Yapay sinir ağları ve derin öğrenme algoritmaları kullanarak nanokompozitlerde deformasyonun tahmin edilmesi
View/ Open
Date
2018-08-15Author
Sözen, Eser
Bardak, Timuçin
Aydemir, Deniz
Bardak, Selahattin
Metadata
Show full item recordAbstract
Nanoteknoloji birçok endüstri için devrim niteliğindedir. Ülkelerin bilimsel ve ekonomik olarak yaptığı yatırımlar, nanoteknolojinin önemini ortaya koymaktadır. Bilim dünyasında veri madenciliği önemli bir yere sahiptir. Teknolojinin birçok alanında veri biliminden faydalanılmaktadır. Nanokompozitlerin kullanım yerini özellikler genellikle mekanik belirler. Geleneksel testler ile mekanik özellikleri belirlemek pahalı ve zaman alıcıdır. Veri madenciliği teknikleri bu problemlere daha düşük maliyetler ile çözümler sunabilmektedir. Bu çalışmada, derin öğrenme ve yapay sinir ağları algoritmaları farklı nanokompozitlerin çekme testleri sırasında deformasyonunu tahmin etmek için kullanılmıştır. Çalışma nanokompozit uygulamalarında veri madenciliği algoritmalarının başarılı bir şekilde uygulanabileceği gösterilmiştir. Aynı zamanda derin öğrenme algoritmalarının, yapay sinir algoritmalarından daha başarılı olduğu belirlenmiştir. Nanoteknoloji alanında veri madenciliğinin uygulandığı bilimsel çalışmalar çok sınırlı sayıdadır. Nanokompozitlerin üretiminin veri madenciliği algoritmaları ile simule edildiği yeni çalışmalara ihtiyaç vardır. Nanotechnology is revolutionary for many industries. The investments that countries make scientifically and economically reveal the significance of nanotechnology. In the world of science, data mining has an important place. Data science is used in many areas of technology. The mechanical properties usually determine where the nanocomposites are use. Determining mechanical properties with conventional tests is expensive and time consuming. Data mining techniques can provide solutions to these problems with lower costs. In this study, deep learning and artificial neural network algorithms were used to predict the deformation of different nanocomposites during tensile tests. The study showed that data mining algorithms could be successfully applied to nanocomposite applications. At the same time, it was determined that deep learning algorithms are more successful than artificial neural algorithms. The scientific work of data mining in nanotechnology is very limited. New studies are needed to simulate the production of nanocomposites with data mining algorithms.