dc.contributor.author | Güler, Erhan | |
dc.contributor.author | Kişi, Ömer | |
dc.contributor.author | Konaxis, Christos | |
dc.date.accessioned | 2019-06-11T08:00:37Z | |
dc.date.available | 2019-06-11T08:00:37Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://www.mdpi.com/2227-7390/6/12/279 | |
dc.identifier.uri | http://hdl.handle.net/11772/1342 | |
dc.description.abstract | Considering the Weierstrass data as $(\psi ,f,g)=( 2,1-z^{-m},z^{n})$, we introduce a two parameter family of Henneberg type minimal surface that we call $\mathfrak{H}_{m,n}$ for positive integers $(m,n)$ by using the Weierstrass representation in the four-dimensional Euclidean space $\mathbb{E}^{4}$. We define $\mathfrak{H}_{m,n}$ in $(r,\theta)$ coordinates for positive integers $(m,n)$ with $m\neq 1,n\neq -1, -m+n\neq -1$, and also in $(u,v)$ coordinates, and then we obtain implicit algebraic equations of the Henneberg type minimal surface of values $(4,2)$. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/restrictedAccess | en_US |
dc.subject | Henneberg-type minimal surface | en_US |
dc.subject | Weierstrass representation | en_US |
dc.subject | Four-dimensional space | en_US |
dc.subject | Implicit equation | en_US |
dc.title | Implicit equations of the henneberg-type minimal surface in the four dimensional euclidean space | en_US |
dc.type | article | en_US |
dc.relation.journal | Mathematics Special Issue: Computer Algebra in Scientific Computing | en_US |
dc.contributor.department | Bartın Üniversitesi, Fen Fakültesi, Matematik Bölümü | en_US |
dc.contributor.authorID | 28161 | en_US |
dc.identifier.volume | 6 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 10 | en_US |