Show simple item record

dc.contributor.authorKişi, Ömer
dc.contributor.authorÇakal, Burak
dc.date.accessioned2019-06-13T06:22:20Z
dc.date.available2019-06-13T06:22:20Z
dc.date.issued2018-04
dc.identifier.urihttp://hdl.handle.net/11772/1383
dc.description.abstractIn this paper, the concepts of-uniform density of subsetsAof the setof positive integers and corresponding-convergence of functions defined on discrete countable amenable semigroups were introduced. Furthermore, for any Folner sequenceinclusion relations between-convergence and invariant convergence also-convergence andVp-convergence were given. Weintroduce the concept of-statisticalconvergence and-lacunary statisticalconvergence of functions defined on discrete countableamenable semigroups. In addition to these definitions, we give some inclusion theorems. Also, we make a new approach to the notionsofV-summability,-convergence and-statistical convergence of Folner sequences by using ideals and introduce new notions,namely,-V-summability,--statisticalconvergence of Folner sequences. We mainly examine the relation between these twomethods as also the relation between-statistical convergence and--statistical convergence of Folner sequences introduced bythe author recently.en_US
dc.language.isoengen_US
dc.publisherNew Trends in Mathematical Sciencesen_US
dc.relation.isversionof10.20852/ntmsci.2018.289en_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectFolner sequenceen_US
dc.subjectAmenable groupen_US
dc.subjectInferioren_US
dc.subjectSuperioren_US
dc.subjectI-convergenceen_US
dc.titleOn I_{σ}-convergence of folner sequence on amenable semigroupsen_US
dc.typearticleen_US
dc.relation.journalNew Trends in Mathematical Sciencesen_US
dc.contributor.departmentBartın Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.contributor.authorID112188en_US
dc.identifier.volume6en_US
dc.identifier.issue3en_US
dc.identifier.startpage1en_US
dc.identifier.endpage14en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record