The Fourth Fundamental Form of the Torus Hypersurface

Erhan Güler
Department of Mathematics, Faculty of Sciences, Bartın University, 74100 Bartın, Turkey
e-mail: eguler@bartin.edu.tr

Abstract

We introduce the fourth fundamental form of the torus hypersurface in the four dimensional Euclidean space. We also compute I, II, III and IV fundamental forms of a torus hypersurface.

1. Introduction

Surfaces and hypersurfaces have been worked by the mathematicians for centuries. We see some new papers about torus surfaces and torus hypersurfaces in the literature such as [2-15].

Aminov [1] gave the three dimensional submanifold M^{3} in \mathbb{E}^{4}, homeomorphic to $S^{1} \times S^{2}$, considering in a similar way to the construction of an ordinary torus in \mathbb{E}^{3}.

Let γ be a circle of radius R with the center at the origin O in a coordinate plane \mathbb{E}^{2}, and P be a point of γ. Spanning \mathbb{E}^{3} on vectors $O P, e_{3}, e_{4}$, we consider the sphere $S^{2}(P)$ of radius r with the center at P. When P moves along γ, then all points of $S^{2}(P)$ form the submanifold M^{3} in \mathbb{E}^{4}, and then a torus hypersurface in \mathbb{E}^{4} can be parametrized by:

$$
\mathbf{x}(u, v, w)=\left(\begin{array}{c}
(R+r \cos u \cos v) \cos w \tag{1.1}\\
(R+r \cos u \cos v) \sin w \\
r \cos u \sin v \\
r \sin u
\end{array}\right)
$$

where $u, v, w \in I \subset \mathbb{R}$.
In this paper, we study the fourth fundamental form of the torus hypersurface in the four dimensional Euclidean space \mathbb{E}^{4}. We present fundamental notions of four

Received: October 19, 2020; Accepted: October 26, 2020
2010 Mathematics Subject Classification: 53A35, 53C42.
Keywords and phrases: four space, torus hypersurface, fourth fundamental form.
*Corresponding author
dimensional Euclidean geometry. Moreover, we give fundamental forms I, II, III, and IV of torus hypersurface.

2. Preliminaries

We consider characteristic polynomial of shape operator \mathbf{S} :

$$
\begin{equation*}
P_{\mathbf{S}}(\lambda)=0=\operatorname{det}\left(\mathbf{S}-\lambda I_{n}\right)=\sum_{k=0}^{n}(-1)^{k} s_{k} \lambda^{n-k} \tag{2.1}
\end{equation*}
$$

where I_{n} denotes the identity matrix of order n in \mathbb{E}^{n+1}. Then, we get curvature formulas

$$
\binom{n}{i} \mathfrak{C}_{i}=s_{i}
$$

Here, $\binom{n}{0} \mathfrak{C}_{0}=s_{0}=1$ by definition. So, k-th fundamental form of hypersurface M^{n} is defined by

$$
\mathrm{I}\left(\mathbf{S}^{k-1}(X), Y\right)=\left\langle\mathbf{S}^{k-1}(X), Y\right\rangle
$$

Then, we get

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \mathfrak{c}_{i} \mathrm{I}\left(\mathbf{S}^{k-1}(X), Y\right)=0 \tag{2.2}
\end{equation*}
$$

In the rest of this paper, we shall identify a vector (a, b, c, d) with its transpose $(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})^{t}$.

Let $\mathbf{M}=\mathbf{M}(u, v, w)$ be an isometric immersion of a hypersurface M^{3} in \mathbb{E}^{4}. Inner product of vectors $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ in \mathbb{E}^{4} is given by as follows:

$$
\langle\vec{x}, \vec{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}
$$

Vector product $\vec{x} \times \vec{y} \times \vec{z}$ of $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \quad \vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \quad \vec{z}=$ $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ in \mathbb{E}^{4} is defined by as follows:

$$
\vec{x} \times \vec{y} \times \vec{z}=\operatorname{det}\left(\begin{array}{l}
e_{1} e_{2} e_{3} e_{4} \\
x_{1} x_{2} x_{3} x_{4} \\
y_{1} y_{2} y_{3} y_{4} \\
z_{1} z_{2} z_{3} z_{4}
\end{array}\right)
$$

The Gauss map of a hypersurface \mathbf{M} is given by

$$
e=\frac{\mathbf{M}_{u} \times \mathbf{M}_{v} \times \mathbf{M}_{w}}{\left\|\mathbf{M}_{u} \times \mathbf{M}_{v} \times \mathbf{M}_{w}\right\|}
$$

where $\mathbf{M}_{u}=d \mathbf{M} / d u$. For a hypersurface \mathbf{M} in \mathbb{E}^{4}, we have following fundamental form matrices

$$
\begin{gathered}
\mathrm{I}=\left(\begin{array}{lll}
E & F & A \\
F & G & B \\
A & B & C
\end{array}\right), \\
\mathrm{II}=\operatorname{det}\left(\begin{array}{ccc}
L & M & P \\
M & N & T \\
P & T & V
\end{array}\right), \\
\mathrm{III}=\left(\begin{array}{lll}
X & Y & O \\
Y & Z & R \\
O & R & S
\end{array}\right),
\end{gathered}
$$

Here, the coefficients are given by

$$
\begin{aligned}
& E=\left\langle\mathbf{M}_{u}, \mathbf{M}_{u}\right\rangle, \quad F=\left\langle\mathbf{M}_{u}, \mathbf{M}_{v}\right\rangle, \quad G=\left\langle\mathbf{M}_{v}, \mathbf{M}_{v}\right\rangle, \quad A=\left\langle\mathbf{M}_{u}, \mathbf{M}_{w}\right\rangle, \quad B=\left\langle\mathbf{M}_{v}, \mathbf{M}_{\boldsymbol{w}}\right\rangle, \\
& C=\left\langle\mathbf{M}_{w}, \mathbf{M}_{w}\right\rangle, \\
& L=\left\langle\mathbf{M}_{u u}, e\right\rangle, \quad M=\left\langle\mathbf{M}_{u v}, e\right\rangle, \quad N=\left\langle\mathbf{M}_{v v}, e\right\rangle, \quad P=\left\langle\mathbf{M}_{u w}, e\right\rangle, \quad T=\left\langle\mathbf{M}_{v w}, e\right\rangle, \\
& V=\left\langle\mathbf{M}_{w w}, e\right\rangle, \\
& X=\left\langle e_{u}, e_{u}\right\rangle, \quad Y=\left\langle e_{u}, e_{v}\right\rangle, \quad Z=\left\langle e_{v}, e_{v}\right\rangle, \quad O=\left\langle e_{u}, e_{w}\right\rangle, \quad R=\left\langle e_{v}, e_{\boldsymbol{w}}\right\rangle, \\
& S=\left\langle e_{w}, e_{\boldsymbol{w}}\right\rangle
\end{aligned}
$$

and e is the Gauss map (i.e. the unit normal vector field).

3. The Fourth Fundamental Form

Next, we obtain the fourth fundamental form matrix for a hypersurface $\mathbf{M}(u, v, w)$ in \mathbb{E}^{4}. Using characteristic polynomial $P_{\mathbf{S}}(\lambda)=a \lambda^{3}+b \lambda^{2}+c \lambda+d=0$, we obtain curvature formulas: $\mathfrak{C}_{0}=1$ (by definition),

$$
\mathfrak{C}_{1}=-\frac{b}{\binom{3}{1} a}, \quad \mathfrak{C}_{2}=\frac{c}{\binom{3}{2} a}, \quad \mathfrak{C}_{3}=-\frac{d}{\binom{3}{3} a} .
$$

Theorem 3.1. For any hypersurface M^{3} in \mathbb{E}^{4}, the fourth fundamental form is related by

$$
\begin{equation*}
\mathfrak{c}_{0} \mathrm{IV}-3 \mathfrak{C}_{1} \mathrm{III}+3 \mathfrak{C}_{2} \mathrm{II}-\mathfrak{c}_{3} \mathrm{I}=0 \tag{3.1}
\end{equation*}
$$

Proof. Taking $n=3$ in (2.2), then some computing, we get the fourth fundamental form matrix as follows

$$
\mathrm{IV}=\left(\begin{array}{lll}
\zeta & \eta & \delta \tag{3.2}\\
\eta & \phi & \sigma \\
\delta & \sigma & \xi
\end{array}\right)
$$

where

$$
\zeta=-\frac{\left\{\begin{array}{c}
C L^{2} N-C L M^{2}-G L P^{2}+B^{2} L X+A^{2} N X+G L^{2} V+F^{2} V X+N P^{2} E+M^{2} V E \\
-C N X E-G V X E-C G L X+2\left(B T X E-B L^{2} T-M P T E+A B M X-A L N P\right. \\
+B L M P+A L M T+C F M X+A G P X-B F P X-A F T X-F L M V+F L P T)
\end{array}\right\}}{\operatorname{det} \mathrm{I}},
$$

$$
\eta=\frac{\left\{\begin{array}{c}
C M^{3}-F N P^{2}-G M P^{2}-F L T^{2}-B^{2} L Y-A^{2} N Y+F M^{2} V-F^{2} V Y+M T^{2} E \\
+C N Y E-M N V E+G V Y E-C L M N+C G L Y+F L N V-G L M V+2(A F P Y \\
\left.-B T Y E+A B M Y+A N M P-B L M T-C F M Y-A G P Y+B F P Y-T M^{2} A-B M^{2} P\right)
\end{array}\right\}}{\operatorname{det} \mathrm{I}}
$$

$$
\delta=\frac{\left\{\begin{array}{c}
G P^{3}-B^{2} L O-A^{2} N O+A N P^{2}+C M^{2} P-A L T^{2}-A V M^{2}-F^{2} O V+P T^{2} E \\
+C N O E+G O V E-N P V E+C G L O-C L N P+A L N V-G L P V+2(A B M O \\
\left.-B O T E-C F M O-A G O P+B F O P+A F O T-B L P T+F M P V-B M P^{2}-F P^{2} T\right)
\end{array}\right\}}{\operatorname{det} \mathrm{I}}
$$

$$
\phi=-\frac{\left\{\begin{array}{c}
C L N^{2}-C M^{2} N-G L T^{2}+B^{2} L Z+A^{2} N Z+G M^{2} V+F^{2} V Z-N T^{2} E+N^{2} V E \\
-C N Z E-G V Z E-C G L Z+2\left(-A N^{2} P+B T Z E-A B M Z+B M N P+A N M T\right. \\
-B L N T+C F M Z+A G P Z-B F P Z-A F T Z+F M N V+F N P T-G M P T)
\end{array}\right\}}{\operatorname{det} \mathrm{I}}
$$

$$
\begin{aligned}
\sigma & =\frac{\left\{\begin{array}{c}
E T^{3}-B N P^{2}-B^{2} L R-A^{2} N R+B L T^{2}+C M^{2} T-B M^{2} V+G P^{2} T-F^{2} R V \\
+C N R E+G R V E-N T V E+C G L R-C L N T+B L N V-G L T V+2(A B M R \\
\left.-B R T E-C F M R-A G P R+B F P R+A F R T+A N P T+F M T V-A T^{2} M-F T^{2} P\right)
\end{array}\right\}}{\operatorname{det} \mathrm{I}}, \\
\xi & =-\frac{\left\{\begin{array}{c}
C N P^{2}-B^{2} L S-A^{2} N S+C L T^{2}+G L V^{2}-G P^{2} V+F^{2} S V+N V^{2} E-T^{2} V E \\
-C N S E-G S V E-C G L S+2\left(-F M V^{2}+B S T E-A B M S+C F M S+A G P S\right. \\
-B F P S-A F S T-C M P T-A N P V+B M P V+A T M V-B L T V-F P T V)
\end{array}\right\}}{\operatorname{det} \mathrm{I}} .
\end{aligned}
$$

4. Curvatures of Torus Hypersurface

In this section, we compute curvatures of torus hypersurface (1.1).
With the first differentials of (1.1) depends on u, v, w, we get the Gauss map of (1.1):

$$
e=-\left(\begin{array}{c}
\cos u \cos v \cos w \tag{4.1}\\
\cos u \cos v \sin w \\
\cos u \sin v \\
\sin u
\end{array}\right)
$$

We get the first and the second fundamental form matrices of (1.1), respectively,

$$
\begin{gathered}
\mathrm{I}=\left(\begin{array}{ccc}
r^{2} & 0 & 0 \\
0 & r^{2} \cos ^{2} u & 0 \\
0 & 0 & (R+r \cos u \cos v)^{2}
\end{array}\right), \\
\mathrm{II}=\left(\begin{array}{ccc}
r & 0 & 0 \\
0 & r \cos ^{2} u & 0 \\
0 & 0 & (R+r \cos u \cos v) \cos u \cos v
\end{array}\right) .
\end{gathered}
$$

Using I^{-1}. II, torus hypersurface (1.1) in \mathbb{E}^{4} has following shape operator

$$
\mathbf{S}=\left(\begin{array}{ccc}
k_{1} & 0 & 0 \\
0 & k_{2} & 0 \\
0 & 0 & k_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{r} & 0 & 0 \\
0 & \frac{1}{r} & 0 \\
0 & 0 & \frac{\cos u \cos v}{R+r \cos u \cos v}
\end{array}\right)
$$

So, we compute the third fundamental form matrix using (4.1) of (1.1):

$$
\text { III }=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos ^{2} u & 0 \\
0 & 0 & \cos ^{2} u \cos ^{2} v
\end{array}\right) .
$$

Finally, using (3.2) on (1.1), we obtain the fourth quantities of (1.1), i.e., symmetric matrix, as follows

$$
\text { IV }=\left(\begin{array}{ccc}
\frac{1}{r} & 0 & 0 \\
0 & \frac{\cos ^{2} u}{r} & 0 \\
0 & 0 & \frac{\cos ^{3} u \cos ^{3} v}{R+r \cos u \cos v}
\end{array}\right)
$$

Corollary 4.1. Torus hypersurface (1.1) in \mathbb{E}^{4} has following relations

$$
\mathrm{IV}=\mathrm{III} . \mathbf{S},
$$

$$
\begin{aligned}
\mathrm{III} & =\mathrm{II} . \mathbf{S}, \\
\mathrm{II} & =\mathrm{I} . \mathbf{S} .
\end{aligned}
$$

Proof. Considering I, II, III, IV and \mathbf{S} of (1.1), we obtain all quantities.
Corollary 4.2. Torus hypersurface (1.1) in \mathbb{E}^{4} has following relations

$$
\frac{(\operatorname{detII})(\operatorname{detIII})^{2}}{(\operatorname{detI})(\operatorname{detIV})^{2}}=\operatorname{det} \mathbf{S}=k_{1} k_{2} k_{3}=\frac{\cos u \cos v}{r^{2}(R+r \cos u \cos v)}=\mathfrak{C}_{3} .
$$

Proof. Using I, II, III, IV and S of (1.1), it is clear.

5. Conclusion

Torus hypersurfaces have been recently worked by a number of authors. We extend some well-known results of the torus hypersurfaces with the help of the fourth fundamental form

References

[1] Yu. Aminov, The Geometry of Submanifolds, Gordon and Breach Science Publishers, Amsterdam, 2001.
[2] V.A. Borovitskiĭ, K-closedness for weighted Hardy spaces on the torus T², Zap. Nauchn. Sem. (POMI) 456 (2017), 25-36 (in Russian); translation in J. Math. Sci. (N.Y.) 234(3) (2018), 282-289. https://doi.org/10.1007/s 10958-018-4004-9
[3] J. Dasgupta, B. Khan and V. Uma, Cohomology of torus manifold bundles, Math. Slovaca 69(3) (2019), 685-698. https://doi.org/10.1515/ms-2017-0257
[4] C.L. Duston, Torus solutions to the Weierstrass-Enneper representation of surfaces, J. Math. Phys. 60(8) (2019), 1-5. https://doi.org/10.1063/1.5097669
[5] J. Harvey and C. Searle, Almost non-negatively curved 4-manifolds with torus symmetry, Proc. Amer. Math. Soc. 148(11) (2020), 4933-4950. https://doi.org/10.1090/proc/15093
[6] M. Hasegawa and D. Ida, Instability of stationary closed strings winding around flat torus in five-dimensional Schwarzschild spacetimes, Phys. Rev. D 98(4) (2018), 1-7. https://doi.org/10.1103/PhysRevD. 98.044045
[7] S. Hirose and E. Kin, On hyperbolic surface bundles over the circle as branched double covers of the 3-sphere, Proc. Amer. Math. Soc. 148(4) (2020), 1805-1814. https://doi.org/10.1090/proc/14825
[8] Y. Kamiyama, The orbit space of a hypersurface of a torus by an involution, JP J. Geom. Top. 21(4) (2018), 365-372. https://doi.org/10.17654/GT021040365
[9] E. Krasko and A. Omelchenko, Enumeration of r-regular maps on the torus. Part I: rooted maps on the torus, the projective plane and the Klein bottle, Sensed maps on the torus, Discrete Math. 342(2) (2019), 584-599. https://doi.org/10.1016/j.disc.2018.07.013
[10] E. Krasko and A. Omelchenko, Enumeration of r-regular maps on the torus. Part II: Unsensed maps, Discrete Math. 342(2) (2019), 600-614.
https://doi.org/10.1016/j.disc.2018.09.004
[11] L.M. Lerman and K.N. Trifonov, The topology of symplectic partially hyperbolic automorphisms of the 4-torus, Mat. Zametki 108(3) (2020), 474-476 (in Russian). https://doi.org/10.1134/S0001434620090175
[12] M. Mase, Families of $K 3$ surfaces and curves of (2,3)-torus type, Kodai Math. J. 42(3) (2019), 409-430. https://doi.org/10.2996/kmj/1572487224
[13] S. Nakamura, The orthonormal Strichartz inequality on torus, Trans. Amer. Math. Soc. 373(2) (2020), 1455-1476. https://doi.org/10.1090/tran/7982
[14] Mauricio Poletti, Geometric growth for Anosov maps on the 3 torus, Bull. Braz. Math. Soc. (N.S.) 49(4) (2018), 699-713. https://doi.org/10.1007/s00574-018-0079-7
[15] T. Sakajo, Vortex crystals on the surface of a torus, Philos. Trans. Roy. Soc. A 377(2158) (2019), 1-17. https://doi.org/10.1098/rsta.2018.0344

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.

