Basit öğe kaydını göster

dc.contributor.authorBardak, Timuçin
dc.contributor.authorBardak, Selahattin
dc.contributor.authorSözen, Eser
dc.date.accessioned2019-11-12T07:14:17Z
dc.date.available2019-11-12T07:14:17Z
dc.date.issued2019-08-15
dc.identifier.citationBARDAK, T., BARDAK, S., & SÖZEN, E. (2019). Data Mining and Pixel Distribution Approach for Wood Density Prediction. Journal of Bartin Faculty of Forestry, 19(2), 386-396.en_US
dc.identifier.urihttp://hdl.handle.net/11772/1991
dc.description.abstractThe wood material has strategic importance in economic development. Innovations are the basic premise of commercial success in the wood industry, as in all industries. The density of wood provides valuable information about the physical and mechanical properties of the wood, and it is also directly related to the productivity in the forest industry. Many non-destructive test studies have been conducted to evaluate the physical properties of wood structures. This study was conducted to predict the density of wood in the species of oak (Quercus robur) and beech (Fagus orientalis L.) using the number of pixels in a grayscale image and data mining. To this purpose, pixel density of data was processed with the data collected from the images of wood specimens. This data was used as descriptor variables in artificial neural networks and random forest algorithm. The designed artificial neural network model and random forest algorithm allowed the prediction of density with an accuracy of 95.19% and 96.36%, respectively for the testing phase. As a result, this study showed that pixel density and data mining have the potential to be used as an instrument for predicting the density of wood.en_US
dc.language.isoturen_US
dc.publisherJournal of Bartin Faculty of Forestryen_US
dc.relation.isversionof10.24011/barofd.561858en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectData miningen_US
dc.subjectArtificial neural networksen_US
dc.subjectRandom foresten_US
dc.subjectDigital imagesen_US
dc.subjectWooden_US
dc.subjectVeri madenciliğien_US
dc.subjectYapay sinir ağlarıen_US
dc.subjectRastgele ormanen_US
dc.subjectDijital görüntüleren_US
dc.subjectAhşapen_US
dc.titleData mining and pixel distribution approach for wood density predictionen_US
dc.title.alternativeOdun yoğunluğu tahmini için veri madenciliği ve piksel dağılımı yaklaşımıen_US
dc.typearticleen_US
dc.relation.journalJournal of Bartin Faculty of Forestryen_US
dc.contributor.departmentBartın Üniversitesi, Bartın Meslek Yüksekokulu, Mobilya ve Dekorasyon Bölümüen_US
dc.contributor.authorID41015en_US
dc.identifier.volume19en_US
dc.identifier.issue2en_US
dc.identifier.startpage386en_US
dc.identifier.endpage396en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster