Show simple item record

dc.contributor.authorGüler, Erhan
dc.date.accessioned2020-07-23T12:33:50Z
dc.date.available2020-07-23T12:33:50Z
dc.date.issued2020-07-23
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/11772/6482
dc.description.abstractWe define helical (i.e., helicoidal) hypersurfaces depending on the axis of rotation in Minkowski four-space E41 . There are three types of helicoidal hypersurfaces. We derive equations for the curvatures (i.e., Gaussian and mean) and give some examples of these hypersurfaces. Finally, we obtain a theorem classifying the helicoidal hypersurface with timelike axes satisfying ΔIH=AH .tr_TR
dc.language.isoengtr_TR
dc.publisherSymmetry- Basel-MDPItr_TR
dc.relation.isversionof10.3390/sym12081206tr_TR
dc.rightsinfo:eu-repo/semantics/embargoedAccesstr_TR
dc.subjectHelicoidal hypersurfacetr_TR
dc.subjectLaplace–Beltrami operatortr_TR
dc.subjectGaussian curvaturetr_TR
dc.subjectMean curvaturetr_TR
dc.subjectMinkowski four-spacetr_TR
dc.titleHelical hypersurfaces in minkowski geometry E^1_4tr_TR
dc.typearticletr_TR
dc.relation.journalSymmetrytr_TR
dc.contributor.departmentBartın Üniversitesi, Fen Fakültesi, Matematik Bölümütr_TR
dc.contributor.authorID0000-0003-3264-6239tr_TR
dc.identifier.volume12tr_TR
dc.identifier.issue8tr_TR
dc.identifier.startpage1tr_TR
dc.identifier.endpage16tr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record