Generative artificial intelligence acceptance scale: A validity and reliability study
Date
2023Author
Yılmaz, Fatma Gizem Karaoğlan
Yılmaz, Yılmaz
Ceylan, Mehmet
Metadata
Show full item recordAbstract
Üretken Yapay Zeka Kabul Ölçeği: Geçerlilik ve Güvenilirlik Çalışması Özet Bu çalışmanın amacı, üretken yapay zeka için Birleşik Teknoloji Kabul ve Kullanım Teorisi (UTAUT) modeline dayanan bir kabul ölçeği geliştirmektir. Ölçek, öğrencilerin üretken yapay zeka uygulamalarını kabulünü incelemek için tasarlanmıştır. Bu araç, öğrencilerin üretken yapay zeka uygulamalarına yönelik kabul düzeylerini değerlendirmektedir. Ölçek geliştirme çalışması, 2022-2023 akademik yılı boyunca ChatGPT gibi üretken üretken yapay zeka araçlarını kullanan çeşitli fakültelerden 627 üniversite öğrencisini kapsayan üç aşamada gerçekleştirilmiştir. Ölçeğin görünüş ve kapsam geçerliliğini değerlendirmek için alanda uzman profesyonellerden görüş alınmıştır. İlk örneklem grubuna (n = 338) altta yatan faktörleri keşfetmek için açımlayıcı faktör analizi (AFA) uygulanırken, sonraki örneklem grubuna (n = 250) faktör yapısının doğrulanması için doğrulayıcı faktör analizi (DFA) uygulanmıştır. Daha sonra, AFA sonucunda 20 maddeden oluşan dört faktörün toplam varyansın %78.349'unu açıkladığı görülmüştür. DFA sonuçları, ölçeğin 20 madde ve dört faktörden (performans beklentisi, çaba beklentisi, kolaylaştırıcı koşullar ve sosyal etki) oluşan yapısının elde edilen verilerle uyumlu olduğunu doğrulamıştır. Güvenilirlik analizi Cronbach alfa katsayısını 0.97, test-tekrar test yöntemi ise 0.95'lik bir güvenilirlik katsayısı ortaya koymuştur. Maddelerin ayırt edici gücünü değerlendirmek için, katılımcıların alt %27'si ile üst %27'si arasında karşılaştırmalı bir analiz yapılmış ve ardından düzeltilmiş madde-toplam korelasyonları hesaplanmıştır. Sonuçlar, üretici yapay zeka kabul ölçeğinin geçerlik ve güvenilirliğinin yüksek olduğunu ve böylece sağlam bir ölçüm aracı olarak etkinliğini teyit ettiğini göstermektedir. Generative Artificial Intelligence Acceptance Scale: A Validity and Reliability Study Abstract: The purpose of this study is to formulate an acceptance scale grounded in the Unified Theory of Acceptance and Use of Technology (UTAUT) model. The scale is designed to scrutinize students’ acceptance of generative artificial intelligence (AI) applications. This tool assesses students’ acceptance levels toward generative AI applications. The scale development study was conducted in three phases, encompassing 627 university students from various faculties who have utilized generative AI tools such as ChatGPT during the 2022–2023 academic year. To evaluate the face and content validity of the scale, input was sought from professionals with expertise in the field. The initial sample group (n = 338) underwent exploratory factor analysis (EFA) to explore the underlying factors, while the subsequent sample group (n = 250) underwent confirmatory factor analysis (CFA) for the verification of factor structure. Later, it was seen that four factors comprising 20 items accounted for 78.349% of total variance due to EFA. CFA results confirmed that structure of the scale, featuring 20 items and four factors (performance expectancy, effort expectancy, facilitating conditions, and social influence), was compatible with the obtained data. Reliability analysis yielded Cronbach’s alpha coefficient of 0.97, and the test–retest method demonstrated a reliability coefficient of 0.95. To evaluate the discriminative power of the items, a comparative analysis was conducted between the lower 27% and upper 27% of participants, with subsequent calculation of corrected item-total correlations. The results demonstrate that the generative AI acceptance scale exhibits robust validity and reliability, thus affirming its effectiveness as a robust measurement instrument.