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Abstract 

We introduce the fourth fundamental form of the torus hypersurface in the four 

dimensional Euclidean space. We also compute I, II, III and IV fundamental forms of a 

torus hypersurface.  

1. Introduction 

Surfaces and hypersurfaces have been worked by the mathematicians for centuries. 

We see some new papers about torus surfaces and torus hypersurfaces in the literature 

such as [2-15]. 

Aminov [1] gave the three dimensional submanifold �� in ��, homeomorphic to �� × ��, considering in a similar way to the construction of an ordinary torus in ��. 

Let 	 be a circle of radius 
 with the center at the origin � in a coordinate plane ��, 

and � be a point of 	. Spanning �� on vectors ��, �, �, we consider the sphere ��(�) 

of radius � with the center at �. When � moves along 	, then all points of ��(�) form the 

submanifold �� in ��, and then a torus hypersurface in �� can be parametrized by: 

�(�, �, �) = �(
 + � cos � cos �) cos �(
 + � cos � cos �) sin �r cos � sin �r sin �  ,                                          (1.1) 

where �, �, � ∈ $ ⊂ ℝ. 

In this paper, we study the fourth fundamental form of the torus hypersurface in the 

four dimensional Euclidean space ��. We present fundamental notions of four 
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dimensional Euclidean geometry. Moreover, we give fundamental forms I, II, III, and IV 

of torus hypersurface. 

2. Preliminaries 

We consider characteristic polynomial of shape operator (: 

�(()) = 0 = det(( − )$/) = 0(−1)1/
123 41)/51 ,                                    (2.1) 

where $/ denotes the identity matrix of order 7 in �/8�. Then, we get curvature formulas 

97: ;ℭ< = 4<. 
Here, 970;ℭ3 = 43 = 1 by definition. So, =-th fundamental form of hypersurface �/ is 

defined by  I>(15�(?), @A = 〈(15�(?), @〉. 
Then, we get 

0(−1)</
<23 97: ;ℭ<  I>(15�(?), @A = 0.                                 (2.2) 

In the rest of this paper, we shall identify a vector (a, b, c, d) with its transpose (a, b, c, d)F. 

Let G = G(�, �, �) be an isometric immersion of a hypersurface �� in ��. Inner 

product of vectors H⃗ = (H�, H�, H�, H�) and J⃗ = (J�, J�, J�, J�) in �� is given by as 

follows: 〈H⃗, J⃗〉 = H�J� + H�J� + H�J� + H�J�. 
Vector product H⃗ × J⃗ × K⃗ of H⃗ = (H�, H�, H�, H�), J⃗ = (J�, J�, J�, J�), K⃗ =(K�, K�, K�, K�)in �� is defined by as follows: 

H⃗ × J⃗ × K⃗ = det ��H�J�K�
�H�J�K�

�H�J�K�
�H�J�K�

 . 
The Gauss map of a hypersurface G is given by 
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 = GL × GM × GN‖GL × GM × GN‖, 
where GL = PG/P�. For a hypersurface G in ��, we have following fundamental form 

matrices 

I = RS T UT V WU W XY, 
II = det R Z � �� [ \� \ ]Y, 

III = R? @ �@ ^ 
� 
 �Y. 
Here, the coefficients are given by S = 〈GL, GL〉,   T = 〈GL, G_〉,   V = 〈GM, GM〉,   U = 〈GL, GN〉,   W = 〈GM , G`〉,    X = 〈GN , GN〉, Z = 〈GLL, 〉,    � = 〈GLM , 〉,    [ = 〈GMM , 〉,      � = 〈GLN , 〉,     \ = 〈GMN, 〉,     ] = 〈GNN, 〉, ? = 〈L, L〉,      @ = 〈L, _〉,       ^ = 〈M , _〉,       � = 〈L, `〉,       
 = 〈M, `〉,       � = 〈N , `〉, 

and  is the Gauss map (i.e. the unit normal vector field).  

3. The Fourth Fundamental Form 

Next, we obtain the fourth fundamental form matrix for a hypersurface G(�, �, �) in ��. Using characteristic polynomial �(()) = a)� + b)� + c) + P = 0, we obtain 

curvature formulas: ℭ3 = 1 (by definition), 

ℭ� = − b931; a,   ℭ� = c932; a,   ℭ� = − P933; a. 
Theorem 3.1. For any hypersurface �� in ��, the fourth fundamental form is related 

by 

ℭ3IV − 3ℭ�III + 3ℭ�II − ℭ�I = 0.                                                    (3.1) 
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Proof. Taking 7 = 3 in (2.2), then some computing, we get the fourth fundamental 

form matrix as follows 

IV = Rζ e fe g hf h iY,                                                                    (3.2) 

where 

ζ = − jXZ�[ − XZ�� − VZ�� + W�Z? + U�[? + VZ�] + T�]? + [��S + ��]S−X[?S − V]?S − XVZ? + 2(W\?S − WZ�\ − ��\S + UW�? − UZ[�+WZ�� + UZ�\ + XT�? + UV�? − WT�? − UT\? − TZ�] + TZ�\) k
det I , 

 e = j X�� − T[�� − V��� − TZ\� − W�Z@ − U�[@ + T��] − T�]@ + �\�S+X[@S − �[]S + V]@S − XZ�[ + XVZ@ + TZ[] − VZ�] + 2(UT�@−W\@S + UW�@ + U[�� − WZ�\ − XT�@ − UV�@ + WT�@ − \��U − W���)k
det I , 

 f = j V�� − W�Z� − U�[� + U[�� + X��� − UZ\� − U]�� − T��] + �\�S+X[�S + V�]S − [�]S + XVZ� − XZ[� + UZ[] − VZ�] + 2(UW��−W�\S − XT�� − UV�� + WT�� + UT�\ − WZ�\ + T��] − W��� − T��\)k
det I , 

 g = − jXZ[� − X��[ − VZ\� + W�Z^ + U�[^ + V��] + T�]^ − [\�S + [�]S−X[^S − V]^S − XVZ^ + 2(−U[�� + W\^S − UW�^ + W�[� + U[�\−WZ[\ + XT�^ + UV�^ − WT�^ − UT\^ + T�[] + T[�\ − V��\) k
det I , 

h = j S\� − W[�� − W�Z
 − U�[
 + WZ\� + X��\ − W��] + V��\ − T�
]+X[
S + V
]S − [\]S + XVZ
 − XZ[\ + WZ[] − VZ\] + 2(UW�
−W
\S − XT�
 − UV�
 + WT�
 + UT
\ + U[�\ + T�\] − U\�� − T\��)k
det I , 

i = − jX[�� − W�Z� − U�[� + XZ\� + VZ]� − V��] + T��] + []�S − \�]S−X[�S − V�]S − XVZ� + 2(−T�]� + W�\S − UW�� + XT�� + UV��−WT�� − UT�\ − X��\ − U[�] + W��] + U\�] − WZ\] − T�\]) k
det I . 

4. Curvatures of Torus Hypersurface 

In this section, we compute curvatures of torus hypersurface (1.1). 

With the first differentials of (1.1) depends on �, �, �, we get the Gauss map of (1.1): 
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 = − lcos � cos � cos �cos � cos � sin �cos � sin �sin � m.                                                      (4.1) 

We get the first and the second fundamental form matrices of (1.1), respectively, 

I = R�� 0 00 �� cos�� 00 0 (
 + � cos � cos �)�Y,    
II = R� 0 00 � cos�� 00 0 (
 + � cos � cos �) cos � cos �Y. 

Using I5�. II, torus hypersurface (1.1) in �� has following shape operator 

( = R=� 0 00 =� 00 0 =�Y =
⎝
⎜⎜⎛

1� 0 0
0 1� 0
0 0 cos � cos �
 + � cos � cos �⎠

⎟⎟⎞. 
So, we compute the third fundamental form matrix using (4.1) of (1.1): 

III = R1 0 00  cos�� 00 0  cos��  cos��Y. 
Finally, using (3.2) on (1.1), we obtain the fourth quantities of (1.1), i.e., symmetric 

matrix, as follows 

IV =
⎝
⎜⎜⎜
⎛1� 0 0

0  cos��� 0
0 0  cos��  cos��
 + � cos � cos �⎠

⎟⎟⎟
⎞. 

Corollary 4.1. Torus hypersurface (1.1) in �� has following relations IV = III. (, 
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III = II. (, II = I. (. 
Proof. Considering I, II, III, IV and ( of (1.1), we obtain all quantities. 

Corollary 4.2. Torus hypersurface (1.1) in �� has following relations (detII)(detIII)�(detI)(detIV)� = det ( = =�=�=� = cos � cos ���(
 + � cos � cos �) = ℭ�. 
Proof. Using I, II, III, IV and ( of (1.1), it is clear. 

5. Conclusion 

Torus hypersurfaces have been recently worked by a number of authors. We extend 

some well-known results of the torus hypersurfaces with the help of the fourth 

fundamental form 
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