dc.contributor.author | Kişi, Ömer | |
dc.contributor.author | Güler, Erhan | |
dc.date.accessioned | 2019-06-11T06:50:43Z | |
dc.date.available | 2019-06-11T06:50:43Z | |
dc.date.issued | 2017-01 | |
dc.identifier.uri | http://hdl.handle.net/11772/1333 | |
dc.description.abstract | Several notions of convergence for subsets of metric spaces appear in the literature. In
this paper, for real valued measurable functions defined on a measurable space (X,M ,μ), we obtain a statistical version of Lebesque’s bounded convergence theorem (when μ (X) < ∞) and examine the validity of the classical theorems of Measure Theory for statistical convergences. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Journal of Classical Analysis | en_US |
dc.relation.isversionof | doi:10.7153/jca-10-08 | en_US |
dc.rights | info:eu-repo/semantics/restrictedAccess | en_US |
dc.subject | Statistical convergence | en_US |
dc.subject | Measurable function | en_US |
dc.title | On statistical convergence with respect to measure | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Classical Analysis | en_US |
dc.contributor.department | Bartın Üniversitesi, Fen Fakültesi, Matematik Bölümü | en_US |
dc.contributor.authorID | 112188 | en_US |
dc.identifier.volume | 10 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 77 | en_US |
dc.identifier.endpage | 85 | en_US |