Bartın Üniversitesi
Kurumsal Akademik Arşivi
    • English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
  • POLİTİKA
  • REHBER
  • İLETİŞİM
View Item 
  •   Bartın University Dspace
  • Fakülteler
  • Mühendislik Mimarlık ve Tasarım Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Makale Koleksiyonu
  • View Item
  •   Bartın University Dspace
  • Fakülteler
  • Mühendislik Mimarlık ve Tasarım Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Epilepsy diagnosis using artificial neural network learned by PSO

Thumbnail
View/Open
Makale dosyası (155.2Kb)
Date
2015
Author
Yalçın, Nesibe
Tezel, Gülay
Karakuzu, Cihan
Metadata
Show full item record
Abstract
Electroencephalogram (EEG) is used routinely for diagnosis of diseases occurring in the brain. It is a very useful clinical tool in the classification of epileptic seizures and the diagnosis of epilepsy. In this study, epilepsy diagnosis has been investigated using EEG records. For this purpose, an artificial neural network (ANN), widely used and known as an active classification technique, is applied. The particle swarm optimization (PSO) method, which does not need gradient calculation, derivative information, or any solution of differential equations, is preferred as the training algorithm for the ANN. A PSO-based neural network (PSONN) model is diversified according to PSO versions, and 7 PSO-based neural network models are described. Among these models, PSONN3 and PSONN4 are determined to be appropriate models for epilepsy diagnosis due to having better classification accuracy. The training methods-based PSO versions are compared with the backpropagation algorithm, which is a traditional method. In addition, different numbers of neurons, iterations/generations, and swarm sizes have been considered and tried. Results obtained from the models are evaluated, interpreted, and compared with the results of earlier works done with the same dataset in the literature.
URI
http://dergipark.gov.tr/download/article-file/126116
http://hdl.handle.net/11772/1066
Collections
  • Bilgisayar Mühendisliği Bölümü Makale Koleksiyonu [4]

DSpace@Bartın is member of:


sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of CommunitiesCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesDepartmentsPublishersLanguagesRightsJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsTypesDepartmentsPublishersLanguagesRightsJournals

My Account

LoginRegister

DSpace@Bartın is member of:

İLETİŞİM BİLGİLERİ

Adres
Bartın Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Ağdacı / BARTIN, 74100
E-Posta
acikerisim@bartin.edu.tr
Creative Commons License

DSpace@Bartin by Bartin University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.