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Abstract 

Geometers have been working the curve theory and the surface theory for hundreds of years. We see good works for the theories in the 
literature. In this work, we introduce cardiohelicoidal surface in the three dimensional Euclidean space ��. We indicate basic notions 
of Euclidean geometry. Then, stating a helicoidal surface, we obtain cardiohelicoidal surface, and calculate its Gauss map, the 
Gaussian curvature and the mean curvature. In the end, we find some corollaries of the Gaussian curvature and the mean curvature 
of the cardiohelicoidal surface in ��. 
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1. Introduction 

In this work, we introduce the cardiohelicoidal surface in Euclidean 3-space ��. See some books Forsyth [1], Gray et al. [2], 
Hacısalihoğlu [3,4], Nitsche [5], Spivak [6] for cardioid curve and helicoidal surface. 

We show some basic notions of three dimensional Euclidean geometry in this Section. We define helicoidal surface in Section 2. 
Finally, we give cardiohelicoidal surface, and compute its Gaussian curvature and the mean curvature in the last section. 

Throughout the paper, we identify a vector (a, b, c) with its transpose. We consider the first and second fundamental forms, matrix of 
the shape operator S, Gaussian curvature K, and the mean curvature H of surface M=M(�, �) in Euclidean 3-space. 

Let M be an isometric immersion of surface �� in ��. The inner product and the vector product of �⃗ = (��, ��, ��), �⃗ = (��, ��, ��) 
on �� are defined by as follows, respectively, 

 

x  y  x 1y1  x 2y2  x 3y3
 

 

and 

 

x  y  x 2y3  x 3y2 ,x 1y3  x 3y1 ,x 1y2  x2y1 .
 

 

For a surface M in the three dimensional Euclidean space, with the first and the second fundamental coefficients 

 

E  Mu  Mu , F  Mu  M v, G  M v  M v,

L  Muu  e, M  Muv  e, N  M vv  e,
 

 
we know 

 

detI  det
E F

F G
 EG  F2 ,

 
 

and 



det II  det
L M

M N
 LN  M2 ,

 
 

where 

 

e 
Mu  M v

Mu  M v
.

 
 
is the Gauss map. Computing 
 

I1 . II,
 

 
we get following shape operator matrix 
 

S  1
detI

GL  FM GM  FN

EM  FL EN  FM
.   #   

 
 

Hence, we have the following formulas of the Gaussian curvature and the mean curvature, respectively, 
 

K  detS  LN  M2

EG  F2
,

 
 

and 
 

H  1
2

trS  EN  GL  2FM
2EG  F2 

.

 
 

A surface M is flat if � = 0, and it is minimal if � = 0, identically. 

 

2. Helicoidal Surface 

We define the rotational surface and helicoidal surface in ��. For an open interval � ⊂ ℝ, let  � ∶ � ⟶  Π be a curve in a plane Π, and 
let ℓ be a straight line in Π. 

A rotational surface in �� is defined as a surface rotating a curve � around a line ℓ (these are called the profile curve and the axis, 
respectively). Suppose that when a profile curve � rotates around the axis ℓ, it simultaneously displaces parallel lines orthogonal to the 
axis ℓ, so that the speed of displacement is proportional to the speed of rotation. Then, resulting surface is called the helicoidal surface 
with axis ℓ and pitch  � ∈ ℝ�. 

We may suppose that ℓ is the line spanned by the vector (0,0,1)�. The orthogonal matrix is as follows 
 

Ov 

cosv  sinv 0

sinv cosv 0

0 0 1

, v  R.

 
 

The matrix � supplies following equations, simultaneously, 
 

�ℓ = ℓ,    ��� = ��� = ��, ���� = 1. 
 
When the axis of rotation is ℓ, there is an Euclidean transformation by which the axis is ℓ transformed to the ��-axis of 3-space. The 



profile curve is given by as follows 
 

�(�) = (�(�), 0, ℎ(�)). 
 

Here �(�), ℎ(�) ∶ � ⊂  ℝ ⟶  ℝ are differentiable functions for all � ∈ �. 

Therefore, a helicoidal surface which is spanned by the vector (0,0,1) with pitch �, is as follows 
 

�(�, �) = �(�)�(�) + ��ℓ�, 
 

where � ∈ �, � ∈ [0, 2�). 

More cleear form of the helicoidal surface is as follows 
 

Hu,v  fucosv, fu sinv, hu  bv .   #   
 

 

When � = 0, the surface is a rotational surface. 

 

3. Cardiohelicoidal Surface 

In ��, a cardiohelicoidal surface (see Figure 1) which is spanned by the vector (0,0,1) with pitch � ∈ ℝ�, (see Figure 2 for � = 0) is 
defined by as follows: 
 

Cu,v 

a1  cosucosucosv  a1  sinusinusinv

a1  cosucosusinv  a1  sinusinucosv

u  bv

,   #   

 
 
 

 
 
 

Figure 1. Left: Cardiohelicoidal surface, Right: Its top view 
 
 
where profile space curve is given by 
 

u  a1  cosucosu,a1  sinusinu,u,
 

 
� ∶ � ⊂  ℝ ⟶  ℝ is differentiable function for all � ∈ �, � ∈ ℝ, and � ∈ [0, 2�). 

 
 



 
 
 

Figure 2. Left: Cardiorotational surface, Right: Its top view 

 
 
Calculating the first differentials of ℭ(�, �) with respect to � and �, we have 
 

detI  A1 2  A2   A3 ,
 

 
where 
 

A1  2a2cosu  1cosu  1cosu  1cosu  sinu  1,   
 

A2  2a2bcosu  1cosu  1cosu  cosu  1sinu  1,  
 

A3  a4cos2ucosu  1cosu  1  

              

.
42cosu  12cosu  2cos2u  3cosu

64cosu  3cosu  2 sinu  13
 

                         4b2cosu  12cosu  1cosu  1  cosusinucosu.  
 
The Gauss map of the cardiohelicoidal surface is as follows 
 

eC  1

detI

e1

e2

e3

,   #   

 
 
where 
 

e1  2sinv  cosv sinucosu  cosucosv  sinusinvb   

  1  sinusinu sinv  cosu  1cosucosv  ,   
 

 e2  2cosv  sinvsinucosu  sinucosu  sinv cosub   

  sinu  1sinucosv  cosu  1cosusinv  ,   
 

 e3  a4cosu  11  cosu  1  3sinusinucosu.   
 



After long calculations, we obtain the Gaussian curvature of the cardiohelicoidal surface as follows 
 

K 
1    2   3 2  4   5

detI2
,

 
 
where �: = ����, �: = ����, 
 

 1  2CSC  14C5  3C4  9C3  4C2  8C  5   

   27C3  C2  8C  5C  12C  1C,   
 

 2  b2C2  2C  52C2  1C  1CS   

   b2C2  1C  122C  5C  1C,   
 

 3  16C6  6C5  36C4  52C3  C2  32C  10C  12

  

   213C5  4C4  22C3  13C2  11C  5C  1S,   
 

 4  b210C5  33C4  17C3  33C2  33C  1CS   

   20C6  94C4  71C3  62C2  71C  2C  10S  1,   
 

 5  b24C516C3  16C2  32C  33  3S  2   

   CS64C5  36C4  60C3  36C2  9C  6   

   C30C3  63C2  34C  2.  
 
And also we obtain the mean curvature as follows 
 

H 
1

  2
3  3

2  4
  5

2detI3/2
,

 
 
where �: = ����, �: = ����, 
 

 
1  2a28C  C2  7C3  5C2  1

 

  
 4C5  3C4  9C3  4C2  8C  5CC  1

 

  
 b23C  1C  1  4C2  3C  2SC,

 
 

 
2  2C  1C  S  CS  C3  1,

 
 

 
3  3CbC2  2  3bS  1  3CSbC  2,

 
 

 
4  a2220C  5C2  20C3  5C4  C6  6C  10S  1

 

  
 218C  8C3  C5  6CS  b26C  8C2  3C3  8C4  5

 

  
 3C2  1S,

 
 

 
5  a2b4C6  4C5  24C4  10C3  23C2  11C  5

 

  
 14C4  8C3  4C2  6C  5C  1SC  1

 

   b32S  2C2S  2C3  1.  



Corollary 1.  We assume ℭ ∶  M�  ⟶  �� be an immersion given by ℭ(�, �). So, M� is minimal iff 
 

1
  2

3  3
2  4

  5  0.  
 

Corollary 2.  We assume ℭ ∶  M�  ⟶  �� be an immersion given by ℭ(�, �). Hence, M� is flat iff 
 

1    2   3 2  4   5  0.  
 
Corollary 3.  We assume ℭ ∶  M�  ⟶  �� be an immersion given by ℭ(�, �). Therefore, M� has following Weingarten relation 
 

a3det I3/2  K  2 H  0,
 

 
where � and � are the numerator functions of � and �, respectively. 
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