Basit öğe kaydını göster

dc.contributor.authorKişi, Ömer
dc.contributor.authorGüler, Erhan
dc.date.accessioned2019-06-11T06:50:43Z
dc.date.available2019-06-11T06:50:43Z
dc.date.issued2017-01
dc.identifier.urihttp://hdl.handle.net/11772/1333
dc.description.abstractSeveral notions of convergence for subsets of metric spaces appear in the literature. In this paper, for real valued measurable functions defined on a measurable space (X,M ,μ), we obtain a statistical version of Lebesque’s bounded convergence theorem (when μ (X) < ∞) and examine the validity of the classical theorems of Measure Theory for statistical convergences.en_US
dc.language.isoengen_US
dc.publisherJournal of Classical Analysisen_US
dc.relation.isversionofdoi:10.7153/jca-10-08en_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectStatistical convergenceen_US
dc.subjectMeasurable functionen_US
dc.titleOn statistical convergence with respect to measureen_US
dc.typearticleen_US
dc.relation.journalJournal of Classical Analysisen_US
dc.contributor.departmentBartın Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.contributor.authorID112188en_US
dc.identifier.volume10en_US
dc.identifier.issue1en_US
dc.identifier.startpage77en_US
dc.identifier.endpage85en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster