
+

1

2α+3 (α+ 3)
− λ

24

)

C2 =

(
αλ1+

2
α

α+ 2
− 2αλ1+

3
α

3 (α+ 3)
+

α+ 4

2α+3 (α+ 2) (α+ 3)
− λ

12

)

C3 =

(
λ

24
− 1

2α+3 (α+ 3)

)

C4 =

(
λ

12
− α+ 4

2α+3 (α+ 2) (α+ 3)

)
.

Proof. Suppose that q ≥ 1. From Lemma 4 and using the well known power mean inequality,
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we have
∣∣∣∣
(
λ− α+ 1

2α

)
f

(
a+ b

2

)
− λ

(
f (a) + f (b)

2

)
+

Γ (α+ 2)

2 (b− a)α

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)∣∣∣∣(16)

≤ (b− a)2

2

∫ 1

0
|k (t)|

∣∣f ′′ (ta+ (1− t) b)
∣∣ dt

=
(b− a)2

2

{∫ 1
2

0
|t (tα − λ)|

∣∣f ′′ (ta+ (1− t) b)
∣∣ dt

+

∫ 1

1
2

|(1− t) ((1− t)α − λ)|
∣∣f ′′ (ta+ (1− t) b)

∣∣ dt
}

≤ (b− a)2

2





(∫ 1
2

0
|t (tα − λ)| dt

)1− 1
q
(∫ 1

2

0
|t (tα − λ)|

∣∣f ′′ (ta+ (1− t) b)
∣∣q dt

) 1
q

+

(∫ 1

1
2

|(1− t) ((1− t)α − λ)| dt
)1− 1

q (∫ 1

1
2

|(1− t) ((1− t)α − λ)|
∣∣f ′′ (ta+ (1− t) b)

∣∣q dt
) 1

q





Let 0 ≤ λ ≤ 1
2 . Then since |f ′|q is convex on [a, b] ,we know that for t ∈ [0, 1]

∣∣f ′ (ta+ (1− t) b)
∣∣q ≤ t

∣∣f ′ (a)
∣∣q + (1− t)

∣∣f ′ (b)
∣∣q

hence, by simple computation

∫ 1
2

0
|t (tα − λ)|

∣∣f ′′ (ta+ (1− t) b)
∣∣q dt (17)

≤
∫ λ

1
α

0
t (λ− tα)

[
t
∣∣f ′′ (a)

∣∣q + (1− t)
∣∣f ′′ (b)

∣∣q] dt

+

∫ 1
2

λ
1
α

t (tα − λ)
[
t
∣∣f ′′ (a)

∣∣q + (1− t)
∣∣f ′′ (b)

∣∣q] dt

=
∣∣f ′′ (a)

∣∣q
[

2αλ1+
3
α

3 (α+ 3)
+

1

2α+3 (α+ 3)
− λ

24

]

+
∣∣f ′′ (b)

∣∣q
[
αλ1+

2
α

α+ 2
− 2αλ1+

3
α

3 (α+ 3)
+

α+ 4

2α+3 (α+ 2) (α+ 3)
− λ

12

]
,
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∫ 1

1
2

|(1− t) ((1− t)α − λ)|
∣∣f ′′ (ta+ (1− t) b)

∣∣q dt (18)

≤
∫ 1−λ 1

α

1
2

(1− t) ((1− t)α − λ)
[
t
∣∣f ′′ (a)

∣∣q + (1− t)
∣∣f ′′ (b)

∣∣q] dt

+

∫ 1

1−λ 1
α

(1− t) (λ− (1− t)α)
[
t
∣∣f ′′ (a)

∣∣q + (1− t)
∣∣f ′′ (b)

∣∣q] dt

=
∣∣f ′′ (a)

∣∣q
[
αλ1+

2
α

α+ 2
− 2αλ1+

3
α

3 (α+ 3)
+

α+ 4

2α+3 (α+ 2) (α+ 3)
− λ

12

]

+
∣∣f ′′ (b)

∣∣q
[

2αλ1+
3
α

3 (α+ 3)
+

1

2α+3 (α+ 3)
− λ

24

]
,

∫ 1
2

0
|t (tα − λ)| dt =

∫ λ
1
α

0
t (λ− tα) dt+

∫ 1
2

λ
1
α

t (tα − λ) dt =
αλ1+

2
α

α+ 2
+

1

2α+2 (α+ 2)
− λ

8
(19)

and

∫ 1

1
2

|(1− t) ((1− t)α − λ)| dt (20)

=

∫ 1−λ 1
α

1
2

(1− t) ((1− t)α − λ) dt+

∫ 1

1−λ 1
α

(1− t) (λ− (1− t)α) dt

=
αλ1+

2
α

α+ 2
+

1

2α+2 (α+ 2)
− λ

8
.

Substituting the equalities (17)-(20) in (16), the we obtain the inequality (14). One can prove
the inequality (15) similar to (14). It is omited to readers.

Remark 13 Under the assumptions Theorem 12 with α = 1, then Theorem 12 reduces to
Theorem 4 in [24].

Remark 14 Under the assumptions of Theorem 12 with λ = 1
3 and α = 1, then we get the

following inequality

∣∣∣∣∣∣
1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣

≤ (b− a)2

162

[(
59 |f ′′ (a)|q + 133 |f ′′ (b)|q

26 × 3

) 1
q

+

(
133 |f ′′ (a)|q + 59 |f ′′ (b)|q

26 × 3

) 1
q

]

which is given by Sarikaya and Aktan in [24].

Corollary 15 Under the assumptions Theorem 12 with λ = 0, then we get the following
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inequality

∣∣∣∣
2α−1Γ (α+ 1)

(b− a)α

(
Jα
(a+b2 )

+f (b) + Jα
(a+b2 )

−f (a)

)
− f

(
a+ b

2

)∣∣∣∣ (21)

≤ (b− a)2 2α−1

α+ 1

{(
1

2α+2 (α+ 2)

)1− 1
q

×
[∣∣f ′′ (a)

∣∣q 1

2α+3 (α+ 3)
+
∣∣f ′′ (b)

∣∣q α+ 4

2α+3 (α+ 2) (α+ 3)

] 1
q

+

[∣∣f ′′ (a)
∣∣q α+ 4

2α+3 (α+ 2) (α+ 3)
+
∣∣f ′′ (b)

∣∣q 1

2α+3 (α+ 3)

] 1
q

}
.
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Abstract

The uni-int soft decision-making method [N. Çağman, S. Enginoğlu, Soft set theory
and uni-int decision making, Eur. J. Oper. Res. 207 (2010) 848-855] is an efficient
method to deal with some uncertainties. To be able to use in computer science such
as machine learning and image enhancement, in this paper, we configure this method
constructed by andnot-product/ornot-product via fuzzy parameterized fuzzy soft matrices
(fpfs-matrices), faithfully to the original. However, the configured method, denoted by
CE10n, has a drawback in terms of time and complexity in the problems containing a large
amount of data. To overcome this problem, we propose a new algorithm, i.e. EMA18an,
and prove that CE10n constructed by andnot-product (CE10an), is a special case of
EMA18an in the event that first rows of the fpfs-matrices are binary. We then compare
the running times of these two algorithms. The results show that EMA18an outperforms
CE10an in any number of data. Finally, we discuss the need for further research.

Keywords: Fuzzy sets, Soft sets, Soft decision-making, Soft matrices, fpfs-matrices.

1 Introduction

To deal with uncertainties, the concept of soft sets was produced by Molodtsov [1] and has been
applied to many studies from algebra to decision-making problems [2–25]. Lately, the uni-int
soft decision-making algorithm [15] constructed by and-product/or-product has been config-
ured via fuzzy parameterized fuzzy soft matrices (fpfs-matrices) by Enginoğlu and Memiş
[26]. Furthermore, the authors note that it is worthwhile to study different configurations of
this algorithm, denoted by CE10, for other products.

In Section 2 of the present study, we introduce the concept of fpfs-matrices [19]. In Section
3, we configure the uni-int decision-making method constructed by andnot-product/ornot-
product via fpfs-matrices and denote it by CE10n. In Section 4, we propose a fast and
simple algorithm, namely EMA18an, equivalent to CE10n constructed by andnot-product
(CE10an) under the condition that first rows of the fpfs-matrices are binary. In Section 5,
we compare the running times of these algorithms. Finally, we discuss the need for further
research.

∗Corresponding author. E-mail address: serdarenginoglu@gmail.com
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2 Preliminaries

In this section, the concept of fpfs-matrices [19] and some of its basic definitions have been
presented. Throughout this paper, let E be a parameter set, F (E) be the set of all fuzzy sets
over E, and µ ∈ F (E). Here, µ := {µ(x)x : x ∈ E}.
Definition 2.1. [12, 19] Let U be a universal set, µ ∈ F (E), and α be a function from µ to
F (U). Then the graphic of α, denoted by α, defined by

α := {(µ(x)x, α(µ(x)x)) : x ∈ E}
that is called fuzzy parameterized fuzzy soft set (fpfs-set) parameterized via E over U (or
briefly over U).

In the present paper, the set of all fpfs-sets over U is denoted by FPFSE(U).

Example 2.1. Let E = {x1, x2, x3, x4} and U = {u1, u2, u3, u4, u5}. Then

α = {(0.4x1, {0.7u1,0.3 u2,1 u5}), (1x2, {0.6u3,0.2 u5}), (0.3x3, {0.6u1,0.3 u4,0.2 u5}), (0x4, {0.1u2,0.4 u3})}

is a fpfs-set over U .

Definition 2.2. [19] Let α ∈ FPFSE(U). Then [aij ] is called the matrix representation of α
(or briefly fpfs-matrix of α) and defined by

[aij ] =




a01 a02 a03 . . . a0n . . .
a11 a12 a13 . . . a1n . . .

...
...

...
. . .

...
...

am1 am2 am3 . . . amn . . .
...

...
...

. . .
...

...




for i = {0, 1, 2, · · · } and j = {1, 2, · · · }

such that

aij :=

{
µ(xj), i = 0

α(µ(xj)xj)(ui), i 6= 0

Here, if |U | = m− 1 and |E| = n then [aij ] has order m× n.

From now on, the set of all fpfs-matrices parameterized via E over U is denoted by
FPFSE [U ].

Example 2.2. Let’s consider the fpfs-set α provided in Example 2.1. Then the fpfs-matrix
of α is as follows:

[aij ] =




0.4 1 0.3 0
0.7 0 0.6 0
0.3 0 0 0.1
0 0.6 0 0.4
0 0 0.3 0
1 0.2 0.2 0




Definition 2.3. [19] Let [aij ], [bik] ∈ FPFSE [U ] and [cip] ∈ FPFSE2 [U ] such that p =
n(j − 1) + k. For all i and p,

If cip = min{aij , bik}, then [cip] is called and-product of [aij ] and [bik], denoted by [aij ]∧[bik].

If cip = max{aij , bik}, then [cip] is called or-product of [aij ] and [bik], denoted by [aij ]∨[bik].

If cip = min{aij , 1 − bik}, then [cip] is called andnot-product of [aij ] and [bik], denoted by
[aij ]∧[bik].

If cip = max{aij , 1 − bik}, then [cip] is called ornot-product of [aij ] and [bik], denoted by
[aij ]∨[bik].
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3 The Soft Decision-Making Method CE10n

In this section, we configure the uni-int decision-making method constructed by andnot-
product/ornot-product via fpfs-matrices and denoted it by CE10n.

Step 1. Construct two fpfs-matrices [aij ] and [bik]

Step 2. Find andnot-product/ornot-product fpfs-matrix [cip] of [aij ] and [bik]

Step 3. Find andnot-product/ornot-product fpfs-matrix [dit] of [bik] and [aij ]

Step 4. Obtain [si1] denoted by max - min(cip, dit) defined by

si1 := max{maxjmink(cip),maxkminj(dit)}

such that i ∈ {1, 2, . . . ,m − 1}, Ia := {j | a0j 6= 0}, Ib := {k | b0k 6= 0}, I∗a :=
{j | 1− a0j 6= 0}, I∗b := {k | 1− b0k 6= 0}, p = n(j − 1) + k, t = n(k − 1) + j, and

maxjmink(cip) :=





max
j∈Ia

{
min
k∈I∗b

c0pcip

}
, Ia 6= ∅ and I∗b 6= ∅

0, Otherwise

maxkminj(dit) :=





max
k∈Ib

{
min
j∈I∗a

d0tdit

}
, I∗a 6= ∅ and Ib 6= ∅

0, Otherwise

Step 5. Obtain the set {uk ∈ U | sk1 = max
i
si1}

Preferably, the set {si1ui |ui ∈ U} or {
sk1

max si1 uk|uk ∈ U} can be attained.

Note 3.1. Let CE10an and CE10on denote CE10n constructed by andnot-product and ornot-
product, respectively. It must be noted that the scores of CE10an and CE10on can be found
without writing any product matrices. When the algorithm is written in this format, it offers
time advantage, little though, over CE10n in most cases. Let’s illustrate this for CE10an;

Step 1. Construct two fpfs-matrices [aij ] and [bik]

Step 2. Obtain [si1] defined by

si1 :=
{
max{max

j∈Ia
{ min
k∈I∗

b

{min{a0j , 1− b0k},min{aij , 1− bik}}}, max
k∈Ib

{min
j∈I∗a

{min{b0k, 1− a0j},min{bik, 1− aij}}}},Ia, Ib, I∗a , I∗b 6= ∅

0, Otherwise

such that i ∈ {1, 2, . . . ,m − 1}, Ia := {j | a0j 6= 0}, Ib := {k | b0k 6= 0}, I∗a :=
{j | 1− a0j 6= 0}, and I∗b := {k | 1− b0k 6= 0}.

Step 3. Obtain the set {uk ∈ U | sk1 = max
i
si1}

Preferably, the set {si1ui |ui ∈ U} or {
sk1

max si1 uk|uk ∈ U} can be attained.
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4 A Soft Decision-Making Method: EMA18an

In this section, we propose a fast and simple algorithm denoted by EMA18an.

Step 1. Construct two fpfs-matrices [aij ] and [bik]

Step 2. Obtain [si1] denoted by max - min(aij , bik) defined by

si1 := max{maxjmink(aij , bik),maxkminj(bik, aij)}

such that i ∈ {1, 2, . . . ,m− 1}, Ia := {j | a0j 6= 0}, Ib := {k | b0k 6= 0}, I∗a := {j | 1− a0j 6= 0},
I∗b := {k | 1− b0k 6= 0}, and

maxjmink(aij , bik) :=





min

{
max
j∈Ia
{a0jaij}, min

k∈I∗b
{(1− b0k)(1− bik)}

}
, Ia 6= ∅ and I∗b 6= ∅

0, otherwise

maxkminj(bik, aij) :=





min

{
max
k∈Ib
{b0kbik},min

j∈I∗a
{(1− a0j)(1− aij)}

}
, I∗a 6= ∅ and Ib 6= ∅

0, otherwise

Step 3. Obtain the set {uk ∈ U | sk1 = max
i
si1}

Preferably, the set {si1ui |ui ∈ U} or {
sk1

max si1 uk|uk ∈ U} can be attained.

Theorem 4.1. EMA18an is equivalent to CE10an under the condition that first rows of the
fpfs-matrices are binary.

Proof. Suppose that first rows of the fpfs-matrices are binary. The functions si1 provided in
CE10an and EMA18an are equal in the event that Ia = ∅ or I∗b = ∅. Assume that Ia 6= ∅ and
I∗b 6= ∅. Since a0j = 1 and b0k = 0, for all j ∈ Ia := {a1, a2, ..., as} and k ∈ I∗b := {b1, b2, ..., bt},

maxjmink(cip) = max
j∈Ia

{
min
k∈I∗b

c0pcip

}

= max
j∈Ia

{
min
k∈I∗b
{min{a0j , 1− b0k}.min{aij , 1− bik}}

}

= max
j∈Ia

{
min
k∈I∗b
{min{aij , 1− bik}}

}

= max {min {min{aia1
, 1− bib1},min{aia1

, 1− bib2}, . . . ,min{aia1
, 1− bibt}} ,

min {min{aia2
, 1− bib1},min{aia2

, 1− bib2}, . . . ,min{aia2
, 1− bibt}} , . . . ,

min {min{aias , 1− bib1},min{aias , 1− bib2}, . . . ,min{aias , 1− bibt}}}
= max {min{aia1

,min{1− bib1 , 1− bib2 , . . . , 1− bibt}} ,
min{aia2 ,min{1− bib1 , 1− bib2 , . . . , 1− bibt}} , . . . ,
min {aias

,min{1− bib1 , 1− bib2 , . . . , 1− bibt}}}
= min {max{aia1

, aia2
, . . . , aias

},min{1− bib1 , 1− bib2 , . . . , 1− bibt}}
= min

{
max
j∈Ia
{aij}, min

k∈I∗b
{1− bik}

}

= min

{
max
j∈Ia
{a0jaij}, min

k∈I∗b
{(1− b0k)(1− bik)}

}

= maxjmink(aij , bik)

In a similar way, maxkminj(dit) = maxkminj(bik, aij). Consequently,

max - min(aij , bik) = max - min(cip, dit)
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5 Simulation Results

In this section, we compare the running times of CE10an and EMA18an by using MATLAB
R2018b and a workstation with I(R) Xeon(R) CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM
in this study.

We present the running times of CE10an and EMA18an in Table 1 and Fig. 1 for 10
objects and the parameters ranging from 1000 to 10000. We then give their running times in
Table 2 and Fig. 2 for 10 parameters and the objects ranging from 1000 to 10000, in Table
3 and Fig. 3 for the parameters and the objects ranging from 10 to 100 and in Table 4 and
Fig. 4 for the parameters and the objects ranging from 100 to 1000. The results show that
EMA18an outperforms than CE10an in any number of data under the specified condition.

Table 1. The results for 10 objects and the parameters ranging from 1000 to 10000 (In
Seconds)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CE10an 1.7290 6.0002 12.4614 22.0133 34.2460 47.1654 67.6639 89.3932 112.0984 147.1362

EMA18an 0.0010 0.0015 0.0019 0.0022 0.0029 0.0031 0.0036 0.0040 0.0046 0.0048

Difference 1.7280 5.9987 12.4595 22.0111 34.2431 47.1623 67.6603 89.3892 112.0938 147.1314

Advantage (%) 99.9395 99.9755 99.9850 99.9901 99.9916 99.9934 99.9947 99.9956 99.9959 99.9967
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Fig. 1. The figure for Table 1

Table 2. The results for 10 parameters and the objects ranging from 1000 to 10000 (In
Seconds)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

CE10an 0.0671 0.2553 0.4513 0.7131 1.0672 1.5062 1.9701 2.5841 3.2344 3.9714

EMA18an 0.0099 0.0193 0.0284 0.0387 0.0505 0.0626 0.0753 0.0891 0.1031 0.1204

Difference 0.0572 0.2360 0.4229 0.6744 1.0166 1.4436 1.8948 2.4950 3.1312 3.8509

Advantage (%) 85.2543 92.4443 93.7129 94.5697 95.2658 95.8456 96.1784 96.5534 96.8110 96.9675
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Fig. 2. The figure for Table 2

Table 3. The results for the parameters and the objects ranging from 10 to 100 (In Seconds)

10 20 30 40 50 60 70 80 90 100

CE10an 0.0012 0.0024 0.0059 0.0133 0.0257 0.0459 0.0764 0.1078 0.1649 0.2358

EMA18an 0.0006 0.0003 0.0004 0.0005 0.0008 0.0007 0.0009 0.0010 0.0012 0.0013

Difference 0.0006 0.0021 0.0055 0.0128 0.0248 0.0452 0.0755 0.1069 0.1637 0.2346

Advantage (%) 50.9100 88.7774 93.4698 96.1678 96.7905 98.4441 98.7975 99.1153 99.2688 99.4640
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Fig. 3. The figure for Table 3

Table 4. The results for the parameters and the objects ranging from 100 to 1000 (In
Seconds)

100 200 300 40 500 600 700 800 900 1000

CE10an 0.2340 3.3294 14.1333 40.4840 94.0603 183.5776 324.8095 544.0888 868.8858 1327.7415

EMA18an 0.0026 0.0031 0.0057 0.0085 0.0121 0.0174 0.0223 0.0290 0.0369 0.0442

Difference 0.2314 3.3263 14.1276 40.4756 94.0482 183.5602 324.7872 544.0598 868.8488 1327.6973

Advantage (%) 98.8717 99.9072 99.9596 99.9791 99.9871 99.9905 99.9931 99.9947 99.9957 99.9967
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6 Conclusion

The uni-int decision-making method defined by Çağman and Enginoğlu [15] has been con-
figured [26] via fpfs-matrices [19] because more general forms are needed for the method in
the event that the parameters or objects have uncertainties. Moreover, the authors stated
that different configurations of this method can be constructed for other products such as
andnot-product/ornot-product. To this end, we have configured this method for andnot-
product/ornot-product.

On the other hand, the method suffers from a drawback, i.e. its incapability of processing
a large number of data on a standard computer, e.g. with 2.6 GHz i5 Dual Core CPU and 4GB
RAM. Since the simplification of such methods is necessary for a wide range of scientific and
industrial processes, we have proposed the method EMA18an, which is faster than CE10an.
We also have shown that EMA18an is equivalent to CE10an under the condition that first rows
of the fpfs-matrices are binary. Of course, it is possible to investigate other simplifications
for the different products. We then have compared the running times of these algorithms,
in Section 5. In addition to the results in Section 5, the results in Table 5 too show that
EMA18an outperforms CE10an in any number of data under the specified condition.

Table 5. The mean advantage, max advantage, and max difference values of EMA18an over
CE10an

Location Objects Parameters Mean Advantage% Max Advantage% Max Difference

Table 1 10 1000− 10000 99.9858 99.9967 147.1314

Table 2 1000− 10000 10 94.3603 96.9675 3.8509

Table 3 10− 100 10− 100 92.1205 99.4640 0.2346

Table 4 100− 1000 100− 1000 99.8676 99.9967 1327.6973

In addition, other decision-making methods constructed by a different decision function
such as minimum-maximum (min-max), max-max, and min-min can also be studied by the
similar way.
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Abstract

The soft decision-making methods are used efficiently to cope with some problems con-
taining uncertainty. Recently, some of them have been configured by Enginoğlu and Memiş
via fuzzy parameterized fuzzy soft matrices (fpfs-matrices), faithfully to the original, be-
cause a more general form is needed for the methods in the event that the parameters or
objects have uncertainty. In this study, we consider three configured methods therein, de-
noted by MRB02, CCE10 and CCE11. We then apply these methods to a decision-making
problem in image denoising. Finally, we discuss the need for further research.

Keywords: Fuzzy sets, Soft sets, Soft decision-making, Soft matrices, fpfs-matrices.

1 Introduction

Lately, the concept of soft sets propounded by Molodtsov [1] has become a greatly preferred
mathematical tool and many theoretical and applied studies have been conducted on this
concept [2–27]. The configuring some of the known soft decision-making methods by Enginoğlu
and Memiş [28] via fuzzy parameterized fuzzy soft matrices (fpfs-matrices) [14] has enabled
to use these methods in computer science. However, though these configured methods define
in different structures, some of these are equivalent in terms of sorting. This equivalence is
clearly seen in the configured forms of these methods.

In Section 2 of this study, we present the concept of fpfs-matrices [14], MRB02, CCE10,
and CCE11 [3, 7, 9, 28]. We then configure a similar method given in [29] via fpfs-matrices.
In Section 3, we apply this method to a performance-based value assignment to the methods
used in image denoising. Finally, we discuss the need for further research.

2 Preliminaries

In this section, firstly, we present the concept of fpfs-matrices [14]. Throughout this paper,
let E be a parameter set, F (E) be the set of all fuzzy sets over E, and µ ∈ F (E). Here,
µ := {µ(x)x : x ∈ E}.

Definition 2.1. [7, 14] Let U be a universal set, µ ∈ F (E), and α be a function from µ to
F (U). Then the graphic of α, denoted by α, defined by

α := {(µ(x)x, α(µ(x)x)) : x ∈ E}

that is called fuzzy parameterized fuzzy soft set (fpfs-set) parameterized via E over U (or
briefly over U).

∗Corresponding author. E-mail address: serdarenginoglu@gmail.com
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In the present paper, the set of all fpfs-sets over U is denoted by FPFSE(U).

Example 2.1. Let E = {x1, x2, x3, x4} and U = {u1, u2, u3, u4, u5}. Then

α = {(0.8x1, {0.9u1,0.5 u4}), (0x2, {0.3u2,0.5 u3}), (0.1x3, {0.7u1,0.8 u3,0.6 u4}), (1x4, {0.1u3,0.9 u5})}

is a fpfs-set over U .

Definition 2.2. [14] Let α ∈ FPFSE(U). Then [aij ] is called the matrix representation of α
(or briefly fpfs-matrix of α) and defined by

[aij ] =




a01 a02 a03 . . . a0n . . .
a11 a12 a13 . . . a1n . . .

...
...

...
. . .

...
...

am1 am2 am3 . . . amn . . .
...

...
...

. . .
...

...




for i = {0, 1, 2, · · · } and j = {1, 2, · · · }

such that

aij :=

{
µ(xj), i = 0

α(µ(xj)xj)(ui), i 6= 0

Here, if |U | = m− 1 and |E| = n then [aij ] has order m× n.

From now on, the set of all fpfs-matrices parameterized via E over U is denoted by
FPFSE [U ].

Example 2.2. Let’s consider the fpfs-set α provided in Example 2.1. Then the fpfs-matrix
of α is as follows:

[aij ] =




0.8 0 0.1 1
0.9 0 0.7 0
0 0.3 0 0
0 0.5 0.8 1

0.5 0 0.6 0
0 0 0 0.9




Secondly, we present the algorithm MRB02 [3, 28].

Step 1. Construct an fpfs-matrix [aij ]

Step 2. Obtain [si1] defined by

si1 :=
n∑

j=1

a0jaij , i ∈ {1, 2, . . . ,m− 1}

Step 3. Obtain the set {uk | sk1 = max
i

(si1)}

Preferably, the set {µ(uk)uk|uk ∈ U} can be attained such that µ(uk) = sk1

max
i
si1

.

Note 2.1. The reduction steps in the original algorithm haven’t been considered because they
lead to some errors [30, 31].

Thirdly, we present the algorithm CCE10 [7, 28].

Step 1. Construct an fpfs-matrix [aij ]

Step 2. Obtain [si1] defined by

si1 :=
1

n

n∑

j=1

a0jaij , i ∈ {1, 2, . . . ,m− 1}

S. Enginoğlu, S. Memiş : A Review on Some Soft Decision-Making Methods 437

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



Step 3. Obtain the set {uk | sk1 = max
i

(si1)}

Preferably, the set {si1ui|ui ∈ U} or {µ(uk)uk|uk ∈ U} can be attained such that µ(uk) = sk1

max
i
si1

.

Fourthly, we present the algorithm CCE11 [9, 28].

Step 1. Construct an fpfs-matrix [aij ]

Step 2. Obtain [si1] defined by

si1 :=
1∑n

j=1 sgn(a0j)

n∑

j=1

a0jaij , i ∈ {1, 2, . . . ,m− 1}

Step 3. The set {uk | sk1 = max
i

(si1)} is attained

Preferably, the set {si1ui|ui ∈ U} or {µ(uk)uk|uk ∈ U} can be attained such that µ(uk) = sk1

max
i
si1

.

Note 2.2. It must be noted that the sorting of alternatives in a problem applied MRB02,
CCE10 and CCE11 is same. Here, CCE10 and CCE11 generate fuzzy values as different
from MRB02. Moreover, the values generated by CCE11 are closer to ”1” comparing with
those of generated by CCE10. Here, it can be seen easily that the values of si1 are to become
closer to ”1” than those of the other methods in the event that they are obtained by using Riesz
mean (see [29]). To avail of this advantage, in addition to the above-mentioned methods, we
configure the method provided in [29] and denote it by YE12 as follows:

Step 1. Construct an fpfs-matrix [aij ]

Step 2. Obtain [si1] defined by

si1 :=
1∑n

j=1 a0j

n∑

j=1

a0jaij , i ∈ {1, 2, . . . ,m− 1}

Step 3. The set {uk | sk1 = max
i

(si1)} is attained

Preferably, the set {si1ui|ui ∈ U} or {µ(uk)uk|uk ∈ U} can be attained such that µ(uk) = sk1

max
i
si1

.

3 An Application of MRB02, CCE10, CCE11, and YE12

In this section, we consider some of the well-known methods used for salt-and-pepper noise
removal. By using MATLAB R2018b, we evaluate the performance of Progressive Switching
Median Filter (PSMF) [32], Decision Based Algorithm (DBA) [33], Modified Decision Based
Unsymmetrical Trimmed Median Filter (MDBUTMF) [34], Noise Adaptive Fuzzy Switching
Median Filter (NAFSMF) [35], and Different Applied Median Filter (DAMF) [36] by using 15
traditional images (Cameraman, Lena, Peppers, Baboon, Plane, Bridge, Pirate, Elaine, Boat,
Lake, Flintstones, Living Room, House, Parrot, and Hill) with 512 × 512 pixels, ranging in
noise densities from 10% to 90%, and an image quality metrics Structural Similarity (SSIM)
[37]. The results in Table 1 show that DAMF outperforms in any noise density than the
others.

Table 1. The mean SSIM results for the 15 traditional images

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

PSMF 0.9605 0.9211 0.8439 0.7326 0.5097 0.1956 0.0666 0.0335 0.0147

DBA 0.9655 0.9212 0.8608 0.7841 0.6914 0.5890 0.4847 0.3855 0.3103

MDBUTMF 0.9425 0.7949 0.8381 0.8391 0.7839 0.6336 0.3224 0.0974 0.0217

NAFSM 0.9753 0.9506 0.9246 0.8966 0.8659 0.8309 0.7884 0.7309 0.6068

DAMF 0.9865 0.9714 0.9538 0.9328 0.9085 0.8785 0.8409 0.7890 0.6959
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Let’s suppose that the success in high noise densities is more important than in the others.
In that case, the values given in Table 1 can be represented with a fpfs-matrix as follows:

[aij ] :=




0 0 0.1 0.3 0.5 0.7 0.9 1 1
0.9605 0.9211 0.8439 0.7326 0.5097 0.1956 0.0666 0.0335 0.0147
0.9655 0.9212 0.8608 0.7841 0.6914 0.5890 0.4847 0.3855 0.3103
0.9425 0.7949 0.8381 0.8391 0.7839 0.6336 0.3224 0.0974 0.0217
0.9753 0.9506 0.9246 0.8966 0.8659 0.8309 0.7884 0.7309 0.6068
0.9865 0.9714 0.9538 0.9328 0.9085 0.8785 0.8409 0.7890 0.6959




If we apply MRB02, CCE10, CCE11, and YE12 to the fpfs-matrix [aij ], then the score
matrices and the decision set are as follows, respectively:

[si1] = [0.8041 2.2113 1.5803 3.4233 3.6861]T

[si1] = [0.0893 0.2457 0.1756 0.3804 0.4096]T

[si1] = [0.1149 0.3159 0.2258 0.4590 0.5266]T

[si1] = [0.1787 0.4914 0.3512 0.7607 0.8191]T

and
{0.2181PSMF, 0.5999DBA, 0.4287MDBUTMF, 0.9287NAFSM, 1DAMF}

The scores show that DAMF is better than the other methods and the order DAMF, NAFSM,
DBA, MDBUTMF, and PSMF is valid. It must be noted that the decision sets generated by
these methods are the same.

4 Conclusion

In this study, we have reviewed the methods MRB02, CCE10, CCE11, and YE12 and illus-
trated their sorting abilities. Although these methods have defined different structures, their
configured versions have same abilities in terms of sorting. Afterwards, we have applied the
methods to order the filters, used in noise removal, in terms of performance. Moreover, these
soft decision-making methods have a potential to different applications.
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[24] S. Bera, S. K. Roy, F. Karaaslan, N. Çağman, Soft congruence relation over lattice,
Hacettepe Journal of Mathematics and Statistics 46 (6) (2017) 1035–1042.
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Abstract

In this paper, time-fractional advection-diffusion problem in terms of a new fractional
derivative operator involving the normalized sinc function (NSF) is considered. This
derivative operator is defined with nonsingular kernel. Therefore, it removes the compu-
tational complexities arising from the singular kernel functions inherit in the conventional
fractional derivatives. In the present paper, we investigate the fundamental solution for
heat-diffusion equation by using Sumudu transform (ST) with respect to the time and
Fourier transform (FT) with respect to spatial coordinate. The mentioned fractional
advection-diffusion problem is considered in a half space.

Keywords: Advection-diffusion equation, normalized sinc function, fractional deriva-
tive, Sumudu transform, Fourier transform.

1 Introduction

Modelling real-life problems with fractional partial differential equations (FPDEs) has a mean-
ingful role in recent decades. Some important solution methods of the problems have been
examined by using fractional operators. These operators can be classified as that include the
power-law function [1], exponential function [2], Mittag-Leffler function [3, 4], stretched ex-
ponential function [5], stretched Mittag-Leffler function [6], and the normalized sinc function
[7]. Recent studies made have shown that many problems are modeled and solved using these
operators by some scientists [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
In 2017, Yang et al. developed a new fractional derivative operator involving the normalized
sinc function without singular kernel. They also defined some integral transforms and prop-
erties of the mentioned operator such as, Laplace, Fourier, Sumudu transforms. In this study,
we consider the Dirichlet problem for the time-fractional advection-diffusion equation [19] and
we get its fundamental solution by using Sumudu-Fourier transforms.

2 New Derivative Operator in the Normalized Sinc Function
Sense

In this section, we explain the mentioned derivative operator and its some integral transforms.
Definition 1. The normalized sinc function is defined as [20]:

sinc (t) =
sin (πt)

πt
, t ∈ R. (1)

∗Corresponding author. E-mail address: mehmetyavuz@konya.edu.tr
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Definition 2. Let u (τ) be in H1 (a, b) , b > a. A new fractional derivative operator which is
defined with the normalized sinc function (FDNSF) of the function u (τ) of order µ is defined
by [7]:

NSF
a Dµ

τ u (τ) =
µψ (µ)

1− µ

∫ τ

a
sinc

(
−µ (τ − ε)

1− µ

)
u′ (ε) dε, a ∈ (−∞, τ) , (2)

where ψ (µ) is a normalization function such that ψ (0) = ψ (1) = 1.
Definition 3. The Sumudu transform of the FDNSF is defined as [7]

Ψ
{
NSF
0 Dµ

τ u (τ)
}

= Ψ
{
µψ(µ)
1−µ

∫ τ
0 sinc

(
−µ(τ−ε)

1−µ

)
u′ (ε) dε

}

= µψ(µ)
π Ψ

{
sinc

(
− µτ

1−µ

)}
Ψ {u′ (ε)}

= ψ(µ)
πϑ2

[u∗ (ϑ)− u (0)] arctan
(
µπϑ
1−µ

)
,

(3)

where Ψ {u (τ)} = u∗ (ϑ) .
Definition 4. The Fourier transform of the FDNSF is defined by [7]

F
{
NSF
0 Dµ

xu (x)
}

= F
{
µψ(µ)
1−µ

∫ x
0 sinc

(
−µ(x−ε)

1−µ

)
u′ (ε) dε

}

= iωψ (µ)
√

1
2πH

(
µπ

1−µ + |ω|
)
û (ω) ,

(4)

where F {u (x)} = û (ω) and H (.) is the Heaviside function [21].
Moreover, the infinite sin-Fourier transform with respect to spatial coordinate is defined as
[22]

F {u (x, s)} = û (ω, s) =

∫ ∞

0
u (x, s) sin (ωx) dx. (5)

The sin-Fourier transform property of the second order derivative in a half space is given by

F
{
d2u (x)

dx2

}
= −ω2û (ω) + ωu (x)

∣∣
x=0

. (6)

3 Solution of Time-Fractional Advection-Diffusion Equation
with the FDNSF

Consider the following special-type fractional heat equation [23] in the sense of FDNSF oper-
ator

∂αϕ (x, τ)

∂τα
= σ

∂2ϕ (x, τ)

∂x2
− κ2ϕ (x, τ)

4σ
, 0 < x <∞, τ > 0, σ > 0, κ > 0, (7)

with the initial condition
τ = 0 : ϕ (x, 0) = 0, (8)

and the boundary condition

x = 0 : ϕ (0, τ) = δ (τ) ,
x→∞ : lim

x→∞
ϕ (x, τ) = 0. (9)

Applying the Sumudu transform (3) with respect to time variable τ and the finite sin-Fourier
transform (5) with respect to spatial coordinate x, we obtain the following equation

ψ (µ)

πϑ2

[
φ̂
∗

(ω, ϑ)
]

arctan

(
µπϑ

1− µ

)
= σ

(
−ω2φ̂

∗
(ω, ϑ) + ω

)
− κ2φ̂

∗
(ω, ϑ)

4σ
. (10)
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After some arrangements, we get

φ̂
∗

(ω, ϑ) =
σω

ψ(µ)
πϑ2

arctan
(
µπϑ
1−µ

)
+ σω2 + κ2

4σ

. (11)

Using the inverse Sumudu transform and inverse Fourier transform in the last equation, we
get the fundamental solution of suggested problem as

φ (x, τ) = F−1
{

Ψ−1
{
φ̂
∗

(ω, ϑ)
}}

= F−1

{
Ψ−1

{
σω

ψ(µ)

πϑ2
arctan

(
µπϑ
1−µ

)
+σω2+κ2

4σ

}}

= 2σµτµ−1

π

∫∞
0

(
ωε2(

ε+σω2+κ2

4σ

)2

)
∑∞

m=0







−τµµε
(
σω2+κ

2

4σ

)

ε+σω2+κ
2

4σ



m

Γ(µm+µ)


 sin (ωx) dω,

(12)

where ε = 1
1−µ . If we consider the special case of fractional operator as µ→ 1 and ε→∞ in

Eq. (12), we get the standard exact solution of the mentioned advection-diffusion equation
as:

φ (x, τ) =
2σ

π

∫ ∞

0
ω exp

(
−τ
(
σω2 +

κ2

4σ

))
sin (ωx) dω. (13)

Figure 1: Solutions of Eq. (7) when µ→ 1 and κ = 0.5 (left) and κ = 1 (right).

Figure 2: Solutions of Eq. (7) when µ = 0.5 and τ = 0.1 for various values of κ.
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4 Concluding Remarks

In this paper, we consider a fractional advection-diffusion problem by using the newly defined
fractional derivative operator. This operator is defined by normalized sinc function. We apply
the integral transforms of the derivative operator to the advection-diffusion problem. This
problem is considered in a half space (0,∞) . We obtain the solution function of the problem
and we present the results with figures. In Figure ??, we get the solutions with respect to
two different variables of the diffusion constant. In Figure ??, we have the solutions include
various variables of the diffusion constant when µ = 0.5 and τ = 0.1.
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Abstract

This study examined the effects of glass powder (GP), superplasticizer and spread
diameter effect on the compressive strength estimation of GP added concrete mixes. GP
was added into the mixes at the weight fractions of 10 %, 15 %, and 20 %. 80 compressive
strength test results were recorded during the field studies. A Quasi-Newton method based
artificial neural network system was proposed in order to predict compressive strength of
the specimens. Analysis results showed that there is a strong correlation between the input
parameters and the output compressive strength values. The mathematical expression of
the proposed model was also presented within the scope of this study.

Keywords: Compressive strength, Quasi-Newton method, glass powder, prediction math-
ematical expression.

1 Introduction

Concrete is a building material that is widely used all over the world. Concrete is generally
used in buildings, road construction, dams, and many other areas. Conventional concrete
production is made by using water, cement, coarse and fine aggregate [1, 2]. There have
various improvements in recent years to meet the needs of the building industry. These
developments in concrete are generally classified as high durability, early high strength, long
life, impermeability [2-6].
In conventional concrete, both linear and nonlinear regression models can be used to predict
the concrete compressive strength. However, the relationship between the parametric inputs
and the concrete compressive strength output becomes increasingly complicated due to the
contributions of the admixtures used in the concrete. For this reason, prediction models in
concrete that used additive materials can be developed using soft computing techniques such
as artificial neural networks (ANNs) [2]. Also, data-driven models such as Adaptive Neuro-
Fuzzy Inference System (ANFIS) and Multiple Linear Regression (MLR) are widely used in
civil engineering data. With the predictions made by such models, the material becomes more
understandable without the need for experimental data [7, 8].
Nowadays, prediction models are used to estimate concrete compressive strength for many
parameters. By Shao et al. slump value of recyclable concrete is estimated [9]. By Bilgehan et

∗Corresponding author. E-mail address: mehmetuzun@kmu.edu.tr
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al. neural network model and concrete ultrasonic pulse velocity test is proposed for predicting
concrete compressive strength [10]. By Sobhani et al. neural networks and the adaptive neuro-
fuzzy inference systems are used together to develop a prediction model [11]. By Milicevic et
al. artificial neural networks and regression techniques are used to estimate the relationship
between concrete components and concrete properties [12, 13].

2 Material and method

2.1 Neural Network Development

The neural networks are used to reflect the predictive model. In Neural Designer neural net-
works allow deep architectures, which are a class of universal approximator. In this study,
the conjugate gradient method was used. In the conjugate gradient, algorithm search is con-
ducted along conjugate directions, which produces generally faster convergence than gradient
descent directions. The training algorithm is given in Table 1.

Table 1: Training algorithm

Description Value

Training direction method FR

Training rate method Brent Method

Training rate tolerance 0.0005

Min. parameters increment
form

The norm of the parameters
increment vector at which
training stops.

1e-009

Min. loss increase Minimum loss improvement
between two successive
iterations.

1e-012

Gradient norm goal 0.001

Max. iterations number 1000

Maximum time Maximum training time. 3600

The ANN structure was proposed with three inputs for estimating concrete compressive
strength. Three input parameters: spread diameter, plasticizer, glass powder (GP) content
values were selected based on physical considerations and the experimental test results. The
proposed ANN structure is presented in Figure 1.

Figure 1: Proposed ANN structure

Necessary statistical information is precious when designing a prediction model. Because
it allows fictive or error data to appear. It is a must to check for the correctness of the
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most important statistical measures of every single variable. Table 2 shows the minimums,
maximums, means and standard deviations of all the variables in the data set.

Table 2: Dataset

Minimum Maximum Mean Deviation

Spread diameter 107 134 121.367 6.75805

Plasticizer 25 30 27.7848 1.91934

GP content 0 20 11.3924 7.37879

Compressive strength 24.03 36.76 29.8684 3.23252

All prediction studies have been performed with the aid of Neural Designer software. The
size of the scaling layer is 3, the number of inputs. The scaling method for this layer is
the Mean Standard Deviation. The neural network layer number is 3. Architecture of this
neural network can be written as 3:3:3:1. The norm of the parameters gives a clue about
the complexity of the predictive model. If the parameters norm is small, the model will be
smooth.
On the other hand, if the parameters norm is very big, the model might become unstable.
Also, note that the norm depends on the number of parameters. Proposed parameters norm
was obtained as 3.17.

3 Discussions

Input values and their corresponding values are given in Table 3. The input variables are
Spread diameter, Plasticizer, and GP content; and the output variable is a Compressive
strength.
The proposed model produced the form of a function of the outputs concerning the inputs.
The mathematical expression represented by the model can be used to embed it into another
software, in the so-called production mode. The mathematical expression of the utilized
neural network is written below (Figure 2). It takes the inputs Spread diameter, Plasticizer,
GP content to produce the output Compressive strength.

Table 3: Inputs and corresponding output

Values

Spread diameter 121.367

Plasticizer 27.7848

GP content 11.3924

Compressive strength 29.6360207
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Figure 2: Mathematical expression

The proposed model performance was evaluated with Sum Squared Error (SSE), Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), Normalized Squared Error (NSE) and
Minkowski Error (ME) operators. These errors are presented in Table 4. All error results of
the ANN classification system were obtained as within the acceptable limits.

Table 4: Proposed network errors

Training Selection Testing

6.39178 4.51682 6.21518

Mean squared error 0.130444 0.301122 0.414345

Root mean squared error 0.361171 0.548745 0.643697

Normalized squared error 0.0146457 0.0285306 0.0302826

Minkowski error 8.54492 5.29992 6.63524

4 Conclusions

This research aims to develop an ANN-based Compressive strength estimation system in
order to provide compressive strength effecting ingredients of the concrete mixes. For this
purpose, the artificial neural network-based system was developed using a conjugate gradient
algorithm. Conclusions of the research can be drawn as follows:
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• The ANN model approves the strong correlation between the Pin puts parameters GP
and plasticizer contents and spread diameter and the output parameter compressive
strength.

• The outcomes of the study can be assessed by other artificial and mathematical systems
for a better understanding of inputs effects on Compressive strength amounts.

• ANN models showed good fitting performances and this model could be applied to the
compressive strength estimation studies.
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Abstract

In the present paper, we study a generalization of the growth functions of finitely generated
groups, namely the growth functions

∑

g∈G

gz|g| with coefficients in the group ring Z[G]. We com-

pute complete growth series for finite number of amalgamated free products of some finite groups.
Finally, we give a generalized formula for calculation of complete growth series of this kind of
group product.

Keywords: Amalgamated free product, complete growth series, presentation.

1 Introduction and Preliminaries
There is a long history of studying combinatorial structures in the context of infinite

groups. One example is complete growth series, where for a given set of generators, one
writes the elements of length n. By calculating such series, it becomes possible to classify
related groups. In [8], the authors studied complete growth functions on hyperbolic groups
by languages determined by sets of forbidden words and rewriting system. Later, in [12], the
author studied triangular Coxeter group and derived a formula for the complete growth series
of that group by using complete rewriting system method. In [13], Mamaghani computed
complete growth series of Coxeter groups with more than three generators as a continue work
of [12]. Later, in [1], the authors showed that the property of having a rational complete
growth series is preserved by direct and graph products, as well as certain free products with
amalgamation. In literature, there are also some other important studies on growth series of
groups. For example, some authors computed the growth series for some special groups, such
as, for surface groups ([4]), for Fuchsian groups ([7]), for Heisenberg and Nil groups ([3, 15])
and for hyperbolic groups ([5]). Some other authors have also studied the growth series for
special group (extensions) products. For example, in [14], Mann studied growth series on
free products of groups. In [6], the authors calculated the growth series of amalgamated free
products and HNN -extensions. Johnson ([10]) presented some results on the growth series
of wreath products.

In this paper, we compute the complete growth series for finite number of amalgamated
free products of some finite groups. Here, we use the formula given in [1] to compute the
complete growth series of amalgamated free products of groups. In that paper, the authors
have obtained that formula by using normal forms of elements of amalgamated free product.

Theorem 1 ([1]) Let G = A∗CB be a free product of groups A and B amalgamating C. Assume
that (C, SC) ⊂ (A, SA) and (C, SC) ⊂ (B, SB) are both admissible. Then the complete growth

∗Corresponding author. E-mail address: esrakirmizi@kmu.edu.tr
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series of G is given by

1
F c

G(z) = 1
F c

A(z) + 1
F c

B(z) −
1

F c
C(z) .

Now we give group presentations of which complete growth series will be computed as
follows. In the next section, the complete growth series of these groups will be given.

W3 = < w0, w1, w2; w2
0 = w2

1 = w2
2 = (w0w1)2 = (w0w2)2 = (w1w2)2 = 1 >, (1)

W4 = < w0, w1, w2, w3 ; w2
0 = w2

1 = w2
2 = w2

3 = (w0w1)2 = (w0w2)2 = (w0w3)2 = (2)
(w1w2)2 = (w1w3)2 = (w2w3)2 = 1 >

and
Wn = < wi (0 ≤ i ≤ n) ; w2

i = 1, (wiwj)2 = 1 (0 ≤ i < j ≤ n) > . (3)

Let G be a finitely presented group with a semigroup generating set S =
{

s∓1
1 , s∓1

2 , · · · , s∓1
l

}
.

By the length |g| of g ∈ G with respect to S, we mean the quantity

|g| = inf {k : g = s1s2 · · · sk, si ∈ S, 1 ≤ i ≤ k} .

The function f : N ∪ {0} → N defined by f(0) = a0 = 1 and

f(n) = an = # {g ∈ G : |g| = n, n ≥ 1}

is called the growth function of G with respect to S, and the series F (z) =
∞∑

n=0
anzn is called

the growth series of G (see, for example, [2, 9]).
Let G be a finitely presented group with a semigroup generating set S =

{
s∓1

1 , s∓1
2 , · · · , s∓1

l

}

and R[G] be the group ring on G. The function f c : N ∪ {0} → R[G] defined by

f c(0) = 1, f c(n) =
∞∑

g∈G, |g|=n

g ∈ G

is called the complete growth function and the series F c(z) =
∞∑

g∈G

gz|g| is called the complete

growth series of G with respect to S and R ([1, 12]).

2 Main Results
In this section, we compute the complete growth series for presentations given by (1)

and (2). To do that, firstly, we will consider the presentations given by (1) and (2) as
an amalgamated free product type. Then, with the help of formula given in Theorem 1
, we compute complete growth series for this kind of groups. Firstly, let us consider the
presentation of W3 given by (1). So we have the following result.

Theorem 2 Let F c
W3(z) be complete growth series of the group W3. Then F c

W3(z) is given as
follows:

1
F c

W3
(z) = 3 + Az

(1 + w0z)(1 + w1z)(1 + w2z) −
2−Az + z2

1− z2 ,

where A = w0 + w1 + w2.
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Proof. We can consider the presentation of W3 group given by (1) as an amalgamated free
product of groups. For that, let K1, K2 and K3 be subgroups of W3 and they have the
following presentations

K1 =< w0, w1; w2
0 = w2

1 = (w0w1)2 = 1 >,

K2 =< w1, w2; w2
1 = w2

2 = (w1w2)2 = 1 >

and
K3 =< w0, w2; w2

0 = w2
2 = (w0w2)2 = 1 >,

respectively. Firstly, let H1 be a subgroup of K1 and K2 presented by H1 =< w1; w2
1 = 1 >.

That is, H1 ⊂ K1 and H1 ⊂ K2. Then, we have

L3 = K1 ∗H1 K2 =< w0, w1, w2; w2
0 = w2

1 = w2
2 = (w0w1)2 = (w1w2)2 = 1 > .

Secondly, let H2 be a subgroup of K3 and L3 presented by

H2 =< w0, w2; w2
0 = w2

2 = 1 > .

Now we can consider amalgamated free product of K3 and L3 by H2. Thus we get the following
presentation.

W3 = K3 ∗H2 L3 =< w0, w1, w2; w2
0 = w2

1 = w2
2 = (w0w1)2 = (w0w2)2 = (w1w2)2 = 1 > .

Then, by formula given in Theorem 1 we obtain

1
F c

W3
(z) =

(
1

F c
K3

(z) + 1
F c

L3
(z) −

1
F c

H2
(z)

)

=
(

1
F c

K3
(z) +

(
1

F c
K1

(z) + 1
F c

K2
(z) −

1
F c

H1
(z)

)
− 1

F c
H2

(z)

)

= 1
F c

K1
(z) + 1

F c
K2

(z) + 1
F c

K3
(z) −

1
F c

H1
(z) −

1
F c

H2
(z)

= 1
1 + (w0 + w1)z + (w0w1)z2 + 1

1 + (w1 + w2)z + (w1w2)z2

+ 1
1 + (w0 + w2)z + (w0w2)z2 −

1− w1z

1− z2 −
1− (w0 + w2)z + z2

1− z2

= 1
(1 + w0z)(1 + w1z) + 1

(1 + w1z)(1 + w2z) + 1
(1 + w0z)(1 + w2z)

− 2− (w0 + w1 + w2)z + z2

1− z2

= 3 + (w0 + w1 + w2)z
(1 + w0z)(1 + w1z)(1 + w2z) −

2−Az + z2

1− z2 ,

where A = w0 + w1 + w2.
For another result of this work, let us consider the presentation of W4 group given by (2).

Thus we have the following result.

Theorem 3 Let F c
W4(z) be complete growth series of the group W4. Then complete growth

series of W4 is given as follows:

1
F c

W4
(z) = 3 + 2(w0 + w3)z + Az2

(1 + w0z)(1 + w1z)(1 + w2z)(1 + w3z) −
5− 2Bz + 2z2

1− z2 ,

where A = 2w0w3 + w1w3 + w2w3 − w1w2 and B = w0 + w1 + w2 + w3.
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Proof. We take the presentation of W4 group given by (2) and consider it as an amalgamated
free product type. To do that, let K1, K2 and K3 be subgroups of W4 and they have the
following presentations

K1 =< w0, w1, w2; w2
0 = w2

1 = w2
2 = (w0w1)2 = (w0w2)2 = (w1w2)2 = 1 >,

K2 =< w1, w2, w3; w2
1 = w2

2 = w2
3 = (w1w2)2 = (w1w3)2 = (w2w3)2 = 1 >

and
K3 =< w0, w3; w2

0 = w2
3 = (w0w3)2 = 1 >,

respectively. Firstly, let H1 be a subgroup of K1 and K2 and it is presented by H1 =<
w1, w2; w2

1 = w2
2 = (w1w2)2 = 1 >. That is, H1 ⊂ K1 and H1 ⊂ K2. Let L3 = K1 ∗H1 K2.

Next, let H2 be a subgroup of K3 and L3 and it is presented by H2 =< w0, w3; w2
0 =

w2
3 = 1 >. That is, H2 ⊂ K3 and H2 ⊂ L3. Now we can consider amalgamated free product

of K3 and L3 by the subgroup H2 as W4. It is seen that W4 has the following presentation

W4 = K3 ∗H2 L3 =< w0, w1, w2, w3; w2
0 = w2

1 = w2
2 = w2

3 = (w0w1)2 = (w0w2)2 = (w0w3)2

= (w1w2)2 = (w1w3)2 = (w2w3)2 = 1 > .

Hence, by formula given in Theorem 1 we obtain

1
F c

W3
(z) =

(
1

F c
K3

(z) + 1
F c

L3
(z) −

1
F c

H2
(z)

)

=
(

1
F c

K3
(z) +

(
1

F c
K1

(z) + 1
F c

K2
(z) −

1
F c

H1
(z)

)
− 1

F c
H2

(z)

)

= 1
F c

K1
(z) + 1

F c
K2

(z) + 1
F c

K3
(z) −

1
F c

H1
(z) −

1
F c

H2
(z)

= 3 + (w0 + w1 + w2)z
(1 + w0z)(1 + w1z)(1 + w2z) −

2− (w0 + w1 + w2)z + z2

1− z2

+ 3 + (w1 + w2 + w3)z
(1 + w1z)(1 + w2z)(1 + w3z) −

2− (w1 + w2 + w3)z + z2

1− z2

+ 1
1 + (w0 + w3)z + (w0w3)z2 −

1
1 + (w1 + w2)z + (w1w2)z2 −

1− (w0 + w3)z + z2

1− z2

= 3 + 2(w0 + w3)z + (2w0w3 + w1w3 + w2w3 − w1w2)z2

(1 + w0z)(1 + w1z)(1 + w2z)(1 + w3z)

− 5− 2(w0 + w1 + w2 + w3)z + 2z2

1− z2

= 3 + 2(w0 + w3)z + Az2

(1 + w0z)(1 + w1z)(1 + w2z)(1 + w3z) −
5− 2Bz + 2z2

1− z2 ,

where A = 2w0w3 + w1w3 + w2w3 − w1w2 and B = w0 + w1 + w2 + w3.
Finally, let us consider the presentation of Wn group given by (3). Then we have

Wn = (W2 ∗H2 (W ′
n−1 ∗Hn−2 W

′′
n−1)),

where W2 is a commutator group with two generators of orders 2, W
′
n−1 and W

′′
n−1 are

commutator groups with n − 1 generators of orders 2. Also, let H2 ⊂ (W ′
n−1 ∗Hn−2 W

′′
n−1),

H2 ⊂W2, Hn−2 ⊂W
′
n−1 and Hn−2 ⊂W

′′
n−1. Now we can present the last result of this work

as follows.
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Corollary 4 Let F c
Wn

(z) be complete growth series of the group Wn = (W2 ∗H2 (W ′
n−1 ∗Hn−2

W
′′
n−1)). Then F c

Wn
(z) is given as follows:

1
F c

Wn
(z) = 1

F c
W2

(z) + 1
F c

W
′
n−1

(z) + 1
F c

W
′′
n−1

(z) −
1

F c
H2

(z) −
1

F c
Hn−2

(z) .

We note that if we apply some operations on relators given the presentations in (1), (2)
and (3), we the obtain some known important group types, namely elliptic Weyl groups of
types A

(1,1)∗
1 , A

(1,1)
1 and n-extended affine Weyl group of type A1, respectively.

Finally, we note that in [11], the authors obtained complete rewriting system and thus
normal form of elements of W3, W4 and Wn groups by using their presentations given by (1),
(2) and (3). Therefore they showed the solvability of the word problem for these groups. So
this study can be considered as a continuation work of [11].
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Abstract

In this paper, an algorithm is presented for the optimum design of the spatial steel
frames. The optimum design problem is formulated according to specifications of LRFD-
AISC. Design constraints include the displacement limitations, inter-story and top-story
drift restrictions of multi-story frames, strength requirements for beams and beam-columns
and geometric constraints. Water Cycle Algorithm (WCA), inspired by the observation
of water cycle process and how rivers and streams flow to the sea. For improving the
global search ability of WCA, a new concept of evaporation rate for different rivers and
streams is defined that is so-called WCA with Evaporation Rate (WCA-ER). The design
algorithm developed selects optimum W sections for beams and columns of spatial steel
frames so that aforesaid constraints are satisfied and the frame has the minimum weight.
A spatial steel frame has been designed by WCA-ER to test performance of the developed
algorithm.

Keywords: Design optimization, water cycle algorithm, spatial steel frame.

1 Introduction

Mostly, spatial steel frames are opted for residential and commercial building construction
since they have eminent strength and ductility characterization. Over than two decades, the
natural resources have been melted away rapidly. One of the primary reasons to this danger
of extinction is that the increment the utilized raw materials at the construction sites. If
the designer meets required criteria and performance of buildings, and also considers how to
design steel buildings most economically, usage of world’s resources markedly reducible. That
is to say, the designer has to pay regard to optimum design of steel buildings. Therewithal,
design optimization of steel buildings is not a simple effort for designers since most design
problems are highly nonlinear. Furthermore, they contain discrete design variables and consist
of complex design restrictions on highest strength capacities of structural members, displace-
ments, stability and geometric compatibilities [1]. Stochastic search optimization methods are
significant instruments for optimum design of steel frame skeletal building problems. These
techniques, which are so-called metaheuristics, take their basis from inspiring natural phenom-
ena [2-4]. The Water Cycle Algorithm (WCA) is one of the recent additions to metaheuristics
that is inspired from the based on the observation of water cycle and how rivers and streams
flow downhill towards the sea in the real world [5]. WCA is a powerful technique used in
engineering optimization and it has been used in engineering optimization studies [6].

∗Corresponding author. E-mail address: scarbas@kmu.edu.tr
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2 Mathematical Modeling Of Optimum Design Of Spatial Steel
Frames

Optimum design of spatial steel frames problems are specified as the chosen of steel sections
for its frame group members from available steel section profile lists in the standards such
that serviceability, strength and geometric restrictions defined by the code of practice. The
objective function of optimum design problem is depicted as the weight minimization of the
steel frame which is expressed as [1]:

W(x) =

NG∑

r=1

mr

tr∑

s=1

ls (1)

where; W is the weight of the steel frame, x is the vector of steel sections in the steel frame
which are described as design variables, mr is the unit weight of the steel section adopted for
member group r, tr is the total number of members in group r and NG is the total number
of member groups, ls is the length of member which belongs to group r. These optimization
problems are subjected to design constraints functions which are described in a formula as
follows:

[gi(x)]NC
i=1 =

∑
gs(x),

∑
gd(x),

∑
gtd(x),

∑
gid(x),

∑
gcc(x),

∑
gbc(x) (2)

where; gs, gd, gtd, gid, gcc and gbc are the constraints functions for strength, deflection,
inter-story drift, top story drift, column-to-column geometric and beam-to-column geomet-
ric constraints functions according to design code LRFD respectively. Strength constraint
function is defined from inequalities given in Chapter H of LRFD-AISC as:

gs(x) =

(
Pu

φcPn

)
+

(
8

9

Mux

φbMnx

)
≤ 1.0 for

Pu

φcPn
≥ 0.2 (3)

gs(x) =

(
Pu

2φcPn

)
+

(
Mux

φbMnx

)
≤ 1.0 for

Pu

φcPn
≤ 0.2

where, Mnx is the nominal flexural strength at strong axis (x axis), Mny is the nominal flexural
strength at weak axis (y axis), Mux is the required flexural strength at strong axis (x axis),
Muy is the required flexural strength at weak axis (y axis), Pn is the nominal axial strength
(Tension or compression) and Puis the required axial strength (Tension or compression) for
member i. Deflection constraints are calculated by using

gd(x) =
δjl

L/Ratio
− 1.0 ≤ 0.0 (j = 1, 2, ...,nsm, l = 1, 2, ...,nlc) (4)

where ,δjl is the maximum deflection of jth member under the lth load case, L is the length of
member, nsm is the total number of members where deflections limitations are to be imposed,
nlc is the number of load cases. Top story drift constraint function is given as:

gtd(x) =
∆top

jl

H/Ratio
−1.0 ≤ 0.0 (j = 1, 2, ...,njtop, l = 1, 2, ...,nlc) (5)

Inter story drift constraint function is given as:

gid(x) =
∆oh

jl

hsx/Ratio
−1.0 ≤ 0.0 (j = 1, 2, ...,nst, l = 1, 2, ...,nlc) (6)

In these equations, H is the height of the frame, njtop is the number of joints on the top story,
∆jl

top is the top story displacement of the jth joint under lth load case, nst is the number of
story, nlc is the number of load cases ,∆jl

oh is the story drift of the jth story under lth load
case, hsx is the story height and Ratio is the limitation ratio for lateral displacements. Range
of drift limits by first-order analysis is 1/750 to 1/250 times the building height H with a
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recommended value of H/400. Two types of geometric limitations, called column to column
geometric constraints and beam to column geometric constraints are included in the design
problem and defines as shown in Equations (7) and (8), respectively.

gcc(x) =

nccj∑

i=1

(
Da
i

Db
i

−1.0

)
and

nccj∑

i=1

(
ma
i

mb
i

−1.0

)
≤ 0.0 (7)

gbc(x) =

nj1∑

i=1

(
Bbi
f

Dci − 2tcib
−1.0

)
or

nj2∑

i=1

(
Bbi
f

Bci
f

−1.0

)
≤ 0.0 (8)

In these equations; nccj is the number of column to column geometric constraints defined in
the problem, mi

a is the unit weight of W section selected for above story, mi
b is the unit weight

of W section selected for below story, Di
a is the depth of W section selected for above story,

Di
b is the depth of W section selected for below story, nj1 is the number of joints where beams

are connected to the web of a column, nj2 is the number of joints where beams connected to
the flange of a column, Dci is the depth of W section selected for the column at joint i, tb

ci is
the flange thickness of W section selected for the column at joint i, Bf

ci is the flange width of
W section selected for the column at joint i and Bf

bi is the flange width of W section selected
for the beam at joint i.

3 Water Cycle Algorithm With Evaporation Rate

The idea of the WCA is inspired by nature and based on the observation of water cycle process
and how rivers and streams flow downhill toward the sea in nature [5]. To further clarify, some
basics of how rivers are created and water travels down to the sea are provided as follows. A
river, or a stream, is formed whenever water moves downhill from one place to another. This
means that most rivers are formed high up in the mountains, where snow from the winter or
ancient glaciers is melting. Water in rivers is evaporated, while plants discharge (transpire)
water through photosynthesis process as shown in Figure 1.

Figure 1: Hydrologic cycle (water cycle process
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Figure 2: Diagram of streams having different orders flowing to a river

The evaporated water is carried into the air to produce clouds which then condenses
in the colder weather. Afterwards, the water returns to earth in the form of rain. This
natural procedure is known as the hydrologic cycle [7].Figure 2 is a schematic diagram of how
streams having deferent orders flow to the river. The smallest river branches are the small
streams where the rivers begin to form. These tiny streams are called first-order streams as
shown in Figure 2 in green colors. A second-order stream shown in Fig. 2 in white colors
is produced when two first-order streams are joined. A third-order stream is formed where
two second-order streams join, which is shown in Figure 2 in blue colors, and such process
continues until the river flows out into the sea [8]. Finally, all of the rivers flow to the sea
(i.e., the most downhill place). WCA with Evaporation Rate (WCA-ER) was proposed in
order to improve the performance of standard WCA [9]. In WCA-ER, available evaporation
rate is de?ned to amend the evaporation of the water adaptively. In addition, WCA-ER
forces new generated streams to search near sea using the concept of variance. In WCA-ER,
the occurrence of evaporation condition decreases as the iteration continues. In evaporation
based WCA (WCA-ER), similar to WCA, the surface run-off phase considered as updating
equations (movement equations) does not altering WCA-ER. However, to increase the chance
of escaping from the local optima, the evaporation condition is introduced in WCA by de?ning
a speci?c criterion, which is called the Evaporation Rate (ER). In other words, in WCA-ER,
the evaporation process is considered by adding the concept of ER based on the assigned
number of streams to rivers [10]. The detail and more complex mathematical formulations
are given and explained in Refs. [6, 9, 10] and which are not repeated here.

4 Design Example

A two-story, two-bay irregular spatial steel frame [11] having 21 members that are collected
in two beam and three column design groups, is used as design example of this study. The
dimensions and member groupings in the frame are shown in the Figure 3. The frame is
subjected to wind loading of 50kN along Z axis in addition to 20kN/m gravity load which is
applied to all beams. The drift ratio limits are defined as 1 cm for inter story drift 4 cm for top
story drift where H is the height of frame. Maximum deflection of beam members is restricted
as 1.39 cm. The initial optimization parameters used for the WCA-ER for the considered
problem design are taken as Npop, Nsr, dmax, max iter (maximum number of iteration) whose
values are assigned as 20, 4, 10−3 and 10000, respectively.
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Figure 3: Two-story, two bay irregular spatial steel frame.

Table 1: Design results of two-story, two bay irregular spatial steelframe

Group number Group type Water Cycle Algorithm
with Evaporation Rate

1 Beam W460x60

2 Column W360x32.9

3 Column W410x60

4 Column W410x67

5 Column W310x38.7

Minimum weight-kN (kg) 49.13 (5009.88)

Maximum top story drift (cm) 1.85

Maximum inter- story drift (cm) 0.95

Maximum strength constraint ratio 0.852

Maximum number of Iterations 10000

The minimum weight, maximum constraints values and designated steel sections to the mem-
ber groups of optimum designs obtained from WCA-ER are illustrated in Table 1. It is ap-
parent from tables that the minimum weight is obtained as 49.13 kN (5009.88 kg). Moreover,
the top-story drift, the inter-story drift and maximum strength constraint ratio are obtained
as 1.85 cm, 0.95 cm, and 0.852, respectively. The inter-story drift is relatively very close to its
upper bound of 1.0 if it is compared to the other constraints. So, these results shows that the
inter-story drift constraint is dominate in this example and govern the optimization process.
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5 Conclusions

In this study, an optimum design algorithm which is based on WCA-ER algorithm is developed
for optimum design of spatial steel frame problems. A spatial steel frame is designed in order
to test efficiency of WCA-ER for optimum design of spatial steel frame problems. Optimum
design obtained from the WCA-ER indicates that the performance of the proposed algorithm
is promising. Therefore it can be concluded that, WCA-ER is a robust and efficient approach
that can be effectively used to determine the optimum designs of spatial steel frames.
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Abstract

In this paper, some new improvements of Hadamard-type inequalities for P−functions
by using Katugampola fractional integral operators have been proved.

1 Introduction

In this section, we will recall some definitions, inequalities and concepts. Firstly, we will start
with the definition of convexity that has an important place in the inequality theory.

Definition 1 Let I be an interval in R and f : I → R is a function. We say that f is convex
if the inequality;

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

holds for all x, y ∈ I and α ∈ [0, 1].

This famous function class has been used to obtain the celebrated Hermite-Hadamard
inequality that give us upper and lower bounds for the mean value of functions. Let a, b ∈ I,
a < b and f : I ⊂ R → R be a convex function that is defined on a subset of real numbers.
The following inequality is well known in the literature as the Hermite-Hadamard integral
inequality (see [7, 8]):

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.

The beginning of fractional integral calculus accompanies the beginning of the integral
calculus, developed by Riemann. It originates int the research of Liouville from 1832 related to
practical technical problems. Now we point few stages in evaluation of the fractional calculus,
as needed in developing the new results. More details on the fractional differentiation and
integration are in (see [6, 11, 13]), for example. The Riemann-Liouville fractional integral is,
from historic point of view, at the origin of the fractional calculus. It comes from the following
Cauchy n times iterative integration process,

∫ x

a
dt1

∫ t1

a
dt2 . . .

∫ tn−1

a
f(tn)dtn =

1

Γ(α)

∫ x

a
(x− 1)α−1f(t)dt

for n ∈ N∗.
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Definition 2 (See [1]) Let f ⊆ R→ R be a non-negative function. f is said to be P−function
if the inequality;

f(αx+ (1− α)y) ≤ f(x) + f(y)

holds for all x, y ∈ I, α ∈ [0, 1]

Katugampola ([9] and [10]) considered the following iterative process in 2011:

∫ x

a
tρ1dt1

∫ t1

a
tρ2dt2 . . .

∫ tn−1

a
tρnf(tn)dtn =

(ρ+ 1)1−n

(n− 1)!

∫ x

a
(tρ+1 − τρ+1)n−1τρf(τ)dτ.

Definition 3 See [9] Let f ∈ [a, b].

1. The left-sided Katugampola fractional integral ρIαa+f of order α ∈ C, <(α) > 0 is defined
by

ρIαa+f(x) =
ρ1−α

Γ(α)

∫ x

a

tρ−1

(xρ − tρ)1−α f(t)dt, x > a,

2. The right-sided Katugampola fractional integral ρIαb−f of order α ∈ C, <(α) > 0 is
defined by

ρIαb−f(x) =
ρ1−α

Γ(α)

∫ b

x

tρ−1

(tρ − xρ)1−α f(t)dt, x < b.

Katugampola’s operators are generalizations of A. Erdélyi and H. Kober operators in-
troduced in 1940 (see [5] and [12]), as well. Other similar approaches on moving iterative
integrals and derivatives into fractional framework in connection with theoretic and practical
applications are in the mathematical literature of the last decade. For example, the results of
Cristescu [4] in 2016.

Remark 4 If we set ρ = 1, then the Katugampola fractional integrals become Riemann-
Liouville fractional integrals.

The main aim of this paper is to establish new Hermite-Hadamard type integral inequalities
by using generalized Katugampola fractional integral for P−convex functions and prove some
results connected with them (see for example, [2, 3, 14]).

2 Main Results

The following theorem includes integral inequalities of Hadamard-type for P -functions.

Theorem 5 Let f : [aρ, bρ] → R be a function with 0 ≤ a < b, and f ∈ Xp
c (aρ, bρ). If f is

P−function on [a, b], then the following inequalities hold;

1

2
f

(
aρ + bρ

2

)
(1)

≤ 2α−1αραΓ(α+ 1)

(bρ − aρ)α
[
ρIα

(a
ρ+bρ

2 )
+f(bρ) +ρ Iα

(a
ρ+bρ

2 )
−f(aρ)

]
≤ [f(aρ) + f(bρ)]

where [(
<
(

2
1
ρ ≥ 1

)
∨ <

(
2

1
ρ ≤ 0

)
∨ 2

1
ρ /∈ R

)
∧ <(ρ) > 0 ∧ <(αρ) > 0

]

the fractional integrals are considered for the function f(xρ) and evaluated at a and b, respec-
tively.
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Proof. Since the function f is P -function on [a, b], we can write

f

(
xρ + yρ

2

)
≤ f(xρ) + f(yρ)

for x, y ∈ [a, b].
For xρ = tρ

2 a
ρ + 2−tρ

2 bρ and yρ = 2−tρ
2 aρ + tρ

2 b
ρ, we have

f

(
aρ + bρ

2

)
≤ f

(
tρ

2
aρ +

2− tρ
2

bρ
)

+ f

(
2− tρ

2
aρ +

tρ

2
bρ
)
. (2)

By multiplying both sides of (2) by tαρ−1 and integrating with respect to t on [0, 1], we get

1

αρ
f

(
aρ + bρ

2

)
(3)

≤
∫ 1

0
tαρ−1f

(
tρ

2
aρ +

2− tρ
2

bρ
)
dt+

∫ 1

0
tαρ−1f

(
2− tρ

2
aρ +

tρ

2
bρ
)
dt

= 2α



∫ (

aρ+bρ

2

) 1
ρ

a

(
xρ − aρ
bρ − aρ

)α−1 xρ−1

(bρ − aρ)f(xρ)dx

+

∫ b

(a
ρ+bρ

2 )
1
ρ

(
bρ − xρ
bρ − aρ

)α−1 xρ−1

(bρ − aρ)f(xρ)dx

]

=
2αρα−1Γ(α+ 1)

(bρ − aρ)α
[
ρIα

(a
ρ+bρ

2 )
+f(bρ) +ρ Iα

(a
ρ+bρ

2 )
−f(aρ)

]

which completes the proof of first inequality. To prove the second inequality, if we consider
the definition of P -function, we have

f

(
tρ

2
aρ +

2− tρ
2

bρ
)
≤ f(aρ) + f(bρ)

and

f

(
2− tρ

2
aρ +

tρ

2
bρ
)
≤ f(aρ) + f(bρ).

By addition, we get

f

(
tρ

2
aρ +

2− tρ
2

bρ
)

+ f

(
2− tρ

2
aρ +

tρ

2
bρ
)
≤ 2[f(aρ) + f(bρ)]. (4)

By multiplying both sides of (4) by tαρ−1 and integrating with respect to t on [0, 1], we deduce

2αρα−1Γ(α+ 1)

(bρ − aρ)α
[
ρIα

(a
ρ+bρ

2 )
+f(bρ) +ρ Iα

(a
ρ+bρ

2 )
−f(aρ)

]
≤ 2[f(aρ) + f(bρ)]

αρ

[(
<
(

2
1
ρ ≥ 1

)
∨ <

(
2

1
ρ ≤ 0

)
∨ 2

1
ρ /∈ R

)
∧ <(ρ) > 0 ∧ <(αρ) > 0

]
.

So, the proof is completed.

Corollary 6 If we choose ρ = 1 in (??), we have

f

(
a+ b

2

)
≤ 2α−1αΓ(α+ 1)

(b− a)α

[
Iα
(a+b2 )

+f(b) + Iα
(a+b2 )

−f(a)

]
≤ [f(a) + f(b)] .
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Lemma 7 (See [15]) Let f : [aρ, bρ]→ R be a differentiable function on (aρ, bρ) and 0 ≤ a < b.
Then the following equality holds:

2αραΓ(α+ 1)

(bρ − aρ)α
[
ρIα

(a
ρ+bρ

2 )
+f(bρ) +ρ Iα

(a
ρ+bρ

2 )
−f(aρ)

]
− f

(
aρ + bρ

2

)
(5)

=
(bρ − aρ)ρ

4

[∫ 1

0
tαρf ′

(
tρ

2
aρ +

2− tρ
2

bρ
)
dt−

∫ 1

0
tαρf ′

(
2− tρ

2
aρ +

tρ

2
bρ
)
dt

]
.

Theorem 8 Suppose that f : [aρ, bρ]→ R a differentiable function on (aρ, bρ) and 0 ≤ a < b.
If |f ′| is P−function on [aρ, bρ], the one has the following inequality

∣∣∣∣
2αραΓ(α+ 1)

(bρ − aρ)α
[
ρIα

(a
ρ+bρ

2 )
+f(bρ) +ρ Iα

(a
ρ+bρ

2 )
−f(aρ)

]
− f

(
aρ + bρ

2

)∣∣∣∣ (6)

≤ (bρ − aρ)ρ
2(αρ+ 1)

[|f ′(aρ)|+ |f ′(bρ)|].

Proof. By using the equality (5) with modulus and since |f ′| is P -function, we can write
∣∣∣∣
2αραΓ(α+ 1)

(bρ − aρ)α
[
ρIα

(a
ρ+bρ

2 )
+f(bρ) +ρ Iα

(a
ρ+bρ

2 )
−f(aρ)

]
− f

(
aρ + bρ

2

)∣∣∣∣

≤ (bρ − aρ)ρ
4

[∫ 1

0
tαρ
∣∣∣∣f ′
(
tρ

2
aρ +

2− tρ
2

bρ
)∣∣∣∣ dt+

∫ 1

0
tαρ
∣∣∣∣f ′
(

2− tρ
2

aρ +
tρ

2
bρ
)∣∣∣∣ dt

]

≤ (bρ − aρ)ρ
4

[∫ 1

0
tαρ[|f ′(aρ)|+ |f ′(bρ)|]dt+

∫ 1

0
tαρ[|f ′(aρ)|+ |f ′(bρ)|]dt

]

≤ (bρ − aρ)ρ
2(αρ+ 1)

[|f ′(aρ)|+ |f ′(bρ)|]

which is the desired result.

Corollary 9 If we choose ρ = 1 in (6), we obtain the following inequality;
∣∣∣∣
2α−1Γ(α+ 1)

(b− a)α

[
Iα
(a+b2 )

+f(b) + Iα
(a+b2 )

−f(a)

]
− f

(
a+ b

2

)∣∣∣∣ ≤
(b− a)

2(α+ 1)
[|f ′(a)|+ |f ′(b)|].

Theorem 10 Suppose that f : [aρ, bρ]→ R a differentiable function on (aρ, bρ) and 0 ≤ a < b.
If |f ′|q is P -function on [aρ, bρ], the one has the following inequality

∣∣∣∣
2αραΓ(α+ 1)

(bρ − aρ)α
[
ρIα

(a
ρ+bρ

2 )
+f(bρ) +ρ Iα

(a
ρ+bρ

2 )
−f(aρ)

]
− f

(
aρ + bρ

2

)∣∣∣∣ (7)

≤ (bρ − aρ)ρ
2

(
1

αρp+ 1

) 1
p

[(|f ′(aρ)|q + |f ′(bρ)|q)
1
q ]

for q > 1, q−1 + p−1 = 1.

Proof. By using the equality (5) with Hölder inequality and due to |f ′| is P -function, we
have ∣∣∣∣

2αραΓ(α+ 1)

(bρ − aρ)α
[
ρIα

(a
ρ+bρ

2 )
+f(bρ) +ρ Iα

(a
ρ+bρ

2 )
−f(aρ)

]
− f

(
aρ + bρ

2

)∣∣∣∣ (8)

≤ (bρ − aρ)ρ
4

[∫ 1

0
tαρ
∣∣∣∣f ′
(
tρ

2
aρ +

2− tρ
2

bρ
)∣∣∣∣ dt+

∫ 1

0
tαρ
∣∣∣∣f ′
(

2− tρ
2

aρ +
tρ

2
bρ
)∣∣∣∣ dt

]

≤ (bρ − aρ)ρ
4

(∫ 1

0
tαρpdt

) 1
p

×
[(∫ 1

0

∣∣∣∣f ′
(
tρ

2
aρ +

2− tρ
2

bρ
)∣∣∣∣

q

dt

) 1
q

+

(∫ 1

0

∣∣∣∣f ′
(

2− tρ
2

aρ +
tρ

2
bρ
)∣∣∣∣

q

dt

) 1
q

]
.
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It is easy to see that,

∫ 1

0

∣∣∣∣f ′
(
tρ

2
aρ +

2− tρ
2

bρ
)∣∣∣∣

q

dt ≤
∫ 1

0
[|f ′(aρ)|q + |f ′(bρ)|q]dt = |f ′(aρ)|q + |f ′(bρ)|q (9)

and similarly ∫ 1

0

∣∣∣∣f ′
(

2− tρ
2

aρ +
tρ

2
bρ
)∣∣∣∣

q

dt ≤ |f ′(aρ)|q + |f ′(bρ)|q. (10)

By using (9) and (10) in (8), we have desired result. This completes the proof.

Corollary 11 If we choose ρ = 1 in (7), we obtain the following inequality;

∣∣∣∣
2α−1Γ(α+ 1)

(b− a)α

[
Iα
(a+b2 )

+f(b) + Iα
(a+b2 )

−f(a)

]
− f

(
a+ b

2

)∣∣∣∣

≤ (b− a)

2

(
1

αp+ 1

) 1
p

[|f ′(a)|q + |f ′(b)|q]
1
q .
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Abstract

The main aim of this article is obtaining the analytical solutions of space-time fractional

partial differential equations arising in mathematical physics by using newly defined conformable

double Laplace transform method. All the used derivatives are in conformable sense which is

applicable, simple and well behaved arbitrary order derivative.

Keywords: Conformable Laplace transform, conformable fractional derivative, fractional par-

tial differential equation.

1 Introduction

Differential equations which can be considered as modeled version of the nature is an
interesting and essential area. They are used in many different disciplines of science such as
engineering, physics, chemistry, social sciences. Due to the huge application area of differential
equations the solution procedure of these equations have a great importance. One of the
efficient and reliable technique for solutions of differential equations is integral transforms.
By using integral transforms, differential equations can be reduced into algebraic equation.
So the solution procedure becomes simple and more understandable.

Fractional calculus, which means arbitrary order differentiation and integration have
been attracting many researchers’ interest in the last decades [1, 2, 3, 4]. They are used for
modeling the nonlinear and complex events in real world problems. Although there are many
different definitions of fractional derivative and integrals, there are no evident geometrical
interpretation because of their nonlocal character [5]. In addition to this scientists determined
many flaws of these definitions. For instance [6]

1. The Riemann-Liouville derivative does not satisfy Dα
a 1 = 0(Caputo derivative satisfies),

if α is not a natural number.

2. All fractional derivatives do not satisfy the known formula of the derivative of the
product of two functions.

Dα
a (fg) = gDα

a (f) + fDα
a (g).

3. All fractional derivatives do not satisfy the known formula of the derivative of the
quotient of two functions.

Dα
a

(
f

g

)
=
fDα

a (f)− gDα
a (g)

g2
.

∗Corresponding author. E-mail address: oozkan@selcuk.edu.tr
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4. All fractional derivatives do not satisfy the chain rule.

Dα
a (fog)(t) = fα(g(t))gα(t).

5. All fractional derivatives do not satisfy DαDβ = Dα+β in general.

6. In the Caputo definition it is assumed that the function f is differentiable.

To overcome these flaws Khalil et. al. [6] expressed a new fractional derivative and
integral definition called conformable fractional derivative and integral.

Definition 1. Let f : [0,∞) → R be a function. The αth order ”conformable fractional
derivative” of f is defined by,

Dα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0, α ∈ (0, 1).

Definition 2. If f is α-differentiable in some (0, a), a > 0 and lim
t→0+

f (α)(t) exists then define

f (α)(0) = lim
t→0+

f (α)(t). The ”conformable fractional integral” of a function f starting from

a ≥ 0 is defined as:

Iaα(f)(t) =

t∫

a

f(x)dαx =

t∫

a

f(x)

x1−αdx

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

This new fractional derivative satisfies the following basic properties and theorems referred
in [6, 7]

1. Dα(cf + dg) = cDα(f) + cDα(g) for all a, b ∈ R.

2. Dα(tp) = ptp−α for all p ∈ R.

3. Dα(λ) = 0 for all constant functions f(t) = λ.

4. Dα(fg) = fDα(g) + gDα(f).

5. Dα

(
f
g

)
= gDα(f)−fDα(g)

g2
.

6. If in addition to f is differentiable, then Dα(f)(t) = t1−α dfdt .

2 Conformable Double Laplace Transform

Definition 3. Let u(x, t) be an exponential order, continuous function on the interval [0,∞)

and for some a, b ∈ R supx>0,t>0
|u(x,t)|

e
axβ
β

+ bt
α
α

<∞ satisfied. Under these conditions conformable

double Laplace transform is expressed by [8]

L α
t L β

x [u(x, t)] = U(p, s) =

∫ ∞

0

∫ ∞

0
e
−pxβ

β
−s tα

α u(x, t)dαtdβx (1)

where p, s ∈ C, 0 < α, β ≤ 1 and the integrals are in the sense of conformable fractional
integral.
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2.1 Some Properties of Conformable Double Laplace Transform

Now some properties of conformable double Laplace Transform can be given as follows.

Theorem 4. [8] Let u(x, t), w(x, t) be two functions which have the conformable double
Laplace transform. Thus,

1. [i.]

2. L α
t L β

x [c1u(x, t)+c2w(x, t)] = c1L α
t L β

x [u(x, t)]+c2L α
t L β

x [w(x, t)] where c1 and c2 are
real constants.

3. L α
t L β

x [e
−dxβ

β
−c tα

α u(x, t)] = U(p+ d, s+ c).

4. L α
t L β

x [f(γx, σt)] = 1
rU
(
p
γβ
, s
σα

)
where r = γβσα.

5. (−1)m+nL α
t L β

x

[
xmβ

βm
tnα

αn u(x, t)
]

= ∂m+nU(p,s)
∂pm∂sn .

Lemma 5. [8] The conformable double Laplace transform of β-th and α-th order fractional
partial derivatives are given respectively as follows.

L α
t L β

x [xDβu(x, t)] = pU(p, s)− U(0, s), (2)

L α
t L β

x [tDαu(x, t)] = sU(p, s)− U(p, 0) (3)

where xDβu(x, t), tDαu(x, t) means β-th and α-th order conformable fractional partial deriva-
tives respectively.
In the same manner the conformable double Laplace transform of mixed fractional partial
derivatives

L α
t L β

x [xDβtDα(u(x, t))] = psU(p, s)− pU(p, 0)− sU(0, s) + U(0, 0). (4)

Theorem 6. [8] Let 0 < α, β ≤ 1 and m,n ∈ N such that u(x, t) ∈ C l(R+×R+), l =max(m,n).

Also let the conformable Laplace transforms of the functions u(x, t), xD
(i)
β u(x, t) and tD

(j)
α u(x, t)

i = 1, ...,m, j = 1, ..., n exist. Then

L α
t L β

x [xD
(m)
β u(x, t)] = pmU(p, s)− pm−1U(0, s)−

m−1∑

i=1

pm−1−iL α
t [xD

(i)
β U(0, t)], (5)

L α
t L β

x [tD
(n)
α u(x, t)] = snU(p, s)− sn−1U(p, 0)−

n−1∑

j=1

sn−1−jL β
x [tD

(j)
α U(x, 0)]. (6)
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Functions f(x, t) Conformable Double Laplace Transform f(p, s)

ab ab
ps

xt β
1
βα

1
α

Γ(1+ 1
β

)Γ(1+ 1
α

)

p
β+1
β s

α+1
α

xβ

β
tα

α
1

p2s2

xmβ

β
tnα

α , m,n are natural numbers m!n!
pm+1sn+1

e
xβ

β
+ tα

α 1
(s−1)(p−1)

e
xβ

β
+ tα

α xmβ

β
tnα

α , m,n are natural numbers m!n!
(p−1)m+1(s−1)n+1

cos
(
ω x

β

β

)
cos
(
ω t

α

α

) ps
(w2+s2)(w2+p2)

sin
(
ω x

β

β

)
sin
(
ω t

α

α

)
w2

(w2+s2)(w2+p2)

e
xβ

β
+ tα

α sinh
(
xβ

β

)
sinh

(
tα

α

)
1

(p−2)p(s−2)s

e
xα

α
+ tβ

β cosh
(
xα

α

)
cosh

(
tβ

β

)
(p−1)(s−1)

(p−2)p(s−2)s

Table 1: Conformable double Laplace transform of some basic functions.

In the same way conformable double Laplace transform of mixed partial derivative

L α
t L β

x [xD
(m)β

tD
(n)α(u(x, t))] = pmsn

(
U(p, s)− s−1U(p, 0)

− p−1U(0, s)−
n−1∑

j=1

s−j−1L β
x [tD

(j)αU(x, 0)]

−
m−1∑

i=1

p−i−1L α
t [xD

(i)βU(0, t)]

+

n−1∑

j=1

s−j−1p−1
tD

(j)αU(0, 0)

+

m−1∑

i=1

s−1p−i−1
xD

(i)βU(0, 0)

+

m−1∑

i=1

n−1∑

j=1

s−j−1p−i−1
tD

(j)α
xD

(i)βU(0, 0)

+ p−1s−1U(0, 0)
)

(7)

where xD
(m)
β u(x, t), tD

(n)
α u(x, t) denotes m, n times conformable fractional derivatives of

function u(x, t) with order β and α respectively.

3 Illustrative examples

Example 7. Regard the conformable time-space fractional advection-diffusion equation

Dα
t u(x, t) = D(2)β

x u(x, t)−Dβ
xu(x, t) (8)
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with the conditions

u(0, t) = 1 +
tα

α
,

u(x, 0) = e
xβ

β − xβ

β
, (9)

Dβ
xu(0, t) = 0

where 0 < β ≤ 1, 0 < α ≤ 1, x > 0, t > 0, Dα
t , Dβ

x indicate α-th and β-th order conformable
fractional derivatives of function u(x, t). Using the the double conformable Laplace transform
for Eq. (8)

sU(p, s)− U(p, 0)− p2U(p, s) + pU(0, s) +Dβ
xU(0, s) + pU(p, s)− U(0, s) = 0 (10)

where U(p, s) symbolizes the double conformable Laplace transformed form of the function
u(x, t). When the conformable Laplace transform is applied to the conditions given in (9)
leads

L α
t [u(0, t)] = U(0, s) =

1

s
+

1

s2
,

L β
x [u(x, 0)] = U(p, 0) =

1

p− 1
− 1

p2
, (11)

L α
t [Dβ

xu(0, t)] = Dβ
xU(0, s) = 0.

Utilizing the equations given in (11) along with Eqn. (10) we get

U(p, s) =
−p+ p2 + s− ps+ sp2

(−1 + p)p2s2
.

Thus the unknown function can be evaluated as

u(x, t) = e
xβ

β +
tα

α
− xβ

β
.

Example 8. Taking account into time-space fractional non-homogenous telegraph equation

3Dα
t u(x, t) +D

(2)α
t u(x, t)−D(2)β

x u(x, t)− 3

(
x2β

β2 +
t2α

α2
+ 1

)
= 0, (12)

with the conditions

u(0, t) =
tα

α
+
t3α

α3
, Dα

t u(x, 0) = 1 +
x2β

β2 ,

u(x, 0) =
xβ

β
,Dβ

xu(0, t) = 1 (13)

with 0 < β ≤ 1, 0 < α ≤ 1, x > 0, t > 0, D
(2)α
t , D

(2)β
x means two times α and β

order conformable fractional derivatives of function u(x, t). Applying the conformable double
Laplace transform to Eq. (12) produces

3sU(p, s)− 3U(p, 0) + s2U(p, s)− sU(p, 0)−Dα
t U(p, 0)

−(p2U(p, s)− pU(0, s)−Dβ
xU(0, s))− 3

(
2

p3
+

2

s3
+

1

ps

)
=
−2

ps
. (14)
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Then applying conformable Laplace transform for the conditions (13)

U(0, s) =
1

s2
+

2

s4
, Dα

t U(p, 0) =
1

p
+

2

p3
,

U(p, 0) =
1

p2
, Dβ

xU(0, s) =
1

s
. (15)

Gathering all the results (14),(15) and making some algebraic arrangement lead

U(p, s) =
2p2 + 2s2 + p2s2 + ps3

p3s4
.

In this way we can calculate the function u(x, t) as

u(x, t) =
xβ

β
+
tα

α
+
x2β

β2

tα

α
+
t3α

α3

4 Conclusions

The conformable double Laplace transform is an efficient, reliable, applicable method to in-
vestigate the solutions of conformable fractional partial differential equations.
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Abstract

This paper deals with the application of Taguchi method to optimize the copper recov-
ery from anode slime in different ionic liquid systems as leaching agents. In this method,
reaction temperature, reaction duration and solid/liquid ratio were selected as process pa-
rameters of the ionic liquid systems, which were performed to measure the copper recovery
efficiency. Taguchi orthogonal arrays, signal-to-noise (S/N) ratio and analysis of variance
(ANOVA) are used to find the optimal levels and the effects of the process parameters on
copper recovery from anode slime. A confirmation test with the optimal conditions of pro-
cess parameters was carried out to demonstrate the effectiveness of the Taguchi method.
Results of the experiments indicate that Taguchi optimization method is very applicable
way to optimize the copper recovery efficiency from anode slime in different ionic liquids
media.

Keywords: Optimization, Taguchi Method, ANOVA, Copper.

1 Introduction

The Taguchi method is known as an important experimental design method in producing
high quality and low cost products or services. It is possible to reach much lower number
of empirical studies by using the Taguchi method, where there is a lot of experimental work
to be done for all combinations involving each level of each parameter affecting the system
[1]. Taguchi method differs from other statistical experimental design methods because the
parameters affecting an experiment are examined in two groups and it allows examining a
large number of parameters in more than two levels. The Taguchi method states that all
products must be produced at the desired target value, and that the losses from target have
started and that the removal of these losses can only be achieved by reducing the variability
around a good design and target value. This adds concepts like fractional factorial experiments
design, robust design and orthogonal arrays [2-3]. Orthogonal array express which parameter
will be used in which experiments. Taguchi has created unique orthogonal arrays for a lot of
experimentation. The most important feature of orthogonal arrays is that many parameters
should be evaluated with the least number of experiments and, unlike the traditional method,
to change the parameter steps one by one instead of changing them simultaneously [4].
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In Taguchi method, the results obtained from the experiments conducted following the or-
thogonal experiment are converted to Signal/Noise Ratio (S/N) by a series of formulation and
evaluated as analysis variable or performance statics. Taguchi has defined the Signal/Noise
Ratio values as a performance criterion in experimental design to minimize variability [5].
Numerous performance statistics have been developed depending on the problem being inves-
tigated. Frequently used performance statistics are ‘’the larger is the better”, ‘’the smallest is
the better” and ‘’the nominal is the better”.
Furthermore, performance statistics graphs are used to determine the optimum conditions of
a process with Taguchi method. The most common use of Taguchi method to determine the
optimum conditions is by taking the peaks points of the performance statistics graphs. The
values corresponding to the levels of each parameter in these graphs do not show the user the
effect of that parameter. Many research applied this method for variance analysis. One of the
most important steps of the Taguchi optimization method is to estimate the result obtained
in the optimum condition and to verify this result. The optimum condition determined as
a result of the evaluations was not included in the monitored orthogonal test set up and
could not be performed during the experiments. In summary, the following steps are used
to optimize processes involving one or more multi-performance characteristics with Taguchi
method [7-9]; a) performance characteristics and factors to be evaluated are determined, b)
the levels of factors affecting the process are determined, c) according to the factors and
levels, orthogonal experimental setup is selected, d) experiments are performed according to
the selected orthogonal sequence, e) the performance statistics is calculated, f) experimental
results are analyzed using variance analysis, g) optimum levels of factors are selected, h)
confirmation tests are performed to check the selected optimum levels.
There are many parameters such as the solvent composition and concentration affecting metal
extraction from ores or wastes such as solvent concentration, leaching temperature, leaching
duration, solid/liquid ratio, the pH of the leach solution, particle size [8]. Many scientists
have used the Taguchi method to support the results of leaching studies with statistical data
and to reduce the number of experiments [9-12].
In this study, the most commonly used parameters in metal extraction process such as solvent
concentration (%), temperature (oC), duration (h) and solid/liquid ratio (g/ml) are chosen
as variable for copper extraction from anode slime.

2 Material and Experimental Method

Anode slime which consider as valuable waste due to it high content of precious metals was
used as copper source. 1 – ethyl – 3 – methyl imidazolium hydrogen sulfate (EmimHSO4)
and 1 – butyl – 3 – methyl imidazolium hydrogen sulfate (BmimHSO4) ionic liquids (IL) used
as due to their excellent physical and chemical properties such as low vapor pressure, non-
flammability, thermal stability and high ionic conductivity. All leaching tests were performed
in glass flasks placed on a hot plate with magnetic stirrer. The leaching tests were carried
out at constant volume of ionic liquids which prepared by deionized water. Experimental
parameters and their levels selected for leaching tests is shown Table 1.
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Table 1: The parameters and levels studied in the recovery of precious metals from anode
slime

Levels Parameters

Ionic Liquid
Concentration
(%)

Temperature (oC) Duration (h) Solid / Liquid
Ratio (g/mL)

1 20 25 0,5 1/10

2 40 45 1 1/15

3 60 75 2 1/20

4 80 95 4 1/25

According to the Taguchi method, the orthogonal array experimental design L16 (44) which
denotes four parameters, each with four levels, was chosen because it is most suitable for the
condition being investigated. [4,8] The Taguchi experimental design L16 (44) which generated
using the test parameters and four level of these parameters is shown Table 2 with recovery
efficiencies results.
In this work, to optimize copper extraction ‘’larger is better” has been evaluated by using
following equation: (

S

N

)

L

= −10

(
1

n

n∑

i=1

1

x2i

)
(2)

where (S/N)L is performance statistics, n number of repetitions done for an experimental
combination, and xi performance value of ith experiment. Then, the collected data analyzed
with Minitab 17 software program to evaluate the effect of each parameter on optimization
criteria. By using SN analysis, it is possible to determine optimum level of each parameter and
optimum set of parameter producing the maximum leaching efficiency. After determining op-
timum experimental conditions, the performance value corresponding to optimum conditions
can be predicted by the following equation [13]:

(
S

N

)

Predicted

=

(
S

N

)

m

+

n∑

n=1

([
S

N

]

i

−
[
S

N

]

m

)
(3)

where (S/N)m is arithmetic mean of performance statistics (S/N)L for all experiments, (S/N)i is
performance statistic value at optimum level of each investigated parameter. After, deter-
mining of optimum condition was controlled by confirmation experiments performed at the
optimum conditions. Furthermore, analysis of variance (ANOVA) in accordance with Taguchi
method was done to determine which investigated parameters are dominant on the leaching
performance.

3 Results and Discussion

The copper recovery experiments from anode slime were carried out by using BmimHSO4

and EmimHSO4 in the previous studies [14,15]. To determine the optimum conditions of the
experiments for copper extraction, these copper recovery rates and the performance statistic
of ‘’larger is better” results are shown in Table 2.
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Table 2: L16 test setup and performance statistic values for each experiment [14,15]

Exp.
No

Experimental Parameters and Levels BmimHSO4 EmimHSO4

Copper
Re-
covery
(%)

SNL Copper
Re-
covery
(%)

SNL

Ionic
Liquid
Concen-
tration
(%)

Temperature
(oC)

Duration
(h)

Solid/Liquid
Ratio (g/L)

1 1 1 1 1 36,73 31,30 24,37 27,74

2 1 2 2 2 60,58 35,65 51,89 34,30

3 1 3 3 3 83,61 38,45 51,85 34,29

4 1 4 4 4 71,34 37,07 45,56 33,17

5 2 1 2 3 44,58 32,98 41,45 32,35

6 2 2 1 4 82,01 38,28 25,67 28,19

7 2 3 4 1 53,93 34,64 51,64 34,26

8 2 4 3 2 69,46 36,83 49,64 33,92

9 3 1 3 4 55,73 34,92 35,61 31,03

10 3 2 4 3 73,53 37,33 45,12 33,09

11 3 3 1 2 60,15 35,58 39,40 31,91

12 3 4 2 1 73,18 37,29 52,05 34,33

13 4 1 4 2 56,37 35,02 33,12 30,40

14 4 2 3 1 54,25 34,69 42,60 32,59

15 4 3 2 4 62,41 35,90 30,57 29,71

16 4 4 1 3 38,10 31,62 38,43 31,69

After to the results obtained after the experiments, performance statistics graph for each
parameter were plotted by using Minitab 17 software program. Performance statistics of the
parameters for copper recoveries from anode slime by using BmimHSO4 and EmimHSO4 ionic
liquids are shown Fig 1.a and Fig 1.b, respectively.
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Figure 1: Performance statistics of the parameters investigated for copper recovery by using
ionic liquids of a) BmimHSO4 and b) EmimHSO4

As seen in Fig 1, the top of the peak in each column of Fig.1.a and Fig. 1.b was marked
to define the optimum condition for copper recovery by using BmimHSO4 and EmimHSO4,
respectively. According to the Fig 1.a, the optimum copper condition for copper recovery
from anode slime by using BmimHSO4 was detected as; IL concentration: 60% (v/v), tem-
perature: 50 oC, duration: 2 h, solid/liquid ratio: 1/25 g/L. Also, the optimum condition for
copper recovery by EmimHSO4 was determined as; IL concentration: 60% (v/v), tempera-
ture: 95 oC, duration: 2 h, solid/liquid ratio: 1/20 g/L. If the orthogonal array experimental
design for copper recovery is analyzed carefully, it can be noticed that the determined opti-
mum experimental conditions have not been performed during the experimental trials as a
leaching experiment for both solvent. Therefore, the predicted recovery rate for BmimHSO4

and EmimHSO4 under optimum conditions calculated and confirmation experiment must be
performed. Copper recoveries (%) confirmed experimentally and predicted theoretically with
optimum conditions for each studied parameters are summarized in Table 3 [14,15].

Table 3: The optimum conditions for copper recoveries, predicted calculation and copper
recovery rates obtained from the confirmation experiments

Parameter Optimum Conditions

BmimHSO4 EmimHSO4

Value Level Value Level

Ionic Liquid Concentration % 60 3 %60 3

Temperature 50 oC 2 95 4

Duration 2 h 3 2 3

Solid/Liquid Ratio 1/25 g/ml 4 1/20 3

Predicted Copper Recovery 90.31% 55.13%

Copper recovery obtained
from confirmation test

87.52% 50.16%

M. A. Topçu, A. Ruşen : Application Of Taguchi Method To Optimize The Copper Recovery
Efficiency

481

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



As seen in Table 3, under the optimum conditions with BmimHSO4 and EmimHSO4, the
predicted percentages of copper recovery were 90.31% and 55.13%, respectively. Further-
more, copper recovery obtained from the confirmation experiments corresponds to 87.52% for
BmimHSO4 and 50.16% for EmimHSO4. According to these results, it can be concluded that
good agreement exist between the predicted and confirmed leaching efficiencies of copper.
In this study, Analysis of Variance (ANOVA) was used to specify which of the process pa-
rameters significantly affect the performance characteristics. The F-test was also used to
determine the most effective parameter on the leaching efficiencies as previous studies [14,15].
The results of the ANOVA for copper recoveries by using BmimHSO4 and EmimHSO4 indicate
that the temperature is the most effective parameter on copper recovery for BmimHSO4 with
43.46% contribution rate and ionic liquid concentration is the most effective parameter for
EmimHSO4 with 37.16% contribution rate. According to these results, it can be concluded
that BmimHSO4 is more convenient leach agent than EmimHSO4 for copper recovery from
anode slime.

4 Conclusion

In this study, the Taguchi method was applied successfully to optimize the experimental condi-
tions for copper recovery from anode slime in the ionic liquids. Reaction temperature, reaction
duration, solid/liquid ratio and ionic liquid concentration were investigated with orthogonal
experimental design of L16 (44). After experimental results, maximum copper recovery from
anode slime by using BmimHSO4 obtained at the conditions; IL concentration (60%), tem-
perature (50 oC), duration (2h) and solid/liquid ratio (1/25) g/ml. With these conditions,
copper recovery obtained from confirmation experiment and predicted values were detected as
87.53% and 90.31%, respectively. Also, the experimental conditions of copper recovery with
EmimHSO4 were optimized as IL concentration (60%), temperature (95 oC), duration (2 h),
solid/liquid ratio (1/20 g/L). With the optimum conditions for EmimHSO4, copper recovery
was achieved as 50.16% and predicted copper recovery was calculated as 55.13%. These re-
sults indicate an excellent agreement between experimental conditions and copper recoveries.
According to the ANOVA results, temperature and ionic liquid concentration were determined
as the most effective leaching parameters for BmimHSO4 and EmimHSO4, respectively.
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Abstract

We consider torus-type helicoidal surface in the three dimensional Euclidean space.
We define torus-type helicoidal surface. We calculate its Gauss map, and then release its
curvatures with some results.

Keywords: 3-space, torus-type helicoidal surface,curvatures.

1 Introduction

In [2], Chen posed the problem of classifying the finite type surfaces in the 3-dimensional
Euclidean space E3. A Euclidean submanifold is said to be of Chen finite type if its coordinate
functions are a finite sum of eigenfunctions of its Laplacian ∆. Further, the notion of finite
type can be extended to any smooth function on a submanifold of a Euclidean space or a
pseudo-Euclidean space. Then the theory of submanifolds of finite type has been studied by
many geometers.

Takahashi [11] stated that minimal surfaces and spheres are the only surfaces in E3 satis-
fying the condition ∆r = λr, λ ∈ R. Ferrandez, Garay and Lucas [6] proved that the surfaces
of E3 satisfying ∆H = AH, A ∈ Mat(3, 3) are either minimal, or an open piece of sphere or
of a right circular cylinder. Choi and Kim [3] characterized the minimal helicoid in terms of
pointwise 1-type Gauss map of the first kind. Dillen, Pas and Verstraelen [4] proved that the
only surfaces in E3 satisfying ∆r = Ar + B, A ∈ Mat(3, 3), B ∈ Mat(3, 1) are the minimal
surfaces, the spheres and the circular cylinders.

Senoussi and Bekkar [10] studied helicoidal surfaces M2 in E3 which are of finite type in
the sense of Chen with respect to the fundamental forms I, II and III, i.e., their position
vector field r(u, v) satisfies the condition ∆Jr = Ar, J = I, II, III, where A = (aij) is a
constant 3× 3 matrix and ∆J denotes the Laplace operator with respect to the fundamental
forms I, II and III.

When we focus on the ruled (helicoid) and rotational characters, we see Bour’s theorem
in the literature [1]. About helicoidal surfaces in Euclidean 3-space, do Carmo and Dajczer
[7] proved that there exists a two-parameter family of helicoidal surfaces isometric to a given
helicoidal surface using a result of Bour [1]. Kim et al [8] focused on Cheng-Yau operator and
Gauss map of surfaces of revolution. Lawson [9] gave the general definition of the Laplace-
Beltrami operator in his lecture notes. Some relations among the Laplace-Beltrami operator
and curvatures of the helicoidal surfaces were shown by Güler, Yaylı and Hacısalihoğlu [7].

In this paper, we study the torus-type helicoidal surface in Euclidean 3-space E3. We
give some basic notions of three dimensional Euclidean geometry in section 2. In section 3,
we define helicoidal surface and torus surface. We obtain torus-type helicoidal surface, and
calculate its curvatures in the last section.

∗Corresponding author. E-mail address: eguler@bartin.edu.tr

E. Güler, Ö. Kişi : Helicoidal Surface of Torus-Type in 3-Space 484

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



2 Preliminaries

In the rest of this paper, we shall identify a vector (a,b,c) with its transpose (a,b,c)t. We will
introduce the first and second fundamental forms, matrix of the shape operator S, Gaussian
curvature K, and the mean curvature H of surface M = M(u, v) in Euclidean 3-space E3.

Let M be an isometric immersion of surface M2 in E3. The vector product of −→x =
(x1, x2, x3),

−→y = (y1, y2, y3) on E3 is defined as follows

−→x ×−→y = det




e1 e2 e3
x1 x2 x3
y1 y2 y3


 .

For a surface M in E3 we have

det I = det

(
E F
F G

)
= EG− F 2,

and

det II = det

(
L M
M N

)
= LN −M2,

where
E = Mu ·Mu, F = Mu ·Mv, G = Mv ·Mv,
L = Muu · e, M = Muv · e, N = Mvv · e,

e is the Gauss map (i.e. the unit normal vector field). We compute

(
E F
F G

)−1(
L M
M N

)
,

and it gives the matrix of the shape operator S as follows

S =
1

det I

(
GL− FM GM − FN
EM − FL EN − FM

)
. (1)

So, we get the following formulas of the Gaussian and the mean curvatures:

K = det(S) =
det II

det I
=
LN −M2

EG− F 2
,

and

H =
1

2
tr (S) =

EN +GL− 2FM

2 (EG− F 2)
.

A surface M is minimal if H = 0 identically on M.

3 Helicoidal and Torus Surfaces

For an open interval I ⊂ R, let γ : I −→ Π be a curve in a plane Π in E3, and let ` be a
straight line in Π. A rotational surface in E4 is defined as a surface rotating a curve γ around
a line ` (these are called the profile curve and the axis, respectively).

Suppose that when a profile curve γ rotates around the axis `, it simultaneously displaces
parallel lines orthogonal to the axis `, so that the speed of displacement is proportional to
the speed of rotation. Then the resulting surface is called the helicoidal surface with axis `
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and pitch a ∈ R\{0}. We may suppose that ` is the line spanned by the vector (0, 0, 1)t. The
orthogonal matrix which fixes the above vector is

Z(v) =




cos v − sin v 0
sin v cos v 0

0 0 1


 , (2)

where v ∈ R. The matrix Z can be found by solving the following equations simultaneously;

Z` = `, ZtZ = ZZt = I3, detZ = 1.

When the axis of rotation is `, there is an Euclidean transformation by which the axis is `
transformed to the x3-axis of E3. Parametrization of the profile curve is given by

γ(u) = (f (u) , 0, ϕ (u)) ,

where f (u) , ϕ (u) : I ⊂ R −→ R are differentiable functions for all u ∈ I. So, helicoidal
surface which is spanned by the vector (0, 0, 1) is as follows

H(u, v) = Z(v)γ(u)t + av`t,

where u ∈ I, v ∈ [0, 2π] .
Clearly, we write helicoidal surface as follows

H(u, v) =




f (u) cos v
f (u) sin v
ϕ (u) + av


 . (3)

Now, taking profile curve as

γ(u) = (c+ a cosu, 0, a sinu) ,

with the orthogonal matrix Z, then we get torus surface in E3 as follows

T (u, v) =




(c+ r cosu) cos v
(c+ r cosu) sin v

r sinu


 , (4)

where a = 0, r, c, u ∈ R\{0} and 0 ≤ v ≤ 2π.

4 Torus-Type Helicoidal Surface

We now define torus-type helicoidal surface as follows:

T(u, v) =




(c+ a cosu) cos v
(c+ a cosu) sin v
a sinu+ bv


 . (5)

Using the first differentials of (5) with respect to u, v, we get the first quantities as follows

I =

(
a2 ab cosu

ab cosu β

)
,

where β = a2 cos2 u+ 2ac cosu+ b2 + c2, and we get

det I = a2β − a2b2 cos2 u

= a2
((
a2 − b2

)
cos2 u+ 2ac cosu+ b2 + c2

)
.
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Using the second differentials with respect to u, v, we have the second quantities as follows

II =

(
a(c+a cosu)

W −ab sin2 u
W

−ab sin2 u
W

β cosu
W

)

where W =
√

(a2 − b2) cos2 u+ 2ac cosu+ b2 + c2, and we have

det II =
1

W 2

(
−a2b2 sin4 u+ a2β cos2 u+ acβ cosu

)
.

The Gauss map of torus-type helicoidal surface is as follows

eT =
1

W



− (c+ a cosu) cosu cos v − b sinu sin v
− (c+ a cosu) cosu sin v + b sinu cos v

−(c+ a cosu) sinu


 . (6)

Finally, the Gaussian curvature of the torus hypersurface is as follows

K =
−ab2 sin4 u+ aβ cos2 u+ cβ cosu

aW 4
,

and the mean curvature is as follows

H =
cβ + 2aβ cosu+ 2ab2 cosu sin2 u

2aW 3
,

Corollary 1. Let T : M2 −→ E3 be an immersion given by (5). Then M2 is minimal if
and only if

(
a2 cos2 u+ 2ac cosu+ b2 + c2

)
(c+ 2a cosu) + 2ab2 cosu sin2 u = 0.

Proof. b solutions of the above eq. are as follows

b = ± (c+ a cosu)

√
−c− 2a cosu

c− 2a cos3 u+ 4a cosu

where c 6= 2a
(
cos2 u− 2

)
cosu.

Corollary 2. Let T : M2 −→ E3 be an immersion given by (5). Then M2 is flat surface
if and only if

−ab2 sin4 u+
(
a2 cos2 u+ 2ac cosu+ b2 + c2

)
(c+ a cosu) cosu = 0.

Proof. b solutions of the above eq. are as follows

b = ±

√
(c+ a cosu)3 cosu

a+ a cos4 u− 3a cos2 u− c cosu

where c 6= a
(
cos3 u− 3 cosu+ 1

cosu

)
.

Corollary 3. Let T : M2 −→ E3 be an immersion given by (5). Then M2 has following
relation

2a
(
−ab2 sin4 u+ β (c+ a cosu) cosu

)
H − aW

(
β (c+ 2a cosu) + 2ab2 cosu sin2 u

)
K = 0.

Proof. b solutions of the above eq. are as follows

b = ± (c+ a cosu)

√√√√√
((2 cosu (c+ a cosu)H −W (c+ 2a cosu)K))(

2
(
a+ a cos4 u− 3a cos2 u− c cosu

)
H

+W
(
c− 2a cos3 u+ 4a cosu

)
K

) ,

where a 6= 0 and 2
(
a+ a cos4 u− 3a cos2 u− c cosu

)
H 6= −W

(
c− 2a cos3 u+ 4a cosu

)
K.
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Abstract

In this paper, we recall P - functions on ∆ = [a, b]× [c, d] and proved some inequalities
of Hadamard-type for this class of functions on the co-ordinates.

Keywords: Hermite-Hadamard inequality, P -function.

1 Introduction

Dragomir has mentioned the concept of convexity on the co-ordinates as follows;

Definition 1 (See[7]) A function f : ∆ = [a, b]× [c, d] → R is said to be convex on ∆ if the
following inequality:

f(tx+ (1− t)z, ty + (1− t)w) ≤ tf(x, y) + (1− t)f(z, w)

holds for all (x, y), (z, w) ∈ ∆ and t ∈ [0, 1]. A function f : ∆→ R is said to be convex on the
co-ordinates on ∆ in the partial mappings fy : [a, b]→ R, fy(u) = f(u, y) and fx : [c, d]→ R,
fx(v) = f(x, v) are convex where defined for all x ∈ [a, b] and y ∈ [c, d].

Özdemir et al. defined m-convex functions on the co-ordinates on ∆, as following;

Definition 2 (See[6]) Consider the bidimensional interval ∆ := [0, b]× [0, d] in [0,∞)2. The
mapping f : ∆→ R is m-convex on ∆ if

f(tx+ (1− t)z, ty +m(1− t)w) ≤ tf(x, y) +m(1− t)f(z, w)

holds for all (x, y), (z, w) ∈ ∆ with t ∈ [0, 1] and for some fixed m ∈ [0, 1] (Özdemir et al.,
2010). A function f : ∆ → R is m-convex on ∆ is called co-ordinated m-convex on ∆ if the
partial mapping

fy : [0, b]→ R, fy(u) = f(u, y)

and
fx : [0, d]→ R, fx(v) = f(x, v)

are m-convex for all x ∈ [0, b) and y ∈ [0, d] with some fixed m ∈ [0, 1].

∗Corresponding author. E-mail address: aocakakdemir@gmail.com
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Definition 3 (See [2]) Suppose that ∆ := [a, b] × [c, d] ⊂ R2 a bidimensional interval where
a < b, c < d. f : ∆→ R be non-negative function, we said that f is P -function on ∆, if the
following inequality holds;

f(λx+ (1− λ)z, λy +m(1− λ)w) ≤ f(x, y) + f(z, w)

for ∀(x, y), (z, w) ∈ ∆ and λ ∈ (0, 1).

Lemma 4 (See [2]) Every P -function that is defined as f : ∆ → R is P -function on the
coordinates.

New class of convex functions on the co-ordinates, several new inequalities, generalizations,
improvements and related results can be found in the papers [1]-[8].

The main purpose of this study is to prove some new Hadamard type integral inequalities
on the co- ordinates on ∆ for P -functions.

2 Main Results

Throughout the paper, the following notation will be used.

A =
(x− a)(y − c)f(a, c) + (x− a)(d− y)f(a, d)

(b− a)(d− c)

+
(b− x)(y − c)f(b, c) + (b− x)(d− y)f(b, d)

(b− a)(d− c)

− x− a
(b− a)(d− c)

∫ d

c
f(a, v)dv − b− x

(b− a)(d− c)

∫ d

c
f(b, v)dv

− d− y
(b− a)(d− c)

∫ b

a
f(u, d)du− y − c

(b− a)(d− c)

∫ b

a
f(u, c)du.

Lemma 5 Let a < b, c < d and f : ∆ = [a, b] × [c, d] ⊆ R2 → R be a twice differentiable

function on ∆. If ∂2f
∂t∂s ∈ L1[∆], then the following identity holds;

A+
1

(b− a)(d− c)

∫ b

a

∫ d

c
f(u, v)dudv

=
(x− a)2(y − c)2
(b− a)(d− c)

∫ 1

0

∫ 1

0
(t− 1)(s− 1)

∂2f

∂t∂s
(tx+ (1− t)a, sy + (1− s)c)dsdt

+
(x− a)2(d− y)2

(b− a)(d− c)

∫ 1

0

∫ 1

0
(t− 1)(1− s) ∂

2f

∂t∂s
(tx+ (1− t)a, sy + (1− s)d)dsdt

+
(b− x)2(y − c)2
(b− a)(d− c)

∫ 1

0

∫ 1

0
(1− t)(s− 1)

∂2f

∂t∂s
(tx+ (1− t)b, sy + (1− s)c)dsdt

+
(b− x)2(d− y)2

(b− a)(d− c)

∫ 1

0

∫ 1

0
(1− t)(1− s) ∂

2f

∂t∂s
(tx+ (1− t)b, sy + (1− s)d)dsdt.

Theorem 6 Let a < b, c < d and f : ∆ = [a, b] × [c, d] ⊆ R2 → R be a twice differentiable

function on ∆. If | ∂2f∂t∂s |, is P -function on ∆ on the coordinates, then one has the following
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inequality;
∣∣∣∣A+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f(u, v)dudv

∣∣∣∣

≤ (x− a)2(y − c)2
4(b− a)(d− c)

(∣∣∣∣
∂2f

∂t∂s
(x, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(x, c)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(a, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(a, c)

∣∣∣∣
)

+
(x− a)2(d− y)2

4(b− a)(d− c)

(∣∣∣∣
∂2f

∂t∂s
(x, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(x, d)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(a, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(a, d)

∣∣∣∣
)

+
(b− x)2(y − c)2
4(b− a)(d− c)

(∣∣∣∣
∂2f

∂t∂s
(x, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(x, c)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(b, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(b, c)

∣∣∣∣
)

+
(b− x)2(d− y)2

4(b− a)(d− c)

(∣∣∣∣
∂2f

∂t∂s
(x, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(x, d)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(b, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(b, d)

∣∣∣∣
)
.

Proof. From Lemma 5, we can write;
∣∣∣∣A+

1

(b− a)(d− c)

∫ b

a

∫ d

c
f(u, v)dudv

∣∣∣∣

≤ (x− a)2(y − c)2
(b− a)(d− c)

∫ 1

0

∫ 1

0
|(t− 1)(s− 1)|

∣∣∣∣
∂2f

∂t∂s
(tx+ (1− t)a, sy + (1− s)c)

∣∣∣∣dsdt

+
(x− a)2(d− y)2

(b− a)(d− c)

∫ 1

0

∫ 1

0
|(t− 1)(1− s)|

∣∣∣∣
∂2f

∂t∂s
(tx+ (1− t)a, sy + (1− s)d)

∣∣∣∣dsdt

+
(b− x)2(y − c)2
(b− a)(d− c)

∫ 1

0

∫ 1

0
|(1− t)(s− 1)|

∣∣∣∣
∂2f

∂t∂s
(tx+ (1− t)b, sy + (1− s)c)

∣∣∣∣dsdt

+
(b− x)2(d− y)2

(b− a)(d− c)

∫ 1

0

∫ 1

0
|(1− t)(1− s)|

∣∣∣∣
∂2f

∂t∂s
(tx+ (1− t)b, sy + (1− s)d)

∣∣∣∣dsdt

Since | ∂2f∂t∂s | is P-function on ∆ on the coordinates and by making use of necessary computa-
tions, we obtain;

∣∣∣∣A+
1

(b− a)(d− c)

∫ b

a

∫ d

c
f(u, v)dudv

∣∣∣∣

≤ (x− a)2(y − c)2
4(b− a)(d− c)

(∣∣∣∣
∂2f

∂t∂s
(x, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(x, c)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(a, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(a, c)

∣∣∣∣
)

+
(x− a)2(d− y)2

4(b− a)(d− c)

(∣∣∣∣
∂2f

∂t∂s
(x, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(x, d)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(a, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(a, d)

∣∣∣∣
)

+
(b− x)2(y − c)2
4(b− a)(d− c)

(∣∣∣∣
∂2f

∂t∂s
(x, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(x, c)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(b, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(b, c)

∣∣∣∣
)

+
(b− x)2(d− y)2

4(b− a)(d− c)

(∣∣∣∣
∂2f

∂t∂s
(x, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(x, d)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(b, y)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(b, d)

∣∣∣∣
)
.

This completes the proof.

Corollary 7 Under the assumptions of Theorem 6, if we choose x = a, y = c, then we have
the following inequality;

∣∣∣∣f(b, d)− 1

(d− c)

∫ d

c
f(b, v)dv − 1

(b− a)

∫ b

a
f(u, d)du

+
1

(b− a)(d− c)

∫ b

a

∫ d

c
f(u, v)dudv

∣∣∣∣

≤ (b− a)(d− c)
4

(∣∣∣∣
∂2f

∂t∂s
(a, c)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(a, d)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(b, c)

∣∣∣∣+

∣∣∣∣
∂2f

∂t∂s
(b, d)

∣∣∣∣
)
.
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Corollary 8 Under the assumptions of Theorem 6, if we choose x = b, y = c, then we have
the following inequality;
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Corollary 9 Under the assumptions of Theorem 6, if we choose x = a, y = d, then we have
the following inequality;

∣∣∣∣f(b, c)− 1
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Corollary 10 Under the assumptions of Theorem 6, if we choose x = b, y = d, then we have
the following inequality;

∣∣∣∣f(a, c)− 1

(d− c)

∫ d

c
f(a, v)dv − 1
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∫ b
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Theorem 11 Let a < b, c < d and f : ∆ = [a, b] × [c, d] ⊆ R2 → R be a twice differentiable

function on ∆. If
∣∣ ∂2f
∂t∂s

∣∣ p
p−1 is P−function on ∆ on the coordinates, then one has the following

inequality;
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for q > 1 and 1
q + 1

p = 1.
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Proof. From Lemma 2.1 and by using Hölder integral inequality for double integrals, we have
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Since
∣∣ ∂2f
∂t∂s

∣∣q is P -function on ∆ on the coordinates, we obtain;
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Which completes the proof.

Theorem 12 Let a < b, c < d and f : ∆ = [a, b] × [c, d] ⊆ R2 → R be a twice differentiable

function on ∆. If
∣∣ ∂2f
∂t∂s

∣∣q is P−function on ∆ on the coordinates, then one has the following
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inequality;
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Proof. By a similar argument to the proof of Theorem 2.7, by using Lemma 2.1 and Power-
mean inequality for double integrals, we obtain;
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Since
∣∣ ∂2f
∂t∂s

∣∣q is P− function on ∆ on the coordinates, we get;
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.

Which is the desired result.
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Ömer KİŞİ∗
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BartınUniversity,

Department of Mathematics,
74100, Bartın, TURKEY

Abstract

In this present paper, we introduce the notion of ∇2-statistical convergence of double
sequences, ∇2-statistical Cauchy double sequences in random 2-normed spaces and obtain
some results. We display examples which show that our method of convergence is more
general in random 2-normed space.

Keywords: λ-convergence, 2-norm, 2-normed space.

1 Introduction

The idea of the statistical convergence was given by Zygmund [29] in the first edition of his
monograph published in Warsaw in 1935. The concept of statistical convergence was intro-
duced by Fast [6] and Steinhaus [27] and then reintroduced by Schoenberg [24] independently.
Over the years, statistical convergence has been developed in ([2], [7], [8], [14], [18], [22], [28])
and turned out very useful to resolve many convergence problems arising in Analysis.

Definition 1 ([6]) A number sequence x = (xk) is said to be statistically convergent to the
number l if for every ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − l| ≥ ε}| = 0.

In this case we write st − limk→∞ xk = l. Statistical convergence is a natural generalization
of ordinary convergence. If limxk = l, then st − limxk = l. The converse does not hold in
general.

In literature, several interesting generalizations of statistical convergence have been ap-
peared. One among these is -statistical convergence given by Mursaleen [16] with the help
of a non-decreasing sequence λ = (λn) be a nondecreasing sequence of positive real numbers
tending to ∞ such that λn+1 ≤ λn + 1 , λ1 = 1.

The idea of λ-statistical convergence can be connected to the generalized de la Vallée-
Poussin mean. It is defined by

tn (x) =
1

λn

∑

k∈In
xk

where In = [n− λn + 1, n] .
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Definition 2 ([16]) A sequence x = (xk) of numbers is said to be λ-statistical convergent to
a number l provided that for every ε > 0,

lim
n→∞

1

λn
|{k ∈ In : |xk − l| ≥ ε}| = 0.

In this case, the number l is called λ-statistical limit of the sequence x = (xk) and we write
Sλ − limk→∞ xk = l.

The concept of probabilistic normed spaces was initially introduced by A. N. Sherstnev [26]
in 1962. Menger [15] introduced the notion of probabilistic metric spaces in 1942. The idea of
Menger [15] was to use distribution function instead of non-negative real numbers as values
of the metric. In last few years these spaces are grown up rapidly and many detereministic
results of linear normed spaces are obtained for probabilistic normed spaces. For a detailed
study on probabilistic functional analysis, we refer ([1], [11], [19], [25]). In 2005, Golet [10]
used the concept of 2-norm of Gähler [9] and presented generalized probabilistic normed space
which he called random 2-normed space. Gürdal and Pehlivan ([30], [31]) studied statistical
convergence in 2-normed spaces and in 2-Banach spaces. Recently, Savaş [32] defined and
studied generalized statistical convergence in random 2-normed space. Esi and Özdemir [5]
introduced and studied the concept of generalized ∆m-statistical convergence of sequences in
probabilistic normed space. Esi [4], defined and studied the notion of∇-statistical convergence
and ∇-statistical Cauchy sequences using by λ-sequences in random 2-normed spaces, and
proved some theorems.

The existing literature on statistical convergence and its generalizations appears to have
been restricted to real or complex sequences, but in recent years these ideas have been also
extended to the sequences in fuzzy normed [33] and intutionistic fuzzy normed spaces [12],
[13], [20] and [21].

Let R denotes the set of reals and R+
0 = [0,∞). A function f : R → R+

0 is called
a distribution function if it is non-decreasing and left-continuous with inft∈R f (t) = 0 and
supt∈R f (t) = 1. We will denote the set of all distribution functions by D. Also, a a distance
distribution function is a non decreasing function F defined on R+ = [0,∞) that satisfies
F (0) = 0 and F (∞) = 1; and is left continuous on (0,∞). Let D+ denotes the set of all
distance distribution functions.

A triangular norm, briefly t-norm, is a binary operation ∗ on [0, 1] which is continuous,
commutative, associative, non-decreasing and has 1 as neutral element, i.e., it is the continuous
mapping ∗ : [0, 1]× [0, 1]→ [0, 1] such that for all a, b, c ∈ [0, 1] :

(i) a ∗ 1 = a,
(ii) a ∗ b = b ∗ a,
(iii) c ∗ d ≥ a ∗ b if c ≥ a and d ≥ b,
(iv) (a ∗ b) ∗ c = a ∗ (b ∗ c) .

The ∗ operations a ∗ b = max {a+ b− 1, 0}, a ∗ b = ab, and a ∗ b = min {a, b} on [0, 1] are
t-norms.

In following, we give some useful definitions.

Definition 3 ([9]) Let X be a real vector vector space of dimension d > 1 (d may be infinite).
A real valued function ‖., .‖ : X2 → R satisfying the following conditions:

(i) ‖x1, x2‖ = 0, if and only if x1, x2 are linearly dependent.
(ii) ‖x1, x2‖ = ‖x2, x1‖ for all x1, x2 ∈ X,
(iii) ‖αx1, x2‖ = |α| ‖x1, x2‖, for any α ∈ R and
(iv) ‖x1 + x2, x3‖ ≤ ‖x1, x3‖+ ‖x2, x3‖

is called a 2-norm and the pair (X, ‖., .‖) is called a 2-normed space.
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Definition 4 ([10]) Let X be a real vector vector space of dimension d > 1 (d may be
infinite),τ be a triangle function (a binary operation on D+ which is associative, commu-
tative, nondecreasing and ε0 as a unit) and F : X × X → D+ (for x, y ∈ X, F (x, y; t) is
the value of F (x, y) at t ∈ R). Then F is called a probabilistic norm (X,F , τ) a probabilistic
2-normed space if the following conditions are satisfied:

(i) F (x, y; t) = H0 (t), if x, y are linearly dependent, where H0 (t) = 0 if t ≤ 0 and
H0 (t) = 1 if t > 0.

(ii) F (x, y; t) 6= H0 (t), if x, y are linearly dependent.
(iii) F (x, y; t) = F (y, x; t), for all x, y ∈ X,
(iv) F (αx, y; t) = F

(
x, y; t

|α|

)
for every t > 0, α 6= 0 and x, y ∈ X,

(v) F (x+ y, z; t) ≥ τ (F (x, z; t) ,F (y, z; t)), where x, y, z ∈ X.
If (v) is replaced by F (x+ y, z; t1 + t2) ≥ F (x, z; t1) ∗ F (y, z; t2) for all x, y, z ∈ X and

t1, t2 ∈ R+
0 then (X,F , ∗) is called a random 2-normed space.

Example 5 Let (X, ‖., .‖) be a 2-normed space with ‖x, z‖ = |x1z2 − x2z1|; x = (x1, x2),
z = (z1, z2) and a ∗ b = ab for all a, b ∈ [0, 1]. For every x, y ∈ X and t > 0 we define
F (x, y; t) = t

t+‖x,y‖ , then (X,F , ∗) is a random 2-normed space.

Definition 6 ([17]) Let (X,F , ∗) be a random 2-normed space. Then a sequence x = (xk)
is said to be convergent to x0 ∈ X with respect to norm F if for every ε > 0, t ∈ (0, 1) and
non-zero z ∈ X, there exists a positive integer k0 such that F (xk − x0, z; ε) > 1− t whenever
k ≥ k0. It is denoted by F-limxk = x0.

Definition 7 ([17]) Let (X,F , ∗) be a random 2-normed space. Then a sequence x = (xk) is
said to be statistically convergent SR2N convergent to x0 ∈ X with respect to norm F if for
every ε > 0, t ∈ (0, 1) and non-zero z ∈ X,

δ ({k ∈ N : F (xk − x0, z; ε) ≤ 1− t}) = 0.

In this case, we write SR2N -limxk = x0.

Definition 8 ([3]) Let (X,F , ∗) be a random 2-normed space. Then a sequence x = (xk)
is said to be statistically convergent to l with respect to F if for every ε > 0, t ∈ (0, 1) and
non-zero z ∈ X,

lim
n→∞

1

n
|({k ≤ n : F (xk − l, z; ε) ≤ 1− t})| = 0.

In this case, we write SR2N -limxk = l.

Throughout the paper, we consider (X,F , ∗) be an random 2-normed space and λr,s = λrµs
be the collection of such sequences λ will be denoted by ∆2.

Let λ = (λr) and µ = (µs) be two non-decreasing sequences of positive real numbers,
each tending to ∞ and such that λr+1 ≤ λr + 1, λ1 = 1; µs+1 ≤ µs + 1, µ1 = 1. Let
Ir = [r − λr + 1, r], Is = [s− µs + 1, s] and Ir,s = Ir × Is.

For any set X ⊆ N× N, the number,

δλ (X) = P - lim
r,s→∞

1

λr,s
|{(k, l) ∈ Ir × Is : (k, l) ∈ X}| ;

is said to be λ-density of the set X, provided the limit exists, where λr,s = λrµs.
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2 Main results

In this present study, we introduce the notion of ∇2-statistical convergence of double se-
quences, ∇2-statistical Cauchy double sequences in random 2-normed spaces and obtain some
results. We display examples which show that our method of convergence is more general in
random 2-normed space.

Definition 9 A double sequence x = (xkl) in random 2-normed space (X,F , ∗) is said to be
∇2-convergent to l ∈ X with respect to F if for each ε > 0, t ∈ (0, 1) and for non-zero z ∈ X,

there exists an positive integer n0 such that F
(

1
λr,s

∑
(k,l)∈Ir,s

xkl − l, z; ε
)
> 1 − t whenewer

k, l ≥ n0. In this case we write F∇2− limk,l→∞ xkl = l, and l is called the F∇2−limit of
x = (xkl).

Definition 10 A double sequence x = (xkl) in a random 2-normed space (X,F , ∗) is said to
be ∇2-Cauchy with respect to F if for every ε > 0, t ∈ (0, 1) and for non-zero z ∈ X, there
exists positive integers p, q such that

F


 1

λr,s

∑

(k,l)∈Ir,s
(xkl − xmn) , z; ε


 < 1− t,

whenever k,m > p, l, n > q.

Definition 11 A double sequence x = (xkl) in a random 2-normed space (X,F , ∗) is said
to be ∇2-statistical convergent or S∇2-convergent to l with respect to F if for every ε > 0,
t ∈ (0, 1) andfor non-zero z ∈ X such that

δ∇2





(k, l) ∈ Ir,s : F


 1

λ
α
r,s

∑

(k,l)∈Ir,s
xkl − l, z; ε


 ≤ 1− t






 = 0.

In other ways we can write
∣∣∣∣∣∣



(k, l) ∈ Ir,s : F


 lim
r,s→∞

1

λ
α
r,s

∑

(k,l)∈Ir,s
xkl − l, z; ε


 ≤ 1− t





∣∣∣∣∣∣
= 0,

or, equivalently,

δ∇2





(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; ε


 > 1− t






=1,

i.e.,

S∇2 − lim
r,s→∞

F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; ε


=1.

In this case, we write S∇2 (R2N)− limk,l xkl = l or xkl → l (S∇2 (R2N)) and

S∇2 (R2N) (X) =

{
x = (xkl) : ∃l ∈ R, S∇2 (R2N)− lim

k,l
xkl = l

}
.

The collection of all ∇2-statistically convergent double sequences in random 2-normed
space is symbolized as Sα∇2

(R2N) (X) .
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Definition 12 A double sequence x = (xkl) in a random 2-normed space (X,F , ∗) is said to
be ∇2-statistically Cauchy with respect to F if for every ε > 0, t ∈ (0, 1) and for non-zero
z ∈ X, there exists positive integers p, q such that for all k,m > p, l, n > q

δ∇2





(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
(xkl − xmn) , z; ε


 ≤ 1− t






=0,

or, equivalently,

δ∇2





(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
(xkl − xmn) , z; ε


 > 1− t






=1.

This definition, immediately implies the following Lemma.

Lemma 13 Let (X,F , ∗) be a random 2-normed space. If x = (xkl) is a double sequence in
X, then for every ε > 0, t ∈ (0, 1) and for non-zero z ∈ X, then the following statetements
are equivalent.

(i) S∇2 − limk,l xkl = l.

(ii) δ∇2

({
(k, l) ∈ Ir,s : F

(
1
λr,s

∑
(k,l)∈Ir,s

xkl − l, z; ε
)
≤ 1− t

})
=0.

(iii) δ∇2

({
(k, l) ∈ Ir,s : F

(
1
λr,s

∑
(k,l)∈Ir,s

xkl − l, z; ε
)
> 1− t

})
=1.

(iv) S∇2 − limk,l→∞F
(

1
λr,s

∑
(k,l)∈Ir,s

xkl − l, z; ε
)

= 1.

Theorem 14 Let (X,F , ∗) be a random 2-normed space. If x = (xkl) is a double sequence
in X such that S∇2 (R2N)− limk,l xkl = l exists, then it is unique.

Proof. Suppose that S∇2 (R2N) − limk,l xkl = l′, where l 6= l′. Let ε > 0 be given. Choose
ν > 0 such that

(1− ν) ∗ (1− ν) > 1− ε. (1)

Then, for any t > 0 and for non-zero z ∈ X, we define

K1 (υ, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
(xkl − l) , z;

t

2


 ≤ 1− ν



 ;

K2 (υ, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s

(
xkl − l′

)
, z;

t

2


 ≤ 1− ν



 .

Since
S∇2 (R2N)− lim

k,l
xkl = l and S∇2 (R2N)− lim

k,l
xkl = l′,

we have
δ∇2 (K1 (υ, t)) = 0 and δ∇2 (K2 (υ, t)) = 0 for all t > 0.
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Let K (υ, t) = K1 (υ, t) ∪ K2 (υ, t), then it is easy to observe that δ∇2 (K (υ, t)) = 0 which
immediately implies δ∇2 (Kc (υ, t)) = 1. Let k ∈ Kc (υ, t) = Kc

1 (υ, t) ∩ Kc
2 (υ, t). Now one

can write,

F
(
l − l′, z; t

)
≥ F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z;

t

2


 ∗ F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l′, z;

t

2




> (1− ν) ∗ (1− ν) .

It follows by (1) that
F
(
l − l′, z; t

)
> (1− ε) .

Since ε is arbitrary, it follows that F (l − l′, z; t) = 1, for all t > 0 and non-zero z ∈ X.
This shows that l = l′.

Theorem 15 Let (X,F , ∗) be a random 2-normed space. Let x = (xkl) and y = (ykl) be two
double sequences in X.

(i) If S∇2 (R2N)− limk,l xkl = l and 0 6= c ∈ R, then S∇2 (R2N)− limk,l cxkl = cl.
(ii) If S∇2 (R2N)− limk,l xkl = l and S∇2 (R2N)− limk,l ykl = l′, then S∇2 (R2N)−

limk,l (xkl + ykl) = l + l′.
Proof. The proof of the theorem is not so hard so is omitted here.

Theorem 16 Let (X,F , ∗) be a random 2-normed space. If x = (xkl) be a double sequence
in X such that F∇2− limk,l→∞ xkl = l, then S∇2 (R2N)− limk,l xkl = l. Hovewer the converse
need not be true in general.

Proof. Since F∇2− limk,l→∞ xkl = l, for every ε > 0, t > 0 and for non-zero z ∈ X there is a
positive integer n0 such that

F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; t


 > 1− ε, ∀k, l > n0.

Since the set

K (ε, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; t


 ≤ 1− ε





has at most finitely many terms. Also, since every finite subset of N has δ∇2-density zero,
consequently we have S∇2 (K (ε, t)) = 0. This shows that S∇2 (R2N)− limk,l xkl = l. We next
give the following example which shows that the converse need not be true.

Example 17 Let X = R2 with the 2-norm ‖x, z‖ = ‖x1z2 − x2z1‖ where x = (x1, x2), z =
(z1, z2) and a∗b = ab for all a, b ∈ [0, 1]. Let F (xkl, z, t) = t

t+‖x,z‖ , where each t > 0, non-zero

z ∈ X, z2 > 0. We define a sequence x = (xkl) as follows:

1

λr,s

∑

(k,l)∈Ir,s
xkl =

{
(k, l) , if n−

√
λn + 1 ≤ k ≤ n, m−√µm + 1 ≤ l ≤ m,

(0, 0) , otherwise.

Now for ε > 0, t ∈ (0, 1) , write

K (ε, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; t


 ≤ 1− ε



 ,
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where l = (0, 0). Then

K (ε, t) =





(k, l) ∈ Ir,s : t

t+

∣∣∣∣∣
1

λr,s

∑
(k,l)∈Ir,s

xkl

∣∣∣∣∣

≤ 1− ε




, θ = (0, 0)

=

{
(k, l) ∈ Ir,s :

∣∣∣∣∣
1
λr,s

∑
(k,l)∈Ir,s

xkl

∣∣∣∣∣ ≥
tε
1−ε > 0

}

= {(k, l) ∈ Ir,s : xkl = (k, l)}

=
{

(k, l) ∈ Ir,s : n−
√
λn + 1 ≤ k ≤ n, m−√µm + 1 ≤ l ≤ m

}
,

so we get

1

λr,s
|K (ε, t)| ≤ 1

λr,s

∣∣∣
{

(k, l) ∈ Ir,s : r −
√
λr + 1 ≤ k ≤ r, s−√µs + 1 ≤ l ≤ s

}∣∣∣ ≤
√
λrs

λr,s

Takin limit n approaches to ∞, we get

δ∇2 (K (ε, t)) = lim
r,s→∞

1

λr,s
|K (ε, t)| ≤ lim

r,s→∞

√
λrs

λr,s
= 0.

This shows that xkl → 0 (S∇2 (R2N) (X)).

On the other hand the sequence is not F∇2−convergent to zero as

F
(

1
λr,s

∑
(k,l)∈Ir,s

xkl − l, z; t
)

= t

t+

∣∣∣∣∣
1

λr,s

∑
(k,l)∈Ir,s

xkl

∣∣∣∣∣

=





t
t+(k+l)z2

,
if n−

√
λn + 1 ≤ k ≤ n,

m−√µm + 1 ≤ l ≤ m,
1, otherwise.

≤ 1.

Example 18 Let X = R2 with the 2-norm ‖x, z‖ = ‖x1z2 − x2z1‖ where x = (x1, x2), z =
(z1, z2) and a∗b = ab for all a, b ∈ [0, 1]. Let F (xkl, z, t) = t

t+‖x,z‖ , where each t > 0, non-zero

z ∈ X, z2 > 0. We define a sequence x = (xkl) as follows:

∑

(k,l)∈Ir,s
xkl =

{
(1, 0) , if k + l is even,
(0, 0) , if k + l is odd.
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For ε > 0, t ∈ (0, 1), if we define

K (ε, t) =

{
(k, l) ∈ Ir,s : F

(
1
λr,s

∑
(k,l)∈Ir,s

xkl − θ, z; t
)
≤ 1− ε

}
, θ = (0, 0)

=





(k, l) ∈ Ir,s : t

t+

∥∥∥∥∥
1

λr,s

∑
(k,l)∈Ir,s

xkl−θ,z
∥∥∥∥∥

≤ 1− ε





=

{
(k, l) ∈ Ir,s :

∥∥∥∥∥
1
λr,s

∑
(k,l)∈Ir,s

xkl − θ, z
∥∥∥∥∥ ≥

εt
1−ε > 0

}

= {(k, l) ∈ Ir,s : (xkl) = (1, 0)} = {(k, l) ∈ Ir,s : k + l is even} ;

then,

lim
r,s→∞

1

λr,s
|K (ε, t)| = lim

r,s→∞
1

λr,s
|{(k, l) ∈ Ir,s : k + l is even}| ≤ lim

r,s→∞

√
λr,s + 1

2λr,s
= 0

Similarly, for ε > 0, t ∈ (0, 1), if we define

B (ε, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − x0, z; t


 ≤ 1− ε



 , x0 = (1, 0)

then

lim
r,s→∞

1

λr,s
|B (ε, t)| = lim

r,s→∞
1

λr,s
|{(k, l) ∈ Ir,s : k + l is odd}| ≤ lim

r,s→∞

√
λr,s + 1

2λr,s
= 0

This shows that S∇2 − limk,l xkl is not unique and we obtain a contradiction to theorem 1.

Theorem 19 Let (X,F , ∗) be a random 2-normed space. If x = (xkl) be a sequence in X,
then S∇2− limk,l xkl = l if and only if there exists a subset K = {km : k1 < k2 < ...} of N such
that limr,s→∞ 1

λr,s
|K| = 1 and F∇2− limk,l→∞ xkl = l.

Proof. First suppose that S∇2 − limk,l xkl = l. For t > 0 and non-zero z ∈ X and s ∈ N, if
we define

A (s, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; t


 > 1− 1

s





K (s, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; t


 ≤ 1− 1

s





Since S∇2 − limk,l xkl = l it follows that

δ∇2 (K (s, t)) = 0

Also, for s = 1, 2, 3, ... and for t > 0, we observe that

A (s, t) ⊃ A (s+ 1, t)

Ö. Kişi, E. Güler : On∇2-Statistical Convergence of Double Sequences in Random
2-Normed Space

503

Proceedings of The International Conference on Mathematical Studies and Applications 2018
Karamanoglu Mehmetbey University, Karaman, Turkey, 4-6 October 2018.



and

lim
r,s→∞

1

λr,s
|A (s, t)| = 1; i.e., δ∇2 (A (s, t)) = 1. (2)

Now, to prove the result in one way, it is sufficient to prove that F∇2− limk,l→∞ xkl = l.
Suppose that for k ∈ A (s, t), x = (xkl) not convergent yo l with respect to F∇2 . Then, there
exists some u > 0 such that



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; t


 ≤ 1− u





for infinitely many terms (xkl). Let

A (u, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; t


 > 1− u





and u > 1
s for s = 1, 2, 3.... This implies that δ∇2 (A (s, t)) = 0, which contradicts (2) as

δ∇2 (A (s, t)) = 1. Hence F∇2− limk,l→∞ xkl = l.
Conversely, suppose that there exists a subset

K = {km : k1 < k2 < ...}

of N such that limr,s→∞ 1
λr,s
|K| = 1 and F∇2− limk,l→∞ xkl = l. Then for every ε > 0 and

t > 0 and non-zero z ∈ X, there exists a positive integer n0 such that


(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; t


 > 1− ε





for all k, l > n0. If we take

K (ε, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z; t


 ≤ 1− ε





then it is easy to see that

K (ε, t) ⊂ N× N− {n0 + 1, n0 + 2, ...}

and consequently
δ∇2 (K (ε, t)) ≤ 1− 1 = 0.

Hence, S∇2 − limk,l xkl = l.
Finally, we establish the Cauchy convergence criteria of double sequences of order α in

random 2-normed spaces.

Theorem 20 Let (X,F , ∗) be a random 2-normed space. A double sequence x = (xkl) is said
to be ∇2-statistical convergent if and only if it is ∇2-statistical Cauchy.

Proof. Let x = (xkl) be ∇2-statistical convergent sequence. Suppose that S∇2−limk,l xkl = l.
For ε > 0, t > 0 and non-zero z ∈ X choose s > 0 such that (1− s) ∗ (1− s) > 1 − ε. We
define

A (s, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z;

t

2


 ≤ (1− s)



 ;
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then

Ac (s, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z;

t

2


 > (1− s)



 .

Since S∇2− limk,l xkl = l it follows that δ∇2 (A (s, t)) = 0 and consequently δ∇2 (Ac (s, t)) = 1.
Let (u, γ) ∈ Ac (s, t), then

F


 1

λr,s

∑

(k,l)∈Ir,s
xuγ − l, z;

t

2


 > (1− s) .

If we take

B (ε, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − xuγ , z; t


 ≤ (1− ε)



 ,

then to prove the first part it is sufficient to prove that B (ε, t) ⊂ A (s, t). Let (k, l) ∈ B (ε, t),
which gives

F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − xuγ , z; t


 ≤ (1− ε) .

Suppose (k, l) /∈ A (s, t), then

F


 1

λ
α
r,s

∑

(k,l)∈Ir,s
xkl − l, z; t


 > (1− s) ,

Also it can be easily seen that

1− ε ≥ F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − xuγ , z; t




≥ F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z;

t

2


 ∗ F


 1

λr,s

∑

(k,l)∈Ir,s
xuγ − l, z;

t

2




≥ (1− s) ∗ (1− s) > 1− ε.

This contradiction shows that B (ε, t) ⊂ A (s, t) and therefore, one way of the theorem is
proved.

Conversely, let x = (xkl) is ∇2-statistical Cauchy double sequence of order α but not
double ∇2-statistical convergent with respect to F . Now

F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − xuγ , z; t




≥ F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − l, z;

t

2


 ∗ F


 1

λr,s

∑

(k,l)∈Ir,s
xuγ − l, z;

t

2




≥ (1− s) ∗ (1− s) > 1− ε.

since x is not double ∇2-statistical convergent. Therefore δ∇2 (Bc (t, ε)) = 0, where

B (ε, t) =



(k, l) ∈ Ir,s : F


 1

λr,s

∑

(k,l)∈Ir,s
xkl − xuγ , z; t


 ≤ 1− ε



 .
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and so δ∇2 (B (t, ε)) = 1, which is contradiction, since x is ∇2-statistical Cauchy double
sequence. Hence x must be ∇2-statistical Cauchy. This completes the proof.
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Abstract

The need for increased energy on the world has made it necessary to work on energy
production and transformation. There are many studies to produce electric energy from
solar energy, wind energy and petroleum type fuels. These electrical energies need to
be transformed and regulated after they are produced. For regulating on the electric
energy, circuits such as inverters and converters are usually used. This study focuses
on the applied mathematical model of the dc-dc converter, which converts direct current
electrical energy from a lower level to a higher level. In this study, a mathematical model
of a multi-level and multi-switch converter circuit is created, which is different from other
similar works [3-5]. The converters known in the literature can have the mathematical
differential equations of the inductor current and the capacitor voltage for a single time
slot and the single phase while the mathematical differential equations of the different
inductor currents and capacitor voltages for the various levels are formed in the proposed
circuit. For each level, the number of switches and circuit elements to be operated varies.
This leads to a different number of elements for each level and a changing mathematical
pattern. According to this, the mathematical equations generated reveal the superiority
and the difference of the circuit arrangement.

Keywords: the mathematical differential equations, changing mathematical pattern, the
need for increased energy.

1 Introduction

The need for increased energy on the world has made it necessary to work on energy production
and transformation. There are many studies to produce electric energy from solar energy, wind
energy and petroleum type fuels [1, 2]. For different needs and uses, electrical energy must
be converted and regulated. In order to regulate electrical energy, circuits such as inverters
and converters are usually used. This study focuses on the applied mathematical model of
the dc-dc converter, which converts direct current electrical energy from a lower level to a
higher level. In this study, a mathematical model of a multi-level and multi-switch converter
circuit, which is different from other similar studies, has been formed [3-5]. In this study,
multi-level DA-DA converter circuit and mathematical equations are described. The results
obtained with several converter circuits with different management centers can be obtained
with a circuit topology which can be obtained with a single microcontroller in the proposed
circuit.

∗Corresponding author. E-mail address: cn e@hotmail.com
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2 Converter Circuit Structure

The three-level DA-DA circuit model is given in figure 1.

Figure 1: Three-level DC-DC circuit model

There are 6-switches, 3-inductors, 3-capacitors, 6-diodes and 1-DC source in this circuit.
Pulse Width Modulation (DGM), which forms three different time periods for each floor of
this circuit, is given in Figure 2.

Figure 2: PWMs for the operation of switches

The equal-sized PWMs is providing an operating arrangement of circuit components as in
table
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Table 1: The working order of the circuit elements

T1on T1off T2 on T2off T3 on T3 off

L1 1 1 0 0 0

L2 0 0 1 1 0 0

L3 0 0 0. 0 1 1

C1 0 1 0 0 0 0

C2 0 0 0 1 0 0

C3 0 0 0 0 0 1

D1 0 1 0. 0 0 0

D2 .0 0 0. 1 0 0

D3 0 0 0 0 0 1

D4 0 0 0 0 1 0

D5 0 0 1 0 0 0

D6 1 0 0 0 0 0

S.1 0 0 0 0 1 0

S.2 0 0 0 0 0 1

S.3 0 0 1 0 0 0

S4 0 0 0 1 0 0

S5 1 0 0 0 0 0.

S6 0 1 0 0 0 0

For the three time zones, the current state on the coil at each level is given in figure 3.

Figure 3: Current changes for each level of coil

T1 is the time set for the first level as one unit. For the time T1on = DT, the circuit
model in figure 4a is formed and the circuit model in figure 4b is formed for the time T1off
= (1-D) T.
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Figure 4: Circuit models for the first level a) for T1on b) for T1off

In the circuit in figure 4a, the first level coil L1 = 2 L will be active with the source
voltage (E) for the time T1on = DT. In this case, the current and voltage equality for first
level will be in Eq.1 and Eq.2.di1 is differential value of the current according to time.

E =
di1
dt

2L (1)

E

2L
=
di1
dt

(2)

In this case, the current will rise from the minimum level to the maximum level on the coil.
For T1on = DT, the current equation can be written as Eq. 3.

Imin− Imax =
E

L

DT

2
(3)

T2 is the time set for the second level as one unit. For the time T2on = DT, the circuit model
in figure 5a is formed and the circuit model in figure 5b is formed for the time T2off = (1-D)
T.

Figure 5: Circuit models for the second level a) for T2on b) for T2off
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In the circuit in figure 5a, the second level coil L2 = 4 L will be active with the source
voltage (E) for the time T2on = DT. In this case, the current and voltage equality will be in
Eq.4 and Eq.5 di2 at the level-2 is differential value of the current according to time.

E =
di2
dt

4L (4)

E

4L
=
di2
dt

(5)

In the circuit in figure4b, the first level coil L1 = 2L and the capacitor C1 = C will be active
with the source voltage (E) for the time T1off = (1-D)T. In this case, the current voltage
will be as in Eq.6. 




E = di2
dt 2L+ V C1

di2
dt = E−V C1

2L

Imax− Imin = E−V C1
L

(1−D)
2 T



 (6)

In this case, the current will rise from the minimum level to the maximum level on the coil.
For T2on = DT, the current equation can be written as Eq. 7.

{
E
4L = di2

dt

Imin− Imax = E
L
DT
4

}
(7)

The amount of charge accumulated in the capacitor at the first level can be expressed as a
multiplication of the derivative of the current of I1 with the transistor duty ratio (D) as in
Eq.8.

Q1 = D
di1
dt

(8)

Q2 = D
1

2

di1
dt

(9)

Eq.8 and Eq.9 can be found in Eq.10 and Eq.11.

Q2 = D
1

2

Q1

D
(10)

Q1

2
= Q2 (11)

Since two equal capacitors are connected in series for the second level, the capacitor unit
value (C) is reduced by fifty percent for the second level. While the capacitor voltage VC1 is
written as the Eq. 11 for the first level, the capacitor voltage (VCS) for the second level is
written as the Eq.12.

VC 1 =
Q1

C
(12)

VC S =
Q2

C 1
2

(13)

Eq.10 and Eq.11 are used in Equation 12 to find a common capacitor voltage as VC1 for the
second level. So, Equations are calculated in Eq.13 and Eq.14.




VC S =
Q1 1

2

C 1
2

VC S =
VC 1

1
2
C

C 1
2


 (14)

VCS = V C1 (15)
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In T2off that is (1-D) T ; current, voltage equality can be written from Eq. 15 and Eq. 16
as Eq.17.

E =
di2
dt

4L+ V C1 (16)

di2
dt

=
E − V C1

4L
(17)

Imax− Imin =
E − V C1

L

(1 −D)T

4
(18)

T3 is the time set for the third level as one unit. For the time T3on = DT, the circuit model
in figure 6a is formed and the circuit model in figure 6b is formed for the time T3off = (1-D)
T.

Figure 6: Circuit models for the second level a) for T3on b) for T3off

In the circuit in figure 6a, the second level coil L3 = 6 L will be active with the source
voltage (E) for the time T3on = DT. In this case, the current and voltage equality will be in
Eq.4 and Eq.5 di3at the level-3 is differential value of the current according to time.

{
E
6L = di3

dt

Imin− Imax = E
6LDT

}
(19)

The inductor value increases to three times for the third level. Therefore, while the current is
reduced by three times, the amount of the electric charge also decreases by three times in the
capacitors as in Eq. 19. Q3 is the amount of the electric charge for third level. D is constant
of duty ratio for every level. D is time for charging capacitor. The current value is E / 2L for
the first level and E / 6L is for current value of the third level. While the amount of current
in the third level Eq.19 is one third of that in the first level, the amount of electric charge is
as in Eq. 20.

Q3= D
1

3

di1
dt

(20)

(
Q3= D 1

3
Q1

D
Q1

3 = Q3

)
(21)

Since three equal capacitors are connected in series for the third level, the capacitor unit value
(C) is reduced by three times for the second level. While the capacitor voltage VC1 is written
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as the Eq. 21 for the third level, the capacitor voltage (VCT ) for the third level is written as
the Eq.22.

VC 1 =
Q1

C
(22)

VCT =
Q3
C
3

(23)

Eq. 20 and Eq. 21 are used in Equation 12 to find a common capacitor voltage as VC1 for
the second level. So, Eq. is calculated Eq.23 and Eq. 24.





VCT =
Q1 1

3

C 1
3

VCT =
VC 1

1
3
C

C 1
3



 (24)

VCT = V C1 (25)

In T3off that is (1-D)T ; current, voltage equality can be written from Eq. 25 and Eq. 26 as
Eq.27.

E =
di3
dt

6L+ V C1 (26)

di3
dt

=
E − V C1

6L
(27)

Imax− Imin =
E − V C1

L

(1 −D)T

6
(28)

The converter output voltage can be found with a common solution for the three stages. The
sum of the current values generated for the Ton durations and the sum of the current values
occurring in the Toff is equalized as in Eq.(29) and Eq. (30).

−(
E

2L
+
E

4L
+
E

6L
)
DT

1
= (

E − V C1

2L
+
E − V C1

4L
+
E − V C1

6L
)
(1 −D)T

1
(29)

−11EDT = (6E − 6V C1 + 3E − 3V C1 + 2E − 2V C1)(1 −D)T (30)

Eq.30 and Eq. 31 are obtained from Eq. 29.

−11ED = (11E − 11V C1)(1 −D) (31)

E

(1 −D)
= V C1 (32)

While each next level is running, the load stored at a capacitor of lower level at the lower
level decreases as much as next level charging amount in capacitor of lower level. When
VC1+VC2/2+VC3/3 is named as VCa, the equation for the voltage on the total capacitor in
the circuit is given by Eq.32, Eq.33.

E

(1 −D)
+

E

2(1 −D)
+

E

3(1 −D)
= V Ca (33)

11E

6(1 −D)
= V Ca ∼= 2E

(1 −D)
(34)

3 Result

In this study, the working logic of a multi-level dc-dc converter is presented with mathematical
equations.
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