dc.contributor.author | Güler, Erhan | |
dc.date.accessioned | 2020-07-23T12:33:50Z | |
dc.date.available | 2020-07-23T12:33:50Z | |
dc.date.issued | 2020-07-23 | |
dc.identifier.issn | 2073-8994 | |
dc.identifier.uri | http://hdl.handle.net/11772/6482 | |
dc.description.abstract | We define helical (i.e., helicoidal) hypersurfaces depending on the axis of rotation in Minkowski four-space E41 . There are three types of helicoidal hypersurfaces. We derive equations for the curvatures (i.e., Gaussian and mean) and give some examples of these hypersurfaces. Finally, we obtain a theorem classifying the helicoidal hypersurface with timelike axes satisfying ΔIH=AH . | tr_TR |
dc.language.iso | eng | tr_TR |
dc.publisher | Symmetry- Basel-MDPI | tr_TR |
dc.relation.isversionof | 10.3390/sym12081206 | tr_TR |
dc.rights | info:eu-repo/semantics/embargoedAccess | tr_TR |
dc.subject | Helicoidal hypersurface | tr_TR |
dc.subject | Laplace–Beltrami operator | tr_TR |
dc.subject | Gaussian curvature | tr_TR |
dc.subject | Mean curvature | tr_TR |
dc.subject | Minkowski four-space | tr_TR |
dc.title | Helical hypersurfaces in minkowski geometry E^1_4 | tr_TR |
dc.type | article | tr_TR |
dc.relation.journal | Symmetry | tr_TR |
dc.contributor.department | Bartın Üniversitesi, Fen Fakültesi, Matematik Bölümü | tr_TR |
dc.contributor.authorID | 0000-0003-3264-6239 | tr_TR |
dc.identifier.volume | 12 | tr_TR |
dc.identifier.issue | 8 | tr_TR |
dc.identifier.startpage | 1 | tr_TR |
dc.identifier.endpage | 16 | tr_TR |